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Abstract. Consider a system with lifetime governed by a bivariate exponential model
(X,Y ). Using the maximum likelihood method and the Bayesian approach, we estimate
the parameters and the mean time between failure (MTBF) of this model.To compare the
estimators, an exhaustive Monte Carlo study is performed using the Pitman closeness cri-
terion and the relative efficiency.

Résumé. Considérons un système dont la durée de vie est régie par un modèle exponentiel
bivarié (X,Y ). En utilisant la méthode du maximum de vraisemblance et l’approche Bayesi-
enne, nous estimons les paramètres, le temps moyen de bon fonctionnement (MTBF) et la
fonction de fiabilité de ce modèle. Une étude de Monte Carlo est menée pour comparer les
estimateurs moyennant les critères de proximité de Pitman et d’efficacité relative.

Key words: Bayesian Analysis; Bivariate Exponential Model; Loss function; Maximum
Likelihood Estimation; Reliability.
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1. Introduction

The exponential distribution denoted by Ex plays an important role in survival problems
since it has a constant failure rate and it has no memory. Many bivariate models are derived
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from the exponential model. Block and Basu (1974) considered the maximum likelihood
estimator (MLE) of the Absolutely Continuous Bivariate Exponential (ACBVE) and Weier
(1981) proposed a Bayesian estimator of the reliability function using a noninformative and
conjugate priors. Klein and Basu (1985) considered the estimation of the bivariate survival
function of the ACBVE model using a classical approach. Achcar and Santander (1993)
performed Bayesian estimation of the ACBVE model using approximation methods con-
structed by Tierney and Kadane (1986). Achcar and Leandro (1998) used MCMC methods
to estimate a bivariate exponential model. A good synthesis is given by Klein (1995) for this
model. More recently, Hanagal and Ahmadi (2009) adopted Bayesian empirical approach of
the bivariate exponential problem.

In this paper, we are interested by estimating the parameters and the MTBF of a bivariate
exponential model. We use the classical maximum likelihood and the Bayesian approaches
using noninformative and conjugate priors. The quadratic loss function is largely used in
the literature.

Our aim is to prove, with an exhaustive Monte Carlo study, that it is possible to improve
the maximum likelihood estimation using a Bayesian method and a suitable loss function.
That’s why, we propose to use a large variety of loss functions.

Four sections are proposed. The first section presents the genesis of the problem. In the
second section, the Bayesian estimation of the parameters and the MTBF using noninfor-
mative prior is proposed. The third section proposes the use of the conjugate prior. Finally, a
Monte Carlo study is performed in the last section where a comparative study of estimators
is proposed using Pitman closeness and relative efficiency criterions. Then, we prove that,
using a suitable loss function, we can obtain the best estimator via Bayesian method.

2. Genesis of the model and the maximum likelihood estimation

2.1. Genesis of the model

Many bivariate models are derived from the exponential distribution. The Freund (1961)
distribution gives the joint distribution of the system with two components A and B with
lifetimes X and Y , when they run separately, are distributed according to Ex(α) and Ex (β)
respectively.

Moreover, in the case of simultaneous runs, when a failure occurs in A (resp. B), the lifetime
of B (resp. A) is Ex(α′) (resp.exp (β′)) with α′ > α and β′ > β.

The bivariate exponential distribution family of Block and Basu (1974) with parameters
(λ1, λ2, λ12) is a particular parametrization of Freund corresponding to

α = λ1 + λ12 {λ1/ (λ1 + λ2)} ;α′ = λ1 + λ2

β = λ2 + λ12 {λ2/ (λ1 + λ2)} ;β′ = λ2 + λ12

λ1, λ2, λ12 ≥ 0

The density f(x, y) given by Block and Basu (1974) is

Journal home page: www.jafristat.net



A. Chadli, H. Talhi and H. Fellag, Afrika Statistika, Vol. 8, 2013, pages 499–514. Comparison of
the maximum likelihood and Bayes estimators for symmetric bivariate exponential distribution
under different loss functions. 501

f(x, y) =


λ1λ

′ (λ2 + λ12)

λ1 + λ2
exp(−λ1x− (λ2 + λ12)y if x < y

λ2λ
′ (λ2 + λ12)

λ1 + λ2
exp−((λ1 + λ12)x− λ2y if x > y

(1)

where λ′ = λ1 + λ2 + λ12.

