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Abstract. In this article we introduce the Gaussian Sobolev space W 1,2(O, γ), where O
is an arbitrary open set of a separable Banach space E endowed with a non-degenerate
centered Gaussian measure γ. Moreover, we investigate the semi-martingale structure of
the infinite dimensional reflecting Ornstein-Uhlenbeck process for open sets of the form
O = {x ∈ E : G(x) < 0}, where G is some Borel function on E.

Résumé. Dans cette article on commence par introduire les espaces de Sobolev Gaussiens
W 1,2(O, γ), où O est un ouvert quelconque d’un espace de Banach séparable E muni
d’une mesure gaussienne γ centrée et non-dégénérée. En plus, on montre que le proces-
sus d’Ornstein-Uhlenbeck réfléchi en dimension infinie admet une décomposition en tant
que semi-martaingale pour des ouverts de la forme O = {x ∈ E : G(x) < 0}, où G est une
fonction borélienne sur E.

Key words: Gaussian Sobolev space; Ornstein-Uhlenbeck process; Skorohod equation;
Quasi-regular Dirichlet forms.
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1. Introduction

Let E be a separable Banach space endowed with a non-degenerate centered Gaussian mea-
sure γ and H(γ) be its relevant Cameron-Martin space, which is known to be continuously
and densely embedded in E. Celada and Lunardi (2013) introduced the Sobolev spaces of
real valued functions defined on open sets O of the form O = {x ∈ E |G(x) < 0} and for a
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suitable function G : E → R. More precisely, the Sobolev spaces W 1,p(O, γ) are defined as
the closure, in the Sobolev norm, of the operator DO

H : Lip(O) −→ Lp(O, γ;H) defined by

DO
Hϕ := DH ϕ̆|O ,

where DH is the derivative in the direction of H and ϕ̆ is any extension of ϕ to an element of
Lip(E) ( Lip(O) (resp. Lip(E)) is the space of Lipschitz continuous functions on O (resp. E)).

After defining Sobolev spaces W 1,p(O, γ), Celada and Lunardi (2013) defined the trace
operator Tr of functions in W 1,p(O, γ) at ∂O and proved the following integration by parts
formula, under some ”natural” assumptions on G∫

O

DO
k ϕdγ =

∫
O

v̂kϕdγ +

∫
∂O

Dk
HG

|DHG|H
Trϕdρ, (1)

for every ϕ ∈ W 1,p(O, γ) (p > 1), where {vk | k ∈ N} is an orthonormal basis of H(γ) and
v̂k is the element generated by vk (see subsection 2.2).

Now let O be an arbitrary open set of E. In particular, with the topology induced by
the one of the separable Banach space E, O is a Lusin topological space and functions in
Lp(O,B(O), γ|O) have to be seen as functions in Lp(O,B(O),m) where m is defined by

m(A) = γ(A ∩ O) for A ∈ B(O). In a paper in preparation by Kunze and Sauter, Sobolev
spaces W 1,2(O, γ) are defined with the same procedure but for arbitrary open sets O of E by
using another method to prove the closeability of DO

H (see Lemma 1). Moreover, a relative
Gaussian capacity of sets in O is introduced. It is the capacity associated with the Dirichlet
form (EO , D(EO)) on L2(O,m) with domain D(E ) = W 1,2(O, γ) defined by

EO(ϕ,ψ) =

∫
O

[DO
Hϕ,D

O
Hψ]H dγ. (2)

The Gaussian relative capacity is a Choquet capacity and is tight, which means that the
Dirichlet form (EO , D(EO)) is quasi-regular. Moreover, it is local and hence its associated
right process M = (Ω,F , (Xt)t≥0, (Pz)z∈E) is, in fact, a diffusion process.

The purpose of this paper is to prove, for open sets of the form O = {x ∈ E |G(x) < 0}
where G : E → R is a suitable function, that the diffusion process (Xt)t≥0 associated with
(EO , D(EO)) is a semi-martingale with a Skorohod type decomposition. As in the finite
dimensional framework, we will use the well-known Fukushima decomposition, which holds
in the situation of quasi-regular Dirichlet forms by using the transfer method. For a relatively
quasi-continuous γ−version ϕ̃ of ϕ ∈W 1,2(O, γ), the additive functional (ϕ̃(Xt)−ϕ̃(X0))t≥0

of M can uniquely be represented as

ϕ̃(Xt)− ϕ̃(X0) = M
[ϕ]
t +N

[ϕ]
t , t ≥ 0,

where M [ϕ] := (M
[ϕ]
t )t≥0 is a MAF of M of finite energy and N [ϕ] := (N

[ϕ]
t )t≥0 is a CAF

of M of zero energy.

To evaluate the bracket 〈M [ϕ]〉 of the martingale additive functionalM [ϕ] for ϕ ∈W 1,2(O, γ),
we use a standard technique as for the finite dimensional case as in Bass and Hsu (1990),
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and use it in the infinite dimensional framework in the case where O = E for a more general
E (See for example Proposition 4.5 in Albeverio and Röckner, 1991). Let ϕ ∈ W 1,2(O, γ),
then one obtains

〈M [ϕ]〉t =

∫ t

0

[DO
Hϕ(Xs), D

O
Hϕ(Xs)]Hds, t ≥ 0. (3)

To evaluate N [ϕ], we shall characterize, as in the regular Dirichlet forms framework, the
boundedness of its variation which is an easy task by using the transfer method (see Lemma
4).

To simplify our computations, we consider two identifications: The standard one consisting
of identifying H(γ) with its dual H(γ)′ and the second consisting of identifying E′ ×H(γ)
with H(γ) × H(γ), which means that one consider the dualisation E′〈, 〉E to coincide
with [, ]H when restricted to E′ × H(γ). In this situation one obtain a countable subset
K0 = {lk, k ∈ N} of E′ forming an orthonormal basis of H(γ) and separating the points of
E such that the linear span K ⊂ E′ of K0 is dense in H(γ).

Our first result consists of component-wise semi-martingale structure of M. We define the
following coordinate functions: For l ∈ K, with |l|H = 1, define

ϕl(z) = E′ < l, z >E , z ∈ E.

For this functions, Fukushima decomposition becomes as follows:

ϕl(Xt)− ϕl(X0) = W l
t +

∫ t

0

l̂(Xs)ds+

∫ t

0

νlG(Xs)dL
ρ
s (4)

where for all z ∈ O \ Sl, for some relative polar set Sl ⊂ O, the continuous martingale

(W l
t ,Ft, Pz)t≥0 is a one dimensional Brownian motion starting at zero and l̂ is the element

generated by l. The vector νlG is defined by

νlG =
Dl
HG

|DHG|H

and plays the role of the outward normal vector field in the direction of l and Lρt is the
positive continuous additive functional associated with the Gaussian-Hausdorff measure ρ
by Revuz correspondence.

After surrounding some technical problems, we will be able to prove our second main result.
It says that there exists always a map W : Ω→ C([0,∞[, E) such that for r.q.e. z ∈ O under
Pz, W = (Wt)t≥0 is an (Ft)t≥0−Brownian motion on E starting at zero with covariance
[, ]H such that for r.q.e. z ∈ O

Xt = z +Wt +

∫ t

0

Xs ds+

∫ t

0

νG(Xs) dL
ρ
s , (5)

where Lρt := (Lρt )t≥0 is as before and νG is a unite vector defined by

νG :=
DHG

|DHG|H
.
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Such results of semi-martingale structures of the reflecting Ornstein-Uhlenbeck stochastic
process were already considered but for the space of BV functions and for a very smooth
sets, namely convex sets(See Barbu et al., 2009, Barbu et al., 2011, Röckner and Zhu,
2012, Fukushima and Hino, 2001 and references therein). The paper by Celada and Lunardi
(2013) opens new perspectives on dealing with open sets in infinite dimensions framework,
in particular for the infinite dimensional reflecting Ornstein-Uhlembeck stochastic process
as developed in the current paper.

2. Preliminaries

In this section we recall some facts about the theory of quasi-regular Dirichlet forms and
the associated right processes. It is the adequate framework when one wants to deal with
Sobolev spaces in infinite dimensions. Naturally, one cannot use directly the general theory
of Dirichlet forms as described in Fukushima (1980). However, it is possible to transfer our
framework in the situation of Fukushima (1980) by using a compactification method (see
Ma and Röckner (1992) for more details). A second element to introduce is the theory of
Gaussian measures as summarized in Borgachev (1998).

2.1. Quasi-regular Dirichlet forms

Let H be a real Hilbert space with inner product (, )H and norm ‖.‖H . Let D be a linear
subspace of H and E : D × D → R a bilinear map. Assume that (E ,D) is positive definite
(i.e. E (u) := E (u, u) ≥ 0 for all u ∈ D). Then (E ,D) is said to satisfy the weak sector
condition if, there exists a constant K > 0, called continuity constant, such that

|E1(u, v)| ≤ KE1(u, u)1/2E1(v, v)1/2

for all u, v ∈ D. A pair (E , D(E )) is called a coercive closed form on H if D(E ) is a dense
linear subspace of H and the bilinear map E : D(E )×D(E )→ R is a symmetric form and
satisfies the weak sector condition. In this situation the associated operator with (E , D(E ))
is defined as follow

D(A) := {u ∈ D(E ) | ∃ϕ ∈ H s.t. E (u, v) = (ϕ, v)∀v ∈ D(E )}

Au := ϕ.
(6)

Recall that a positive definite bilinear form (E , D(E )) on H is said closeable on H if for
all un, n ∈ N, such that E (un−um)→n,m→∞ 0 and un → 0 in H, it follows that E (un)→ 0.

Now we replace H by the concrete Hilbert space L2(E;m) := L2(E; B;m) with the usual
L2−inner product where (E; B;m) is a measure space. As usual we set for u, v : E → R,
u ∨ v := sup(u, v), u ∧ v := inf(u, v), u+ := u ∨ 0, u− := −u ∧ 0, and we write f ≥ g
or f < g for f, g ∈ L2(E;m) if the inequality holds m−a.e. for corresponding representatives.

