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Abstract

In this paper, we consider weighted quadratic functionals of the mul-
tivariate uniform empirical process. By deriving the Karhunen-Loève
expansion of the corresponding limiting Gaussian process, we obtain
the asymptotic distribution of these statistics. Our results have direct
applications to tests of goodness of fit and tests of independence by
Cramér-von Mises-type statistics.
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1 Introduction and Premiminaries.

1.1 Introduction.

In this paper, we consider quadratic functionals of the form∫ 1

0
. . .

∫ 1

0
t2β1
1 . . . t2βd

d α2
n,0(t1, . . . , td)dt1 . . . dtd, (1.1)

where αn,0 is an appropriate version of the uniform empirical process on the
unit hypercube [0, 1]d (see, e.g., (2.20) in the sequel for an explicit definition
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of this quantity). Our aim is, at first, to establish conditions on the con-
stants β1, . . . , βd, under which the statistic in (1.1) converges to a quadratic
functional of a Gaussian process. The latter is of the form∫ 1

0
. . .

∫ 1

0
t2β1
1 . . . t2βd

d B2
0(t1, . . . , td)dt1 . . . dtd, (1.2)

with B0 denoting a tied-down Brownian bridge. Second, we will establish
the explicit distribution of the random variable in (1.2), by deriving the
Karhunen-Loève expansion of the corresponding weighted Gaussian process.

This problem has received considerable attention in the literature from the
pioneering work of Cramér [10] (see, e.g., Nikitin [26] and the references
therein), up to the more recent work of Scott [32] for d = 1. In higher di-
mensions, one must refer to Blum, Kiefer and Rosenblatt [6], Cotterill and
Csörgő [8, 9], Deheuvels [12], Dugué [16, 17, 18], Hoeffding [19], Kiefer [23],
Martynov [27], and Smirnov [33, 35, 34], who have investigated un-weighted
statistics corresponding to β1 = . . . = βd = 0. The study of quadratic
functionals of Gaussian processes has been also discussed at length, in par-
ticular, by Biane and Yor [5], Donati-Martin and Yor [15], Pitman and Yor
[28, 29, 30, 31], and Yor [37, 38], among others. Recently, some important
progress has been made in this framework by Deheuvels and Martynov [13],
and Deheuvels, Peccati and Yor [14], whose results will be instrumental in
the present paper. The theory of Bessel functions plays an essential role in
the derivation of our theorems, and we refer to Bowman [7], Korenev [24]
and Watson [36] for the appropriate details on these mathematical objects.

Our paper is organized as follows. In the forthcoming §1.2 and 1.3, we
establish some general preliminaries which are used later on in §2, where our
main results are stated. We describe the univariate case in §2.1, whereas
the multivariate case, with d ≥ 2, is discussed in §2.2. Most of the results
given here turn out to follow readily from a series of dispersed references
in the literature, and the proofs are obtained via the proper book-keeping
arguments. In spite of the fact that the mathematical techniques we shall
use are not too difficult, the resulting theorems in §2 are far from trivial,
and, for this reason, very likely worth to be mentioned.

1.2 Some Preliminaries on Gaussian Process Theory.

Let {X(t) : t ∈ [0, 1]d} denote a centered Gaussian process defined on
the d-dimensional hyper-cube, with d ≥ 1. For convenience, we set s =
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(s1, . . . , sd) ∈ Rd and t = (t1, . . . , td) ∈ Rd, and denote by

R(s, t) = E
(
X(s)X(t)

)
for s, t ∈ [0, 1]d, (1.3)

the covariance function of X(·). Below, we will be mainly concerned with
the study of the quadratic functional∫

[0,1]d
X2(t)dt, (1.4)

with dt denoting the Lebesgue measure on Rd. To render (1.4) meaningful,
we will work under the minimal assumption that

0 < E
( ∫

[0,1]d
X2(t)dt

)
=

∫
[0,1]d

R(t, t)dt < ∞. (1.5)

Below, we briefly discuss the meaning and implications of this assumption.
The condition (1.5) entails that X(·) ∈ L2

(
[0, 1]

)
a.s., so that X(·) belongs

to the special subclass of Hilbert space valued centered Gaussian processes
(see, e.g., Section 10 in Lifshits [25]). Moreover, making use of the Cauchy-
Schwarz inequality, we see that, for each s, t ∈ [0, 1]d,

R(s, t)2 = E
(
X(s)X(t)

)2 ≤ E
(
X(s)2

)
E

(
X(t)2

)
= R(s, s)R(t, t).

