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Abstract. By means of a Lynden-Bell integral with deterministic threshold, Worms and
Worms [A Lynden-Bell integral estimator for extremes of randomly truncated data. Statist.
Probab. Lett. 2016; 109: 106-117] recently introduced an asymptotically normal estimator
of the tail index for randomly right-truncated Pareto-type data. In this context, we consider
the random threshold case to derive a Hill-type estimator and establish its consistency
and asymptotic normality. A simulation study is carried out to evaluate the finite sample
behavior of the proposed estimator.

Résumé. Par l’intégrale de Lynden-Bell avec un seuil déterministe, Worms et Worms [A
Lynden-Bell integral estimator for extremes of randomly truncated data. Statist. Probab.
Lett. 2016; 109: 106-117] a récemment introduit un estimateur asymptotiquement normal de
l’indice de queue pour les données de type Pareto tronquées à droit. Dans ce contexte, nous
considérons le cas du seuil aléatoire pour obtenir un estimateur de type Hill et établir sa
consistance et sa normalité asymptotique. Une étude de simulation est réalisée pour évaluer
le comportement de l’estimateur proposé.
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1. Introduction

Let (Xi,Yi) , 1 ≤ i ≤ N be a sample of size N ≥ 1 from a couple (X,Y) of indepen-
dent random variables (rv’s) defined over some probability space (Ω,A,P) , with continuous

∗Corresponding author Abdelhakim Necir: necirabdelhakim@yahoo.fr
Nawel Haouas : haoues nawel@yahoo.fr
Djamel Meraghni : djmeraghni@yahoo.com
Brahim Brahimi : brah.brahim@gmail.com



N. Haouas, A. Necir, D. Meraghni and B. Brahimi, Afrika Statistika, Vol. 12(1), 2017, pages
1159–1170. A Lynden-Bell integral estimator for the tail index of right-truncated data with a
random threshold. 1160

marginal distribution functions (df’s) F and G respectively. Suppose that X is truncated
to the right by Y, in the sense that Xi is only observed when Xi ≤ Yi. We assume that
both survival functions F := 1 − F and G := 1 −G are regularly varying at infinity with
respective negative indices −1/γ1 and −1/γ2. That is, for any x > 0,

lim
z→∞

F (xz)

F (z)
= x−1/γ1 and lim

z→∞

G (xz)

G (z)
= x−1/γ2 . (1)

It is well known that, in extreme value analysis, weak approximations are achieved in the
second-order framework (see, e.g., de Haan and Ferreira, 2006, page 48). Thus, it seems quite
natural to suppose that F and G satisfy the second-order condition of regular variation,
which we express in terms of the tail quantile functions pertaining to both df’s. That is, we
assume that for x > 0, we have

lim
t→∞

UF (tx) /UF (t)− xγ1
AF (t)

= xγ1
xτ1 − 1

τ1
, (2)

and

lim
t→∞

UG (tx) /UG (t)− xγ2
AG (t)

= xγ2
xτ2 − 1

τ2
, (3)

where τ1, τ2 < 0 are the second-order parameters and AF, AG are functions tending to zero
and not changing signs near infinity with regularly varying absolute values at infinity with
indices τ1, τ2 respectively. For any df K, the function UK (t) := K← (1− 1/t) , t > 1, stands
for the tail quantile function, with K← (u) := inf {v : K (v) ≥ u} , 0 < u < 1, denoting the
generalized inverse of K. From Lemma 3 in Hua and Joe (2011) , the second-order conditions
(2) and (3) imply that there exist constants d1, d2 > 0, such that

F (x) = d1x
−1/γ1`1 (x) and G (x) = d2x

−1/γ2`2 (x) , x > 0, (4)

where limx→∞ `i (x) = 1 and |1− `i| is regularly varying at infinity with tail index τiγ,
i = 1, 2. This condition is fulfilled by many commonly used models such as Burr, Fréchet,
Generalized Pareto, absolute Student, log-gamma distributions, to name but a few. Also
known as heavy-tailed, Pareto-type or Pareto-like distributions, these models take a promi-
nent role in extreme value theory and have important practical applications as they are
used rather systematically in certain branches of non-life insurance, as well as in finance,
telecommunications, hydrology, etc... (see, e.g., Resnick, 2006).

