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Abstract. Beirlant et al. (2011) introduced a bias-reduced estimator for the coefficient of
tail dependence and for bivariate tail probability in bivariate extreme value statistics. In this
paper, we are interested in the problem of choice of the number of extreme order statistics
of bivariate observations exceeding high thresholds, we want to optimize the estimators on
the choice we expose different methods for determining this number. The efficiency of our
methods is illustrated on a simulation study and by an application to real data.

Résumé. Beirlant et al. (2011) ont introduit un estimateur à bais-réduit pour le coefficient
de dépendance de la queue et la probabilité de la queue dans les statistiques de valeur
extrême bivariées. Dans cet article, nous nous intéressons au problème du choix du nombre
de statistiques d’ordre extrême des observations bivariées dépassant les seuils élevés, nous
voulons optimiser les estimateurs sur le choix que nous exposons par des différentes méthodes
pour déterminer ce nombre. L’efficacité de nos méthodes est illustrée par une étude de
simulation et par une application sur des données réelles.

Key words: Coefficient of tail dependence; Bias reduction; Extended Pareto distribution;
Tail probability; Copula; Hill estimator; Moment estimator.
AMS 2010 Mathematics Subject Classification : 62G32; 34L20; 60G70.

1. Introduction and motivation

In the classical setting of bivariate extreme value theory, the procedures to estimate the
probability of an extreme event are not applicable if the component-wise maxima of the
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observations are asymptotically independent. To address this problem, Ledford and Tawn
(1996) proposed a sub-model in which the tail dependence is characterized by an additional
parameter named coefficient of tail dependence η and it satisfies η ∈ (0, 1]. This coefficient
generalized in Ledford and Tawn (1997) without establishing their asymptotic properties. It
has turned out to be a useful tool for describing the tail behavior of a bivariate distribution
(not necessarily max-stable, distribution function (df) F ). In the case that the margins to
have a standard (unit Fréchet), then η is defined by

P (Z1 > z1, Z2 > z2) = z−c11 z−c22 L(z1, z2) with c1, c2 > 0. (1)

where η = (c1 + c2)−1 and the function L is a bivariate slowly varying function, i.e.

L(z1, z2) ∼ g1(z1, z2) (1 + g2(z1, z2)zρ11 z
ρ2
2 ) as z1, z2 →∞ (2)

Then η = 1 in the case of asymptotic dependence, whereas η < 1 implies asymptotic in-
dependence. For some counter-examples of the Ledford and Tawn’s model see Ledford and
Tawn (1997).

Various methods to estimate the coefficient of tail dependence are proposed see Peng (1999),
Draisma et al. (2004) and Beirlant and Vandewalle (2002). We start with Ledford and Tawn
(1996), they proposed first to standardize the marginal to the unit Fréchet distribution, using
either the empirical marginal distributions (that is, using the ranks of the components)
or extreme value estimators for the marginal tails, and then to estimate η as the shape
parameter of the minimum of the components, by a classical estimator for the extreme value
index, e.g. the Hill estimator (Hill, 1975) or the moment estimator.

In Beirlant et al. (2011), an asymptotically unbiased estimator for η was proposed, based
on fitting the extended Pareto distribution with the method of maximum likelihood to
properly transformed random variables. Goegebeur and Guillou (2013) obtained asymptotic
unbiasedness by taking a properly weighted sum of two biased estimators for η. Dutanga et
al. (2014) introduced a robust and asymptotically unbiased estimator for η, his estimator is
obtained by fitting a second order model to the data by means of the minimum density power
divergence criterion. In this paper we use estimator for the coefficient of tail dependence
proposed by Beirlant et al. (2011) based on second order model.

This paper is organized as follows. In Section 2 we present bivariate tail estimation and
estimating the coefficient of tail dependence. In Section 3 we introduced some of the methods
proposed for balancing between bias and variance in order to obtain an optimal number kopt
of order statistic. In Section 4 we carry out a simulation study to compare three different
estimators of the coefficient of tail dependence with special emphasis on their mean square
error, a diagnostic for selecting the number of data to be used in estimating is provided.