The model used in this work is strongly connected to the two above models assuming in
the Freund model identical components,α = β = λ et α′ = β′ = λθ. A reparametrization of
(1.1) assuming λ1 = λ2 = λ(2− θ) and λ12 = 2λ(θ − 1) leads to the density

f(x, y) =

{
θλ2 exp−2λx− θλ(y − x) si x < y
θλ2 exp−2λy − θλ(x− y) si x > y

λ > 0; θ > 0 (2)

Remark 1. 1. When θ ≥ 1, we obtain the Freund model.
2. If 1 ≤ θ ≤ 2 we obtain Block et Basu’s model.

The function f(x, y) given in (2) is a density inR2. Assume that

U = min(X,Y )

V = max(X,Y )

W = V − U

Then, the density of (U, V ) is

fU,V (u, v) = 2θλ2 exp (−2λu− λθ (v − u)) for 0 < u < v (3)

and (U,W ) is distributed according to the density

fU,W (u,w) = 2θλ2 exp (−2λu− λθw) for u > 0;w > 0 (4)

Hence, one can say that U and W are independent with U ∼ Ex(2λ) and W ∼ Ex(λθ).

In our model, the lifetime corresponds to V = max(X,Y ) obtained as follows

fV (v/λ, θ) =


2θλ

(θ − 2)
{exp (−2λv)− exp (−λθv)} if θ 6= 2

4λ2
∫ v

0
exp {−2λu− 2λ (v − u)} du = 4λ2v exp (−2λv) if θ = 2

(5)

Note that, when θ = 2, V is distributed according to Gamma (2, 2λ) and the MTBF is

T0 =

{
E (V/λ, θ) =

∫∞
0
vfV (v/λ, θ) dv = (2+θ)

2λθ if θ 6= 2
1
λ if θ = 2

(6)

In the reliability point of view, E (V/λ, θ) is the MTBF T0. In the following, we consider the
case θ 6= 2 only.

In this work, we consider the estimation of the parameters and the MTBF denoted T0 in the
bivariate model given above. Using Monte carlo study, we perform the maximum likelihood
approach and the Bayesian methodology and compare the estimators with respect to various
loss functions.
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2.2. Maximum likelihood estimation

Consider the couples of observations {(ui, wi) ; i = 1, ...n} where ui = min(xi, yi) and wi =
|xi − yi|. The likelihood function is

L

(
u
−
, w
−
/λ, θ

)
=

n∏
i=1

fU,W (ui, wi) = 2nθnλ2n exp (−2λS − λθS′) , (7)

where S =
n∑
i=1

ui and S′ =
n∑
i=1

wi.

Then, the MLE estimators λMV and θMV of λ and θ respectively are

λMV =
n

2S
et θMV =

2S

S′
(8)

Note that S and S′ are independent and distributed according to Gamma (n, 2λ) and
Gamma (n, λθ).

Hence, one can deduce that E (λMV ) =
n

n− 1
λ and E (θMV ) =

n

n− 1
θ.

We can add that these estimators are asymptotically unbiased. To obtain the MTBF, we
have just to replace λ and θ by λMV and θMV in the expression (6) of T0. We obtain

T0,MV =
S + S′

n
(9)

3. Bayesian estimation with vague prior

In this section we propose to perform the estimation using Bayesian methods. Recall that
a Bayesian estimator d of a paramater t minimizes the posterior cost with respect to a loss
function l(t; d). The comparison of the MLE and the bayesian estimator is considered by
many authors. For example, in Ahmed et al. (2010), the maximum likelihood estimation,
Bayesian using Jeffrey prior and the extension of Jeffrey prior information for estimating the
parameters of Weibull distribution of life time are presented. A simulation study comparison
is made on the performance of these estimators. For more details on loss functions, one can
see Congdon (2006). In this section, we consider the following loss functions.

3.1. Loss functions

3.1.1. Quadratic loss function

This loss function defined by L1(t, d) = (t− d)2 is proposed by Legendre (1805) and Gauss
(1810) and it is the most used function in the literature. Then, the Bayesian estimator of t

is the posterior mean d̂B = E(t/x).

3.1.2. DeGroot loss function

This function,, introduced by DeGroot (1970), is defined as follows

L2 (θ, d) =

(
t− d
d

)2

=⇒ d̂B =
E(t2/x)

E(t/x)
.
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3.1.3. Linex loss function

It’s an asymetric function introduced by Varian (1975) and defined by

L3(t, d) ∝ ea∆ − a∆− 1, a 6= 0,

with a 6= 0 and ∆ = (d− t). Then, the Bayesian estimator is

d̂B = −1

a
ln(E(e−at)).