Let us now denote (Xi, Yi) , i = 1, ..., n to be the observed data, as copies of a cou-
ple of rv’s (X,Y ) , corresponding to the truncated sample (Xi,Yi) , i = 1, ..., N, where
n = nN is a sequence of discrete rv’s which, in virtue of the weak law of large numbers,

satisfies nN/N
P→ p := P (X ≤ Y) , as N → ∞. We denote the joint df of X and Y

by H (x, y) := P (X ≤ x, Y ≤ y) = P (X ≤ min (x,Y) ,Y ≤ y | X ≤ Y) , which is equal to

p−1
∫ y

0

F (min (x, z)) dG (z) . The marginal distributions of the rv’s X and Y, respectively de-

noted by F and G, are given by F (x) = p−1
∫ x

0

G (z) dF (z) and G (y) = p−1
∫ y
0

F (z) dG (z) .

Since F and G are heavy-tailed, then their right endpoints are infinite and thus they are
equal. Hence, from Woodroofe (1985), we may write

∫∞
x
dF (y) /F (y) =

∫∞
x
dF (y) /C (y) ,
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where C (z) := P (X ≤ z ≤ Y ) . Differentiating the previous equation leads to the follow-
ing crucial equation C (x) dF (x) = F (x) dF (x) , whose solution is defined by F (x) =
exp

{
−
∫∞
x
dF (z) /C (z)

}
. This leads to Woodroofe’s nonparametric estimator (Woodroofe,

1985) of df F, given by

F(W)
n (x) :=

∏
i:Xi>x

exp

{
− 1

nCn (Xi)

}
,

which is derived only by replacing df’s F and C by their respective empirical counterparts

Fn (x) := n−1
n∑
i=1

1 (Xi ≤ x) and Cn (x) := n−1
n∑
i=1

1 (Xi ≤ x ≤ Yi) . There exists a more

popular estimator for F, known as Lynden-Bell nonparametric maximum likelihood estima-
tor (Lynden-Bell, 1971), defined by

F(LB)
n (x) :=

∏
i:Xi>x

(
1− 1

nCn (Xi)

)
,

which will be considered in this paper to derive a new estimator for the tail index of df F.
Note that the tail of df F simultaneously depends on G and F while that of G only relies
on G. By using Proposition B.1.10 in de Haan and Ferreira (2006), to the regularly varying
functions F and G, we show that both F and G are regularly varying at infinity as well,
with respective indices −1/γ := − (γ1 + γ2) / (γ1γ2) and −1/γ2. In view of the definition of
γ, Gardes and Stupfler (2015) derived a consistent estimator, for the extreme value index
γ1, whose asymptotic normality is established in Benchaira et al. (2015), under the tail
dependence and the second-order conditions of regular variation. Recently, by considering a
Lynden-Bell integration with a deterministic threshold tn > 0, Worms and Worms (2016)
proposed another asymptotically normal estimator for γ1 as follows:

γ̂
(LB)
1 (tn) :=

1

nF
(LB)

n (tn)

n∑
i=1

1 (Xi > tn)
F

(LB)
n (Xi)

Cn (Xi)
log

Xi

tn
.

Likewise, Benchaira et al. (2016a) considered a Woodroofe integration (with a random
threshold) to propose a new estimator for the tail index γ1 given by

γ̂
(W)
1 :=

1

nF
(W)

n (Xn−k:n)

k∑
i=1

F
(W)
n (Xn−i+1:n)

Cn (Xn−i+1:n)
log

Xn−i+1:n

Xn−k:n
,

where, given n = m = mN , Z1:m ≤ ... ≤ Zm:m denote the order statistics pertaining to a
sample Z1, ..., Zm, and k = kn is a (random) sequence of integers such that, given n = m,
1 < km < m, km → ∞ and km/m → 0 as N → ∞. The consistency and asymptotic

normality of γ̂
(W)
1 are established in Benchaira et al. (2016a) through a weak approximation

to Woodroofe’s tail process

D(W)
n (x) :=

√
k

(
F

(W)

n (Xn−k:nx)

F
(W)

n (Xn−k:n)
− x−1/γ1

)
, x > 0.