A symmetric coercive closed form (E , D(E )) on L2(E;m) is called a symmetric Dirichlet
form if for all u ∈ D(E ), one has that u+ ∧ 1 ∈ D(E ) and E (u+ ∧ 1) ≤ E (u).
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Definition 1. (i) An increasing sequence (Fk)k∈N of closed subsets of E is called E−nest

if
⋃
k≥0D(E )Fk

is dense in D(E ) with respect to E
1/2
1 , where

D(E )F := {u ∈ D(E ) : u = 0 in E \ F}.

(ii) A set N is called E−exceptional if N ⊂ ∩k∈NF ck for some E−nest (Fk)k∈N.
(iii) We say that a property of points in E holds E−quasi-everywhere ( E−q.e.), if the prop-

erty holds outside some E−exceptional set.

Definition 2. A Dirichlet form (E , D(E )) on L2(E;m) is called quasi-regular Dirichlet form
if

(i) There exists an E− nest (Ek)k∈N consisting of compact sets.
(ii) There exists an E1−dense subset of D(E ) whose elements have E−quasi-continuous

m−versions.
(iii) There exists un ∈ D(E ), n ∈ N, having E−quasi-continuous m−versions ũn, n ∈ N, and

an E -exceptional set N ⊂ E such that {ũn|n ∈ N} separates the points of E \N .

Now fix a measurable space (Ω,F ) and a filtration (Ft)t∈[0,∞] on (Ω,F ). Let E be a
Hausdorff topological space and let B(E) denote its Borel σ−algebra. We adjoint to E
an extra point ∆(cemetery) as an isolated point to obtain a Hausdorff topological space
E∆ = E ∪ {∆} with Borel algebra B(E∆) := B(E) ∪ {B ∪ {∆}|B ∈ B(E)}. Any function
f : E → R is extended as a function on E∆ by putting f(∆) = 0. Given a positive measure
µ on (E∆,B(E∆)), we define a positive measure Pµ on (Ω,F ) by

Pµ(A) :=

∫
E∆

Pz(A)µ(dz), A ∈ F .

Definition 3. Let M = (Ω,F , (Xt)t≥0, (Pz)z∈E∆) be a Markov process with state space
E, life time ξ and the corresponding filtration (Ft). M is called right process (w.r.t. (Ft))
if it has the following additional properties

(A) (Normal property) Pz(X0 = z) = 1 for all z ∈ E∆.
(B) (Right continuity) For each ω ∈ Ω, t 7→ Xt(ω) is right continuous on [0,∞[.
(C) (Strong Markov property) (Ft) is right continuous and every (Ft)−stopping time σ and

every µ ∈ P(E∆)

Pµ(Xσ+t ∈ A|Fσ) = PX∆(Xt ∈ A), Pµ − a.s.

for all A ∈ B(E∆), t ≥ 0.

Now we fix M a right process with state space E and life time ξ. (Xt)t≥0 is measurable then

ptf(z) := pt(z, ϕ) := Ez[ϕ(Xt)], z ∈ E, t ≥ 0, ϕ ∈ B(E)+,

defines a submarkovian semi-group of kernels on (E,B(E)).
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Let (E , D(E )) be a Dirichlet form on L2(E;m) and (Tt)t≥0 the associated sub-markovian
strongly continuous semi-group on L2(E;m). A right process M with state space E and
transition semi-group (pt)t≥0 is called associated with (E , D(E )) if ptf is an m−version
of Ttf for all t > 0. If, in addition, ptf is E−quasi-continuous for all t > 0 and f ∈
Bb(E) ∩ L2(E;m), M is called properly associated with (E , D(E )).

Theorem 1. Let E be a metrizable Lusin space. Then a Dirichlet form (E , D(E )) on
L2(E;m) is quasi-regular if and only if there exists a right process M associated with
(E , D(E )). In this case M is always properly associated with (E , D(E )).

A well known characterization of local regular Dirichlet forms is still valid in the case of
quasi-regular Dirichlet forms. Let E be a Lusin topological space and (E , D(E )) a quasi-
regular Dirichlet form on L2(E;m). Note that since E is strongly Lindelöf, the support of a
positive measure on (E,B(E)) can be defined as follows: for a B(E)−measurable function
u on E we set

supp[u] := supp[|u|.m] (7)

and call supp[u] the support of u. It is clear that by (7) supp[u] is well-defined for all
u ∈ L2(E;m). As usual we say that (E , D(E )) has the local property (or is local) if
E (u, v) = 0 for any functions u, v ∈ D(E ) with compact disjoint support.

Let now M = (Ω,F , (Xt)t≥0, (Pz)z∈E∆
) be a right process with state space E and life time

ξ associated with (E , D(E )). Then (E , D(E )) has the local property if and only if M has
continuous sample paths. More precisely

Pz(t 7→ Xt is continuous on [0, ξ[) = 1, for E − q.e. z ∈ E.
In this case, M is said to be a diffusion.

Now we present a general ”local compactification” method that enables us to associate to
a quasi-regular Dirichlet form on an arbitrary topological space a regular Dirichlet form on
a locally compact separable metric space. This is done in such a way that we can transfer
results obtained in the later ”classical“ framework to the more general situation involving
quasi-regular Dirichlet forms.

Let E be a Hausdorff topological space and (E , D(E )) a quasi-regular Dirihlet form on

L2(E;m). Let (Ê, B̂) be a measurable space and let i : E → Ê be a B(E)/B̂−measurable
map. Let m̂ = m ◦ i−1 and define an isometry î : L2(Ê; m̂) → L2(E;m) by defining î(û)

to be m−class represented by ũ ◦ i for any B̂−measurable m̂−version ũ ∈ L2(Ê; m̂). Note
that the range of î is always closed, but, of course, in general strictly smaller than L2(E;m).
Define

D(Ê ) := {û ∈ L2(Ê; m̂) | î(û) ∈ D(E )}

Ê (û, v̂) := E (̂i(û), î(v̂)), û, v̂ ∈ D(Ê ).
(8)

Then clearly (Ê , D(Ê )) is a symmetric positive definite bilinear form on L2(Ê; m̂) satisfying

the weak sector condition. (Ê , D(Ê )) is called the image of (E , D(E )) under i.

By Theorem VI.1.2 in Ma and Röckner (1992), there exists an E−nest (En)n≥0 consisting

of compact metrizable sets in E and locally compact separable metric space Ŷ such that
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(i) Ŷ is a local compactification of Y := ∪En in the following sense: Ŷ is a locally compact
space containing Y as a dense subset and B(Ŷ ) := {A ∈ B(Ŷ ) |A ⊂ Y }.

(ii) The trace topologies on Ek induced by E, Ŷ respectively, coincide for every k ∈ N.

(iii) The image (Ê , D(Ê )) of (E , D(E )) under the inclusion map i : Y ⊂ Ŷ is a regular
Dirichlet form on L2(Ŷ ; m̂) where m̂ := m ◦ i−1 is a positive Radon measure on Ŷ .

Let now M = (Ω,F , (Xt)t≥0, (Pz)z∈R∆
) be a right process properly associated with the

quasi-regular Dirichlet form (E , D(E )) on L2(E;m). Then there exists an E−exceptional
set N ⊂ E such that E \N is M−invariant and if M̂ is the trivial extension to Ê of M|E\N ,

then M̂ is a Hunt process properly associated with the regular Dirichlet form (Ê , D(Ê )) on
L2(Ê; m̂).

One can then transfer all results obtained within the analytic theory of regular Dirichlet
forms on locally compact separable metric spaces (cf. Fukushima, 1980) to quasi-regular
Dirichlet forms on arbitrary topological spaces. For example, the one-to-one correspondence
between smooth measures and the positive continuous additive functionals holds. Moreover
the well-known Fukushima decomposition Theorem also holds true. Recall that a positive
measure µ is called smooth if it charges no E -exceptional set and there exists an E−nest
(Fn)n∈N of compact subsets of E such that µ(Fn) < ∞ for all n ∈ N. The one-to-one
correspondence is given by

lim
t↓0

Em[
1

t

∫ t

0

f(Xs) dAs] =

∫
f dµ, for all f ∈ B+(E),

where (At)t≥0 is a PCAF’s of M . Moreover, by Theorem VI.2.5 in Ma and Röckner (1992),
or Theorem 4.3 in Albeverio and Röckner (1991) we have, for all ũ a E−quasi-continuous
m−version of u, the following Fukushima decomposition

ũ(Xs)− ũ(X0) = M
[u]
t +N

[u]
t ,

where M [u] := (M
[u]
t )t≥0 is a martingale additive functional of finite energy and

N [u] := (N [u])t≥0 is a continuous additive functional of zero energy.

We will apply Fukushima’s decomposition in section 5 to obtain a component-wise semi-
martingale property of the infinite dimensional reflecting Brownian motion. As in the finite
dimensional case as in Bass and Hsu (1990), one needs a characterization of bounded vari-
ation of N [u](see Lemma 4), which we prove by using the transfer method described above.

2.2. Abstract Wiener space

In this article we will deal with measure space (O,B(O), γ), where O is an open set of a
separable Banach space E endowed with a centered non-degenerate Gaussian measure γ. We
recall then some facts about Gaussian measures from Borgachev (1998) in a more general
framework of locally convex space. Let E be a locally convex space, and E′ its dual space.
We call cylindrical sets (or cylinders) the sets in E which have the form

C = {x ∈ E | (l1(x), . . . , ln(x)) ∈ C0}, lk ∈ E′,
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where C0 ∈ B(Rn) is called a base of C and denotes by E (E) the σ− field generated by
all cylindrical subsets of E. In other words, E (E) is the minimal σ− field, with respect
to which all continuous linear functionals on E are measurable. It is clear that E (E)
is contained in the Borel σ−field B(E), but may not coincide with it. However, in our
forthcoming situation where E is a separable Banach space, the equality E (E) = B(E)
holds true. A probability measure γ defined on the σ−field E (E), generated by E′, is
called Gaussian if, for any f ∈ E′, the induced measure γ ◦ f−1 on R is Gaussian. The
measure γ is called centered (or symmetric) if all measures γ ◦ f−1, f ∈ E′ are centered. It
is well-known that a Gaussian measure γ is characterized by its mean aγ(f) : (E′)∗ → E′

defined by aγ(f) =
∫
f(x)γ(dx), and the covariance operator Rγ : E′ → (E′)∗ defined by

Rγ(f)(g) =
∫

(f(x)− aγ(f))(g(x)− aγ(g))γ(dx), where X∗ denotes the algebraic dual of X.
Note that, by Fernique Theorem, we have E′ ⊂ L2(γ).