Note that when a→ 0, we obtain the quadratic loss function (see Zellner, 1986).

3.1.4. Entropy loss function

Calabria and Pulcini (1994) deduced a new loss function from the Linex as follows

L4 (t, d) =

(
d

t

)p
− p ln

(
d

t

)
− 1 =⇒ d̂B =

[
E
(
θ−p

)]−1/p
.

In the Bayesian context, when we have few or no information of the parameter, we use vague
priors. the most popular is due to Jeffreys (1961) defined as follows

p (λ, θ) = |In (λ, θ)|1/2 =
n

λθ
.

Notice that λ and θ are independent.

3.2. Parameter estimation

The posterior density of (λ, θ) is

p

(
λ, θ/u

−
, w
−

)
=

(2S)
n

Γ (n)

(S′)
n

Γ (n)
λ2n−1θn−1 exp (−2Sλ) exp (−λθS′) . (10)

Then, one can say that the posterior densities of λ and θ are Gamma (n, 2S) and

Gamma (n, λS′) ; respectively. Also, notice that
θS′

2S
is distributed according to Fisher dis-

tribution F (2n, 2n) and the conditional distribution λ/θ is Gamma (2n, 2S + θS′) .

Now, let us give the Bayesian estimators obtained with the various loss functions. Using the
quadratic loss function, we obtain the bayesian estimators λv,Q et θv,Q of λ and θ respectively
as follows

λv,Q =

∞∫
0

∞∫
0

λp

(
λ, θ/u

−
, w
−

)
dλdθ =

n

2S
, (11)

and

θv,Q =

∞∫
0

∞∫
0

θp

(
λ, θ/u

−
, w
−

)
dλdθ =

n

(n− 1)

2S

S′
. (12)
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Remark 2. These estimators are the same than those obtained with maximum likelihood
approach. However, for θ, the equality is true in the asymptotic case only. Indeed, λv = λMV

and θv =
n

n− 1
θMV .

Under the DeGroot loss function, the Bayesian estimators λv,G and θv,Q are equal to

λv,G =

E

(
λ2/u
−
, w
−

)
E

(
λ/u
−
, w
−

) =
(n+ 1)

2S
, (13)

θv,G =

E

(
θ2/u
−
, w
−

)
E

(
θ/u
−
, w
−

) =
(n+ 1)

(n− 2)

(2S)

S′
. (14)

Under the Linex loss function defined by Varian (1975) the Bayesian estimator of λ is

λv,L = −1

a
logE (exp (−aλ)) where E(e−aλ) =

Γ(n)

Sn
Γ(n)

(a+ 2S)
n

Then,

λv,L = −n
a

ln
(2S)

(a+ 2S)
. (15)

Moreover, we obtain the Bayesian estimator θv,L of θ given by the equation

θv,L = −1

a
logE (exp (−aθ)) .

After some computations, we obtain

θv,L =
(2S)

n
(S′)

n

Γ (n)
Ψ1 (a, n) where Ψ1 (a, n) =

∞∫
0

λ2n−1

(λS′ + a)
n exp (−2λS) dλ (16)

Finally, under the entropy loss function, the Bayesian estimator of θ is

θv,E =

[
(2S)

n

Γ (n)

(S′)
n

Γ (n)

Γ (n− p)
(S′)

n−p
Γ (n+ p)

(2S)
n+p

]−1

p
=

[
Γ (n) Γ (n)

Γ (n+ p) Γ (n− p)

]1

p (2S)

S′
(17)

Using the same method, we obtain the Bayesian estimator of λ

λv,E =
[(n− 1) (n− 2) ... (n− p)]1/p

(2S)
(18)
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3.3. Estimation of the MTBF

Under the quadratic loss function, the Bayesian estimator of T0 given in (1.6) is

T0,v =
S′

(n− 1)
+

1

2

2S

(n− 1)
=

S′ + S

(n− 1)
(19)

Note that (19) is close to the expression of T0,MV .