When combining this last inequality with (1.5), we obtain that

‖R‖2
L2 :=

∫
[0,1]d

∫
[0,1]d

R(s, t)2dsdt ≤
{∫

[0,1]d
R(t, t)dt

}2
< ∞, (1.6)

so that R ∈ L2
(
[0, 1]d × [0, 1]d

)
. Routine analytical arguments show that,

under (1.6) only, the Fredholm transformation y(·) ∈ L2
(
[0, 1]d

)
→ ỹ(·),

defined by

ỹ(t) =
∫

[0,1]d
R(s, t)y(s)ds for t ∈ [0, 1]d, (1.7)

is a continuous linear mapping of L2
(
[0, 1]d

)
onto itself. In particular, it is

easy to check that, under (1.6), for each y1(·), y2(·) ∈ L2
(
[0, 1]d

)
,

‖ỹ1 − ỹ2‖2
L2 =

∫
[0,1]d

{∫
[0,1]d

R(s, t)
{
y1(s)− y2(s)

}
ds

}2
dt

≤ ‖R‖2
L2 × ‖y1 − y2‖L2 .

The condition (1.6) also implies the existence of {λk, ek(·) : 1 ≤ k < K}
with the following properties. First, {λk : 1 ≤ k < K} is a sequence of
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positive constants, with K ∈ {2, . . . ,∞} denoting a possibly infinite index,
such that

λ1 ≥ . . . ≥ λk ≥ . . . > 0. (1.8)

Second, the {ek(·) : 1 ≤ k < K} form an orthonormal sequence of functions
in L2

(
[0, 1]

)
, fulfilling∫

[0,1]d
ek(t)e`(t)dt =

{
1 if k = `,

0 if k 6= `.

Third, both sequences are related to R through the identity

R(s, t) =
∑

1≤k<K

λkek(s)ek(t), (1.9)

where the series in (1.9) is convergent in L2
(
[0, 1]d

)
. We note here that this

last property entails that

‖R‖L2 =
∫

[0,1]d

∫
[0,1]d

R(s, t)2dsdt =
∑

1≤k<K

λ2
k < ∞. (1.10)

Because of (1.10), the sequence {(λk, ek(·)) : 1 ≤ k < K} is often called
a convergent orthonormal sequence [c.o.n.s.]. The λk (resp. ek(·)) are the
eigenvalues (resp. eigenfunctions) of the Fredholm operator (1.7), since they
fulfill the relations, for each 1 ≤ k < K,

ẽk(t) =
∫

[0,1]d
R(s, t)ek(s)ds = λkek(t). (1.11)

In view of (1.11), we see that the eigenvalue sequence {λk : 1 ≤ k < K}
is always uniquely defined. On the other hand, such is not the case for the
eigenvectors {ek(·) : 1 ≤ k < K}. In the simple case where the λk are
isolated and distinct, each ek(·) is only uniquely defined up to a multiplica-
tive factor ±1. The situation is even more complex when an eigenvalue λk

is multiple, in which case the choice of an orthonormal basis of the linear
space spanned by the eigenvectors pertaining to λk is unique only up to an
orthogonal transform.

In the sequel, we will make an instrumental use of the Karhunen-Loève [KL]
representation of X(·), (see, e.g., Kac and Siegert [22, 21], Kac [20], Ash and
Gardner [4], and Adler [2]). This representation decomposes X(·) into the
sum of the series

X(t) =
∑

1≤k<K

Yk

√
λk ek(t), (1.12)
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where {Yk : 1 ≤ k < K} denotes a sequence of independent and identically
distributed [i.i.d.] standard normal N(0, 1) random variables. In general,
the series in (1.12) is convergent in mean square. This follows from the
observation that, in terms of {λk : 1 ≤ k < K}, the condition (1.5) is
equivalent to

0 < E
( ∫

[0,1]d
X2(t)dt

)
=

∑
1≤k<K

λk < ∞. (1.13)

This, in turn, readily implies that, as k ↑ K − 1,

E
( ∫

[0,1]d

{
X(t)−

k∑
m=1

Ym

√
λm em(t)

}2
dt

)
=

∑
m>k

λk → 0.

Obviously, the condition (1.5) (or equivalently (1.13)) is strictly stronger
than (1.10). Moreover, is readily checked that, under (1.5) (or equivalently
(1.13)), the quadratic functional (1.4) we are interested in can be rewritten
as the sum of the series∫

[0,1]d
X2(t)dt =

∑
1≤k<K

λkY
2
k . (1.14)

An easy argument, which we omit, shows that the series in (1.14) is a.s.
convergent if and only if (1.5) (or equivalently (1.13)) holds. Therefore, we
will assume, from now on, that this condition is satisfied.