We consider in what follows only centered Gaussian measures γ on E(i.e. aγ = 0) and we
denote by E′γ the closure of E′ embedded in L2(γ), with respect to the norm of L2(γ).
The space (E′γ , ‖.‖L2(γ)) is called the reproducing kernel Hilbert space of the measure γ.
Put |h|H(γ) := supp{l(h) : l ∈ E′, ‖l‖L2(γ) ≤ 1} and H(γ) := {h ∈ E : |h|H(γ) < ∞}.
The space H(γ) is called the Cameron-Martin space. In the literature it is also called the
reproducing kernel Hilbert space.

Note that one can extend Rγ from E′ to E′γ , and by Lemma 2.4.1 in Borgachev (1998)
the Cameron-Martin space is precisely the space of elements h ∈ E such that there exists
g ∈ E′γ with h = Rγ(g). In this case |h|H(γ) = ‖g‖L2(γ) and we say that the element g (we

use the notation ĥ := g) is associated with the vector h or is generated by h. The relation

determining ĥ is f(h) =
∫
E
f(x)ĥ(x)γ(dx), f ∈ E′ and the Cameron-Martin space H(γ)

is equipped with the inner product (h, k)H(γ) := (ĥ, k̂)L2(γ). The corresponding norm is

|h|H(γ) = ‖ĥ‖L2(γ).

Recall that a (finite non-negative) measure µ defined on the σ−field B(E) is called Radon, if
for every B ∈ B(E) and every ε > 0, there exists a compact set Kε ⊂ B with µ(B \Kε) < ε
and called tight if this condition is satisfied for B = E. For example, in our forthcoming
situation of a separable Banach spaces, all measures on B(E) are Radon. By Theorem
3.2.7 in Borgachev (1998), for a Radon Gaussian measure γ on a locally convex space E,
the Hilbert spaces E′γ and H(γ) are separable. Moreover, if γ is centered then E′γ has
countable orthonormal basis, consisting of continuous linear functionals fn (See Corollary
3.2.8 in Borgachev (1998). Once more, let γ be a centered Radon Gaussian measure on
E, then by Theorem 3.6.1 in Borgachev (1998) the topological support of γ (the minimal
closed set of full measure) coincides with the affine subspace H(γ), where the closure is
meant in E, in particular the support of γ is separable. We say that the Radon Gaussian
measure γ is non-degenerate if its topological support is the whole space. It is clear that a
centered Gaussian measure is non-degenerate precisely when its Cameron-Martin space is
everywhere dense.

A triplet (i,H,B) is called an abstract Wiener space if B is a separable Banach space, H
is a separable Hilbert space, i : H → B a continuous linear embedding with dense range,
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and the norm q of B is measurable on H ( more precisely q ◦ i) in the sense of Gross (see
Definition 3.9.2 in Borgachev, 1998). Clearly, when γ is a centered non-degenerate Gaussian
measure on a separable Banach space E, then (i,H(γ), E) is an abstract Wiener space
where i is the natural embedding of H(γ) in E.

Now denote by FC∞ the collection of all functions, on a locally convex space E, of the
form: f(x) = ϕ(l1(x), . . . , ln(x)), ϕ ∈ C∞b (Rn), li ∈ E′, n ∈ N. Such functions are called
smooth cylindrical functions. A radon measure µ on E is called differentiable along a vector
h ∈ E (in the sense of Formin) if there exists a function βµh ∈ L1(µ) such that, for all smooth
cylindrical functions f , the following integration by parts formula holds true:∫

E

∂hf(x)µ(dx) = −
∫
X

f(x)βµh (x)µ(dx),

where ∂hf(x) = limt→0(f(x+ th)−f(x))/t. The function βµh is called logarithmic derivative
of the measure µ along h. By Proposition 5.1.6 in Borgachev (1998), for a Radon Gaussian
measure on E,H(γ) coincides with the collection of all vectors of differentiability. In addition,

if h ∈ H(γ) then βγh = −ĥ. Remark that, in Albeverion et al. (1990), when E is a separable
Banach space and H = H(γ), the well admissible elements are exactly the elements of H(γ)
(See also Albeverio and Röckner, 1991).

3. Gaussian Sobolev space

In this section we develop the notion of relative Gaussian capacity associated with Gaussian
Sobolev spaces W 1,2(O, γ), where O is an arbitrary open set on a separable Banach space E
endowed with a non-degenerate centered Gaussian measure γ. The starting point is an idea
developed in Celada and Lunardi (2013) to define Sobolev spaces W 1,2(O, γ) by Lipschitz
functions as starting points, but for open sets of the form O = {x ∈ E : G(x) < 0}, where G
is a certain Borel function on E. Most results in this section are developed in the forthcoming
paper of Künze and Sauter we already cited. Because, the paper is not yet published, we
announce their results with complete proofs.

3.1. Gaussian Sobolev space

Let E be a separable real Banach space and γ a non-degenerate centered Gaussian measure
on B(E), the Borel σ−algebra of E. The Cameron-Martin space of γ is denoted by H(γ),
which is continuously and densely embedded in E. We say that a function ϕ : E → R is
H−differentiable at x if there is v ∈ H(γ) such that f(x + h) − f(x) = [v, h]H + ◦(|h|H),
for every h ∈ H(γ). In this case v is unique and we set DHf(x) = v. Moreover for every
unite vector l ∈ H(γ) the directional derivative Dl

Hf(x) := limt→0(f(x+ tl)−f(x))/t exists
and coincides with [DHf(x), l]H . The domain of DH is the Gaussian Sobolev space W 1,2(γ)
(see Section 5.2 in Borgachev, 1998), defined as the completion of the smooth cylindrical
functions under the norm

‖f‖2W 1,2(γ) :=

∫
E

|f(x)|2dγ +

∫
E

‖DHf(x)‖2dγ.

Now let O be an open set of E. In Celada and Lunardi (2013), the Sobolev space W 1,2(O, γ)
was defined by using Lipschitz functions as starting points for open sets of the form O = {x ∈
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E : G(x) < 0}, where G is a Borel version of an element of W 1,2(γ). In the forthcoming paper
of Künze and Sauter we already cited, the same approach was reproduced but for arbitrary
open sets. Let ϕ ∈ Lip(O) and ϕ̆ a Lipschitz continuous extension to the whole E. Since
Lip(E) ⊂W 1,2(γ) (See Example 5.4.10 in Borgachev, 1998), DH ϕ̆ is well defined. Note that
when ϕ̃ is another Lipschitz continuous extension of ϕ to the whole E, then DH ϕ̆ = DH ϕ̃ γ−
a.e. by Lemma 5.7.7 in Borgachev (1998). We may thus define DO

H : Lip(O) −→ L2(O, γ;H)
by setting

DO
Hϕ := DH ϕ̆|O ,

where ϕ̆ is any extension of ϕ to an element of Lip(E).

Lemma 1. The operator DO
H is closeable.

Proof. Let a sequence (ϕn) ⊂ Lip(O) be given with ϕn → 0 in L2(O, γ) and DO
Hϕn → Φ

in L2(O, γ;H). We have to prove that Φ = 0. To that end, let v ∈W 1,2(γ;H) be such that
supp(v) ⊂ O. We note that, by Theorem 5.8.3 in Borgachev (1998), v belongs to the domain
of the divergence operator δ. Moreover, by Lemma 5.8.10 in Borgachev (1998), also δ(v) has
support in O. Consequently,∫

O

[Φ, v]H dγ = lim
n→∞

∫
E

[DH ϕ̆n, v]H dγ

= − lim
n→∞

∫
E

ϕ̆nδ(v)dγ

= − lim
n→∞

∫
O

ϕnδ(v) dγ = 0,

where ϕ̆n is any extension of ϕn to an element of Lip(E). Thus,
∫

O [Φ, v]H dγ = 0 for all
v ∈W 1,2(γ;H) with support in O. Since such v separate the points in L2(O, γ;H), it follows
that Φ = 0.

By slight abuse of notation, we denote the closure of DO
H also by DO

H . The domain of DO
H is

denoted by W 1,2(O, γ) which is a Banach space with respect to the norm

‖ϕ‖2W 1,2(O,γ) := ‖ϕ‖2L2(O,γ) + ‖DO
Hϕ‖2L2(O,γ;H).

Note that W 1,2(O, γ) is continuously embedded into L2(O, γ).

It is a consequence of Theorem 5.11.2 in Borgachev (1998) that, for a Lipschitz continuous
function ϕ, the derivative DHϕ exists γ-a.e. as a Gâteaux derivative. Moreover, |DHϕ|H is
almost surely bounded. This has the following consequence, which we will use later on.

Lemma 2. If ϕ ∈W 1,2(O, γ) and ψ ∈ Lip(O), then ϕψ ∈W 1,2(O, γ) and

DO
H(ϕψ) = (DO

Hϕ)ψ + ϕ(DO
Hψ). (9)

Moreover, if ψ ∈ Lip(E) with ψ|Oc ≡ 0, then also ϕψ1O ∈W 1,2(γ).
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Proof. If O = E and both ϕ and ψ are Lipschitz continuous, then (9) follows from Theorem
5.11.2 in Borgachev (1998) and the product rule for Gâteaux derivatives. Restricting to O,
we have (9) for Lipschitz continuous ϕ and ψ and for general O. The case of general ϕ follows
by approximation, using the closeness of DO

H . The addendum also follows by approximation.

Immediately from the Lemma 2 one can prove the assumption of representability,

Proposition 1. The Dirichlet form (EO ,W
1,2(O, γ)) satisfies the assumption of repre-

sentability, i.e.

2EO(ϕ,ϕψ)− EO(ϕ2, ψ) =

∫
O

[DO
Hϕ(z), DO

Hψ(z)]H γ(dz)

for all ϕ ∈W 1,2(O, γ) and ψ ∈ Lip(O).

Let us now address some order properties of W 1,2(O, γ).

Lemma 3. If ϕ ∈ W 1,2(O, γ), then also ϕ+ ∈ W 1,2(O, γ). Moreover, we have DO
H(ϕ+) =

1(0,∞) ◦ ϕ ·DO
Hϕ.

