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Abstract. In this paper, we consider the problem of stability of the estimation in autoregressive models for the finite
sample case. A Monte Carlo comparison of the least square estimator and the Hurwicz estimator is performed in
various contaminated models. The paper shows that, the least square estimator is very sensitive to contamination and,
despite the median-unbiasedness of the Hurwicz estimator, an optimal and stable estimator in small sample case is to
be constructed.

Résumé. Dans cet article, nous considérons le problème de la stabilité de l’estimation des paramètres d’un processus
autoregressif dans le cas des échantillons finis. Une comparaison par les méthodes de Monte Carlo des estimateurs
des moindres carrés et d’Hurwicz est ainsi présentée pour divers types de contamination. Cette étude montre que
l’estimateur des moindres carrés est très sensible aux perturbations et que, même si l’estimateur d’Hurwicz est sans
biais par rapport la médiane, un estimateur stable reste encore à construire dans le cas fini.
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1. Introduction

The concept of robustness has been introduced for the first time by Box and Andersen [6]. In their pioneer paper, they
called ”robust” a procedure which is insensitive to changes, of a magnitude likely to occur, in practice, in extraneous
factors. For Tukey [22], an efficient robust estimate is one whose efficiency is ”high” at a variety of strategically chosen
distributions. Huber [16] constructed a min-max robust estimate obtained after minimization of the maximum of the
asymptotic variance over certain families of distributions. Hampel [15] proposed the notion of qualitative robustness
in terms of equicontinuity of some sequences of maps of distributions. Box and Tiao [7] defined two distinct concepts
of robustness of statistical techniques in terms of insensitivity to non-normality.

Generally, in statistics, when we are confronted with a statistical problem, one has to adopt a model, establish
aims and criteria and calculate optimal solution. However, we must not stop at this point. We build a supermodel,
taking account plausible departures from the original model and in the context of the supermodel, we study the
performance of our optimal solution, to get the better performance and correct the solution if it is needed. Zieliński
[24] introduced a new idea of robustness using a robustness function defined as a real valued function on a parameter
space. This function describes the oscillation or the stability of the studied property in the supermodel. In this paper,
we consider the stability of the estimation in autoregressive models when the sample size is finite. We show that,
despite the popularity of estimators of autoregressive models, when the sample size is small, a new stable estimator
of the autoregressive parameter is needed. The paper is outlined as follows.In the second section, we present some
references on the estimation of autoregressive models. The third section is devoted to the presentation of some aspects
of stability in this kind of models. A comparative study of two interesting estimators is presented in the last section.
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2. Inference in small sample case

The problem of the estimation the autoregressive model is studied by many authors in the literature. Anderson [3]
studied the problem of exact sampling distribution of the least square estimator (LSE) of this autoregressive model.
He showed the difficulty to obtain the explicit formula of estimators in small sample case. Reeves [20] proposed a
method to obtain values of the distribution of the LSE in the Gaussian case. Ensor and Newton [12] proposed a
recursive algorithm for LSE in AR(p) process using Yule Walker estimation. Mikulski and Monsour [19] discussed the
optimality of the mean likelihood estimator (MLE) estimator of the autoregressive parameter. Andrews [4] considered
the problem of the standard estimators like LSE which are downward biased. He said that this estimator is a misleading
indicator of the true value of the parameter. So, he proposed median-unbiased estimators. Suppose thatm(ρ) is median
function . Andrews proposed

ρ̂med =

 −1 if ρ̂LS ≤ −1
m−1(ρ) if m(−1) < ρ̂LS ≤ m(1)
1 if ρ̂LS > m(1)

is a median unbiased estimator of ρ with
m(1) = lim

ρ→−1
m(ρ)

But, there are some drawbacks : this correction method has no explicit formula and does not apply to AR(p) when
p > 1. The distribution of innovations must be known exactly.

Akkaya and Tiku [1] considered an AR(1) process with iid innovations having specific non-normal, but symmetrical
distributions. The small sample estimation case was considered. The authors derived the modified maximum likelihood
estimator as solutions of equations after linearizing functions. The problem is that, explicit solutions are not possible.
However, they showed that their estimator is more efficient than the LSE estimator.