Under the DeGroot loss function, we obtain the estimator T0,v,G

T0,v,G =

E

(
T 2

0 /u−
, w
−

)
E

(
T0/u−

, w
−

) =

(
S2 + S′2

)
(n− 2) (S + S′)

+
SS′

(n− 1) (S + S′)
(20)

But, under Linex function, the estimator T0,v,L is given by the expression

T0,v,L = −1

a
lnE (exp (−aT0)) = −1

a

(2S)
n

(S′)
n

β (n, n)
Ψ2 (a, n)

where Ψ2 (a, n) =
∞∫
0

θn−1(2+θ)2n

[S′θ2+2(S+S′+a)θ+4S]2n
dθ and β (n, n) is the Beta function. Also, one

can write (
1

T0

)
v,L

= −1

a
[n ln (2S) + n ln (S′)− lnβ (n, n) + ln Ψ2 (a, n)] . (21)

Finally, under the entropy loss function, the Bayesian estimator of T0 is

T0,v,E =
[
E
(

(T0)
−p
)]−1/p

=
1

2

[
(2S)

n
(S′)

n Γ (2n+ p)

Γ (n) Γ (n)
Ψ3 (p, n)

]−1/p

,

where Ψ3 (p, n) =
∫∞

0
θn+p−1

[(2+θ)p(2S+θS′)2n+p]
dθ

Since Ψ1, Ψ2 and Ψ3 are untractable analytically, the computation of these integrals can be
made using Monte Carlo methods.

4. Bayesian estimation with conjugate prior

There exists a family of conjugate priors for (λ, θ) , (see, e.g., Weier, 1981) where the
marginal prior of λ is Gamma (g1, h1) and the conditional prior distribution of θ given
λ is Gamma (g2, λh2). This means that λθ is Gamma (g2, h2). Also,

p (λ) =
hg11

Γ (g1)
λg1−1 exp (−h1λ) and p (θ/λ) =

(h2)
g2

Γ (g2)
λ (λθ)

g2−1
exp (−h2λθ) .

Then, we obtain the density of (λ, θ) as follows

p (λ, θ) ∝ λg1+g2−1θg2−1 exp (−λh1) exp (−λh2θ) .
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Remark 3. If g1 = g2 = h1 = h2 = 0, we obtain the noninformative prior case. The
posterior density of (λ, θ) is given by the formula

p

(
λ, θ/u

−
, w
−

)
=

L

(
u
−
, w
−
/λ, θ

)
p (λ, θ)

∫∞
0

∫∞
0
L

(
u
−
, w
−
/λ, θ

)
p (λ, θ) dθ

=
HG1

1 HG2
2

Γ (G1) Γ (G2)
λG1+G2−1 exp (−λH1) θG2−1 exp (−λθH2) , (22)

where G1 = n+ g1; H1 = 2S + h1; G2 = n+ g2 and H2 = S′ + h2.

It is easy to notice that the posterior density of λ is Gamma (G1, H1) and the posterior
conditional density of θ given λ is Gamma (G2, λH2). Also, the posterior density of λ given
θ is Gamma (G1 +G2, H1 + θH2) .

4.1. Parameter estimation

Under the quadratic loss function, the Bayesian estimators λB,Q and θB,Q are as follows

λB,Q =
G1

H1
=

n+ g1

2S + h1
(23)

and

θB,Q =
G2

G1 − 1

(
2S + h1

S′ + h2

)
. (24)

Remark 4. One can notice that λ is Gamma (g1, h1) and
g1h2

g2h1
θ is distributed according

to Fisher distribution F (2g2, 2g1). In order to determine the values of the parameters h1,
g1, h2 et g2, one has to solve a sytem of four equations.

If we use the DeGroot loss function, the estimators obtained are

λB,G =

E

(
λ2/u
−
, w
−

)
E

(
λ/u
−
, w
−

) =
(G1 + 1)

H1
=

(n+ 1 + g1)

(2S + h1)
(25)

θB,G =

E

(
θ2/u
−
, w
−

)
E

(
θ/u
−
, w
−

) =
H1 (G2 + 1)

H2 (G1 − 2)
=

(2S + h1)

(S′ + h2)

(n+ 1 + g2)

(n− 2 + g1)
. (26)

But, under Linex loss function, the estimators are given by

λB,L =
G1

a
ln

(
1 +

a

H1

)
(27)
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and

θB,L = −1

a
(G1 lnH1 +G2 lnH2 − ln Γ (G1) + ln Φ1 (a, n)) , (28)

where Φ1 (a, n) =
∞∫
0

λG1+G2−1

(λH2+a)G2
exp (−λH1) dλ.