Proof. Let f ∈ C1(R) with bounded derivative and ϕ ∈ W 1,2(O, γ). We claim that f ◦ ϕ ∈
W 1,2(O, γ) and DO

H(f ◦ ϕ) = f ′ ◦ ϕ · DO
Hϕ. Indeed, by definition, there exists a sequence

(ϕn) ⊂ Lip(O) such that ϕn → ϕ in L2(O, γ) and DH ϕ̆n|O → DO
Hϕ in L2(O, γ;H). As it

is well known, see for example Remark 5.2.1 in Borgachev (1998), f ◦ ϕ̆n ∈ W 1,2(γ) with
DH(f ◦ ϕ̆n) = f ′ ◦ ϕ̆n ·DH ϕ̆n. Using the boundedness and continuity of f ′, it is immediate
from dominated convergence that DH(f ◦ ϕ̆n)|O → f ′ ◦ ϕ ·DO

Hϕ in L2(O, γ;H). The claim
thus follows from the closedness of DO

H .

Now let ψn(t) = nt1(0,n−1)(t) + 1[n−1,∞)(t) and φn(t) =
∫ t
−∞ ψn(s) ds. By the above, φn ◦

ϕ ∈ W 1,2(O, γ) with DO
H(φn ◦ ϕ) = ψn ◦ ϕ · DO

Hϕ. As φn ◦ ϕ → ϕ+ in L2(O, γ) and
ψn ◦ ϕ ·DO

Hϕ → 1(0,∞) ◦ ϕ ·DO
Hϕ in L2(O, γ;H), the lemma follows from the closedness of

DO
H .

Since ϕ ∧ ψ = ϕ− (ϕ− ψ)+, we immediately obtain the following.

Corollary 1. If ϕ,ψ ∈W 1,2(O, γ), then ϕ ∧ ψ ∈W 1,2(O, γ) and

DO
H(ϕ ∧ ψ) = 1{ψ≤ϕ}D

O
Hψ + 1{ψ>ϕ}D

O
Hϕ.

The bilinear form EO : W 1,2(O, γ)×W 1,2(O, γ)→ R, defined by

EO(ϕ,ψ) =

∫
O

[DO
Hϕ,D

O
Hψ]H dγ, (10)

is densely defined, symmetric, positive semidefinite and closed. It follows immediately from
Corollary 1 that ϕ∧1 ∈W 1,2(O, γ) whenever ϕ ∈W 1,2(O, γ) and, in this case, DO

H(ϕ∧1) =
1{ϕ≤1}D

O
Hϕ. Thus

EO(ϕ ∧ 1) =

∫
{ϕ≤1}

‖DO
Hϕ‖2H dγ ≤

∫
O

‖DO
Hϕ‖2H dγ = EO(ϕ).

Consequently, EO is a Dirichlet form on L2(O, γ).
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3.2. Gaussian relative capacity

One can always associate a capacity CapO with the Dirichlet form EO (See Section I.8 in
Bouleau and Hirsch (1991)). In this article, we will consider this capacity as a relative capacity
in the sense of Arendt and Warma (2003), i.e. we allow to compute capacities of subsets
of O. To do so, we formally have to consider EO as a form on L2(X,B(X),m) instead of
L2(O,B(O), γ|O), where X = O and m(A) = γ(A ∩ O) for A ∈ B(X). The definition is as
follows.

Definition 4. Let A ⊂ O. Then the relative Gaussian capacity CapO(A) of A is defined as

CapO(A) := inf
{
‖u‖2W 1,2(O,γ) : ∃U ⊂ E open, s.t. u ≥ 1 γ-a.e. on U ∩ O

}
. (11)

Standard properties of CapO are easily verified and follow from the general theory (see
Proposition I.8.1.3 in Bouleau and Hirsch, 1991).

Proposition 2. Let O ⊂ E be open. Then the following statements hold.

1. γ(A) ≤ CapO(A) for all A ⊂ O such that A ∈ B(E).

2. For A,B ⊂ O one has

CapO(A ∪B) + CapO(A ∩B) ≤ CapO(A) + CapO(B).

3. For every increasing sequence (An) of subsets of O one has

CapO(An) ↑ CapO

( ∞⋃
k=1

Ak

)
.

4. For every decreasing sequence (Kn) of compact subsets of O one has

CapO(Kn) ↓ CapO

( ∞⋂
k=1

Kk

)
.

5. For every sequence (An) of subsets of O one has

CapO

( ∞⋃
k=1

Ak

)
≤
∞∑
k=1

CapO(Ak).

The following is now a consequence of Choquet’s capacity theorem (See Corollary 30.2 in
Choquet, 1953).

Proposition 3. Let O ⊂ E be open and A ⊂ O. If A ∈ B(E), then

CapO(A) = sup{CapO(K) : K ⊂ A compact}.
For O = E we write Cap rather than CapE and refer to Cap as Gaussian capacity. This
Gaussian capacity has been extensively studied in the literature, see, e.g., Section II.3 in
Bouleau and Hirsch (1991). In view of Theorem 5.7.2 in Borgachev (1998), it follows that
the capacity C2,1, considered in Section 5.9 in Borgachev (1998) is equivalent with Cap, in
the sense that for certain constants α, β > 0, we have

αC2,1(A) ≤ Cap(A) ≤ βC2,1(A)

for all A ⊂ E.

We adopt the following terminology from Arendt and Warma (2003).
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Definition 5. 1. A subset A of O is called relatively polar if CapO(A) = 0.

2. Some property is said to hold on O relatively quasi everywhere (r.q.e.) if it holds outside
a relatively polar set.

We now compare relatively polar sets with polar sets, i.e. sets A with Cap(A) = 0. It turns
out that polar subsets of O are relatively polar. The converse is true for subsets of O.

Proposition 4. Let A ⊂ O and B ⊂ O.

1. CapO(A) ≤ Cap(A). In particular, polar sets are relatively polar.
2. CapO(B) = 0 if and only if Cap(B) = 0.

Proof. (1) It follows from the density of Lip(E) in W 1,2(γ), that ϕ|O ∈W 1,2(O, γ) for every
ϕ ∈W 1,2(γ). Thus (1) is immediate from the definition.
(2) We only need to prove that CapO(B) = 0 implies Cap(B) = 0. Let Fn := {x ∈ O :
d(x,Oc) ≥ n−1} for all n ∈ N. Then Fn is closed, contained in O and Fn ↑ O. Thus
B ∩ Fn ↑ B. It suffices to show that Cap(B ∩ Fn) = 0 because then, by Proposition 2 (3),
Cap(B) = limn Cap(B∩Fn) = 0. So let n ∈ N be fixed. Then there exists a Lipschitz function
ϕ with 1Fn

≤ ϕ ≤ 1O . Since CapO(B) = 0, there exists a sequence (fk) in W 1,2(O, γ) and
open sets Uk ⊂ E containing B with fk ≥ 1 γ-a.e. on Uk ∩ O and ‖fk‖2W 1,2(O,γ) → 0. As

a consequence of Lemma 2, gk := ϕfk ∈ W 1,2(γ) and ‖gk‖W 1,2(γ) ≤ c‖fk‖W 1,2(O,γ) for a
certain constant c. It follows that Cap(B ∩ Fn) = 0, which finishes the proof.

As a consequence of part (1), the relative capacity CapO inherits tightness from the Gaussian
capacity Cap.

Corollary 2. The relative capacity CapO is tight, i.e. for every ε > 0, there exists a compact

set Kε ⊂ O such that
CapO(O \Kε) < ε.

Proof. The Gaussian capacity Cap is tight (See Theorem 5.9.9 in Borgachev (1998) or Propo-
sition II.3.2.4 in Bouleau and Hirsch, 1991). Consequently, given ε > 0, there exists a compact
set K̂ε ⊂ E with Cap(E \ K̂ε) ≤ ε. The set Kε := O ∩ K̂ε is compact and, by Proposition
4(1)

CapO(O \Kε) ≤ Cap(O \Kε) ≤ Cap(E \ K̂ε) ≤ ε.

It now follows that the form EO is a quasi-regular Dirichlet form on L2(O, γ). Thus there
exists a right process M = (Ω,F , (Xt)t≥0, (Pz)z∈E∆

) with state space O and life time ξ,
which is properly associated with EO . Moreover, one can prove, with the same method as in
Example 1.12 (1) in Ma and Röckner (1992), that

Proposition 5. The quasi-regular Dirichlet form EO is local.

Proof. To prove the locality it is sufficient to show that

DO
Hϕ = 0 γ − a.e. on O \ supp[ϕ] for all ϕ ∈W 1,2(O, γ) (12)

To this aim we use the following identity (9)

DO
H(ϕψ) = ψDO

Hϕ+ ϕDO
Hψ ϕ ∈W 1,2(O, γ), ψ ∈ Lip(O). (13)
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Let ϕ ∈W 1,2(O, γ). By Proposition V.4.17 in Ma and Röckner (1992) there exists a Lipschitz
function ψ such that 0 ≤ ψ ≤ 1O\supp[ϕ] and ψ > 0 r.q.e. on O\supp[ϕ]. Hence by the identity

(13)
0 = ψDO

Hϕ+ ϕDO
Hψ

and thus

ψDO
Hϕ = ϕDO

Hψ = 0

Consequently DO
Hϕ = 0 γ−a.e. on O \ supp[ϕ].

As a consequence of the locality of EO , the associated right process M is in fact a diffusion
process (Strong Markov process with continuous sample paths).

3.3. Quasi-continuous representatives

Next, we establish the existence of certain representatives of elements of W 1,2(O, γ) that
are unique up to a relatively polar set. This allows to consider point-wise properties of
elements which hold r.q.e. instead of merely γ-a.e. For example, we will see that using these
representatives a convenient description of the closed lattice ideals of W 1,2(O, γ) can be
given.

Definition 6. A function ϕ : O → R is called relatively quasi continuous if for all ε > 0
there exists an open set U in E such that CapO(U ∩ O) < ε and ϕ restricted to O \ U is

continuous. Moreover, a subset M ⊂ O is called relatively quasi open if for all ε > 0 there
exists an open set U in E such that CapO(U ∩ O) < ε and M ∪ U is open in E.