More precisely, the authors showed that, under (2) and (3) with γ1 < γ2, there exist a
function A0 (t) ∼ A∗F (t) := AF

(
1/F (UF (t))

)
, t → ∞, and a standard Wiener process
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{W (s) ; s ≥ 0} , defined on the probability space (Ω,A,P) , such that, for 0 < ε < 1/2−γ/γ2
and x0 > 0,

sup
x≥x0

x(1/2−ε)/γ−1/γ2
∣∣∣∣D(W)

n (x)− Γ (x; W)− x−1/γ1 x
τ1/γ1 − 1

γ1τ1

√
kA0 (n/k)

∣∣∣∣ = oP (1) , (5)

as N →∞, provided that given n = m,
√
kmA0 (m/km) = O (1) , where {Γ (x; W) ; x > 0}

is a Gaussian process defined by

Γ (x; W) :=
γ

γ1
x−1/γ1

{
x1/γW

(
x−1/γ

)
−W (1)

}
+

γ

γ1 + γ2
x−1/γ1

∫ 1

0

s−γ/γ2−1
{
x1/γW

(
x−1/γs

)
−W (s)

}
ds.

In view of the previous weak approximation, the authors also proved that if, given n = m,
√
kmA∗F (m/km) → λ, then

√
k (γ̂1 − γ1)

D→ N
(

λ

1− τ1
, σ2

)
, as N → ∞, where σ2 :=

γ2 (1 + γ1/γ2)
(

1 + (γ1/γ2)
2
)
/ (1− γ1/γ2)

3
. Recently, Benchaira et al. (2016b) followed this

approach to introduce a kernel estimator to γ1 which improves the bias of γ̂
(W)
1 . In this paper,

we are interested in Worm’s estimator γ̂
(LB)
1 (tn) , but with a threshold tn that is assumed

to be random and equal to Xn−k:n. This makes the estimator more convenient for numerical
implementation than the one with a deterministic threshold. In other words, we will deal
with the following tail index estimator:

γ̂
(LB)
1 :=

1

nF
(LB)

n (Xn−k:n)

k∑
i=1

F
(LB)
n (Xn−i+1:n)

Cn (Xn−i+1:n)
log

Xn−i+1:n

Xn−k:n
.

Note that F
(LB)
n (∞) = 1 and write F

(LB)

n (Xn−k:n) =
∫∞
Xn−k:n

dF
(LB)
n (y) . On the other

hand, we have Cn (x) dF
(LB)
n (x) = F

(LB)
n (x) dFn (x) (see, e.g., Strzalkowska-Kominiak and

Stute, 2009), then

F
(LB)

n (Xn−k:n) =

∫ ∞
Xn−k:n

F
(LB)
n (x)

Cn (x)
dFn (x) =

1

n

k∑
i=1

F
(LB)
n (Xn−i+1:n)

Cn (Xn−i+1:n)
.

This allows us to rewrite the new estimator into

γ̂
(LB)
1 :=

k∑
i=1

a(i)n log
Xn−i+1:n

Xn−k:n
,

where

a(i)n :=
F

(LB)
n (Xn−i+1:n)

Cn (Xn−i+1:n)
/

k∑
i=1

F
(LB)
n (Xn−i+1:n)

Cn (Xn−i+1:n)
.

It is worth mentioning that for complete data, we have n≡N and Fn≡Fn≡Cn, it follows

that a
(i)
n ≡k−1, i = 1, ..., k and consequently both γ̂

(LB)
1 and γ̂

(W)
1 reduce to the classical Hill

estimator (Hill, 1975). The consistency and asymptotic normality of γ̂
(LB)
1 will be achieved
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through a weak approximation of the corresponding tail Lynden-Bell process that we define
by

D(LB)
n (x) :=

√
k

(
F

(LB)

n (Xn−k:nx)

F
(LB)

n (Xn−k:n)
− x−1/γ1

)
, x > 0.

The rest of the paper is organized as follows. In Section 2, we provide our main results whose

proofs are postponed to Section 4. The finite sample behavior of the proposed estimator γ̂
(LB)
1

is checked by simulation in Section 3, where a comparison with the one recently introduced
by Benchaira et al. (2016a) is made as well.

