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Abstract. This note compares two approaches both alternatively used when establishing nor-
mality theorems in univariate Extreme Value Theory. When the underlying distribution function
(df) is the extremal domain of attraction, it is possible to use representations for the quantile
function and regularity conditions (RC), based on these representations, under which strong
and weak convergence are valid. It is also possible to use the now fashion second order condition
(SOC), whenever it holds, to do the same. Some authors usually favor the first approach (the
SOC one) while others are fond of the second approach that we denote as the representational
one. This note aims at comparing the two approaches and show how to get from one to the
other. The auxiliary functions used in each approach are computed and compared. Statistical
applications using simultaneously both approaches are provided. A final comparison is provided.

Résumé. Cet article compare deux approches couramment et alternivement utilisées en vue
d’établir des résultats de normalité asymptotique en Théorie des Valeurs Extrmes. Lorsque la
fonction de répartition (fr) est dans le domaine d’attraction exremal, il est possible d’utiliser
des hypothses basées sur les représentations des quantiles, et sous lesquelles des résultats de
convergence forte, faible et/ou de loi sont établis. Il est aussi possible d’utiliser une méthode
devenue standard, dite celle du second ordre. Chacune est associée à des fonctions dites auxil-
liaires, servant à exprimer les conditions de validité des résultats asymptotiques. L’une de ces
deux méthodes est utilisée selon les auteurs. Dans ce papier, nous exposons une étude com-
parative et montrons comment passer de l’une à l’autre par le biais des fonctions auxilliaires.
Cette étude permet une lecture comparative des articles selon l’approche utilisée. Deux exem-
ples, le processus des grands quantiles et le processus de Hill fonctionnel, sont proposés comme
exemples statistiques.
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1. Introduction

Statistical modelling based on the univariate Extreme Values Theory usually requires regularity
conditions of the underlying distributions. Since the work of de Haan and Stadtmüller [7] on the
the so-called Second Order Condition (SOC), using this SOC has became fashion in research
papers so that this way of doing is the mainstream one, led by de Haan (see for instance [4],
[12], [6]). However the second order condition does not always hold as we will show it (see (1)),
although a large class of distribution functions fulfills it. Yet, there exists an other approach,
that is the representational one, based on the Karamata representation for a slowly varying
function. In this view, each distribution function F in the extremal domain may be represented
a couple of functions p(s) and b(s), s ∈ (0, 1), to be precised in Theorem 1. This approach
is the one preferred by many other authors, for instance Csörgő, Deheuvels, and Mason, [2],
Lo [9], Hall (see [10],[11]) etc. This latter in particularly adapted for the use on the Gaussian
approximations like that of Csörgő-Csörgő-Horvàth-Mason [1].

This motivates us to undertake here a comparative study of the second order condition in the
two approaches and provide relations and methods for moving from one to the other. We give
specific statistical applications using simultanuously the two ways. The paper is to serve as a
tool for comparitive reading of papers based on the two approaches.

The paper is organized as follows. In Section 1, we introduce the second order condition in
the frame of de Haan and Stadmüller [7] using quantile functions. In Section 3, we recall the
representational scheme and link them to the second order condition. Precisely, we express the
second order condition, when it holds, through the couple of functions (p, b) associated with a
df attracted to the extremal domain. The results are then given through the df G(x) = F (ex),
x ∈ R, that is the most used in statistical context. In Section 4, we settle a new writing the
SOC for the quantiles while the auxiliary functions of that condition, denoted as s and S,
are computed for a large number of df ′s. In Section 6, we deal with applications in statistical
contexts. The first concerns the asymptotic normality of the large quantiles process and the
second treats the functional Hill process. In both cases, we use the two approaches. We finish
by comparing the two methods at the light of these applications.

2. The second order condition

2.1. Definition and expressions.

Consider a df F lying in the extremal domain of attraction of the Generalized Extreme Value
(GEV) distribution, that is

Gγ(x) = exp(−(1 + γx)−1/γ), for1 + γx > 0,

denoted denoted F ∈ D(Gγ), and let U(x) = (1/(1− F ))−1, where for any nondecreasing and
right-continuous function L : R 7→ [a, b], with a < b,

L−1(t) = inf{x ≥ t, L(x) ≥ t}, a ≤ t ≤ b,

is the generalized inverse of L. One proves (see [6], p. 43) that there exists a positive function
a(t) of t ∈ R, such that

∀(x > 0), lim
t→∞

U(xt)− U(t)

a(t)
=
xγ − 1

γ
= Dγ(x),
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where (xγ − 1)/γ is interpreted as log(x) for γ = 0. Now, by definition, F is said to satisfy a
second order condition ([7]) if and only if there exists a function A(t) of t ∈ R with a constant
sign such that

lim
t→∞

U(xt)−U(t)
a(t) − xγ−1

γ

A(t)
= H(x), (SOCU)

holds. According to Theorem 2.3.3 in (de haan and Ferreira), the function H, when it is not a
multiple of Dγ(x), can be written as

Hγ,ρ(x) = c1

∫ x

1

sγ−1

∫ s

1

uγ−1 du ds+ c2

∫ x

1

sγ+ρ−1ds,

where ρ is a negative number and the functions a(t) and A(t) satisfies for any x > 0,

lim
t→∞

a(tx)/a(t)− xγ

A(t)
= c1x

γ x
ρ − 1

ρ

and

lim
t→∞

A(tx)/A(t) = xρ.

According to Corollary 2.3.5 in de Haan and Ferreira, one can choose a positive function a∗(t)
and a function A∗(t) of constant sign such that

U(xt)−U(t)
a∗(t) − xγ−1

γ

A∗(t)
→ H∗

γ,ρ(x),

with

H∗
γ,ρ(x) =


xγ+ρ−1
γ+ρ , γ + ρ ̸= 0, ρ < 0,

log x, γ + ρ = 0, ρ < 0,
1
γx

γ log x, γ ̸= 0, ρ = 0,

(log(x))2/2, γ = ρ = 0,

a∗(t) =

 a(t)(1−A(t)/ρ), ρ > 0,
a(t)(1−A(t)/γ), ρ = 0, γ ̸= 0,
a(t), γ = ρ

and

A∗(t) = A(t)/ρI(ρ > 0) +A(t)I(ρ = 0).

To see that the SOC does not necessary hold, consider the standard exponential distribution
function. We have U(t) = log(t) and

U(tx)− U(t) = log x = [(xγ − 1)/γ]γ=0. (1)

It is clear that the function a is necessarily constant and equal to the unity and the second
order condition is here meaningless. As a consequence, the results obtained under a second
order condition are partial.
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2.2. Expression in terms of generalized inverse functions.