For the case where the innovations are distributed according to exponential distribution, Andel [2] obtained an ap-
proximation of the moments of the MLE estimator ρ̂MLE = min2≤t≤nXt/Xt−1. Cabrera and Watson [8] proposed in
iid case some simulation procedures in order to reduce the mean bias and the median bias in parametric estimation.
Luger [17] proposed a median-unbiased procedure when the innovations are distributed according to ARCH model. He
could prove that the Hurwicz estimator remains more general assumptions than in the paper of Zieliński [25], without
assuming statistical independence. For finite samples, a computationally efficient method was then proposed.

3. Some aspects of stability in autoregressive models

To study the problem of robustness in autoregressive models, many computational and approximation methods are
given in the literature. Campbell [9] proposed a recursive computation of M-estimators of the parameters of autore-
gressive processes. Haddad [14] constructed an asymptotic robust estimator of the AR(1) model. Also, some particular
aspects are used in Berkoun et al. [5] for the case of the independence test (H0 : ρ = 0 vs H1 : ρ ̸= 0). Carstensen [10]
investigated the unit root problems in small sample case. He showed that the Dickey-Fuller test based on the least
square estimator has lower power. In his paper, he proved that the robustness depends on the type of non-normality at
hand explaining then why there is no uniformly most powerful unit root test. To present the problematic of stability
in time series, let us present, as an illustration, the following estimators.

3.1. The Least Square Estimator

Consider the stationary first-order autoregressive process of the form

Xt = ρXt−1 + Yt, t = . . . ,−1, 0, 1, . . .

where Yt, t = . . . ,−1, 0, 1, . . . , are iid N(0,1).

Suppose that all what we observe is a segment of the process

X1, X2, . . . , Xn, n fixed,

and take as an estimator of ρ the classical LSE

ρ̂LS =
X1X2 + . . .+Xn−1Xn

X2
1 + . . .+X2

n−1
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The main reason for our choice of ρ̂LS is that, opposite to the maximum likelihood, mean likelihood, or other estimators,
ρ̂LS has that practical advantage that it can be easily calculated, also recursively when it is needed.

Now suppose that due to measurement techniques gross errors may appear so that Y1, Y2, . . . , Yn are distributed
acording to the Tukey Model T (ϵ, σ), i.e.

T (ϵ, σ) = (1− ϵ)N(0, 1) + ϵN(0, σ2)

where ϵ and σ are some constants.

Sawa [21] gave the following formula of the bias of the LSE in gaussian case. Unfortunately his formula was too
complicated to admit theoretical investigations though numerical computations can be performed without too much
difficulty. Fellag and Zieliński [13] proposed to perform the bias of this estimator in contaminated models. Using their
formula, the authors said that, the bias under Tukey contamination does not change monotonically either when ϵ
varies in the interval [0, 1/2] or when σ is changing in [1,∞). The lack of monotonicity may be considered as a rather
unexpected fact which is worthy of a more detailed study. Hence, one can notice that the variability of the LSE
estimator in small samples is very high which makes the estimator rather useless.

3.2. The Hurwicz Estimator

In the previous subsection, the well known least square estimator has appeared to be rather unsatisfactory for two
reasons :it is biased and it is highly inefficient in small samples. The problem of efficiency for small n is connected
with the fact that ρ̂LS has the heavy tail Cauchy distribution if n = 2 and the tails get slimmer very slowly when n
is growing. E.g. if ρ = 0 then P{|ρ̂LS | > 1} = 0.19 if n = 3 and P{|ρ̂LS | > 0.5} = 0.10 if n = 10 (Fellag and Zieliński
[13]).

An attractive competitor for LSE is the Hurwicz estimator ρ̂HUR defined as follows: for the same given segment of
the process, consider the sequence of ratios

X2/X1, X3/X2, . . . , Xn/Xn−1.

To avoid some technicalities we assume that n is even so that the median of the ratios is uniquely determined.

Then ρ̂HUR is defined as

ρ̂HUR = Med

{
X2

X1
,
X3

X2
, . . . ,

Xn

Xn−1

}
where Med(ξ1, ξ2, . . . , ξN ) denotes the sample median of the observations ξ1, ξ2, . . . , ξN . , i.e. if ξ1:N ≤ ξ2:N ≤ . . . ≤
ξN :N and N = 2k − 1 then Med(ξ1, ξ2, . . . , ξN ) = ξk:N .