2. Main results

We basically have three main results. The first one, that we give in Theorem 1, consists
in an asymptotic relation between the above mentioned estimators of the distribution tail,

namely F
(W)

n and F
(LB)

n . This in turn is instrumental to the Gaussian approximation of the

tail Lynden-Bell process D
(LB)
n (x) stated in Theorem 2. Finally, in Theorem 3, we deduce

the asymptotic behavior of the tail index estimator γ̂
(LB)
1 .

Theorem 1. Assume that both F and G satisfy the second-order conditions (2) and (3)
respectively with γ1 < γ2. Let k = kn be a random sequence of integers such that, given
n = m, km →∞ and km/m→ 0, as N →∞, then, for any x0 > 0, we have

sup
x≥x0

x1/γ1

∣∣∣F(W)

n (Xn−k:nx)− F
(LB)

n (Xn−k:nx)
∣∣∣

F (Xn−k:n)
= OP

(
(k/n)

γ1/γ
)
.

Theorem 2. Assume that the assumptions of Theorem 1 hold and given n = m,

k1+γ1/(2γ)m /m→ 0, (6)

and
√
kmA0 (m/km) = O (1) , as N → ∞. Then, for any x0 > 0 and 0 < ε < 1/2 − γ/γ2,

we have

sup
x≥x0

x(1/2−ε)/γ−1/γ2
∣∣∣∣D(LB)

n (x)− Γ (x; W)− x−1/γ1 x
τ1/γ1 − 1

γ1τ1

√
kA0 (n/k)

∣∣∣∣ = oP (1) .

Theorem 3. Assume that (1) holds with γ1 < γ2 and let k = kn be a random sequence of

integers such that given n = m, km → ∞ and km/m → 0, as N → ∞, then γ̂
(LB)
1

P→ γ1.
Assume further that the assumptions of Theorem 2 hold, then

√
k
(
γ̂
(LB)
1 − γ1

)
=

√
kA0 (n/k)

1− τ1
− γW (1)

+
γ

γ1 + γ2

∫ 1

0

(γ2 − γ1 − γ log s) s−γ/γ2−1W (s) ds+ oP (1) .

If, in addition, we suppose that, given n = m,
√
kmA∗F (m/km)→ λ <∞, then

√
k
(
γ̂
(LB)
1 − γ1

)
D→ N

(
λ

1− τ1
, σ2

)
, as N →∞.
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γ1 = 0.6; p = 0.55

γ̂
(LB)
1 γ̂

(W)
1

N n abs bias rmse k∗ abs bias rmse k∗

100 54 0.0407 0.2381 26 0.0443 0.2328 26
200 109 0.0378 0.2610 36 0.0358 0.2532 37
300 165 0.0352 0.2359 36 0.0323 0.2315 37
500 274 0.0199 0.2290 61 0.0185 0.2238 61

1000 549 0.0074 0.1763 112 0.0068 0.1748 112
3000 1649 0.0036 0.0982 350 0.0037 0.0981 352
5000 2747 0.0007 0.1066 432 0.0007 0.1065 432

Table 1. Estimation results of Lynden-Bell based (leftt pannel) and Woodroofe based (right
pannel) estimators of the shape parameter γ1 = 0.6 of Burr’s model through 1000 right-
truncated samples with 45%-truncation rate.

3. Simulation study

In this section, we illustrate the finite sample behavior of γ̂
(LB)
1 and, at the same time,

we compare it with γ̂
(W)
1 . To this end, we consider two sets of truncated and truncation