We are going to express the SOC through the generalized function F−1(1− u). Let

F ∈ D(Gγ).

With this parameterization, the case γ = 0 corresponds to D(Λ), the case −∞ < γ < 0 to
D(ψ1/γ) and finally, the case 0 < γ < +∞ to D(ϕ1/γ). The second order condition will become
: there exist a positive function s(u) and a function S(u) with constant sign such that for any
x > 0,

F−1(1− ux)− F−1(1− u)

s(u)
− γ−1(xγ − 1)

S(u)
= Hγ,ρ(1/x) = hγ,ρ(x). (SOCF)

3. Representation for F∈ D(Gγ)

3.1. Representations

Now we recall the classical representations of df attracted to some nondegenerated extremal df.

Theorem 1. We have :

1. Karamata’s representation (KARARE)

(a) If F ∈ D(Gγ), γ > 0, then there exist two measurable functions p(u) and b(u) of u ∈ (0, 1)
such that sup(|p(u)| , |b(u)|) → 0 as u→ 0 and a positive constant c so that

G−1(1− u) = log c+ log(1 + p(u))− γ log u+

(∫ 1

u

b(t)t−1dt

)
, 0 < u < 1, (2)

where G−1(u) = inf{x,G(x) ≥ u}, 0 < u ≤ 1 is the generalized inverse of G with
G−1(0) = G−1(0+).

(b) If F ∈ D(Gγ), γ < 0, then y0(G) = sup{x, G(x) < 1} < +∞ and there exist two
measurable functions p(u) and b(u) for u ∈ (0, 1) and a positive constant c as defined in
(2) such that

y0 −G−1(1− u) = c(1 + p(u))u−γ exp

(∫ 1

u

b(t)t−1dt

)
, 0 < u < 1. (3)

2. Representation of de Haan (Theorem 2.4.1 in [5]),
If G ∈ D(G0), then there exist two measurable functions p(u) and b(u) of u ∈ (0, 1) and a
positive constant c as defined in (2) such that for

s(u) = c(1 + p(u)) exp

(∫ 1

u

b(t)t−1dt

)
, 0 < u < 1, (4)

we have for some constant d ∈ R,

G−1(1− u) = d− s(u) +

∫ 1

u

s(t)t−1dt, 0 < u < 1. (5)

It is important to remark at once that any df in the extremal domain of attraction is associated
with a couple of functions (p, b) used in each appropriate representation.
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3.2. Preparation of second order condition.

We are now proving, under F ∈ D(Gγ) that for x > 0,

lim
u→∞

F−1(1− ux)− F−1(1− u)

s(u)
= dγ(x) = γ−1(x−γ − 1).

3.2.1. F ∈ D(G0)

The representation (5) is valid for F−1(1− u), u ∈ (0, 1). We get for u ∈ (0, 1) and x > 0 :

F−1(1− xu)− F−1(1− u) = s(u)− s(ux) +

∫ u

ux

s(t)

t
dt.

For v ∈ [min(ux, u),max(ux, u)] = A(u, x),

s(v)/s(u) =
1 + p(t)

1 + p(u)
exp

(∫ u

v

b(t)

t
dt

)
.

By letting pr(u, x) = sup{|p(t)| , 0 ≤ t ≤ max(ux, u)} and br(u, x) = sup{|b(t)| , 0 ≤ t ≤
max(ux, u)}, one quickly shows that, for u sufficiently small,

sup
t∈A(u,x)

|1− (1 + p(v))/(1 + p(u)| ≤ 2pr(u, x).

and

x−br(u,x) ≤ exp

(∫ u

ux

b(t)

t
dt

)
≤ xbr(u,x)

and then

sup
v∈A(u,x)

∣∣∣∣1− exp

(∫ u

v

b(t)

t
dt

)∣∣∣∣ = O(−br(u, x)).

≤ |1 + x| (1 ∨ |x|)1+br(u,x)

It follows that
sup

v∈A(u,x)

|1− s(v)/s(u)| = O(max(pr(u, x), br(u, x)) → 0,

as u→ 0. We get, for pbr(u, x) = pr(u, x)× br(u, x),

F−1(1− xu)− F−1(1− u)

s(u)
+ log x

= O(pbr(u, x)) +O(pbr(u, x) log x) → 0.

Then

lim
u→0

F−1(1− xu)− F−1(1− u)

s(u)
= − log x =

[
γ(x−1/γ − 1)

]
γ=∞

.

We notice that
F−1(1− xu)− F−1(1− u)

s(u)
+ log x (6)

= O(p(u, x) + b(u, x)),

where
p(u, x) = 1− (1− p(ux))/(1− p(u)) → 0 as u→ 0 (7)

and

b(u, x) =

∫ u

ux

1

t

[
1− p(t)

1 + p(u)
exp

(∫ t

u

v−1b(v) dv

)
− 1

]
dt→ 0 as u→ 0. (8)
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3.2.2. F∈ D(G1/γ) (γ > 0)

We have the KARARE representation

F−1(1− u) = c(1 + p(u))u−γ exp

(∫ 1

u

t−1b(t)dt

)
, u ∈ (0, 1).

Then, for s(u) = γcu−γ exp(
∫ 1

u
t−1b(t) dt), for x > 0

F−1(1− ux)− F−1(1− u)

s(u)

= γ−1

{
(1 + p(ux))x−1/γ exp

(∫ x

ux

t−1b(t) dt

)
− 1− p(u)

}
.

As previously, we readily see that

exp

(∫ x

ux

t−1b(t) dt

)
= exp(O(br(u, x) log x))

= 1 +O(br(u, x) log x) → 1,

as u→ 0. It follows that

F−1(1− ux)− F−1(1− u)

s(u)
→ γ−1(x−γ − 1). (9)

Moreover we have

F−1(1− ux)− F−1(1− u)

s(u)
− γ−1(x−γ − 1)

= γ−1

{
xγ
(
(1 + p(ux)) exp

(∫ x

ux

t−1b(t) dt

)
− 1

)
− p(u)

}
= pb(u, x). (10)

= γ−1

{
xγ
(
(1 + p(ux)) exp

(∫ x

ux

t−1b(t) dt

)
− 1

)
− p(u)

}
= pb(u, x). (11)

Notice that we may also take s(u) = F−1(1− u).