Draisma et al. (2004) interpreted an extension of Ledford and Tawn’s condition as a bivariate
second order (SO) regular variation condition, the latter is not too restrictive and commonly
used in estimation problems involving the bivariate case.

Corollary 1. Let (X,Y ) be a random vector with joint df F and continuous marginal df ’s
FX and FY such that

lim
t↓0

q1(t)−1
(
P (1− FX(X) < tx, 1− FY (Y ) < ty)

q(t)
− c(x, y)

)
=: c1(x, y) (3)
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exists for all x ≥ 0, y ≥ 0 with x+y > 0, a positive function q and a function q1 both tending
to zero as t ↓ 0, and c1 a function neither constant nor a multiple of c. Moreover, we assume
that the convergence is uniform on {(x, y) ∈ [0,∞)2|x2 + y2 = 1}, that c1 is continuous and
c1(x, x) = x1/η(x− 1)/τ.

Recall that q(t) := P (1− FX(X) < t, 1− FY (Y ) < t) (in the paper of Ledford and Tawn,
1996, q(t) is equals to t1/η). It can be shown by (3) implies that q and |q1| are regularly
varying at zero with index 1/η and τ ≥ 0, respectively. The function is homogeneous of
order 1/η, that is c(tx, ty) = t1/ηc(x, y).

The parameter η has the same meaning as in Ledford and Tawn (1997) and condition (3) is
similar to condition (2).

We assume that l := limt↓0 q(t)/t exists, where l > 0 implies asymptotic independence.
Hence η < 1 implies asymptotic independence.

Lemma 1. Model (1) satisfies SO condition. Many commonly used joint df satisfy the model
(1). Note that this model is in fact a condition on the copula function C. Indeed, one easily
verifies that

P (1− FX(X) < x, 1− FY (Y ) < y) = x+ y − 1 + C(1− x, 1− y).

We give now some examples of distributions satisfying condition SO.

1.1. The Farlie Gumbel Morgenstern distribution

The Farlie Gumbel Morgenstern copula function is given by

C(u, v) = uv[1 + α(1− u)(1− v)], (u, v) ∈ [0, 1]2,

where α ∈ [−1, 1]. Straightforward calculations lead to

P (1− FX(X) < tx, 1− FY (Y ) < ty) = t2xy[1 + α− αt(x+ y) + αt2xy].

In the case where α ∈ [−1, 1]

P (1− FX(X) < tx, 1− FY (Y ) < ty)

P (1− FX(X) < t, 1− FY (Y ) < t)
= xy

[
1− αt

1 + α
(x+ y − 2) +O(t2)

]
,

from which one easily verifies that SO condition is satisfied with η = 0.5, c(x, y) =
xy, c1(x, y) = xy(x+ y − 2)/2, q1(t) = −2αt/(1 + α), so τ = 1.

For the case α = −1

P (1− FX(X) < tx, 1− FY (Y ) < ty)

P (1− FX(X) < t, 1− FY (Y ) < t)
= xy

[
x+ y

2
+

1

4
(x+ y − 2xy) +O(t2)

]
,

and hence condition SO is satisfied with η = 1/3, c(x, y) = xy(x+y)/2, c1(x, y) = xy(2xy−
x− y)/2, q1(t) = −t/2, so τ = 1.
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1.2. Bivariate normal distribution

The bivariate normal distribution with mean 0, variance 1 and correlation coefficient ρ ∈
(−1, 1) satisfies the condition SO with η = (1 + ρ)/2. We consider ρ = −0.5 for η = 0.25.
We refer to Ledford and Tawn (1996) and Draisma et al. (2004) for further details.

2. Estimating the coefficient of tail dependence

Beirlant et al. (2009) introduced the extended Pareto distribution as approximate model for
relative excesses over a threshold. We use the estimation of bivariate tail suggest by Beirlant
et al. (2011), this estimation for the coefficient of tail dependence based on the second order
condition named bias reduced estimator, summarized as following

P (Z1 > z1, Z2 > z2) = P (min(Z1, Z2w/(1− w)) > z1) =: P (Yw > z1).