The following proposition provides us with relatively quasi continuous representatives and
collects two basic properties that allow to lift point-wise properties from γ-a.e. to r.q.e. It
suffices to note that in our setting property (D) of Section I.8.2 in Bouleau and Hirsch (1991)
holds. So the proposition is a consequence of Propositions I.8.1.6 and I.8.2.1 in Bouleau and
Hirsch (1991). For the corresponding properties in the case O = E, see also Lemma 5.9.5
and Theorem 5.9.6 in Borgachev (1998).

Proposition 6. For every ϕ ∈ W 1,2(O, γ) there exists a relatively quasi continuous and
measurable representative ϕ̃ : O → R, which is unique up to equality r.q.e. Moreover, one
has the following.

1. Let ϕ ∈W 1,2(O, γ). Then ϕ ≥ 0 γ-a.e. if and only if ϕ̃ ≥ 0 r.q.e.
2. If ϕn → ϕ in W 1,2(O, γ), then after going to a sub-sequence one may assume ϕ̃n → ϕ̃

r.q.e.

4. Hausdorff-Gauss measures

In each tentative to establish a Skorohod representation one remark that establishing
an integration by parts formula is a fundamental first step. In Celada and Lunardi
(2013), such an integration by parts formula was proved for open sets with some non
restrictive regularity. Before to give the integration by parts we will define the well
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known Hausdorff-Gauss measure of Feyel-de La Pradelle. It is the equivalent notion
of Hausdorff measures in the infinite dimensional spaces. We first introduce such a
measures and then we give the integration by parts result. Our reference in this section
will be always the paper Celada and Lunardi (2013). We follow then Subsection 2.1 in
Celada and Lunardi (2013) and we recall that E is a separable Banach space endowed with
a non-degenerate centered Gaussian measure γ and H is the relevant Cameron-Martin space.

We recall first of all the definitions of the 1− co-dimensional Hausdorff-Gauss measures that
will be considered in the sequel.
If m ≥ 2, and F = Rm is equipped with a norm |.|, we define

θF (dx) :=
1

(2π)m/2
exp(−|x|2/2)Hm−1(dx)

Hm−1 being the spherical m− 1 dimensional Hausdorff measure in Rm, namely

Hm−1(A) := lim inf
δ 7→0
{
∑
i∈N

ωm−1r
m−1
i : A ⊂

⋃
i∈N

B(xi, ri), ri < δ ∀i}

where ωm−1 is the Lebesgue measure of the unite sphere in Rm−1.

For every finite dimensional subspace F ⊂ E we consider the orthogonal (alongH) projection
on F :

x 7→
m∑
i=1

〈x, fi〉Hfi, x ∈ H,

where {fi : i = 1, . . . ,m} is any orthogonal basis of F . Then there exists a γ− measurable
projection πF on F , defined in the whole E, that extends it. Its existence is a consequence of
Theorem 2.10.11 in Borgachev (1998), which states that for every i there exists a unique (up
to changes on sets with vanishing measure) linear and µ−measurable function li : X → R
that coincides with x 7→ 〈x, fi〉H on H. Then we set

πF (x) :=

m∑
i=1

li(x)fi.

If fi ∈ Q(E′), fi = Q(f̂i) for some f̂i ∈ E′, then 〈x, fi〉 = f̂i(x) for every x ∈ H and the

extension is obvious, li(x) = f̂i(x) for every x ∈ E. In particular if E is a Hilbert space, it
is convenient to choose an orthonormal basis {ek : k ∈ N} of E made by eigenvectors of Q.
If Qek = λkek, the function li is the L2(E, γ) limit of the sequences of cylindrical functions

lmi (x) :=

m∑
k=1

〈x, ek〉E〈fi, ek〉E
λk

, m ∈ N,

which is denoted WQ−1/2fi in Da Prato (2006). If F is spanned by a finite number of elements

of the basis V = {vk :=
√
λkek : k ∈ N} of H, say F = span{v1, . . . , vm}, then

πF (x) =

m∑
i=1

〈x,Q−1vi〉Evi =

m∑
i=1

〈x, ei〉Eei,
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namely πF coincides with the orthogonal projection in E over the subspace spanned by e1,
. . . ,em.

Let F̃ be the kernel of πF . We denote by γF the image measure of γ of F through πF , and
by γF the image measure of γ on F̃ through I − πF . We identify in a standard way F with
Rm, namely the element

∑m
i=1 xifi ∈ F is identified with the vector (x1, . . . , xm) ∈ Rm and

we consider the measure θF on F .

We stress that the norm and the associated distance used in the definition of θF are inherited
from the H−norm on F , not from the E−norm. For instance, if E = Rm = F , then
dHm−1 = dS ◦ Q−1/2 where dS is the usual (m − 1)−dimensional spherical Hausdorff
measure. So, for every Borel set E,

θF (A) =
1

(2π)m/2

∫
Q−1/2(A)

e−|y|
2/2dS.

In the general case, for any Borel (or, more general, Suslin) set A ⊂ E we set

ρF :=

∫
F̃

θF (Ax)dγF (x),

where Ax := {y ∈ F : x+ y ∈ A}. By Proposition 3.2 in Feyel (2011), the map F 7→ ρF (A)
is well defined (namely, the function x 7→ θF (Ax) is measurable with respect to γF ) and
increasing, i.e. if F1 ⊂ F2 then ρF1 ≤ ρF2 . This is sketched in Feyel (2011), a detailed proof
is in Lemma 3.1 in Ambrosio et al. (2010). By the way, this is the reason to choose the
spherical Hausdorff measure in Rm: if the spherical Haussdorf measure is replaced by the
usual Hausdorff measure, such a monotonicity condition may fails.

The Hausdorff-Gauss measure of Feyel-de La Pradelle is defined by

ρ(A) := sup{ρF (A) : F ⊂ H, finite dimensional subspace}. (14)

Similar definitions are considered in Ambrosio et al. (2010) :

ρ1(A) := sup{ρF (A) : F ⊂ Q(E′), finite dimensional subspace} (15)

and under the assumption that V ⊂ Q(E′) in Hini (2010), the following Hausdorff-Gaussian
measure was defined

ρV := sup{ρF (A) : F ⊂ H, spanned by a finite number of elements of V} (16)

where ρV could depend on the choice of the basis V.

The three type of Hausdorff-Gaussian measures can be compared as follows

ρ(A) ≥ ρ1(A)

and when V ⊂ Q(E′), we have

ρ1(A) ≥ ρV(A).
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The following proposition is important in the sense that it enables us to say that ρ is a
smooth measure and then to associate with it a positive continuous additive functional Lρt
which we call, as in the finite dimensional case, the local time of M corresponding to ρ with
the Revuz correspondence. One can find the proof in Theorem 9 in Feyel and de La Pradelle
(1992).

Proposition 7. The Hausdorff-Gauss measure of Feyel-de La Pradelle ρ charges no set of
zero relative Gaussian capacity.

Now we give the integration by parts under the following not restrictive assumptions.

Assumptions (H).
(A.1) G ∈W 2,q(E, γ) for each q > 1,
(A.2) γ(G−1(−∞, 0)) > 0, G−1(0) 6= ∅,
(A.3) there exist δ > 0 such that 1/|DO

HG|H ∈ Lq(G−1(−δ, δ), γ) for each q > 1.

The following theorem (see Corollary 4.2 in Celada and Lunardi, 2013) gives a definition of
a trace operator from a limiting procedure of a sequence of Lipschitz functions,

Theorem 2. For each p > 1 and ϕ ∈W 1,p(O, γ) there exists ψ ∈
⋂
q<p L

p({G = 0}, ρ) with

the following property: if (ϕn)n ⊂ Lip(E) are such that (ϕn|O) converges to ϕ in W 1,p(O, γ),
the sequence (ϕn|O) converges to ψ in Lq({G = 0}, ρ), for every q < p. In addition, if the
condition

γ − ess sup
x∈O

div

(
DO
HG

|DO
HG|H

)
<∞, (17)

holds then ϕn|{G=0} converges in Lp({G = 0}, ρ).

Theorem 2 justifies the following definition (see Definition 4.3 in Celada and Lunardi, 2013)

Definition 7. For each ϕ ∈ W 1,p(O, γ) p > 1, we define the trace Trϕ of ϕ at {G = 0} as
the function ψ given by Theorem 2.

Let {vk | k ∈ N} be an orthonormal basis of H(γ). Now the integration by parts of functions
in W 1,2(O, γ) is as follows (see Corollary 4.4 in Celada and Lunardi, 2013)

Theorem 3. For every ϕ ∈W 1,2(O, γ), we have∫
O

DO
k ϕdγ =

∫
O

v̂kϕdγ +

∫
∂O

DO
k G

|DO
HG|H

Trϕdρ, (18)

where Tr is the operator trace as defined in Definition 7.

Proposition 8. For every ϕ ∈ W 1,p(E, γ), the trace of ϕ|O at G−1(0) coincides ρ−a.e.
with the restriction to G−1(0) of any continuous version ϕ̃ of ϕ.
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5. Component-wise Skorohod decomposition

To obtain the Skorohod decomposition we use, as in the finite dimensional situation, the
well known Fukushima decomposition theorem which holds in the situation of quasi-regular
Dirichlet forms by using the transfer method (See Theorem 4.3 in Albeverio and Röckner,
1991, Theorem VI.3.5 in Ma and Röckner, 1992).

Theorem 4. Let ϕ ∈ W 1,2(O, γ) and let ϕ̃ be a relatively quasi-continuous γ−version of
ϕ. Then the additive functional (ϕ̃(Xt)− ϕ̃(X0))t≥0 of M can uniquely be represented as

ϕ̃(Xt)− ϕ̃(X0) = M
[ϕ]
t +N

[ϕ]
t , t ≥ 0

where M [ϕ] := (M
[ϕ]
t )t≥0 is a MAF of M of finite energy and N [ϕ] := (N

[ϕ]
t )t≥0 is a CAF

of M of zero energy.

To evaluate the bracket 〈M [ϕ]〉 of the martingale additive functional M [ϕ] for ϕ ∈W 1,2(O, γ)
we use a standard technique as for the finite dimensional case Bass and Hsu (1990) and used
in the infinite dimensional framework in Proposition 4.5 in Albeverio and Röckner (1991)
in the case O = E with the help of the transfer method. The proof still the same in our
framework. Remark that one needs no regularity assumption on O and then in this step the
open set O is still arbitrary.