3.2.3. F∈ D(Gγ), γ < 0

We have x0 = sup{x, F (x) < 1} < +∞ and the following representation holds :

x0 − F−1(1− u) = c(1 + p(u))u−γ exp

(∫ 1

u

t−1b(t)dt

)
, u ∈ (0, 1).

Then, for s(u) = −γcu−γ exp(
∫ 1

u
t−1b(t)dt), u ∈ (0, 1) and x > 0,

F−1(1− ux)− F−1(1− u)

s(u)
=

(x0 − F−1(1− u))− (x0 − F−1(1− ux))

s(u)

= −γ−1

{
1 + p(u)− x−γ(1 + p(ux)) exp

(∫x

ux

t−1b(t)dt

)}
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= γ−1

{
x−γ(1 + p(ux)) exp

(∫ x

ux

t−1b(t)dt

)}
− 1− p(u)

→ γ−1(x−γ − 1),

as u→ 0. Likely to the case 0 < γ <∞,

F−1(1− ux)− F−1(1− u)

s(u)
− γ(x−1/γ − 1) (12)

= γ−1

{
x−γ

(
(1 + p(ux)) exp

(∫ x

ux

t−1b(t) dt

)
− 1

)
− p(u)

}
= pb(u, x). (13)

Notice that we may also take s(u) = x0 − F−1(1− u).

4. Second order condition via representations

4.1. Case by case

4.1.1. F ∈ D(Gγ), 0 < γ <∞

The second order condition is equivalent to finding a fonction S(u) of constant sign such that

S(u)−1

{
F−1(1− ux)− F−1(1− u)

s(u)
− γ−1(x−γ − 1)

}
= S(u)−1pb(u, x)

converges to a function hγ,ρ, where

pb(u, x) = γ

{
x−γ

(
(1 + p(ux)) exp

(∫ x

ux

t−1b(t) dt

)
− 1

)
− p(u)

}

and s(u) may be taken as F−1(1− u).

4.1.2. F ∈ D(Gγ),−∞ < γ < 0

The second order condition is equivalent to finding a fonction S(u) of constant sign such that

S(u)−1

{
F−1(1− ux)− F−1(1− u)

s(u)
− γ−1(x−γ − 1)

}
= S(u)−1pb(u, x)

converges to a function hγ,ρ where

pb(u, x) = γ−1

{
x−γ

(
(1 + p(ux)) exp

(∫ x

ux

t−1b(t)dt

)
− 1

)
− p(u)

}

and s(u) may be taken as x0 − F−1(1− u) and x0 is the upper endpoint of F .
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4.1.3. F ∈ D(G0)

The second order condition is equivalent to finding a fonction S(u) of constant sign such that

S(u)−1

{
F−1(1− ux)− F−1(1− u)

s(u)
− log x)

}
= S(u)−1(p(u, x) + b(u, x))

converges to a function h1/γ,ρ, where

p(u, x) = 1− (1− p(ux))/(1− p(u)) → 0 as u→ 0

and

b(u, x) =

∫ u

ux

1

t

(
1− p(t)

1 + p(u)
exp

(∫ t

u

v−1b(v)dv

)
− 1

)
dt→ 0 as u→ 0.

and s(u) may be taken u−1
∫ 1

u
(1− s)dF−1(s).

5. Special cases

5.1. Statistical context.

In the statistical context, especially in the exteme value index estimation, the bulk of the work
is done with

G−1(1− u) = logF−1(1− u).

Let F ∈ D(Gγ). The three cases −∞ < γ < 0, 0 < γ < +∞, γ = 0 respectively imply

G ∈ D(G1/γ),

G ∈ D(G0) and s(u,G) → γ

and
G ∈ D(G0) and s(u,G) → 0.

For F ∈ D(Gγ), 0 < γ <∞, we have a representaion like

G−1(1− u) = c+ log(1 + p(u))− γ log u+

∫ 1

u

t−1b(t)dt.

We take here s(u) = γ. The second order conditions becomes

S(u)−1

{
G−1(1− ux)−G−1(1− u)

γ
− log x

}
= S(u)−1

{
γ−1 log

1 + p(ux)

1 + p(u)
+ γ−1

∫ u

ux

t−1b(t)dt

}
= A(u)−1 pb(u, x) → h0,ρ(x).

Denote dG−1(1− u)/du = G−1(1− u)′ whenever if exists. Now if G−1(1− u)′ exists for u near
zero, we may take

b(u) = G−1(1− u)′ + γ → 0,

For F ∈ D(Gγ), −∞ < γ < 0, we may transfer the SOC to G in a way similar as to F , with

log x0 −G−1(1− u) = c(1 + p(u))uγ exp

(∫ 1

u

t−1b(t)dt

)
.
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For F ∈ D(G0). If s(u) = u(G−1(1− u)′) → 0, we will have

G−1(1− s) = d−
∫ 1

u

t−1s(t)dt.

We may take
b(u) = us′(u).

The second order condition becomes simpler as

S(u)−1b(u, x)

= S(u)−1

∫ u

ux

1

t

(
1− p(t)

1 + p(u)
exp

(∫ t

u

v−1b(v) dv

)
− 1

)
dt

→ h0,ρ(x).

Moreover, for g(x) = dG(x)/dx, if

b(u) = us′(u)/s(u) = 1− u(G−1(1− u)g(G−1(1− u))−1 → 0,

we have

s(u) = c exp

(∫ 1

u

t−1b(t)dt

)
,

and the SOC becomes

S(u)−1b(u, x)

= S(u)−1

∫ u

ux

1

t

[
exp

(∫ t

u

(
1

v
− 1

G−1(1− ν)g(G−1(1− ν)

)
− 1

)
dν

]
dt

→ h0,ρ(x).

6. Finding the functions b and S.

6.1. Determination of the function b

In the usual cases, the function is ultimately differentiable, that is in a right neigbourhood of
x0(F ). It is then easy to find the function b by derivating G−1(1−u). In summary, for D(Gγ),
γ > 0, the function b in the representation of G−1(1− u) is

b(u) = −
{
γ + u(G−1(1− u))′

}
.

The function b in the representation of F−1(1− u) is defined by

−b(u) = γ + u(G−1(1− u))′/G−1(1− u))

For γ = +∞, the function b is the representation of G−1(1− u), that is,

b(u) = −us′(u)/s(u),
where

s(u) = u(G−1(1− u))′.