Finally, under the entropy loss function, we obtain

λB,E =
[(G1 − 1) (G1 − 1) ... (G1 − p)]1/p

H1
(29)

and

θB,E =
[
E
(
θ−p

)]−1/p
=
H1

H2

[
(G2 − 1) (G2 − 1) ... (G2 − p)

(G1 + p− 1) (G1 + p− 2) ... (G1)

]1/p

. (30)

4.2. Estimation of the MTBF

Under the quadratic function, the Bayesian estimator of T0,B is

T0,B =
1

2

H1

G1 − 1
+

H2

G2 − 1
=

1

2

(
2S + h1

n+ g1 − 1

)
+

S′ + h2

n+ g2 − 1
. (31)

When we use the DeGroot loss function, we have, after computations,

T0,B,G =

[
H2

2

(G2 − 1) (G2 − 2)
+

H1H2

(G1 − 1) (G2 − 1)
+

1

4

H2
1

(G1 − 1) (G1 − 2)

]
[

1

2

H1

(G1 − 1)
+

H2

(G2 − 1)

] . (32)

Under the Linex loss function, the estimator is

1

T0,B,L
= −1

a
lnE

(
exp

(
−a 1

T0

))
= −1

a
ln

[
HG1

1 HG2
2

B (G1, G2)

∫ ∞
0

θG2−1 (2 + θ)
G1+G2

[H2θ2 + (2a+H1 + 2H2) θ + 2H1]
G1+G2

dθ

]
(33)

= −1

a
[G1 lnH1 +G2 lnH2 − lnB (G1, G2) + ln Φ2 (a, n)] , (34)

where Φ2 (a, n) =
∞∫
0

θG2−1(2+θ)G1+G2

[H2θ2+(2a+H1+2H2)θ+2H1]G1+G2
dθ

Finally, under the entropy loss function, we obtain the following Bayesian estimator

T0,B,E =
1

2
H
−G1/p
1 H

−G2/p
2

[
Γ (G1 +G2 + p)

Γ (G1) Γ (G2)

]−1/p

[Φ3 (n, p)]
−1/p

(35)

where Φ3 (n, p) =
∞∫
0

θG2−1

(2 + θ)
p

(H1 + θH2)
G1+G2+p

dθ.
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5. Monte-Carlo study

In this section we propose to study the performance of the Bayesian estimators of the
reliability function and the parameters under some various loss functions with respect to the
MLE. An exhaustive monte carlo comparative study is performed using the loss functions
given in the previous sections. To complete the study, we add the absolute loss function.

In the following tables, we present the results of the monte carlo study. We simulate n
values (n=10,20,30,50,100,250) (λi, θi) from the posterior distribution of (λ, θ)/u,w. In this
study, the true values are λ = 2.3996 and θ = 0.73317. Also, in this study, we assume that
g1 = g2 = 1 and h1 = h2 = 2. Since the bias and mean square error are not adequate
to compare classical and Bayesian estimators, we propose to perform the comparison using
the Pitman closeness criterion (see, e.g; Pitman, 1937 and Fuller, 1982) and the relative
efficiency (Pandey et al., 2011). These criterions are largely used in the literature. The
Pitman criterion is considered in many papers. It was used by Sugiura (1984) for estimating
the normal covariance matrix, and was discussed by Peddada and Khattree (1986) and Rao
et al. (1986). Kubokawa (1989) gives a family of estimators closer than the sample mean of a
population in the sense of Pitman. Fountain (2000) constructed generalized class of closeness
criteria for the pairwise comparison of estimators including Pitman’s measure of closeness.
Jozani (2012) showed that the Pitman’s measure of closeness comparison of estimators under
the balanced loss function can be reduced to the Pitman comparison under the usual absolute
error loss.

The Pitman closeness criterion and the relative efficiency are defined as follows:

Definition 1. An estimator θ̂1 of a parameter θ dominates in the sens of Pitman closeness
criterion an other estimator θ̂2, if, for all θ ∈ Θ

Pθ

[
|θ̂1 − θ| < |θ̂2 − θ|

]
> 0.5. (4.1)

Definition 2. The relative efficiency of an estimator θ̂1 with respect to the estimator θ̂2

under the loss function l(t, θ) is defined by

Eff =
1
N

∑N
i=1 l(θ̂1(i), θ)

1
N

∑N
i=1 l(θ̂2(i), θ)

(4.2)

where {θ̂1(i), i = 1, . . . , N} and {θ̂2(i), i = 1, . . . , N} are samples from θ̂1 and θ̂2 respec-
tively.