data, both drawn from Burr’s model: F (x) =
(
1 + x1/δ

)−δ/γ1
, G (x) =

(
1 + x1/δ

)−δ/γ2
,

x ≥ 0, where δ, γ1, γ2 > 0. The corresponding percentage of observed data is equal to
p = γ2/(γ1 +γ2). We fix δ = 1/4 and choose the values 0.6 and 0.8 for γ1 and 55%, 70% and
90% for p. For each couple (γ1, p) , we solve the equation p = γ2/(γ1+γ2) to get the pertaining
γ2-value. We vary the common size N of both samples (X1, ...,XN ) and (Y1, ...,YN ) , then
for each size, we generate 1000 independent replicates. Our overall results are taken as the
empirical means of the results obtained through all repetitions. To determine the optimal
number of top statistics used in the computation of the tail index estimate values, we use
the algorithm of Reiss and Thomas (2007), page 137. Our illustration and comparison are
made with respect to the estimators absolute biases (abs bias) and the roots of their mean
squared errors (rmse). We summarize the simulation results in Tables 1, 2 and 3 for γ1 = 0.6
and in Tables 4, 5 and 6 for γ1 = 0.8. After the inspection of all the tables, two conclusions
can be drawn regardless of the situation. First, the estimation accuracy of both estimators
decreases when the truncation percentage increases and this was quite expected. Second, we

notice that the newly proposed estimator γ̂
(LB)
1 and γ̂

(W)
1 behave equally well.

4. Proofs

4.1. Proof Theorem 1

For x ≥ x0 we have

F(W)
n (Xn−k:nx) = exp

{
−
∫ ∞
Xn−k:nx

dFn (y)

Cn (y)

}
.

We show that the latter exponent is negligible in probability uniformly over x ≥ x0. Indeed,
note that both Fn (y) /F (y) and C (y) /Cn (y) are stochastically bounded from above on
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γ1 = 0.6; p = 0.7

γ̂
(LB)
1 γ̂

(W)
1

N n abs bias rmse k∗ abs bias rmse k∗

100 69 0.0158 0.2451 25 0.0144 0.2428 25
200 140 0.0095 0.1871 39 0.0089 0.1866 39
300 210 0.0085 0.1590 61 0.0082 0.1587 61
500 348 0.0074 0.1294 76 0.0072 0.1293 76

1000 699 0.0063 0.1014 124 0.0062 0.1014 124
3000 2096 0.0053 0.0962 246 0.0053 0.0962 246
5000 3498 0.0036 0.0984 400 0.0036 0.0984 400

Table 2. Estimation results of Lynden-Bell based (left-panel) and Woodroofe based (right-
panel) estimators of the shape parameter γ1 = 0.6 of Burr’s model through 1000 right-
truncated samples with 30%-truncation rate.

γ1 = 0.6; p = 0.9

γ̂
(LB)
1 γ̂

(W)
1

N n abs bias rmse k∗ abs bias rmse k∗

100 90 0.0073 0.1779 21 0.0070 0.1778 21
200 180 0.0066 0.1208 54 0.0064 0.1208 54
300 270 0.0055 0.1133 88 0.0056 0.1133 88
500 450 0.0050 0.0864 125 0.0050 0.0863 125

1000 898 0.0030 0.0614 189 0.0029 0.0614 189
3000 2702 0.0016 0.0494 398 0.0016 0.0494 398
5000 4496 0.0010 0.0112 467 0.0010 0.0112 467

Table 3. Estimation results of Lynden-Bell based (left-panel) and Woodroofe based (right-
panel) estimators of the shape parameter γ1 = 0.6 of Burr’s model through 1000 right-
truncated samples with 10%-truncation rate.

γ1 = 0.8; p = 0.55

γ̂
(LB)
1 γ̂

(W)
1

N n abs bias rmse k∗ abs bias rmse k∗

100 55 0.0570 0.3330 30 0.0636 0.3167 31
200 110 0.0401 0.3604 33 0.0347 0.3453 35
300 164 0.0252 0.2563 69 0.0272 0.2530 71
500 276 0.0227 0.1807 112 0.0216 0.1794 113

1000 551 0.0148 0.1795 196 0.0142 0.1788 197
3000 1647 0.0124 0.1794 525 0.0121 0.1783 525
5000 2751 0.0075 0.1260 688 0.0074 0.1259 688

Table 4. Estimation results of Lynden-Bell based (left-panel) and Woodroofe based (right-
panel) estimators of the shape parameter γ1 = 0.8 of Burr’s model through 1000 right-
truncated samples with 45%-truncation rate.
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γ1 = 0.8; p = 0.7

γ̂
(LB)
1 γ̂

(W)
1

N n abs bias rmse k∗ abs bias rmse k∗

100 69 0.0217 0.3827 28 0.0195 0.3787 28
200 139 0.0203 0.2918 59 0.0194 0.2905 59
300 210 0.0189 0.1857 66 0.0184 0.1852 66
500 348 0.0143 0.1593 113 0.0140 0.1591 113

1000 700 0.0049 0.1205 230 0.0049 0.1204 230
3000 2100 0.0037 0.0886 449 0.0038 0.0886 449
5000 3500 0.0031 0.0857 500 0.0031 0.0857 500

Table 5. Estimation results of Lynden-Bell based (left-panel) and Woodroofe based (right-
panel) estimators of the shape parameter γ1 = 0.8 of Burr’s model through 1000 right-
truncated samples with 30%-truncation rate.