For γ < 0 and y0(G) = y0,

b(u) = −γ + u(G−1(1− u))′/(x0 −G−1(1− u))

Then we apply these formulas and determine the function b for usual df ’s. Regularity conditions
in the representational approach mainly rely on the function b, while they rely of the function
S for the SOC approach. It is then interesting to have both functions for usual df ’s in tables in
Subsection 6.3, following [12].
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6.2. The function S for the second order condition

Functions a and A in the (SOCU), as well as the functions Hγ,ρ are available in the usual cases
(see [12] for example). It is not the case for the (SOCF ) expressed in terms of the quantile
functions. We then seize this opportunity to compute their analogs s and S in the this case for
the usual df ’s. The results are summarized in our tables in Subsection 6.3.

6.2.1. The Singh-Maddala Law

Let for constants a, b and c, for x ≥ 0,

1− F (x) = (1 + axb)−c,

the so-called Singh-Madalla df . This function plays a special role in income fitting distribution.
It is clear that

F ∈ D(Gbc).

Put
λ = 1/bc.

Straightforward calculations give

G−1(1− u) = −b−1 log a− γ log u+ b−1 log(1− u1/c)

= d− γ log u− 1

b
log(1− u0) +

∫ u0

u

t−1B(t)dt,

where
a = −b−1 log a,

B(u) = γu1/c(1− u1/c)−1

and u0 ∈]0, 1[. Put K0 = − 1
b log(1− u0)/u0 and

b(u) = B(u)I(0≤u≤u0) +K0I(u0≤u≤1),

we get

G−1(1− u) = d− γ log u+

∫ 1

u

t−1b(t)dt,

with
b(u) → 0.

We have

G−1(1− ux)−G−1(1− u)

γ
+ log x =

1

γb
(log(1− (ux)1/c)− log(1− u1/c))

=
1

γb
(−x1/cu1/c + u1/c +O(u2/c)).

Thus, for S(u) = cu1/c/(γb), we get

G−1(1− ux)−G−1(1− u)

γ
− log x

S(u)
=
x1/c − 1

−1/c
= h0,ρ(x) = H0,ρ(1/x).
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This corresponds to a second order condition. As for F−1(1− u) itself, we have

F−1(1− u) = (1/a)1/b(1− u−1/c)1/b

and

b(u) = F−1(1− u)′/F−1(1− u) +
1

bc
= (1− u−1/c

1 + u−1/c
)/bc→ 0.

We have for s(u) = F−1(1− u)/(bc),

F−1(1− ux)− F−1(1− u)

s(u)
=

bc

((
1− x−1/cu−1/c

1− u−1/c

)1/b

− 1

)
→ x−1/bc − 1

1/bc
.

Next

F−1(1− ux)− F−1(1− u)

s(u)
− x−1/bc − 1

1/bc

= (bc)

{(
1− x−1/cu−1/c

1− u−1/c

)1/b

−
(
x−1/c

)1/b}

= (bc)b−1

{
1− x−1/cu−1/c

1− u−1/c
− x−1/c(1− u−1/c)

1− u−1/c

}
ζ(u, x)(1/b)−1,

where ζ(u, x) ∈ I(x−1/c, b), with b = (1− x−1/cu−1/c)/(1− u−1/c) ∼ x−1/c. Hence

F−1(1− ux)− F−1(1− u)

s(u)
− x−1/bc − 1

1/bc

= c

{
1− x−1/cu−1/c

1− u−1/c
− x−1/c(1− u−1/c)

1− u−1/c

}
ζ(u, x)(1/b)−1

= c

{
1− x−1/c

1− u−1/c

}
ζ(u, x)(1/b)−1.

Finally for S(u) = −(1− u−1/c)−1,

F−1(1−ux)−F−1(1−u)
s(u) − x−1/bc−1

1/bc

S(u)
→ h(x) =

(
x−1/c − 1

)
x−1/(bc)+1/c

1/c

6.2.2. Burr’s df

1− F (x) = (x−ρ/γ + 1)1/ρ, ρ < 0, and

F−1(1− u) = (uρ − 1)−γ/ρ.
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For s(u) = γF−1(1− u),

F−1(1− ux)− F−1(1− u)

s(u)
=

1

γ

{
(xρuρ − 1)−γ/ρ

(uρ − 1)−γ/ρ
− 1

}
=

1

γ

{(
xρuρ − 1

uρ − 1

)−γ/ρ

− 1

}

→ x−γ − 1

γ
.

Next

F−1(1− ux)− F−1(1− u)

s(u)
− x−γ − 1

γ
=

1

γ

{(
xρuρ − 1

uρ − 1

)−γ/ρ

− x−γ

}

=
1

γ

{(
xρuρ − 1

uρ − 1

)
− (xρ)−γ/ρ

}
= −1

ρ

{
xρuρ − 1− xρ(uρ − 1)

uρ − 1

}
ζ(u, x)−γ/ρ−1,

where ζ(u, x) = I(a, b) = [a ∧ b, a ∨ b], with a = xρ and b = (xρuρ − 1)/(uρ − 1) ∼ xρ. Hence

F−1(1− ux)− F−1(1− u)

s(u)
− x−γ − 1

γ
= −1

ρ

{
xρ − 1

uρ − 1

}
ζ(u, x)−γ/ρ−1.

Hence for S(u) = (uρ − 1)−1,

F−1(1− ux)− F−1(1− u)

s(u)
− x−γ − 1

γ

S(u)
→ − (xρ − 1)x−γ−ρ

ρ
.

6.2.3. Log Exponential law

F (x) = 1− exp(−e−x), that is

F−1(1− u) = log log(1/u).

We have
F−1(1− u)′ = −1/(u log u)

and let
s(u) = uF−1(1− u)′ = −1/ log u

so that
s′(u) = −1/(u(log u)2).

Finally
b(u) = −(log u)−2 → 0.

With the representation

F−1(1− u) = c+

∫ 1

u

s(t)

t
dt,
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where s is slowly varying at zero, we get that

F−1(1− ux)− F−1(1− u)

s(u)
→ − log x.

We can use direct methods and get

F−1(1− ux)− F−1(1− u) = log(log(ux)/ log u).

We remark v(u, x) = log(ux)/ log u → 1, and that v(u, x)− 1 = (log x)/ log u. We may use the
expansion of the logarithm function and get

F−1(1− ux)− F−1(1− u) = (v − 1)− (v − 1)2 +O
(
(v − 1)3

)
= (log x)/ log u+ ((log x)/ log u)2/2 +O((log x)/ log u)3).