5.1. Estimation with vague prior

When the prior is vague, the results of the comparative study are given below. In what
follows, the Bayesian estimator is compared with the MLE. The Gibbs sampler is used since

λ/θ ∼ Gamma(2n, 2S + θS′)

θ/λ ∼ Gamma(n, λS′.)
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5.1.1. Results for the parameters

The Table 1 presents the values of the Pitman criterion when we compare the Bayesian
estimators with the MLE. Under every loss function, the probabilities are calculated with
the Pitman formula such that, when it is greater than 0.5, one can say that the corresponding
Bayesian estimator is better. In the Table 2, the relative efficiency of this comparison is given.
The comparison with respect to relative efficiency is done such that, when it is less than
one, the Bayesian estimator is better.

parameter n squared loss absolute loss DeGroot loss Linex loss Entropy loss

10 0.520 0.493 0.410 0.463 0.413
20 0.477 0.480 0.480 0.420 0.410
30 0.47 0.433 0.520 0.423 0.410

λ 50 0.477 0.483 0.477 0.460 0.450
100 0.480 0.473 0.507 0.463 0.453
250 0.457 0.490 0.473 0.487 0.483

10 0.443 0.420 0.337 0.733 0.427
20 0.447 0.507 0.370 0.657 0.480
30 0.443 0.497 0.38 0.583 0.467

θ 50 0.467 0.433 0.417 0.540 0.477
100 0.467 0.490 0.417 0.537 0.490
250 0.470 0.497 0.460 0.477 0.533

Table 1. Pitman comparison of the estimators of λ and θ.

parameter n squared loss absolute loss DeGroot loss Linex loss Entropy loss

10 1.010 0.973 0.892 0.261 0.825
20 0.993 0.991 0.928 0.610 0.918
30 0.993 1.004 0.947 0.740 0.958

λ 50 0.997 0.997 0.965 0.843 0.985
100 0.996 1.000 1.001 0.889 0.958
250 0.998 1.000 1.005 0.949 0.981

10 1.408 1.012 0.672 0.738 0.79
20 1.201 1.002 0.813 0.938 0.873
30 1.159 1.007 0.949 0.979 0.900

θ 50 1.107 1.011 0.952 1.010 0.971
100 1.035 1.001 0.936 0.994 0.988
250 1.031 1.000 0.985 1.012 0.997

Table 2. Relative Efficiency comparison of the estimators of λ and θ.
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We remark that the Bayesian estimation of λ is not better than the MLE in the Pitman
sens (see Table 1). However, in terms of relative efficiency (see Table 2), the Linex and the
entropy loss functions improve the bayesian estimation and perform well.

Concerning the estimation of θ, the Linex function gives us suitable and better results than
the maximum likelihood approach with respect to Pitman and relative efficiency criterions
(Tables 1 and 2). This can be easly seen when n is not large.

5.1.2. Results for the MTBF

Concerning the estimation of the mean time between failure, we have obtained the results
given in the Tables 3 and 4 as follows

n squared loss absolute loss DeGroot loss Linex loss Entropy loss

10 0.420 0.460 0.363 0.440 0.617
20 0.473 0.490 0.440 0.490 0.587
30 0.497 0.523 0.480 0.517 0.597
50 0.470 0.477 0.447 0.477 0.520
100 0.487 0.507 0.473 0.493 0.530
250 0.510 0.500 0.500 0.510 0.493

Table 3. Pitman comparison of the estimators of the MTBF.

n squared loss absolute loss DeGroot loss Linex loss Entropy loss

10 1.516 1.068 0.934 1.276 0.975
20 1.180 1.031 0.866 1.112 0.990
30 1.064 1.004 0.845 1.036 0.984
50 1.089 1.015 0.973 1.062 0.998
100 1.036 1.006 0.972 1.025 0.998
250 1.005 1.002 0.974 1.002 0.995

Table 4. Relative Efficiency comparison of the estimators of the MTBF.

For the estimation of the MTBF, the entropy function performs better using the two crite-
rions. One can notice that, when n is large, the results are equivalent.