γ1 = 0.8; p = 0.9

γ̂
(LB)
1 γ̂

(W)
1

N n abs bias rmse k∗ abs bias rmse k∗

100 89 0.0380 0.1833 38 0.0369 0.1827 38
200 179 0.0345 0.1383 80 0.0342 0.1383 80
300 269 0.0173 0.1014 99 0.0175 0.1013 99
500 450 0.0108 0.0927 143 0.0106 0.0926 143

1000 899 0.0021 0.0729 260 0.0021 0.0729 260
3000 2697 0.0013 0.0591 443 0.0013 0.0591 443
5000 4500 0.0001 0.0309 997 0.0001 0.0309 997

Table 6. Estimation results of Lynden-Bell based (left-panel) and Woodroofe based (right-
panel) estimators of the shape parameter γ1 = 0.8 of Burr’s model through 1000 right-
truncated samples with 10%-truncation rate.

y < Xn:n (see, e.g., Shorack and Wellner, 1986, page 415 and Strzalkowska-Kominiak and
Stute, 2009, respectively), it follows that

−
∫ ∞
Xn−k:nx

dFn (y)

Cn (y)
= OP (1)

∫ ∞
Xn−k:nx

dF (y)

C (y)
. (7)

By a change of variables we have∫ ∞
Xn−k:nx

dF (y)

C (y)
=
F (Xn−k:n)

C (Xn−k:n)

(∫ ∞
x

C (Xn−k:n)

C (Xn−k:nt)
d
F (Xn−k:nt)

F (Xn−k:n)

)
. (8)

Recall that Xn−k:n
P→∞ and that F is regularly varying at infinity with index −1/γ. On the

other hand, from Assertion (i) of Lemma A2 Benchaira et al. (2016a) we deduce that 1/C is
also regularly varying at infinity with index 1/γ2. Thus, we may apply Potters inequalities,
see e.g. Proposition B.1.10 in de Haan and Ferreira (2006), to both F and 1/C to write: for
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all large N, any t ≥ x0 and any sufficiently small δ, ν > 0, with large probability,∣∣∣∣F (Xn−k:nt)

F (Xn−k:n)
− t−1/γ

∣∣∣∣ < δt−1/γ±ν and

∣∣∣∣ C (Xn−k:n)

C (Xn−k:nt)
− t1/γ2

∣∣∣∣ < δt1/γ2±ν , (9)

where t±a := max (ta, t−a) . These two inequalities may be rewritten, into

F (Xn−k:nt)

F (Xn−k:n)
= t−1/γ

(
1 + oP

(
t±ν
))

and
C (Xn−k:n)

C (Xn−k:nt)
= t1/γ2

(
1 + oP

(
t±ν
))
,

uniformly on t ≥ x0. This leads to∫ ∞
x

C (Xn−k:n)

C (Xn−k:nt)
d
F (Xn−k:nt)

F (Xn−k:n)
= −γ1

γ
x−1/γ1

(
1 + oP

(
x±ν

))
. (10)

In view of (4), Benchaira et al. (2016a) showed, in Lemma A1, that F (y) =
(1 + o (1)) c1y

−1/γ and G (y) = (1 + o (1)) c2y
−1/γ2 as y →∞, for some constants c1, c2 > 0.