Proposition 9. Let ϕ ∈W 1,2(O, γ), then

〈M [ϕ]〉t =

∫ t

0

[DO
Hϕ(Xs), D

O
Hϕ(Xs)]Hds, t ≥ 0 (19)

Proof. Recall that we are always considering EO as a form on L2(O,m) as done in Section
3. Endowing O with the topology induced by the separable Banach space E, O is a Polish
space. We define now the function θ as follows,

θ(z) :=

{
[DO

Hϕ(z), DO
Hϕ(z)]H if z ∈ O

0 if z ∈ Ô \ O
(20)

and N̂t :=
∫ t

0
θ(X̂s)ds, t ≥ 0. Then it follows by Lemma 5.1.6 and Theorem 3.2.3 in

Fukushima (1980) that
P̂z[N̂t <∞, t ≥ 0] = 1

for r̂.q.e. z ∈ Ô. Consequently, (N̂t)t≥0 is a CAF of M̂ and we have for f : Ô →
[0,∞[,B(Ô)−measurable, that

1

t

∫
ˆO

Êz

[∫ t

0

f(X̂s)dN̂s

]
dγ̂ =

1

t

∫ t

0

∫
ˆO

p̂s(fθ)dγ̂ds

=
1

t

∫ t

0

∫
ˆO

fθp̂s1dγ̂ds

=

∫
ˆO

fθdγ̂

(21)
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where the last step follows by the fact that (Xt)t≥0 is markovian and then so is (X̂t)t≥0 thus
p̂s1 = 1 γ̂−a.e. By Theorem 5.1.3 in Fukushima (1980) it follows that the unique smooth

measure that is associated to N̂ := (N̂t)t≥0 is θγ̂. For ϕ ∈ D(ÊO), let γ̂〈ϕ〉 denote the unique

smooth measure associated with 〈M̂ [ϕ]〉. We want to show also that

γ̂〈ϕ〉 = θγ̂.

By Theorem 5.2.3 in Fukushima (1980) we know that if ϕn := sup(inf(ϕ, n),−n), n ∈ N,

then for all f ∈ D(ÊO) ∩ L∞(O,m)

2ÊO(ϕn.f, un)− ÊO(ϕ2
n, f) =

∫
O

f(z)[DO
Hϕn(z), DO

Hϕn(z)]Hdγ

Consequently, by Theorem 5.2.3 in Fukushima (1980)

γ̂〈ϕn〉(dz) = [DO
Hϕn(z), DO

Hϕn(z)]H γ̂(dz) (22)

Since by the proof of Lemma 5.4.6 in Fukushima (1980)((∫
|f |dγ̂〈ϕ〉

) 1
2

−
(∫
|f |dγ̂〈ϕn〉

) 1
2

)2

≤ 2‖f‖∞ÊO(ϕ− ϕn, ϕ− ϕn),

(22) implies that γ̂〈ϕ〉 = θγ̂. By uniqueness part of Theorem 5.1.3 in Fukushima (1980) we

now have that 〈M̂ [ϕ]〉 = N̂ , hence clearly

〈M [ϕ]〉t =

∫ t

0

[DO
Hϕ(Xs), D

O
Hϕ(Xs)]Hds, t ≥ 0

and the theorem is proved.

Remark 1. Here we denote with .̂ what is denoted in Chapter V in Fukushima (1980) by
.])

Now we focus on the CAF of zero energy N [ϕ] for ϕ ∈W 1,2(O, γ). Here one cannot use the
same procedure as for the case O = E in Albeverio and Röckner (1991). To evaluate N [ϕ]

we shall characterize, as in the regular Dirichlet forms framework, the boundedness of its
variation which is an easy task by using the transfer method (see Lemma 4).

An additive functional (AF) A is then said to be of bounded variation, if At(ω) is of bounded
variation in t on each compact subinterval of [0, ξ(ω)[ for every fixed ω in a defining set of
A, i.e. its total variation process

|N |t(ω) = sup

n−1∑
i=0

‖Nti(ω)−Nti−1(ω)‖E

is finite, where the supremum is taken over all finite partitions 0 = t0 < t1 < · · · < tn = t <
ξ(ω).

Let (E , D(E )) a quasi-regular Dirichlet form on L2(X,m) where X is some Lusin space and
m a full support measure on X. We have then the following Lemma,
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Lemma 4. The following two conditions are equivalent to each other for ϕ ∈ D(E )

1. N [ϕ] is a CAF of bounded variation,
2. there exist smooth measures ν1 and ν2 such that

E (u, v) = 〈νk, ṽ〉, ∀v ∈ D(E )k (23)

for every k. Here νk is the restriction to Fk of the difference ν1 − ν2. {Fk} being the
common nest associated with ν1 and ν2. D(E )k is the space defined by

D(E )k := {ϕ ∈ D(E ) : ϕ̃ = 0 q.e. on E \ Fk}

Proof. By Theorem V. 1.6 in Fukushima (1980) we may extend M on E to a Hunt process
M̂ on Ê. Every PCAF (At)t≥0 can be extended (e.g. by zero) to a PCAF (Ât)t≥0 of M̂ and

vice versa. Let ϕ ∈ D(E ), we denote by ϕ̂ the extension by zero on Ê \ E of ϕ, and we
suppose that N [ϕ] is of bounded variation, thus N̂ [ϕ̂] is also of bounded variation, then by
Theorem 5.3.2 in Fukushima (1980) there exist smooth measures ν̂1 and ν̂2 such that

Ê (ϕ̂, ψ̂) = 〈ν̂k, ˜̂ψ〉, ∀ψ̂ ∈ D(Ê )k

for all k and where ν̂k is the restriction to F̂k of the difference ν̂1 − ν̂2. {F̂k}k being the
common nest associated with ν̂1 and ν̂2 and

D(Ê )k := {ϕ̂ ∈ D(Ê ) : ˜̂ϕ = 0 q̂.e. on Ê \ F̂k}

Now, It suffices to choose ν1 = ν̂1
|B(E) and ν2 = ν̂2

|B(E) and by Theorem 1.2, Corollary 1.4

and Proposition 1.5, pages 174-176, in Ma and Röckner (1992) one can come back to (23).
The converse follows with the same transfer technique.

We want now to give a component-wise Skorohod decomposition, but a technical problem
arises since the indexation on the derivatives is on H(γ) but the one of the component
process (〈k,Xt〉)t≥0 of the E−valued process (Xt)t≥0 are on E′. This problem can easily be
surrounded by the following procedure: First of all recall that H(γ) ↪→ E continuously and
densely. By identifying H(γ) and H(γ)′ we have that

E′ ↪→ H(γ) ↪→ E

continuously and densely in both embeddings. Let jH : E′ → H(γ) to be the left embedding.
Thus for all l ∈ E′, the functional h→ E′〈l, h〉E is continuous in H(γ). Hence there exists
a unique jH(l) ∈ H(γ) such that

E′〈l, h〉E = [jH(l), h]H (24)

Note that as H(γ) = Rγ(E′γ), one can write jH explicitly as follows: jH(l) = Rγ(l)
for all l ∈ E′. Since γ is centered, E′γ has a countable orthonormal basis, consisting
of continuous linear functionals lk, k ∈ N Corollary 3.2.8 in Borgachev (1998). Let
K = span{lk ∈ E′ : k ∈ N} ⊂ E′ thus {hk := jH(lk) : k ∈ N} forms an orthonormal
basis of H(γ) (eventually after applying Gram-Schmidt orthogonalisation). Note that, by
Hahn-Banach theorem, E′ separates the points of E, and since K is dense in E′, then K
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also separates the points of E.

Now after what is done before, one can always identify E′ ×H(γ) with H(γ) ×H(γ) with
help of the map jH defined by (24), which means that one can consider the dualisation

E′〈, 〉E to coincide with [, ]H when restricted to E′ × H(γ). In this situation one have
a countable subset K0 = {lk, k ∈ N} of E′ forming an orthonormal basis of H(γ) and
separating the points of E. Moreover the linear span K ⊂ E′ of K0 is dense in H(γ). In
this and the following sections we fix K and the orthonormal basis K0 of H(γ) defined as
above.

Now to establish the component-wise Skorohod representation we need to use the integration
by parts in Theorem (3). We consider then, in what follow, open sets of the form O =
{x ∈ E |G(x) < 0} where G satisfies Assumptions (H). We define the following coordinate
functions: For l ∈ K, with |l|H = 1, define

ϕl(z) = E′ < l, z >E , z ∈ E

The functions ϕl are continuous Lipschitz functions on the whole E, thus the functions
ϕl|O are Lipschitz continuous functions on O and belong to W 1,2(O, γ).

Theorem 5. In the case where ϕ = ϕl, the Fukushima decomposition of M [ϕ], ϕ ∈
W 1,2(O, γ) in Theorem 4 becomes as follows:

ϕl(Xt)− ϕl(X0) = W l
t +

∫ t

0

l̂(Xs)ds+

∫ t

0

νlG(Xs)dL
ρ
s (25)

where for all z ∈ O \ Sl for some relative polar set Sl ⊂ O the continuous martingale

(W l
t ,Ft, Pz)t≥0 is a one dimensional Brownian motion starting at zero, l̂ is the element

generated by l,

νlG =
Dl
HG

|DHG|H
plays the role of the outward normal vector field in the direction of l and Lρt is the positive
continuous additive functional associated with the Gaussian-Hausdorff measure ρ by Revuz
correspondence. Moreover, Lρt verify∫ t

0

1∂O(Xs) dL
ρ
s = Lρt . (26)

Proof. By Lemma 4 the AF N [ϕl] is of bounded variation and its associated measure γ[ϕl]

is uniquely characterized by the equation∫
O

[DO
Hϕl, D

O
Hψ]Hdγ =

∫
O

ψdγ[ϕl]

for a relatively quasi-continuous function ψ ∈W 1,2(O, γ). By the integration by part formula
in Lemma 3 we have
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∫
O

ψdγ[ϕl] =

∫
O

[DO
Hϕl, D

O
Hψ]Hdγ

=

∫
O

[l,DO
Hψ]Hdγ

=

∫
O

DO
l ψdγ

=

∫
O

l̂ψdγ +

∫
∂O

Dl
HG

|DHG|H
ψdρ

(27)

which allows us to identify the measure γ[ϕl] associated to N [ϕl], i.e.