Zieliński [25] proved that ρ̂HUR is a median-unbiased estimator of ρ whenever the medians of the innovations
Y1, Y2, . . . , Yn are equal to zero. The result is rather general: the innovations do not need to be identically distributed,
they may have heavy tails, and the median-unbiasedness of ρ̂HUR remains to hold also under ϵ-contamination of the
innovations when the contaminants are distributed symmetrically around zero.

The problem is what is the price for such nice properties of the Hurwicz estimator. In what follows, we present results
of an exhaustive simulation study of Mean Absolute Deviation (MAD) of ρ̂HUR and compare it with that of the least
square estimator ρ̂LS . However, it appears in small samples that MAD of LSE is very unstable if the distribution
of innovations is heavy tailed. For that reason, we decided to calculate also the Pitman Closeness Criterion (PCC)
defined as :

PCC(ρ) = Pρ{|ρ̂HUR − ρ| > |ρ̂LS − ρ|}

which is more stable. We report some results concerning the PCC for both estimators. To a surprise it appeared that
despite the median-unbiasedness of ρ̂HUR, the estimator ρ̂LS performs better in Gaussian models and in models with
innovations whose distributions have not very heavy tails.

3.3. Gaussian Model

We define the MAD of estimators and we introduce an appropriate notation as follows

MADLS(ρ) = Eρ|ρ̂LS − ρ|, MADHUR(ρ) = Eρ|ρ̂HUR − ρ|
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Despite the median-unbiasedness of ρ̂HUR and despite the bias and a large variability of ρ̂LS , it appears that
MADLS(ρ) < MADHUR(ρ). In the investigated cases, we have observed that MAD is a symmetric (around zero)
function of ρ. Consequently, we confine ourselves to study MAD′s for ρ in [0, 1) only. The basic tool we have used
is Monte Carlo study. The random numbers were generated using the program ULTRA version 1.01 (Marsaglia and
Zaman [18]). The Gaussian distributions were generated using the ratio–of–uniform–method (Devroye [11]). Some
numerical results of MAD for n = 4, 20 are presented in TABLE I. To get an idea of the error of simulation, we
present the results from 3 independent series of 106 runs.

MADLS(ρ) MADHUR(ρ)
n ρ 1 2 3 1 2 3

0 0.439 0.437 0.474 0.863 0.865 0.865
0.25 0.467 0.468 0.468 0.840 0.849 0.842
0.5 0.456 0.456 0.456 0.771 0.773 0.770
0.75 0.426 0.426 0.426 0.644 0.646 0.643

4 0.9 0.355 0.356 0.354 0.492 0.492 0.490
0.95 0.295 0.296 0.295 0.397 0.394 0.393
0.99 0.175 0.176 0.175 0.224 0.225 0.225

0.9999 0.029 0.029 0.029 0.036 0.036 0.036

0 0.177 0.177 0.177 0.282 0.282 0.281
0.25 0.172 0.173 0.173 0.275 0.275 0.275
0.5 0.159 0.159 0.160 0.252 0.256 0.251
0.75 0.134 0.134 0.134 0.202 0.202 0.202

20 0.9 0.107 0.107 0.107 0.148 0.148 0.148
0.95 0.091 0.091 0.091 0.119 0.119 0.119
0.99 0.059 0.059 0.059 0.071 0.071 0.071

0.9999 0.011 0.011 0.011 0.013 0.013 0.013

Table I. Simulated values of MADLS(ρ) and MADHUR(ρ).

The table I should be read as follows. In the first of three series of 106 simulations, the observed value of MADLS(ρ)
for n = 4 and ρ = 0 is equal to 0.439, that in the second series is equal to 0.437, and so on. To compare the estimators,
we calculated the ratios defined as

RATIO(ρ) =MADHUR(ρ)/MADLS(ρ)

as well as PCC(ρ). The results for 3 independent series of 106 simulations each are presented in TABLE II.