In other words, UF (s) = (1 + o (1)) (c1s)
γ
as s → ∞, and C (y) = (1 + o (1)) c2y

−1/γ2

as y → ∞. On the other hand, from Lemma A4 in Benchaira et al. (2016a), we have
Xn−k:n = (1 + oP (1))UF (n/k) , it follows that Xn−k:n = (1 + oP (1)) cγ1 (k/n)

−γ
. Note

that 1− γ/γ2 = γ/γ1, hence

F (Xn−k:n)

C (Xn−k:n)
= (1 + oP (1)) c

γ/γ2
1 c−12 (k/n)

γ/γ1 . (11)

Plugging results (10) and (11) in equation (8) yields∫ ∞
Xn−k:nx

dF (y)

C (y)
= (k/n)

γ/γ1 c
γ/γ2
1 c−12 γ1x

−1/γ1
(
1 + oP

(
x±ν

))
. (12)

By combining equations (7) and (12), we obtain∫ ∞
Xn−k:nx

dFn (y)

Cn (y)
= OP (1) (k/n)

γ/γ1 x−1/γ1
(
1 + oP

(
x±ν

))
, (13)

which obviously tends to zero in probability (uniformly on x ≥ x0). We may now apply
Taylor’s expansion et = 1 + t+O

(
t2
)
, as t→ 0, to get

exp

{
−
∫ ∞
Xn−k:nx

dFn (y)

Cn (y)

}
= 1−

∫ ∞
Xn−k:nx

dFn (y)

Cn (y)
+OP

(∫ ∞
Xn−k:nx

dFn (y)

Cn (y)

)2

, N →∞.

In other words, we have

F
(W)

n (Xn−k:nx) =

∫ ∞
Xn−k:nx

dFn (y)

Cn (y)
+Rn1 (x) , N →∞, (14)

where Rn1 (x) := OP

(
(k/n)

2γ/γ1
)
x−2/γ1 (1 + oP (x±ν)) . Next, we show that

F
(LB)

n (Xn−k:nx) =

∫ ∞
Xn−k:nx

dFn (y)

Cn (y)
+Rn2 (x) , N →∞. (15)
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Observe that, by taking the logarithm then its exponential in the definition of F
(LB)
n (x) ,

we have

F(LB)
n (Xn−k:nx) = exp

{
n∑
i=1

1 (Xi:n > Xn−k:nx) log

(
1− 1

nCn (Xi:n)

)}
,

which may be rewritten into exp

{
n
∫∞
x

log

(
1− 1

nCn (Xn−k:ny)

)
dFn (Xn−k:ny)

}
. To get

approximation (15) it suffices to apply successively, in the previous quantity, Taylor’s
expansions et = 1 + t + O

(
t2
)

and log (1− t) = −t + O
(
t2
)

(as t → 0) with simi-
lar arguments as above (we omit further details). Combining (14) and (15) and setting
Rn (x) := Rn1 (x)−Rn2 (x) yield

F
(W)

n (Xn−k:nx)− F
(LB)

n (Xn−k:nx) = Rn (x) , N →∞. (16)

On the other hand, by once again using Taylor’s expansion, we write

F (Xn−k:n) =

∫ ∞
Xn−k:n

dF (y)

C (y)
+ R̃n (x) , N →∞.

From equation (12), we infer that F (Xn−k:n) = c−12 c
1−γ/γ1
1 (k/n)

γ/γ1 (1 + oP (1)) , which
implies, in view of (16), that

x1/γ1
F

(LB)

n (Xn−k:nx)− F
(W)

n (Xn−k:nx)

F (Xn−k:n)
= OP

(
(k/n)

γ/γ1
)
x−1/γ1±ν .

Observe now that, for a sufficiently small ν > 0, we have x−1/γ1±ν = OP (1) , uniformly on
x ≥ x0 > 0, as sought.

4.2. Proof Theorem 2

In a similar way to what is done with D
(W)
n (x) , in the proof of Theorem 2.1 in Benchaira

et al. (2016a), we decompose k−1/2D
(LB)
n (x) into the sum of

Nn1 (x) := x−1/γ1
F

(LB)

n (Xn−k:nx)− F (Xn−k:n)

F (Xn−k:n)
,

Nn2 (x) := − F (Xn−k:nx)

F
(LB)

n (Xn−k:n)

F
(LB)

n (Xn−k:n)− F (Xn−k:n)

F (Xn−k:n)
,

Nn3 (x) :=

(
F (Xn−k:nx)