Finally, one can conclude that, for a noninformative prior, the Linex and the entropy loss
functions are better than quadratic and absolute loss functions. Moreover, if we compare
the classical and the Bayesian approach, one can conclude that the Linex function for the
parameters and the entropy function for the MTBF give better results.
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5.2. Estimation with conjugate prior

Now, we suppose that we use the conjugate prior instead of noninformative one. Here, the
method used is also the Gibbs Sampler since

λ/θ ∼ Gamma(G1 +G2, H1 + θH2)

θ/λ ∼ Gamma(G2, λH2)

5.2.1. Results for the parameters

The comparison with respect to Pitman closeness criterion is given in the Table 5. The
results are as follows:

Parameter n squared loss absolute loss DeGroot loss Linex loss Entropy loss

10 0.433 0.413 0.717 0.380 0.357
20 0.463 0.437 0.703 0.413 0.383

λ 30 0.483 0.473 0.643 0.457 0.443
50 0.483 0.477 0.593 0.460 0.447
100 0.513 0.510 0.600 0.497 0.493
250 0.497 0.497 0.557 0.477 0.467

10 0.340 0.427 0.240 0.470 0.877
20 0.400 0.443 0.323 0.463 0.823

θ 30 0.410 0.453 0.370 0.450 0.777
50 0.447 0.480 0.410 0.477 0.707
100 0.483 0.500 0.453 0.490 0.660
250 0.433 0.467 0.407 0.450 0.543

Table 5. Pitman comparison of the estimators of λ and θ.

Notice that the DeGroot loss function gives us the best results than the MLE of the param-
eter λ. However, it is not the case for θ where the entropy loss is more suitable. For the two
cases, despite of the popularity of the the quadratic loss, one can say that the estimation
can be improved with respect to the classical approach using more suitable loss function.
The results are as follows

Here, we can remark that the Bayesian estimation of λ is better than the MLE for all the
loss functions considered. But, for the parameter θ, the entropy loss is the best.

5.2.2. Results for the MTBF

In the following, we give the results of the comparative estimation of the MTBF using the
different loss functions given above. The Tables 7 and 8 present the results for the Pitman
closeness and relative efficiency criterions respectively.

In the case of estimation of the MTBF, the Bayesian estimator is the best if the entropy
loss function is considered with respect to the Pitman and relative efficiency criterions.
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Parameter n squared loss absolute loss DeGroot loss Linex loss Entropy loss

10 0.320 0.695 0.624 0.086 0.586
20 0.601 0.827 0.779 0.384 0.831

λ 30 0.702 0.863 0.859 0.500 0.826
50 0.792 0.911 0.904 0.642 0.862
100 0.861 0.943 0.940 0.759 0.867
250 0.954 0.976 0.984 0.915 0.976

10 1.207 0.986 0.506 0.475 0.518
20 1.235 0.999 0.708 0.952 0.737

θ 30 1.182 1.011 0.741 1.023 0.831
50 1.136 1.015 0.841 1.042 0.899
100 1.068 0.995 0.890 1.028 0.953
250 1.067 1.011 1.012 1.040 0.983

Table 6. Relative Efficiency of the estimators of λ and θ.

n squared loss absolute loss DeGroot loss Linex loss Entropy loss

10 0.420 0.480 0.387 0.460 0.693
20 0.400 0.423 0.377 0.413 0.633
30 0.437 0.443 0.430 0.440 0.607
50 0.500 0.523 0.473 0.513 0.613
100 0.430 0.440 0.413 0.430 0.523
250 0.467 0.477 0.450 0.477 0.533

Table 7. Pitman comparison of the estimators of the MTBF.

n squared loss absolute loss DeGroot loss Linex loss Entropy loss

10 1.051 0.897 0.620 0.917 0.680
20 1.067 0.970 0.774 0.994 0.823
30 1.035 0.974 0.833 0.990 0.875
50 0.983 0.969 0.841 0.967 0.912
100 1.039 1.000 0.992 1.019 0.965
250 1.014 1.001 0.990 1.008 0.986

Table 8. Relative Efficiency comparison of the estimators of the MTBF.

6. Conclusion

This work shows that the maximum likelihood estimation of the parameters and the mean
time between failure of the bivariate exponential distribution can be improved using Bayesian
method. Also, we prove that this improvement can be efficient using a suitable loss function.
For future prospects, one can construct a mixture of the loss functions used in this paper to
obtain optimal estimation.
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