γ[ϕl](dz) = l̂(z)γ(dz) + nlG(z)ρ(dz)

where ρ is the Hausdorff-Gauss measure and

νlG =
Dl
HG

|DHG|H
plays the role of the outward normal vector field in the direction of l. Consequently, the
CAF of zero energy N [ϕl] must be

N [ϕl] =

∫ t

0

l̂(Xs)ds+

∫ t

0

νlG(Xs)dL
ρ
s

where Lρt = (Lρt )t≥0 is the continuous additive functional associated with ρ by the Revuz
correspondence and by Theorem 5.1.3 in Fukushima (1980) the equality (26) holds.

By Proposition 9 we know that

〈M [ϕl]〉t =

∫ t

0

[DO
Hϕl(Xs), D

O
Hϕl(Xs)]Hds

=

∫ t

0

|l|2Hds

= t

(28)

It follows by Levy’s characterization of Brownian motion that (M [ϕl])t≥0 is an
(Ft)t≥0−Brownian motion starting at zero under each Pz, z ∈ O \ Sl.

Let {lk, k ∈ N} the orthonormal basis of H(γ) as defined above, then it is easy to see that,
by Theorem 5, we have solved a certain system of stochastic differential equations. This is
announced by the following Theorem,

Theorem 6. The stochastic process ({ E′〈lk, Xt〉E |k ∈ N},Ft, Pz) solves, for r.q.e. z ∈ O,
the following system of stochastic differential equations{

dY kt = dW k
t + l̂k(Y kt )dt+ nkG(Y kt )dLt

Y k0 = 〈k, z〉E′,E
, k ∈ N (29)

where {(W k
t )≥0, k ∈ N} is a collection of independent one dimensional (Ft)t≥0− Brownian

motion starting at zero.

Journal home page: www.jafristat.net, www.projecteuclid.org/as



K. Akhlil, Afrika Statistika, Vol. 12(1), 2017, pages 1117–1146. Infinite dimensional reflecting
Ornstein-Uhlenbeck stochastic process on non-convex open sets.

Proof. The result follows from Theorem 5, and the Levy’s theorem. In fact, in virtue of the
linearity of the map ϕ 7→M [ϕ] (See Corollary 1 in Fukushima, 1980, Corollary 1, p.139) and
Proposition 9 one can conclude that

〈W k
t ,W

k′

t 〉t = t[lk, lk′ ]H = tδk,k′ , t ≥ 0 and k, k′ ∈ N

which means that any vector process W̄ = {W 1
t , . . . ,W

d
t } is a d−dimensional

(Ft)t≥0−Brownian motion starting at zero under Pz for r.q.e. z ∈ O.

6. Skorohod decomposition

In the last section we had established the Skorohod decomposition for the components
(Xk

t )t≥0(k ∈ N). Now we are interested in the Skorohod decomposition of the process
(Xt)t≥0. One remarks that passing from (Xk

t )t≥0 to (Xt)t≥0 is not trivial. In fact, a
problem occurs when one wants to find an E−valued Brownian motion (Wt)t≥0 verifying

E′〈lk,Wt〉E = W k
t and a map l̂ : E → E such that E′〈lk, l̂〉E = l̂k. To do this we mainly

follow the procedure developed in Section 6 in Albeverio and Röckner (1991). The procedure
is based on the crucial technical Lemma 6.1 in Albeverio and Röckner (1991) that we
present also here without proof and we refer to the above cited article for detailed one.

Recall that E is a separable Banach space and denote by ‖.‖E′ the operator norm on E′,
we know then, by the Banach/Alaoglu-theorem, that

B′n := {l ∈ E′| ‖l‖E′ ≤ n}, n ≥ 0,

when equipped with the weak∗−topology, is compact . Moreover, it is metrizable by some
metric dn, hence in particular separable. Let Dn ⊂ K be a countable dense subset of
(B′n, dn), n ∈ N, such that Dn ⊂ Dn+1 for every n ∈ N. Let D̃n be the Q− linear span of
Dn and set

D :=
⋃
n∈N

D̃n (30)

Lemma 5. Let (Ω,A ) be an arbitrary measurable space and let D to be as in (30). Now
let αl : Ω→ R, l ∈ D, be A− measurable maps. Then there exists an A /B(E)−measurable
map α : Ω→ E such that

E′〈l, α〉E = αl for all l ∈ D (31)

P−a.s. for every probability measure P on (Ω,A ) satisfying the following two conditions:

(i) l→ αl is Q−linear P−a.s.
(ii) There exists a probability measure νP on (E,B(E)) such that∫

exp(iαl)dP =

∫
exp(i E′〈l, z〉E)νP (d z) for all l ∈ D (32)

Lemma 5 will be applied to construct an E−valued Wiener process from the components
W k
t , but before let us make some remarks.

Remark 2.
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(a) First of all, let us remark that the evaluation of the martingale part in the Fukushima
decomposition is not ’disturbed’ by whether we work on E or on an open set O of E.
It is why the treatment of the martingale part is similar to the one in E as we deal,
in the both situations, with E−valued Wiener processes without any kind of reflection
or perturbation. One can see it clearly from the component-wise process, where in both
situation the martingale part give arise to a one dimensional Brownian motion.

(b) One can say the same as in (a) about l̂k, where {lk : k ∈ N} is the orthonormal basis

of the Cameron-Martin space H(γ), defined in the last section and l̂k is the element
generated by lk.

(c) Note that if Wt is a standard Wiener process in Rn, then for any unit vector v ∈ Rn,
the process (v,Wt) is one dimensional Wiener. Hence one might try to define a Wiener
process in a separable Hilbert space H as a continuous process Wt with values in H such
that, for every unit vector v ∈ H, the real process (v,Wt)H is Wiener. However, such a
process does not exist if H is infinite dimensional (see section 7.2 in Borgachev, 1998).

To get around the difficulty appearing in Remark 2 (c), let jH be as defined in (24) and
define

Definition 8. A continuous random process (Wt)t≥0 on (Ω,F , P ) with values in E is called
a Wiener process associated with H if, for every l ∈ E′ with |jH(l)|H = 1, the one dimen-
sional process E′〈l,Wt〉E is Wiener.

Definition 9. Let Ft, t > 0, be an increasing family of σ−fields. A Wiener process (Wt)t≥0

is called an (Ft)t≥0−Wiener process if, for all t, s ≥ τ , the random vector Wt − Ws, is
independent of Wτ , and the random vector Wt is Ft−measurable.

In a more general framework where E is a locally convex space, it follows by Proposition
7.2.2 in Borgachev (1998), that a Wiener process exists precisely when there exists a Hilbert
space H continuously and densely embedded into E. In particular in our situation where
E is a separable Banach space and H(γ) is the relevant Cameron-Martin space, then by
Proposition 7.2.3 in Borgachev (1998), there exists a Wiener process (Wt)t≥0 associated
with H(γ) such that the distribution of W1 coincides with γ.

Here also and by the identification in the last section, the definition of the E−valued
Wiener (or Brownian motion) process can be reformulated as follows: A continuous random
process (Wt)t≥0 on (Ω,F , P ) with values in E is called a Wiener process (or Brownian
motion ) associated with H(γ) if, for every l ∈ K with |l|H = 1, the one dimensional process

E′〈l,Wt〉E is Wiener.

Now remark that, in general, one can not apply Lemma 5 directly to the one dimensional
Brownian motion W k

t because of the duality product in (32), which justifies an extension
assumption on the standard Gaussian cylinder measure on H(γ). More precisely, for t > 0
let γt denote the standard Gaussian cylinder measure on H(γ), then one have∫

H(γ)

exp(i〈h, k〉H)γt(dk) = exp(−1

2
t|h|2H), h ∈ H(γ),

and each γt induces a finitely additive measure γ̃t on the cylinder sets of E defined by

γ̃t(A
E
l1,...,ln) := γt(A

H
l1,...,ln) (33)
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where AEl1,...,ln := {z ∈ E | ( E′〈l1, z〉E , . . . , E′〈ln, z〉E) ∈ A} and AHl1,...,ln := {h ∈
H(γ) | (〈l1, h〉H , . . . , 〈ln, h〉H) ∈ A}, l1, . . . , ln ∈ E′, A ∈ B(Rn).

In Albeverio and Röckner (1991), the following essential assumption was considered,

Each γ̃t, t > 0, (as in (33)) extends to a probability measure γ∗t on (E,B(E)).

In our situation we don’t need such assumption, since the extension always exists and it is
unique, see Theorem 4.1 in Kuo (1975) and the paragraph after its proof.

Now, before applying Lemma 5 as in Theorem 6.2 in Albeverio and Röckner (1991) to obtain
an E−valued Brownian motion from the component-wise one dimensional Brownian motions
W k
t appearing in Theorem 5, let us first recall this important result from Proposition 1 in

Hohmann (1985) - (See also Theorem 5.1 in Röckner, 1988) - which permits us to be sure
of the existence of a continuous sample paths version of the process constructed by Lemma 5.

Lemma 6. Let (Yt)t∈R be a mean zero Gaussian stochastic process on a probability space
(Ω,A , P ) taking values in a real separable Banach space (X, ‖.‖X). Assume that

lim
t→s

EP [‖Ys − Yt‖2X ] = 0, for each t ∈ R

Let f : R+ → R+ be a continuous, increasing function such that f(0) = 0 and that

sup{EP [‖Ys − Yt‖2X ]1/2 : s, t ∈ R, |s− t| ≤ r} ≤ f(r)

Assume that ∫ 1

0

(
ln

2

r

)1/2

df(r)

Then for any n ∈ N there exists a constant θn > 0 and an A−measurable function Bn :
Ω→ R+ such that for all s, t ∈ [−n, n]

‖Ys(ω)− Yt(ω)‖X ≤ θn
∫ 2|s−t|

0

(
ln
Bn(ω)

r2

)1/2

df(r), for P − a.e. ω ∈ Ω (34)

In particular, there exists a version (Ỹt)t∈R of (Yt)t∈R (i.e. for each t ∈ R, Yt = Ỹt P−a.s. )
which has continuous sample paths.