By putting

S(u) = s(u) = 1/(log u),

It comes that
F−1(1− ux)− F−1(1− u)

s(u)
+ log x

S(u)
→ (log x)2/2.

6.2.4. Normal standard

Let F be the d.f. of a standard normal law. We have the simple approximation, for M =
√
2π,

for x > 1,

M−1(x−1 − x−3)e−x2/2 ≤ 1− F (x) ≤M−1x−1e−x2/2.

For s = 1− F (x),

− logM − log x− log(1− x−2)− x2/2 ≤ s ≤ − logM − log x− x2/2

− logM − log x+
1

x
+O(x−2)− x2/2 ≤ log s ≤ − logM − log x− x2/2

logM + log x+ x2/2 ≤ log(1/s) ≤ logM + log x− 1

x
+O(x−2) + x2/2.

And as x→ 0 ⇐⇒ s→ 0,

x = F−1(1− s) = (2 log 1/s)1/2(1 + o(1)).

We easily see that the o(1) term is at least of order (log 1/s)
−1

. This gives

x2/2 + logM + log x ≤ log(1/s) ≤ x2/2 + logM + log x− 1

x
+O(x−2)

log(1/s) + log(1/s)× o(1) + logM + log((2 log 1/s)1/2(1 + o(1)).

The left term is

= log(1/s)(1 + o(1) + logM(1/2) log 2 + (1/2) log log(1/s) + o(1).
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The right term is

log(1/s)(1 + o(1)) + logM + (1/2) log 2 + (1/2) log log(1/s)

−(2 log 1/s)−1/2(1 + o(1)) +O((log 1/s)−1) + o(1).

The middle term is
(1 + o(1))x2/2.

By dividing by log(1/s), we get

1 +
(1/2) log 4π + (1/2) log log(1/s) + (2 log 1/s)−1/2(1 + o(1)) +O((log 1/s)−1)

log(1/s)

≤ (x/(2 log(1/s))1/2)2 + o(1)× (x/(2 log(1/s))1/2)2

≤ 1 +
(1/2) log 4π + (1/2) log log(1/s)

log(1/s)
.

Then

1 +
(2 log 1/s)−1/2(1 + o(1)) +O((log 1/s)−1) + log(1/s)× o(1)

log(1/s)

≤ (x/(2 log(1/s))1/2)2 − (1/2) log 4π + (1/2) log log(1/s)

log(1/s)

= (x/(2 log(1/s))1/2)2 − (1/2) log 4π + (1/2) log log(1/s)

log(1/s)

= 1 +
o(1)

log(1/s)
.

Then

x2 = (2 log(1/s)

{
1− (1/2) log 4π + (1/2) log log(1/s) + o(1)

log(1/s)

}
,

and

x = F−1(1− u) = (2 log(1/s))1/2
{
1− (1/2) log 4π + (1/2) log log(1/s) + o(1)

2 log(1/s)

}
.

We have
F−1(1− s)− F−1(1− xs) = A(x, s) +B(x, s) + C(x, s)

with

A(x, s) = (2 log(1/s))1/2 − (2 log(x/s))1/2 = −(2 log(1/s))1/2((
log(x/s)

log(1/s)
)1/2 − 1).

But (
log(x/s)

log(1/s)

)1/2

=

(
1 +

(
log(x/s)

log(1/s)
− 1

))1/2

= 1 +
1

2

(
log(x/s)

log(1/s)
− 1

)
− 1

8

(
log(x/s)

log(1/s)
− 1

)2

+O

((
log(x/s)

log(1/s)
− 1

)3
)

= 1 +
1

2

log x

log 1/s
− 1

2

(log x)2

(2 log 1/s)
2 +O

(
(log 1/s)

−3
)
.
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We get

A(x, s) = − log x

(2 log 1/s)
1/2

− 1

2

(log x)2

(2 log 1/s)
3/2

+O
(
(log 1/s)−5/2

)
and

B(x, s) =
(1/2) log 4π + (1/2) log log(x/s) + o((log 1/s)

−1
)

(2 log(x/s))
1/2

− (1/2) log 4π + (1/2) log log(1/s) + o((log 1/s)
−1

)

(2 log(x/s))
1/2

,

C(x, s) =
(1/2) log 4π + (1/2) log log(1/s) + o((log 1/s)

−1
)

(2 log(x/s))
1/2

− (1/2) log 4π + (1/2) log log(1/s) + o((log 1/s)
−1

)

(2 log(1/s))
1/2

and

B(x, s) =
1

(2 log(x/s))
1/2

(
1

2
log(log(x/s)/ log(1/s)

)
+
(
o((log 1/s)

−1
)
)
.

But

log(log(x/s)/ log(1/s)) = log(1 + (log(x/s)/ log(1/s)− 1))

= (log(x/s)/ log(1/s)− 1)

−1

2
(log(x/s)/ log(1/s)− 1)

2

+O
(
(log(x/s)/ log(1/s)− 1)

3
)

=
log x

log 1/s
− 1

2

(log x)
2

(log 1/s)
2 +O((log 1/s)−3).

Then

B(x, s) =
1

(2 log 1/s)1/2

{
log x

log 1/s
− 1

2

(log x)
2

(log 1/s)
2 +O((log 1/s)−3)

}
+
(
o((log 1/s)

−3/2
)
)
,

and

C(x, s) =
(1/2) log 4π + (1/2) log log(1/s) + o((log 1/s)

−1
)

(2 log(x/s))
1/2

×
{
(2 log(1/s))

1/2 − (2 log(x/s))
1/2
}

=
(1/2) log 4π + (1/2) log log(1/s) + o((log 1/s)

−1
)

(2 log(1/s))
1/2

×

{
− log x

(2 log 1/s)
1/2

− 1

2

(log x)2

(2 log 1/s)
3/2

+O((log 1/s)−5/2)

}
.
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Recall

A(x, s) =

{
− log x

(2 log 1/s)
1/2

− 1

2

(log x)2

(2 log 1/s)
3/2

+O((log 1/s)−5/2)

}
.

We conclude that

(2 log(1/s))
1/2

(1/2) log 4π + (1/2) log log(1/s)

{
F−1(1− s)− F−1(1− xs)

(2 log(1/s))−1/2
+ log x

}
→ − log x. (14)

6.2.5. Lognormal

We have
G−1(1− s) = exp(F−1(1− s)), s ∈ (0, 1),

where F is standard normal. This gives

G−1(1− u)−G−1(1− ux) = exp(F−1(1− s))× (1− exp(F−1(1− xs)− F−1(1− s))).