Or w =
z1

z1 + z2
is a tuning parameter, i.e. the transformed variable min(Z1, Z2) follows a

Pareto-type model with index 1/η,

P (Yw > z1) = z
−1/η
1 Cw

[
1 +

1

η
δw(z1)

]
,

where

Cw =

(
w

1− w

)c2
g∗1(w),

and

δw = ηg∗2(w)

(
w

1− w

)−ρ2
zτ1 (1 + o(1)),

with tz = z1 and t is a suitably chosen threshold. We have

P (Z1 > z1, Z2 > z2) = Gη,δw,τ (z1/t)P (Yw > t) + o(|δw(t)|P (Yw(t))).

The model Gη,δw,τ was introduced in Beirlant et al. (2009), and named by the extended
Pareto distribution (EPD).

It is well known that choosing the threshold t is a difficult problem even if the estimators
have an explicit form, the number of excesses over t must be sufficiently large to make
inference feasible.

The choice of an adaptive data threshold t = Yn−k,n within the ordered sequence Y1,n ≤
Y2,n ≤ ... ≤ Yn,n of the observed values of Y we can ensure both criteria by choosing k →∞
and k/n→ 0 as n→∞.

For full details on selecting the number of extreme order statistics, we refer to Cheng and
Peng (2001), Neves and Fraga (2004), Danielsson et al. (2001), Dekkers et al (1993), Draisma
et al. (1999) and Drees and Kaufmann (1998).

Definition 1 (EPD). The EPD with parameter vector (η, δ, τ) in the range τ < 0 < η and
δ > max (−1, 1/τ) is defined by its df

Gη,δ,τ (z) =

{
1− {z(1 +−δz)τ}−1/η if z > 1
0 if z ≤ 1.
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2.1. Estimation of the EPD parameters

The estimation of bivariate tail distributions requires first the estimation of the EPD pa-
rameters, see Beirlant et al. (2009). Since

P (Yw > tz\Yw > t) = Gη,δw,τ (z) = o(|δw(t)|).
The estimation of the EPD parameters is based on the relative excesses Y/t when Y > t.
As discussed in Beirlant et al. (2009), the asymptotic distribution of the tail estimator will
not depend on the asymptotic distribution of the estimator of τ . Therefore, the unknown
second-order parameter τ will be replaced by a consistent estimator which will not affect
the asymptotic distributions of the other estimators. In practice, the parameter τ is often
replaced by −1.

2.1.1. Maximum Likelihood Estimation (MLE)

The estimators of η and δ will be found by maximizing an approximation to the EPD
likelihood given the sample of k relative excesses Yn−k+i,n /Yn−k,n , i = 1, ..., k. The log-
likelihood of the EPD is given by

logL(z) = − log η − (1/η + 1) log z − (1/η + 1) log(1 + δ − δzτ ) + log(1 + δ − δzτ − δτzτ ).

define

η̂B =
logL(z)

δη
= Hk,n =

1

k

k∑
j=1

log(Yn−k+j,n/Yn−k,n),

δ̂B =
log L(z)

δδ
= Ek,n(s) =

1

k

k∑
j=1

log(Yn−k+j,n/Yn−k,n)s, s ≤ 0.

(4)

Note that Hk,n is the Hill estimator (see Hill, 1975).

Another asymptotically equivalent estimator of η found in Beirlant et al. (2009) where the
authors proposed simplified estimators for the model based on the functions EPD notes are
linearized in δ as a result

δ̂L = Hk,n(1− 2β̂)(1− β̂)3β̂−4

(
1

k

k∑
j=1

(Yn−k+j,n/Yn−k,n)
β̂/Hk,n − 1

1−β̂

)
,

η̂L = Hk,n − δ̂ β̂

1−β̂
.

(5)

Let β̂ be a weakly consistent estimator sequence for β = ητ . Beirlant et al. (2009) used the
estimator introduced in Fraga et al. (2003).