Theorem 7. There exists a map W : Ω→ C([0,∞[, E) having the following properties:

(i) ω →Wt(ω) := W (ω)(t), ω ∈ Ω, is Ft/B(E)− measurable for t ≥ 0.
(ii) There exists a relatively polar set S ⊂ E such that under each Pz, z ∈ E\S, W = (Wt)t≥0

is an (Ft)t≥0−Brownian motion on E starting at 0 ∈ E with covariance [, ]H
(iii) For each k ∈ N, E′〈lk,Wt〉 = W k

t , t ≥ 0, Pz−a.s. for all z ∈ E outside a relatively polar
set (depending on k).
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Proof. Let D ⊂ K be as (30). Since the maps l 7→ ϕl and u 7→ M [u] are linear then
l 7→ W l

t := (W l
t )t≥0 is Q−linear on D, Pz−a.s. for each z ∈ E \ S and some rela-

tively polar set S. Consequently (i) in Lemma 5 is satisfied. Moreover, by Theorem 5,
Ez[exp(iW l

t )] = exp(− 1
2 t|l|

2
H(γ)) for all (unite vector) l ∈ D, t ≥ 0. Since γ̃t extends to a

probability measure γ∗t , then (ii) in Lemma 5 is also satisfied.

Now, by fixing t ≥ 0 and by applying Lemma 5 with A = Ft and αl := W l
t , we obtain that

there exists an Ft/B(E)−measurable map W̃t : Ω→ E such that

E′〈l, W̃t〉E = W l
t , for all (unite vector) l ∈ D, Pz − a.s. for each z ∈ E \ S. (35)

Remark that the law of W̃1 is precisely γ∗1 and then, by scaling, one obtain that the law

of W̃t − W̃s is (t − s)γ∗1 (See also Remark 6.3 in Albeverio and Röckner, 1991), hence for
z ∈ E \ S, t, s ≥ 0,

Ez

[
‖W̃t − W̃s‖2E

]
= (t− s)

∫
‖z‖2Eγ∗1(dz)

which is finite by Fernique/Skorohod theorem (cf. Theorem 3.41 in Strook, 1984).

Now we apply Lemma 6 to Yt = W̃t and f(r) = a.r where a =
∫
‖z‖2Eγ∗1 (dz), since

the independence of the random variable Bn on Pz can be chosen uniformly for all
Pz, z ∈ E \ S. It then follows that there exists a version (Wt)t≥0 of (W̃t)t≥0 which is
of continuous sample paths such that for each t ≥ 0, ω 7→ Wt(ω) := W (ω)(t), ω ∈ Ω,

is Ft−measurable and Wt = W̃t, Pz-a.s. for all z ∈ E \S. Since Ft is complete, (i) is proven.

By the continuity of the sample paths and (35) it follows that

E′〈l,Wt〉E = W l
t , for all t ≥ 0, l ∈ D, Pz − a.s. for each z ∈ E \ S.

which holds also for l ∈ K by Corollary 1 (ii) in Fukushima (1980), page 139. This implies
(iii).

It remains to show that W = (Wt)t≥0 is an (Ft)t≥0−Brownian motion on E. By Theorem
5 we may assume that for each unite vector l ∈ D, (W l

t ,Ft, Pz)t≥0 is an (Ft)t≥0−Brownian
motion on R for all z ∈ E \S. Hence by (35) under each Pz, z ∈ E \S , the random variable

E′〈l,Wt−Ws〉E is mean zero Gaussian with covariance (t− s)|l|2H = (t− s) for all 0 ≤ s < t
and a unite vector l ∈ D. Consequently the same is true for all l ∈ E′. Since for 0 ≤ s < t
the σ−algebra {(Wt −Ws)

−1(B) |B ∈ B(E)} on Ω is equal to the σ−algebra generated by
{ E′〈l,Wt −Ws〉E | l ∈ D} on Ω, it follows again by Theorem 5 and (35) that Wt −Ws is
independent of Fs. Since W = (Wt)t≥0 has continuous sample paths and because of part
(i), it follows that W is an (Ft)t≥0−Brownian motion on E.

The following Theorem is a direct consequence of Theorem 5 and Theorem 7.

Theorem 8. There exists a map N : Ω→ C([0,∞[,O) having the following properties

(i) ω 7→ Nt(ω) := N(ω)(t), ω ∈ Ω, is Ft/B(O)− measurable for each t ≥ 0.
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(ii) For each unite vector l ∈ K, we have

E′〈l, Nt〉E =

∫ t

0

l̂(Xs) ds+

∫ t

0

νlG(Xs)dL
ρ
s , (t ≥ 0)

Pz−a.s. for all z ∈ O outside a relatively polar set (depending on l).
(iii) Xt = z +Wt +Nt, t ≥ 0, Pz−a.s. for all z ∈ O \ S, where W and S are as in Theorem

7.

Proof. Define N := X −W where X : Ω → C([0,∞[,O) is given by X(ω)(t) := Xt(ω) −
X0(ω), ω ∈ Ω, t ≥ 0. Then (i) holds by Theorem 7 from which (ii) and (iii) also follow in
virtue of Theorem 5.

Theorem 9. There exists a map W : Ω → C([0,∞[, E) such that for r.q.e. z ∈ O under
Pz, W = (Wt)t≥0 is an (Ft)t≥0−Brownian motion on E starting at zero with covariance
[, ]H such that for r.q.e. z ∈ O

Xt = z +Wt +

∫ t

0

Xs ds+

∫ t

0

νG(Xs) dL
ρ
s (36)

where Lρt := (Lρt )t≥0 is a positive continuous additive functional which is associated with ρ
by the Revuz correspondence and verify the equality (26). In addition νG is a unite vector
defined by

νG :=
DHG

|DHG|H

Proof. Let Nt be as defined in Theorem 8 and let {lk | k ∈ N} be the orthonormal basis of
H(γ), as fixed in the last section. Then by Theorem 8, we have that for all z ∈ E \ S

E′〈lk, Nt〉E =

∫ t

0

l̂k(Xs)ds+

∫ t

0

νkG(Xs) dL
ρ
s , t ≥ 0, Pz − a.s.

where l̂k is the element generated by lk and νkG := νlkG . As Dk
HG = [lk, DHG]H then there

exists νG such that [lk, νG]H = νkG, which is given explicitly by

νG =

∞∑
k=1

νkGlk

=

∞∑
k=1

[lk, DHG]H
|DHG|H

lk

=
DHG

|DHG|H

(37)

Now by Proposition 5.1.6 and Example 7.3.3 (i) in Borgachev (1998), there exists a map

l̂ : E → E such that E′〈lk, l̂〉E = l̂k, which is exactly the identity, i.e. l̂(x) = x (see
also Remark 6.8 (ii) in Albeverio and Röckner, 1991). Consequently the map N : Ω →
C([0,∞[,O) defined in Theorem 8 is given, for each z ∈ E \ S, by

Nt =

∫ t

0

Xs ds+

∫ t

0

νG(Xs) dL
ρ
s , t ≥ 0, Pz − a.s.
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Define Wt := Xt −X0 −Nt, t ≥ 0. It follows by Theorem 5 that

E′〈l,Wt〉E = W l
t , t ≥ 0, l ∈ D

Pz−a.s. for all z ∈ E \ S, where D is as in Lemma 5. It now follows as in the last part
of the proof of Theorem 7 that W = (Wt)t≥0 is an (Ft)t≥0−Brownian motion on E with
covariance [, ]H .

7. Examples

We give some examples to illustrate the Skorohod representation in infinite dimensions. It
includes regions below graphs and Balls.

7.1. Regions below graphs

We fix ĥ ∈ E′ such that ‖ĥ‖L2(Eγ) = 1 and we set h := Q(ĥ). Then |h|H = 1 and ĥ(h) = 1.

we split E = spanh ⊕ Y , where Y = (I − Πh), Πh(x) = ĥ(x)h. The Gaussian measure
γ ◦ (I −Πh)−1 on Y is denoted by γY .

Let F ∈
⋂
p>1W

2,p(Y, γY ). Choose any Borel precise version of F ( for example we can
choose F to be a Lipschitz function) and set

G : E 7→ R, G(x) = ĥ(x)− F ((I −Πh)(x)) .

Then, G ∈
⋂
p>1W

2,p(E, γ) and DO
HG(x) = h−DO

HY
F ((I −Πh)(x)), so that

|DO
HG(x)|2H = 1 + |DO

HF (I −Πh)(x)|2HY
≥ 1

Hence G satisfies Assumptions (H). The sub-level O = G−1(−∞, 0) is just the region below
the graph of F . The Skorohod decomposition of the infinite dimensional reflecting Ornstein-
Uhlenbeck process is

Xt = z +Wt +

∫ t

0

Xs ds+

∫ t

0

nG(Xs) dL
ρ
s

where in this situation νG is defined as follows

νG(x) =
h−DO

HY
F ((I −Πh)(x))

(1 + |DO
HF (I −Πh)(x)|2HY

)
1
2

7.2. Balls

In the context of balls we take E to be a separable Hilbert space endowed with a
non-degenerated centered Gaussian measure γ, with covariance Q. we fix an orthonormal
basis {ek : k ∈ N} of E consisting of eigenvectors of Q, Qek = λek, and the corresponding
orthonormal basis of H = Q1/2(E) is V = {vk :=

√
λkek : k ∈ N}. For each k the function

v̂k is just v̂k(x) = xk√
λk

, where xk = 〈x, ek〉X .
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For every r > 0 the function G(x) := ‖x‖2 − r2 satisfies Assumptions (H). Indeed, it is

smooth, O = B(0, r), DO
HG(x) = 2Qx and 1/|DO

HG|H = 1/2‖Q 1
2x‖ is easily seen to belong

to Lp(E, γ) for every p.

Then for ϕ ∈W 1,2(B(0, r), γ) the integration by parts formula reads∫
B(0,r)

DO
k ϕdγ =

1√
λk

∫
B(0,r)

xkϕdγ +

∫
‖x‖=r

√
λkxk

‖Q1/2‖x
ϕdρ,

Consequently, the component-wise Skorohod decomposition reads

Xk
t = z +W k

t +
1√
λk

∫ t

0

Xk
s ds+

∫ t

0

√
λkX

k
s

‖Q1/2Xs‖
dLρs

and the Skorohod decomposition of the infinite dimensional reflecting Ornstein-Uhlenbeck
process (Xt)t≥0 is given by

Xt = z +Wt +

∫ t

0

Xs ds+

∫ t

0

QXs

‖Q1/2Xs‖
dLρs
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