F
(LB)

n (Xn−k:n)
− x−1/γ1

)
F

(LB)

n (Xn−k:nx)− F (xXn−k:n)

F (Xn−k:nx)
,

and Nn4 (x) := F (Xn−k:nx) /F (Xn−k:n)− x−1/γ1 . If we let

Mn1 (x) := x−1/γ1
F

(W)

n (Xn−k:nx)− F (Xn−k:n)

F (Xn−k:n)
,
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then, by applying Theorem 1, we have x1/γ1Nn1 (x) = x1/γ1Mn1 (x) +

x−1/γ1OP

(
(k/n)

γ/γ1
)
, uniformly on x ≥ x0. By assumption we have k1+γ1/(2γ)/n

P→ 0,

which is equivalent to
√
k (k/n)

γ/γ1 P→ 0 as N →∞, therefore

x1/γ1
√
kNn1 (x) = x1/γ1

√
kMn1 (x) + oP

(
x−1/γ1

)
. (17)

In view of this representation we show that, both D
(W)
n (x) and D

(LB)
n (x) are (weakly)

approximated, in the probability space (Ω,A,P) , by the same Gaussian process Γ (x; W)
given in (5) . Indeed, for a sufficiently small ε > 0, and 0 < η < 1/2, Benchaira et al. (2016a)
(see the beginning of the proof of Theorem 2.1 therein), showed that

x1/γ1
√
kMn1 (x) = Φ (x) + oP

(
x(1−η)/γ±ε

)
,

where Φ (x) := x1/γ
{
γ

γ1
W
(
x−1/γ

)
+

γ

γ1 + γ2

∫ 1

0
t−γ/γ2−1W

(
x−1/γt

)
dt

}
. Then by using

representation (17) , we get x1/γ1
√
kNn1 (x) = Φ (x) + oP

(
x−1/γ1

)
+ oP

(
x(1−η)/γ±ε

)
. In

particular for x = 1, we have

√
k

(
F

(LB)

n (Xn−k:n)

F (Xn−k:n)
− 1

)
=
√
kNn1 (1) = Φ (1) + oP (1) , (18)

leading to F
(LB)

n (Xn−k:n) /F (Xn−k:n)
P→ 1, as N →∞. By applying Potters inequalities to

F (as it was done for F in (11)) together with the previous limit, we obtain

F (Xn−k:nx)

F
(LB)

n (Xn−k:n)
=
(
1 +OP

(
x±ε
))
x−1/γ1 . (19)

By combining (18) and(19) , we get x1/γ1
√
kNn2 (x) = −Φ (1)+oP (x±ε) . For the third term

Nn3 (x) , we use similar arguments to show that

x1/γ1
√
kNn3 (x) = oP

(
x−1/γ1±ε

)
+ oP

(
x−1/γ1+(1−η)/γ±ε

)
.

Observe that x1/γ1−(1−η0)/γoP
(
x−1/γ1±ε

)
and x1/γ1−(1−η0)/γoP

(
x−1/γ1+(1−η)/γ±ε) respec-

tively equal oP
(
x−(1−η0)/γ±ε

)
and oP

(
x(η−η0)/γ±ε

)
, for γ/γ2 < η0 < η < 1/2, and that

both the last two quantities are equal to oP (1) for any small ε > 0 and x ≥ x0 > 0. Fi-
nally, by following the same steps at the end of the proof of Theorem 2.1 in Benchaira et al.
(2016a), we get

√
kNn4 (x) = x−1/γ1

xτ1/γ1 − 1

γ1τ1

√
kA0 (n/k) + op

(
x−1/γ1+(1−η)/γ±ε

)
.

Consequently, we have

x1/γ1−(1−η0)/γ
{

D(LB)
n (x)− Γ (x; W)− x−1/γ1 x

τ1/γ1 − 1

γ1τ1

√
kA0 (n/k)

}
= oP (1) ,

uniformly over x ≥ x0. Recall that 1/γ1 = 1/γ − 1/γ2, then letting η0 := 1/2 − ξ yields
0 < ξ < 1/2− γ/γ2 and achieves the proof.
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4.3. Proof of Theorem 3

The proof is similar, mutatis mutandis, as that of Corollary 3.1 in Benchaira et al. (2016a).
Therefore we omit the details.
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