But

exp(F−1(1− xs)− F−1(1− s))

= exp

(
−F

−1(1− s)− F−1(1− xs)

(2 log(1/s))1/2
(2 log(1/s))1/2

)
= exp

(
− D(x, s)

(2 log(1/s))1/2

)
= 1− D(x, s)

(2 log(1/s))1/2
+

1

2

D(x, s)2

(2 log(1/s))
+

(
− 1

(2 log(1/s))3/2

)
,

where D(x, s) is defined in (14). This yields

G−1(1− s)−G−1(1− sx)

exp(F−1(1− s))(2 log(1/s))−1/2
= D(x, s)− 1

2

D(x, s)2

(2 log(1/s))1/2

+O

(
− 1

(2 log(1/s))1

)
.

Thus

(2 log(1/s))
1/2

(1/2) log 4π + (1/2) log log(1/s)

{
G−1(1− s)−G−1(1− sx)

exp(F−1(1− s))(2 log(1/s))−1/2
+ log x

}
→ −1

2
(log x)

2
.

6.2.6. Logistic law

F (x) = 1− 2/(1 + ex),

that is
F−1(1− s) = log s−1(2− s).
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Routine computations yield

F−1(1− s)− F−1(1− xs) = log x+ log(2− s)/(2− xs)

= log x+ log(1 + (s(x− 1)/(2− xs))

= log x+ (s(x− 1)/(2− xs)) +O(s2).

Thus

(s/2)−1
{
F−1(1− s)− F−1(1− xs)− log x

}
→ x− 1

2
.

6.2.7. Log-Expo

We have

F−1(1− s) = log log(1/s), s ∈ (0, 1).

F−1(1− s)− F−1(1− xs) = log((log(x/s)/(log(1/s)))

= log(1 + (log(x/s)/ log(1/s)− 1))

= (log(x/s)/ log(1/s)− 1)

−1

2
(log(x/s)/ log(1/s)− 1)

2

+O((log(x/s)/ log(1/s)− 1)
3
)

=
log x

log (1/s)
− 1

2

(log x)
2

(log (1/s))
2

+O((log (1/s))−3).

This gives

(log (1/s))2
{
F−1(1− s)− F−1(1− xs)

(log (1/s))−1
− log x

}
→ −1

2
(log x)2

6.2.8. Reversed Burr’s df

We have

F (x) = 1− ((−x)−ρ/γ + 1)1/ρ, x ≤ 0, ρ < 0 and γ > 0.

Then

F−1(1− u) = −(uρ − 1)−γ/ρ.

and

F−1(1− u)− F−1(1− ux) = ((xu)ρ − 1)−γ/ρ − (uρ − 1)−γ/ρ

= (uρ − 1)−γ/ρ

{(
xρuρ − 1

uρ − 1

)−γ/ρ

− 1

}

= (uρ − 1)−γ/ρ

{
x−γ

(
1− x−ρu−ρ

1− u−ρ

)−γ/ρ

− 1

}
.
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But (
1− x−ρu−ρ

1− u−ρ

)−γ/ρ

=

(
1 +

{
1− x−ρu−ρ

1− u−ρ
− 1

})−γ/ρ

=

(
1 +

{
(1− x−ρ)u−ρ

1− u−ρ

})−γ/ρ

= 1− γ

ρ

(1− x−ρ)u−ρ

1− u−ρ
+O(u−2ρ).

Thus

F−1(1− u)− F−1(1− ux)

γ(uρ − 1)−γ/ρ
=
x−γ − 1

γ
− x−γ 1

ρ

(1− x−ρ)u−ρ

1− u−ρ
+O(x−γγ−1u−2ρ).

So (
u−ρ

)−1
{
F−1(1− u)− F−1(1− ux)

γ(uρ − 1)−γ/ρ
− x−γ − 1

γ

}
= −x

−γ(1− x−ρ)

ρ

We now summarize the results of these computations in the next subsection.

6.3. Tables of functions s and b

Name F b

Burr 1− (x−ρ/γ + 1)1/ρ, x ≥ 0, ρ >, 0, γ < 0 uρ

Reversed Burr 1− ((−x)−ρ/γ + 1)1/ρ, x ≤ 0, ρ < 0, γ > 0 u−ρ

Singh-Maddala 1− F (x) = (1 + axb)−c, x ≥ 0 u1/u

Log-Sm 1−G(x) = (1 + aexb)−c −u1/c

(bc)(1−u1/c)

Exponentiel 1− e−x, x ≥ 0 (log u)−1

Log-Expo 1− F (x) = exp(−e−x) 1/ log u

Normal ϕ(x) (log 1/u)−3/2

Lognormal ϕ(ex) (log 1/u)−1

Logistic 1− 2/(1 + ex), x ≥ 0 (log 1/u)−1

Name gamma hγ,ρ(x) S(u)

Burr 1/γ − (xρ−1)x−γ−ρ

ρ
(uρ − 1)−1

Reversed Burr −1/γ −x−γ(1−x−ρ)
ρ

u−ρ

Singh-Maddala 1/(bc)
(x−1/c−1)x−1/(bc)+1/c

1/c
−(1− u1/c)−1

Log-Sm 0 −c(x−1/c − 1) cu1/c/(γb)
Exponentiel 0 Not applicable Not applicable
Log-Expo 0 −(log x)2/2 1/ log u

Normal 0 − log x D(s) =
{

(1/2) log 4π+(1/2) log log(1/u)

(2 log(1/u))1/2

}−1

Lognormal 0 (log x)2/2 D(s)
Logistic 0 x− 1 u/2
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7. Statistical applications

Pratically, the normality results on statistics based on the extremes are applied for ultimately
differentiable distribution functions (at +∞). They usually depend of the functions b(.) for in
the representation scheme and, on S in the second order condition one. This means that we
may move from one approach to the other. Let us illustrate this with two examples.

7.1. Large quantiles process

Let X1, X2, ... be a sequence of real and independant random variables indentically distributed
and associated to the distribution function F (x) = P (Xi ≤ x), x ∈ R. We suppose that these
random variables are represented as Xi = F−1(Ui), i = 1, 2, ..., where U1, U2, ... are standard
uniform independant random variables. For each n, U1,n < ... < Un,n denote the order statistics
based on U1, ..., Un. Finally let α > 0 and a > 0 and

k → ∞; k/n→ 0 and log logn/k → 0 as n→ ∞.