2.1.2. Estimation of the rare probability

Estimating P (Yw > t) by the empirical proportion k/n, we then obtain the estimates

p̂ =
k

n
Gη̂,δ̂,τ̂ (z1/Yn−k,n). (6)

when we omit the second-order part of the model (δw and τ) we obtain a classical Weissman
(1978) type estimator for the bivariate tail probability:

p̂W =
k

n
(z1/Yn−k,n)−1/η̂. (7)

Journal home page: www.jafristat.net ; www.projecteuclid.org/as



S. Betteka and B. Brahimi, Afrika Statistika, Vol. 12(1), 2017, pages 1171–1184. Optimal number
of upper order statistics used in estimation for the coefficient of tail dependence. 1176

3. Optimal sample fraction selection

In this Section, we start with the graphical method for selection of the optimal sample
fraction k and we note that when k is small the variance is large, and the use of a large value of
k introduces a large bias in the estimation. Next the optimum value k can be attained through
the minimization of the mean squared error of the considered estimator. Recently, adaptive
procedures for automated selection of the optimal sample fraction proposed to compute k̂opt

for kopt in the sense k̂opt/kopt
p→ 1 as n → ∞, such as bootstrap methods Danielsson et

al. (2001), Draisma et al. (1999) and sequential procedures Drees and Kaufmann (1998),
we will apply the method of Reiss and Thomas and the method of Cheng and Peng. Some
simulations are discussed in Section 4, in which we recall the criterion on k = kn.

k →∞, 1 ≤ k ≤ n and k/n→ 0 when n→∞, (8)

and we compare the last two methods.

3.1. A graphical approach

The graphical method should be applied prior to any numerical investigation, this method
consists of using the plot

{(k, η̂ (k)) : k = 1, . . . , n} .

The selection of kopt is graphically illustrated in Figure 1.

Fig. 1. Estimators of η versus k for Farlie-Gumbel-Morgenstern distribution, average over
500 simulations, (a) Hill estimator, (b) Moment estimator, horizontal line: true η, vertical
line: kopt.

3.2. Mean squared error

The MSE of coefficient of tail dependence estimator η̂ is defined by

MSE(η̂) := E∞(η̂ − η)2,
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Fig. 2. Estimators of η versus k for Farlie-Gumbel-Morgenstern distribution, average over
500 simulations, (a) Hill estimator, (b) Moment estimator, horizontal line: true η, vertical
line: kopt.

where E∞ denotes the expectation with respect to the limit distribution. The optimal choice
kopt, corresponds to the smallest MSE, i.e.

kopt := arg min
k

MSE(η̂).

3.3. Approach of Reiss and Thomas

Neves and Fraga (2004) proposed an procedure that the adequate number k should be the
value which minimizes a mean distance encapsulating a penalty term by minimizing

1

k

∑
i≤k

iβ |η̂n(i)−median(η̂1, ..., η̂n)| , 0 ≤ β ≤ 1/2. (9)

They also suggested minimizing equation (9):

k̂opt = arg min
k

1

k − 1

∑
i<k

iβ (η̂i − η̂k)
2
, 0 ≤ β ≤ 1/2. (10)

3.4. Approach of Cheng and Peng

The coverage accuracy for Hill estimator is evaluated see Cheng and Pan (1998) and the
theoretical optimal choice of the sample fraction for the one-sided confidence interval is given
in terms of minimizing the absolute coverage error by Cheng and Peng (2001) but it depends
on some unknown quantities. Cheng and Peng (2001) proposed a plug-in estimator for the
optimal sample fraction as a result

k̂opt :=



( (
1 + 2z2α

)
3δ̂(1 + 2ρ̂)

)1/(1+ρ̂)

nρ̂/(1+ρ̂) if δ̂ > 0,

((
1 + 2z2α

)
−3δ̂

)1/(1−ρ)

n−ρ̂/(1−ρ̂) if δ̂ < 0,
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or

ρ̂ := − log


∣∣∣∣∣∣∣
M

(2)
n

(
n/
(
2
√

log n
))
− 2

{
M

(1)
n

(
n/
(
2
√

log n
))}2

M
(2)
n

(
n/
√

log n
)
− 2

{
M

(1)
n

(
n/
√

log n
)}

∣∣∣∣∣∣∣
 / log 2,

and

δ̂:= (1 + ρ̂) (log n)
ρ̂/2

M
(2)
n

(
n/
√

log n
)
− 2

{
M

(1)
n

(
n/
√

log n
)}2

2ρ̂
{
M

(1)
n

(
n/
√

log n
)}2 ,

where M
(1)
n and M

(2)
n are Hill estimator and Moment estimator respectively.