1.3 A General Convergence Theorem.

We inherit the notation of §1.2, and let R(·, ·) be as in (1.3). We consider
now a sequence ξ1(·), ξ(2), . . . of independent replicæ of a general (but not
necessarily Gaussian) random process ξ(·), taking values in L2

(
[0, 1]d

)
, and

fulfilling the conditions (H.1–2–3) below.

(H.1) ξ(·) ∈ L2
(
[0, 1]d

)
;

(H.2) E
(
ξ(t)

)
= 0 for all t ∈ [0, 1]d;

(H.3) E
(
ξ(s)ξ(t)

)
= R(s, t) for all s, t ∈ [0, 1]d.

Under (H.1–2–3), it is well-known (see, e.g., Ex. 14, p. 205 in Araujo and
Giné [3]) that the convergence in distribution

ζn(·) := n−1/2
n∑

i=1

ξi(·)
d→ X(·), (1.15)
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holds if and only if the condition (1.5) (or equivalently (1.13)) holds, namely,
when ∫

[0,1]d
E

(
ξ2(t)

)
dt =

∫
[0,1]d

R(t, t)dt < ∞.

Putting together the previous arguments, we get the following more or the
less straightforward theorem, which merely collects some well-known facts
of the literature.

Theorem 1.1 Under (1.5) and (H.1–2–3), we have, as n → ∞, the con-
vergence in distribution∫

[0,1]d
ζ2
n(t)dt d→

∑
1≤k<K

λkY
2
k . (1.16)

Proof. Under (1.5) (or equivalently (1.13)), it follows from (1.15) that∫
[0,1]d

ζ2
n(t)dt d→

∫
[0,1]d

X2(t)dt,

which, in turn, reduces (1.16) to a direct consequence of (1.15).2

In the next section, we provide some useful statistical applications of Theo-
rem 1.1.

2 Weighted Empirical Processes.

2.1 The Univariate Case (d = 1).

Let U1, U2, . . . be i.i.d. uniform [0, 1] random variables. For each n ≥ 1,
denote by

Fn(t) =
1
n

n∑
i=1

1I{Un≤t}, (2.1)

the empirical distribution function based upon U1, . . . , Un, and let

αn(t) = n1/2
{
Fn(t)− t

}
for t ∈ [0, 1], (2.2)

stand for the corresponding uniform empirical process. Recalling the nota-
tion of §1.3, fix now a constant β ∈ R, and set, for n ≥ 1,

ξn(t) = tβ
{
1I{Un≤t} − t

}
for t ∈ [0, 1]. (2.3)

6

Paul Deheuvels, Afrika Statistika, Vol.1, n°1, 2005, pp.1-14
Weighted Multivariate Cramér-von Mises-type Statistics

Afrika Statistika 6



Here, we use the convention that t0 = 1 for all t ∈ R, when β = 0. Observe
that, in agreement with (1.15), (2.2), (2.3), and the notation of §1.3,

ζn(t) = n−1/2
n∑

i=1

ξi(t) = tβαn(t) for t ∈ [0, 1]. (2.4)

Obviously, the assumptions (H.1–2–3) in §1.3 are fulfilled with R defined by

R(s, t) = sβtβ
{
s ∧ t− st

}
for s, t ∈ [0, 1]. (2.5)

In view of (2.5), we see that (1.5)–(1.13) hold if and only if∫ 1

0
t2β

{
t(1− t)

}
dt < ∞, (2.6)

which is equivalent to β > −1. Now, since s∧t−st is the covariance function
of a standard Brownian bridge {B(t) : t ∈ [0, 1]}, the kernel R(·, ·) in (2.5)
is nothing else but the covariance function of the weighted Brownian bridge

X(t) = tβB(t) for t ∈ (0, 1]. (2.7)

Recently, Deheuvels and Martynov [13] have obtained the Karhunen-Loève
representation of X(·) in (2.7). This is given as follows. Assume that β 6=
−1, and set ν = 1/(2(1 + β)). Keep in mind that β > −1 is then equivalent
to ν > 0. For an arbitray ν ∈ R, define the Bessel function of the first kind
(refer to Formula 9.1.69 in Abaramowitz and Stegun [1]) by

Jν(x) = (1
2x)ν

∞∑
k=0

(−1
4x2)k

Γ(ν + k + 1)Γ(k + 1)
. (2.8)