Consider this large quantile proccess (see Drees [3])

An(s, α) = Xn−[k/sα]+1,n − F−1(1− [k/sα]/n).

We suppose that F is in the extremal domain. We use first the representation scheme.

7.1.1. Representation approach

Consider the function p and b defined in Theorem 1. For any λ > 1, put the convention

dn(h, a, α) = sup{|h(t)| , |t| ≤ [a−α]λk/n.

We may then define the regularity condition,
√
k(dn(p, a, α) ∨ dn(b, a, α)) → 0 (RCREP)

under which we may find a uniform Gaussian approximation of An(s, α). Put for convenience

k(s, α) = [k/sα], l(n, α) = k(s, α)/n, k′(s, α) = k(s, α)/k,

and
U[k/sα],n = Uk(s,α),n.

For

a(k/n) = c(1 + p(k/n))(k/n)−γ exp

(∫ 1

k/n

b(t)dt

)
,

we have
An(1) = Xn−[k/sα]+1,n/a(k/n)

= (1 +O(dn(p, α, λ))(1 +O(dn(p, α, λ))× (Uk(s,α),n/l(n, s, α)
−γk′(s, α)−γ .

We also have

An(2) = F−1(1− l(n, s, α))/a(k/n)

= (1 +O(dn(p, α, λ))(1 +O(dn(b, α, λ))k
′(s, α)−γ .
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It follows, since k′(s, α)−γ = sαγ(1 +O(k−1)) uniformly in s ∈ (a, 1), that

An(1)−An(2) = sαγ
{
(l(n, s, α)−1Uk(s,α),n)

−γ − 1
}

+O(dn(p, α, λ) ∨ dn(b, α, λ)) +O(k−1);

and by [8]

√
k {An(1)−An(2)} = −γsαγ

√
k
{
(l(n, s, α)−1Uk(s,α),n)− 1

}
+O(

√
kdn(p, α, λ)) +O(

√
kdn(b, α, λ)))

= −γsαγWn(1, s
α) + op(a, α, s)

whenever (RCREP) is valid. We then obtain the limiting law of the process of large quantiles
under this condition. When F is differentiable in the neighborhood of +∞, we may take p = 0
and (RCREP) becomes √

kdn(b, a, α) → 0.

Under this (RCREP), the large quantile process behaves as the Gaussian stochastic process
−γsαγ(s, α)Wn(1, s

α).

7.1.2. Second order condition approach

There exist functions a(·) and S(·) (a(· · · ) is not necessarily the same as the previous function
s(· · · )), such that the SOC holds. But for statistical purposes, it is more convenient to use the
continuous second order condition, that is for un → 0, for xn → x > 0,

lim
n→∞

S(un)

{
F−1(1− un)− F−1(1− unxn)

a(un)
− x−γ

n − 1

γ

}
= hγ(x).

A simple argument based on compactness yields for un → 0 and for 0 < a < b,

lim
n→∞

sup
a≤x≤b

∣∣∣∣S(un){F−1(1− un)− F−1(1− unx)

a(un)
− x−γ − 1

γ

}
− hγ(x)

∣∣∣∣ = 0.

Put x(n, s, α) = l(n, s, α)−1Uk(s,α),n → 1. For s ≥ a, we may see that l(n, s, α)−1Uk(s,α),n =

1+k−1/2(Wn(s
α)+oP (1)), uniformly in s ∈ (a, 1), where Wn is a standard Wiener process (see

Lemma 1 in [8]). Then we may apply the CSOC as follows :

sup
a≤s≤b

S(l(n, s, α))−1

∣∣∣∣{F−1(1− l(n, s, α))− F−1(1− Uk(s,α),n)

a(l(n, s, α))

−
(l(n, s, α)−1Uk(s,α),n)

−γ − 1

γ

}
− hγ(x(n, s, α))

∣∣∣∣ = 0

This gives, uniformly in s ∈ (a, 1),

F−1(1− l(n, s, α))− F−1(1− Uk(s,α),n)

a(l(n, s, α))
=

(l(n, s, α)−1Uk(s,α),n)
−γ − 1

γ

−(hγ(x(n, s)) + oP (1))S(l(n, s, α)).
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Then

√
k
{
F−1(1− l(n, s))− F−1(1− Uk(s,α),n)

}
a(l(n, s, α))

=

√
k(l(n, s)−1Uk(s,α),n)

−γ − 1

γ

−(hγ(1) + oP (1))S(l(n, s))
√
k.

We will apply Lemma 1 in ([8]). Since S(l(n, s, α)) = O(S(l(n, s)) and a(l(n, s, α)) ∼
sαγa(l(n, 1, 1)), we also get

√
k
{
F−1(1− l(n, s))− F−1(1− Uk(s,α),n)

}
a(l(n, s, α))

=

−Wn(1, s
α)− (hγ(1) + oP (1))S(l(n, s, α))

√
k.

√
k
{
F−1(1− l(n, s))− F−1(1− Uk(s,α),n)

}
a(l(n, 1, 1))

=

−sαγWn(1, s
α) + (hγ(1) + oP (1))× S(k/n))

√
k.

We get the regularity condition √
kS(k/n) → 0. (RCSOC)

Conclusion 1. In both cases, we conclude that the large quantile process behaves as the
Gaussian process −sαγWn(1, s

α) when appropriately normalized under conditions based on b
or on S.

By comparing (RCREP) and (RCSOC), we see that the present normality result in the repre-
sentation scheme uses the function b while the Second order one relies on S. In fact, almost all
the normality results in both cases rely either on b in the Representation scheme or on S in the
Second order model. We also see that the second order scheme seems to use a shorter way. But,
as a compensation, the function S, as we may see it here, is more complicated to get. Indeed
for differentiable distribution functions, the function b, is easiliy obtained.

7.2. Functional Hill process

7.2.1. Representation approach

Now consider the functional Hill process

Tn(f) =

j=k∑
j=1

f(j) (logXn−j+1,n − logXn−j,n) ,

where f is some positive and bounded function and k = k(n) is a sequence if positive integer
such that 1 ≤ 1 ≤ k ≤ n and k/n→ 0 as n→ +∞. We are going to study the process under the
hypothesis F ∈ D(ψ1/γ) = D(G−γ), γ > 0. Now using the same representation Xi = F−1(Ui),
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i = 1, 2, ... We get

Tn(f) =
k∑

j=1

f(j)(logXn−j+1,n − logXn−j,n)

=
k∑

j=1

f(j)(−(y0 − logXn−j+1,n) + (y0 − logXn−j,n))

=
k∑

j=1

f(j)

{
c(1 + p(Uj+1,n))(Uj+1,n)

γ exp

(∫ 1

Uj+1,n

b(t)

t
dt

)

−c(1 + p(Uj,n))(Uj,n)
γ exp

(∫ 1

Uj,n

b(t)

t
dt

)}

=
k∑

j=1

f(j)

{
c(1 + p(Uj,n))(Uj,n)

1/γ exp

(∫ 1

Uj,n

b(t)

t
dt

)}

×

{
1 + p(Uj+1,n)

1 + p(Uj,n)

(
Uj+1,n

Uj,n

)γ

exp

(∫ Uj,n

Uj+1,n

b(t)

t
dt

)
− 1

}
.