4. Simulation results

In the simulation experiment we compare the optimal number of upper order statistics
used in estimation for the coefficient of tail dependence (in the sense of mean square error)
obtained with two methods listed in Section 3.

We examine the small sample behavior of the linear estimator given in (5), the Hill estimator
and Moment estimator for different distributions, with Fréchet margins. For each of the
distributions we generated 1000 samples of size n = 500 and selected the number of upper
order statistics used in the estimation then we compute the estimators of η.

The parameter w was introduced to estimate probabilities in joint tail regions, but has little
practical relevance for the estimation of η, therefore we fix it at 0.5.

First, we performed simulations from a Farlie-Gumbel-Morgenstern (FGM) distribution with
Fréchet marginal (α = −1), and from the Normal distribution with Fréchet marginal (ρ
= −0.5).

Fig. 3. Farlie Gumbel Morgenstern copula with α = −1: (a) estimators for η, (b) MSE:
(full line) Hill estimator, (dashed line) Moment estimator, based on 1000 simulations. The
horizontal line corresponds to the true value of η.

Next we examine the sample behavior of the estimators for three different distributions, For
each of the distributions we compute the MSE, the true η and kopt. In Table 1, we present
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Fig. 4. Farlie Gumbel Morgenstern copula with α = 0.75: (a) estimators for η, (b) MSE:
(full line) linear estimator, (dashed line) Hill estimator, based on 1000 simulations. The
horizontal line corresponds to the true value of η.

Fig. 5. Normal copula with ρ = −0.5: (a) estimators for η, (b) MSE: (full line) Hill estimator,
(dashed line) Moment estimator, based on 1000 simulations. The horizontal line corresponds
to the true value of η.

some simulation results to FGM (α = 0.6), bivariate Normal (ρ = −0.5) and Frank (α = 1)
based on 1000 simulated samples of sizes n = 300, 500 and 1000.

In Table 2, we present some simulation results based on simplified procedure of Cheng and
Peng method and Reiss and Thomas method to the bivariate FGM (α = −0.25 and 0.75)
and bivariate Normal (ρ = −0.5 and 0.5) distribution, both with Fréchet marginal, based
on 1000 simulated samples of size n = 500. The comparison results are presented in Tables
2 and 3 illustrated in Figure 6.

We apply the method of Reiss and Thomas with the Moment estimator. For η̂M < 0 we
take β = 0.35 in version (10). If η̂M ≥ 0, select β = 0.4 in version (9). Table 3

By applying adaptive methods for selecting a good value of extreme order statistics (Cheng
and Peng and Reiss and Thomas), we select the optimal sample fraction kopt the optimal
number of upper extremes used in the computation of the coefficient of tail dependence
estimate, the results are summarized in Table 4 and from this Table, we can say that the
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FGM distribution

η̂H
η Kopt MSE

η̂M
η Kopt MSE

n = 300 0.5008 179 6.2821 × 10−7 0.5001 193 1.1189 × 10−8

n = 500 0.4945 257 3.0081 × 10−7 0.4993 387 4.2669 × 10−7

n = 1000 0.5008 294 6.8282 × 10−7 0.4996 957 1.3123 × 10−7

Bivariate Normal distribution

n = 300 0.2505 143 2.8621 × 10−6 0.2497 193 5.2328 × 10−7

n = 500 0.2486 229 1.9785 × 10−6 0.2494 390 2.9245 × 10−7

n = 1000 0.2521 336 4.7927 × 10−6 0.2521 890 4.6871 × 10−7

Frank distribution

n = 300 0.4999 185 2.6563 × 10−7 0.4998 289 2.6915 × 10−8

n = 500 0.4976 321 5.6776 × 10−7 0.5001 346 3.7154 × 10−8

n = 1000 0.5080 501 6.4849 × 10−7 0.4993 691 3.9494 × 10−8

Table 1. Simulation results of the threshold selection procedure for Hill estimator and
Moment estimator.