It is well-known (refer to Watson [36]) that, whenever ν > −1, the positive
zeros of Jν (that is, the values of z > 0 for which Jν(z) = 0) are isolated
and form an infinite increasing sequence {zν,k : k ≥ 1}, such that

0 < zν,1 < zν,2 < . . . , (2.9)

and, as k →∞,

zν,k =
{
k + 1

2(ν − 1
2)

}
+ o(1). (2.10)

In view of this notation and basic facts, Theorem 1.4 in [13] asserts that,
whnever β > −1, the Karhunen-Loève representation of X(t) = tβB(t) is
given by

X(t) = tβB(t) =
∞∑

k=1

Yk

√
λk ek(t), (2.11)
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where, as usual, {Yk : k ≥ 1} is a sequence of independent and identically
distributed [i.i.d.] standard normal N(0, 1) random variables, and, for k =
1, 2, . . .,

λk =
{ 2ν

zν,k

}2
, (2.12)

and

ek(t) = t
1
2ν
− 1

2

{ Jν(zν,kt
1
2ν )√

ν Jν−1(zν,k)

}
for 0 < t ≤ 1. (2.13)

We refer to Deheuvels and Martynov [13] for further details concerning this
theorem and the related properties of the Bessel functions used in (2.13).
Putting everything together, we get the following theorem.

Theorem 2.1 For any β > −1, setting ν = 1/(2(1 + β)), we have, as
n →∞, the convergence in distribution∫ 1

0
t2βα2

n(t)dt
d→

∫ 1

0
t2βB2(t)dt =

∞∑
k=1

{ 2ν

zν,k

}2
Y 2

k , (2.14)

where {Yk : k ≥ 1} is an i.i.d. sequence of normal N(0, 1) random variables.

Proof. In view of (2.12)–(2.13), it is a direct consequence of Theorem 1.1,
when combined with the arguments above.2

2.2 The Multivariate Case (d ≥ 2).

We consider now an arbitrary d ≥ 2. The following notation will be use-
ful in this multivariate framework. When s = (s1, . . . , sd) ∈ Rd and t =
(t1, . . . , td) ∈ Rd are two vectors of Rd, we denote by s ≤ t the fact that
sj ≤ tj for j = 1, . . . , k, and set, accordingly,

s ∧ t =
(
s1 ∧ t1, . . . , sd ∧ td

)
.

Letting U = (U(1), . . . , U(d)) ∈ [0, 1]d stand for a random vector with a
uniform distribution on [0, 1]d, we denote by Un = (Un(1), . . . , Un(d)) ∈
[0, 1]d, n = 1, 2, . . . a sequence of i.i.d. replicæ of U. For each n ≥ 1, the
empirical distribution function based upon U1, . . . ,Un is denoted by

Fn(t) =
1
n

n∑
i=1

1I{Ui≤t}, (2.15)
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We will set, for convenience

F (t) = P
(
U ≤ t

)
=

d∏
j=1

tj , (2.16)

for the (exact) distribution function of U, and set

αn(t) = n1/2
(
Fn(t)− F (t)

)
for t ∈ [0, 1]d, (2.17)

for the corresponding uniform empirical process. Making use of the argu-
ments in §1.3, it is easily checked that the following convergence in distrib-
ution holds (for processes in L2

(
[0, 1]d

)
, which, in the present framework, is

sufficient for our needs). As n →∞, we have

αn(·) d→ B(·), (2.18)

where {B(t) : t ∈ [0, 1]d} is a standard multivariate Brownian bridge.
Namely, B(·) is a centered Gaussian process, with covariance function

E
(
B(s)B(t)

)
= E

(
αn(s)αn(t)

)
= E

(
1I{U≤s∧t}

)
− E

(
1I{U≤s}

)
E

(
1I{U≤t}

)
=

d∏
j=1

{
sj ∧ tj

}
−

d∏
j=1

{
sjtj

}
. (2.19)

Unfortunately, the Karhunen-Loève decomposition of B(·), with the covari-
ance function given in (2.19), is not known explicitly for d ≥ 2. We may,
however, define a more tractable tied-down empirical process αn,0(·) as fol-
lows. Set

αn,0(t) = αn(t)−
∑

1≤j≤d

tj αn(t1, . . . , tj−1, 1, tj+1, . . . , td)

+
d∑

1≤j<`≤d

tjt` αn(t1, . . . , tj−1, 1, tj+1, . . . , t`−1, 1, t`+1, . . . , td)