But (
Uj+1,n

Uj,n

)γ

= exp

(
γ

j
log

(
Uj+1,n

Uj,n

)j
)

= exp

(
γ

j
Ej

)
= exp(Fj)

where, by the Malmquist representation (see [13], p. 336), the E′
js are independent standard

exponential random variables. Let also

pn = sup{|p(u)| , 0 ≤ u ≤ Uk+1,n} →P 0,

bn = sup{|b(u)| , 0 ≤ u ≤ Uk+1,n} →P 0,

as n→ +∞, and cn = an ∨ (bn log k). Then{
1 + p(Uj+1,n)

1 + p(Uj,n)

(
Uj+1,n

Uj,n

)γ

exp

(∫ Uj,n

Uj+1,n

b(t)

t
dt

)
− 1

}

= exp(Fj)(1 +O(pn)) exp(O(bn)Ej/j)− 1

= Fj(1 +O(pn))(1 +O(bn log k))

= Fj(1 +O(cn))− 1

Let also

sn = y0 −G−1(1− Uk,n) = y0 − logXn−k+1,n

= c(Uk+1,n)
1/γ

(
1 + exp

(∫ 1

Uj,n

b(t)

t
dt

))
.

This gives
= Tn(f)/sn
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=
k∑

j=1

f(j)

{
1 + p(Uj,n)

1 + p(Uk,n)

(
Uj,n

Uk,n

)γ

exp

(∫ Uk,n

Uj,n

b(t)

t
dt

)}
×{exp(Fj)(1 +O(cn))− 1} .

Let us remark that

log

(
Uk,n

Uj,n

)
= log

k−1∏
h=j

Uh+1,n

Uh,n

 =
k−1∑
h=j

1

h
log

(
Uh+1,n

Uh,n

)h

=
k−1∑
h=j

1

h
Eh = O(log k)

and (
Uj,n

Uk,n

)γ

= exp

−γ
k−1∑
h=j

1

h
Eh

 = exp

−
k−1∑
h=j

Fh

 = F ∗
j ,

where F ∗
k = 0. Then

Tn(f)/sn =

k∑
j=1

f(j)

(1 +O(pn))(1 +O(bn log k))× exp

−
k−1∑
h=j

Fh


×{exp(Fj)− 1 +O(cn) exp(Fj)}

=
k∑

j=1

f(j)F ∗
j (exp(Fj)− 1) +O(cnF

∗
j (exp(Fj)− 1))

+O(c2nF
∗
j (exp(Fj)− 1)) +O(cn exp(Fj))

We conclude that Tn(f)/sn behaves as that of
∑k

j=1 f(j)F
∗
j (exp(Fj)− 1) under regularity

conditions based on the functions p and b.

7.2.2. Second order condition approach

Let use the continuous second order condition:

S−1(un)

{
G−1(1− xnun)−G−1(1− un)

s(un)
− x−γ

n − 1

γ

}
= hγ(x) + o(1),

where xn → 0 et un → 0 as n → ∞ and un = γ
{
y0(G)−G−1(1− un)

}
. We get, for G(x) =

F (ex), x ∈ R,

Tn(f) =

k∑
j=1

f(j)(logXn−j+1,n − logXn−j,n)

=
k∑

j=1

f(j)
{
G−1(1− Uj,n)−G−1(1− Uj+1,n)

}
.
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Let un(j) = Uj,n et xn(j) = Uj+1,n/Uj,n = exp(Fj). Then

G−1(1− Uj,n)−G−1(1− Uj+1,n)

s(un(j))
= −G

−1(1− xn(j)Uj,n)−G−1(1− Uj,n)

s(un(j))

−

G−1(1− xn(j)Uj,n)−G−1(1− Uj,n)

s(un(j))
−

exp
(
−γ

jEj

)
− 1

γ


−
exp

(
−γ

jEj

)
− 1

γ

−S(un(j))hγ(exp(Fj))−
E

−γ/j
j − 1

γ
+ op(A(un(j)))

Let us use

Tn(f)

s(un(k))
=

k∑
j=1

f(j)
s(un(j))

s(un(k))

G−1(1− Uj,n)−G−1(1− Uj+1,n)

s(un(j))

=
k∑

j=1

f(j)
s(un(j))

s(un(k))
×

−S(un(j))hγ(exp(Fj))−
exp

(
−γ

jEj

)
− 1

γ
+ op(S(un(j)))

 .

Let us apply

s(un(j))

s(un(k))
=

(1 +O(pn))(1 +O(bn log k))× exp

−
k−1∑
h=j

Fh

 .

We arrive at

γTn(f)

s(un(k))
=

k∑
j=1

f(j)(1 +O(cn))F
∗
j {−S(un(j))hγ(exp(Fj))

−(exp(Fj)− 1) + op(A(un(j)))}

=
k∑

j=1

f(j)F ∗
j (exp(Fj)− 1) +

k∑
j=1

f(j)O(cnF
∗
j (exp(Fj)− 1))

+

k∑
j=1

f(j)(1 +O(cn))F
∗
j {−S(un(j))hγ(exp(Fj)) + op(S(un(j)))} .

Conclusion 2. In both cases, we see that when properly normalized, Tn(f) behaves as∑k
j=1 f(j)F

∗
j (exp(Fj)− 1) under regularity conditions based on p, b or S.

As for the first example, the SOC approach seems shorter. But here this latter approach still
needs the first one.
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8. Conclusion

As a general conclusion, we say :

1. The representation approach is more general.
2. The second order condition seems to be shorter and more unified.
3. The computation of b is less complicated than that of S.
4. The representation approach is still used within the second order approach.
5. The two approaches may be simultanuously used.

We conclude that the two approaches are equivalent and we have proposed for both cases the
computation of b and S for usual distribution functions.
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