Distribution MSE K̂opt η̂H

FGM α = 0.6 6.8282 × 10−7 51 0.4784
FGM α = −0.25 2.1494 × 10−7 38 0.4906
Bivariate normal ρ = −0.5 1.7963 × 10−7 25 0.2442
Bivariate normal ρ = 0.25 4.7452 × 10−7 60 0.7049

Table 2. Simulation results of the threshold selection procedure for Hill estimator with
Chang and Peng method.

Distribution MSE K̂opt η̂M

FGM (α = 0.6) 1.1667 × 10−4 201 0.5532
FGM (α = −0.25) 1.1047 × 10−4 260 0.2498
Bivariate normal (ρ = −0.5) 1.1446 × 10−4 246 0.1846
Bivariate normal (ρ = 0.5) 1.1524 × 10−7 335 0.7254

Table 3. Simulation results of the threshold selection procedure for Moment estimator with
Reiss and Thomas method.

two methods applied to determine k give results very close to the true value of η, but the
method of Cheng and Peng is faster than the other method. The method of Reiss and
Thomas is long since it is based on the calculation of the median.

4.1. Real data

We consider here the estimation of η in a real case: Loss-ALAE data in the log scale (for
details see Frees and Valdez, 1998). Each claim consists of an indemnity payment (the loss,
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Method # of extremes % of extremes Estimate/True η

Cheng and Peng 90 9% 0.5092/0.5
Reiss and Thomas 131 13.1% 0.4679/0.5

Table 4. Optimal numbers of upper order statistics used in the computation of Hill’s esti-
mate of FGM (0.75) distribution, based on 1000 observations.

Fig. 6. Hill estimator of Farlie Gumbel Morgenstern copula with α = 0.75, based on 1000
simulations. The horizontal line represents the true value of η whereas the vertical lines
correspond to the optimal numbers of extremes of Cheng and Peng (solid) and Reiss and
Thomas (dashed).

X) and an allocated loss adjustment expense (ALAE, Y ). Examples of ALAE are the fees
paid to outside attorneys, experts, and investigators used to defend claims. The data size is
n = 1500.

First the bivariate data are transformed to Fréchet marginal (Z1, Z2) using the empirical
distribution functions F̂X(x), F̂Y (x) :

Z1 = −1/ log F̂X(X), Z2 = −1/ log F̂Y (Y ).

In Figures 6(a), 7(a) and 8(a), we give different estimators for η and we note that the
meaning of kopt is different from the one in the estimators of η̂H , η̂M and η̂L respectively.

We compare two estimators, Hill and Moment in ALAE-loss data, the results in Figure 10(a)
and their MSE in Figure 10(b).

We illustrate the performance of kopt in a little simulation study, the results summarized in
Table 5, where we present also the percentage of extremes and MSE.

5. Conclusion

In this paper, we introduced the estimation of the coefficient of tail dependence in bivariate
extreme value statistics. We have compared three different estimators of this coefficient. We
focus on selection of upper order statistics used in estimation. We note that most methods are
based on minimizing the asymptotic mean square error. We described two adaptive selection
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Fig. 7. Loss-ALAE data : (a) Hill estimator for η, (b) MSE: The horizontal reference line
corresponds to the true value of η.

Fig. 8. Loss-ALAE data: (a) Moment estimator for η, (b) MSE: The horizontal reference
line corresponds to the true value of η.

Estimator # of extremes % of extremes Estimate/True η MSE

η̂H 419 27.93% 0.8019/0.8 3.8823 × 10−6

η̂M 484 32.26% 0.7990/0.8 9.0713 × 10−7

η̂L 454 30.26% 0.8052/0.8 2.7151 × 10−5

Table 5. Optimal numbers of upper order statistics used in the computation of estimates
coefficient of tail dependence for loss-ALAE data.

methods for the Hill and Moment estimator and applied them to a practical example, the
simulations indicated that in general the results are quite similar.
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Fig. 9. Loss-ALAE data: (a) linear estimator for η, (b) MSE: The horizontal reference line
corresponds to the true value of η.

Fig. 10. Loss-ALAE data: (a) estimators for η, (b) MSE: (full line) linear estimator, (dashed
line) Hill estimator, based on 1000 simulations. The horizontal line corresponds to the true
value of η.
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