+ . . . + (1)dt1 . . . td αn(1, . . . , 1). (2.20)

We note that αn(1, . . . , 1) = 0, but this term is nevertheless stated here
to render the construction more explicit. Now, making use again of the
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arguments in §1.3, it is easily checked that the following convergence in
distribution holds. As n →∞, we have

αn,0(·)
d→ B0(·), (2.21)

where {B0(t) : t ∈ [0, 1]d} is a tied-down multivariate Brownian bridge.
Namely, B0(·) is a centered Gaussian process, with covariance function

E
(
B0(s)B0(t)

)
=

d∏
j=1

{
sj ∧ tj − sjtj

}
. (2.22)

We have the following easy consequence of the results of Deheuvels and
Martynov [13] (see also Deheuvels, Peccati and Yor [14]).

Theorem 2.2 Let β1, . . . , βd be constants such that βj > −1 for j = 1, . . . , d.
Set νj = 1/(2(1 + βj)) > 0 for j = 1, . . . , d. Then, the Karhunen-Loève de-
composition of the centered Gaussian process

X(t) = tβ1
1 . . . tβd

d B0(t) for t ∈ (0, 1]d, (2.23)

is given by

X(t) =
∞∑

k1=1

. . .
∞∑

kd=1

√
λk1,...,kd

Yk1,...,kd
ek1,...,kd

(t), (2.24)

where

λk1,...,kd
=

d∏
j=1

{ 2νj

zνj ,kj

}2
=:

d∏
j=1

L(νj , kj), (2.25)

and

ek1,...,kd
(t) =

d∏
j=1

[
t

1
2νj

− 1
2

j

{
Jνj (zνj ,k t

1
2νj

j )
√

νj Jνj−1(zνj ,k)

}]

=:
d∏

j=1

E(νj , tj). (2.26)

Proof. By (2.22) the covariance function of X(t) in (2.23) is given by

R(s, t) =
d∏

j=1

s
βj

j t
βj

j

{
sj ∧ tj − sjtj

}
=:

d∏
j=1

R(sj , tj). (2.27)

10
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Therefore, because of (2.12)–(2.13), it is straightforward that λk1,...,kd
is an

eigenvalue of the Fredholm operator (1.7) pertaining to the eigenfunction
ek1,...,kd

(·). To conclude, it is enough to show that all eigenvalues of the
kind are obtained by this construction. For this, we combine (1.10) with
(2.27), to write that∫

[0,1]d

∫
[0,1]d

R(s, t)2dsdt =
∞∏

j1=1

. . .
∞∏

jd=1

∫ 1

0

∫ 1

0
R(sj , tj)2dsjdtj

=
∞∏

j1=1

. . .

∞∏
jd=1

{ ∞∑
kj=1

L(νj , kj)2
}

=
∞∑

k1=1

. . .

∞∑
kd=1

λ2
k1,...,kd

.

This shows obviously that there is no other remaining eigenvalue of (1.7),
which suffices for our needs.2

We now give the main theorem of the present paper, which turns out to be
an easy consequence of the preceding results.

Theorem 2.3 Let β1, . . . , βd be constants such that βj > −1 for j = 1, . . . , d.
Set νj = 1/(2(1 + βj)) > 0 for j = 1, . . . , d. Then, we have, as n →∞, the
convergence in distribution∫

[0,1]d
t2β1
1 . . . t2βd

d α2
n,0(t)dt

d→
∫

[0,1]d
t2β1
1 . . . t2βd

d B2
0(t)dt

=
∞∑

k1=1

. . .
∞∑

kd=1

{ d∏
j=1

{ 2νj

zνj ,kj

}2}
Y 2

k1,...,kd
, (2.28)

where {Yk1,...,kd
: k1 ≥ 1, . . . , kd ≥ 1} is an i.i.d. array of normal N(0, 1)

random variables.

It turns out that the limiting distribution given in Theorem 2.3 is identical
to the limiting distribution of the Blum-Kiefer-Rosenblatt statistic (see, e.g.,
[6]), when d = 2 and β1 = . . . = βd = 0.

Conclusion. Unlike the univariate case, the eigenvalues λk1,...,kd
in the

Karhunen-Loève decomposition (2.25)–(2.26) are multiple. This renders the
numerical computation of the distribution quantiles of the test statistic in
(2.28) for d ≥ 2 slightly than in the univariate case. The derivation of the
properties of the tests based upon this theory will be investigated elsewhere.

Acknowledgement. We thank the editors of Afrika Statistica for allowing
us to present this material in their new journal.
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