RATIO(ρ) PCC(ρ)
n ρ 1 2 3 1 2 3

0 1.821 1.827 1.824 0.674 0.674 0.675
0.25 1.792 1.812 1.796 0.673 0.673 0.673
0.5 1.692 1.695 1.690 0.665 0.665 0.665
0.75 1.510 1.515 1.510 0.638 0.638 0.639

4 0.9 1.382 1.383 1.382 0.614 0.614 0.614
0.95 1.342 1.331 1.332 0.603 0.603 0.603
0.99 1.275 1.274 1.280 0.592 0.591 0.592

0.9999 1.217 1.223 1.225 0.587 0.587 0.588

0 1.594 1.594 1.592 0.680 0.679 0.680
0.25 1.593 1.591 1.589 0.680 0.679 0.679
0.5 1.579 1.578 1.574 0.678 0.678 0.678
0.75 1.511 1.509 1.508 0.674 0.673 0.673

20 0.9 1.387 1.388 1.387 0.663 0.662 0.663
0.95 1.303 1.303 1.302 0.648 0.647 0.647
0.99 1.201 1.199 1.200 0.613 0.613 0.613

0.9999 1.189 1.187 1.191 0.609 0.608 0.608

Table II. Simulated values of RATIO(ρ) and PCC(ρ)

It can be seen that, despite the median-unbiasedness of ρ̂HUR, the LSE estimator performs better. One can hope that
LSE modified according to the Andrew’s [4] suggestion in such a way that it becomes a median-unbiased estimator
would perform even better.
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3.4. Symmetric innovations models

The Hurwicz estimator ρ̂HUR is median-unbiased under all innovations which are distributed symmetrically around
zero. It is interesting to see how efficient (in comparison with LSE) it is in such situations. To study the problem we
have chosen the following distributions:

1. Symmetric stable distributions with the characteristic functions of the form exp(−|t|γ) for γ ∈ [1, 2]. For γ = 2 we
have the normal distribution and for γ = 1 the heavy tailed Cauchy distribution with probability density function
[π(1 + x2)]−1;

2. Laplace distribution with probability density function (pdf) (1/2) exp(−|x|);
3. Logistic distribution with cumulative distribution function (cdf) (1 + e−x)−1;
4. Uniform distribution U(−1/2, 1/2).

To simulate the sample (2) we have to start with simulating X0. The basic formula for X0 is

X0 =
∞∑
j=0

ρjY−j

If the innovations Yj are normal N(0, 1) then X0 is normal N(0, σ2) with σ2 = (1 − ρ2)−1. If Yj have a stable
distribution with the characteristic function exp(−|t|γ) then X0 has the stable distribution with characteristic function
exp(−|t|γ/(1 − ργ)). Hence to get X0 one has to simulate a random variable according to the characteristic function
exp(−|t|γ) and divide the result by the scale parameter equal to (1− ργ)1/γ . The symmetric stable distributions are
simulated using the method given by Weron [23]. To obtain X0 in the Laplace, Logistic, and Uniform cases we used
the Central Limit Theorem: first we simulated a normal N(0, 1) variate and then divide the result by the appropriate
scale parameter:

√
(1− ρ2)/2 for Laplace,

√
3(1− ρ2)/π for Logistic, and

√
12(1− ρ2) for uniform distribution. In

TABLE III and TABLE IV, mean values of 3 independent series of 106 runs of respectively RATIO(ρ) and PCC(ρ)
are presented.

Stable Distributions
n ρ 2 1.75 1.5 1.25 1 Laplace Logistic Uniform

normal Cauchy

0 1.824 1.769 1.600 1.292 0.447 1.888 1.832 1.781
0.25 1.800 1.711 1.530 1.146 0.360 1.713 1.777 1.785
0.5 1.693 1.585 1.389 1.001 0.329 1.524 1.635 1.758
0.75 1.512 1.402 1.219 0.862 0.294 1.323 1.428 1.662

4 0.9 1.383 1.279 1.104 0.801 0.272 1.209 1.298 1.583
0.95 1.335 1.224 1.041 0.747 0.258 1.163 1.256 1.559
0.99 1.277 1.152 0.955 0.682 0.229 1.106 1.203 1.474

0.9999 1.222 1.061 0.849 0.537 0.212 1.033 1.151 1.417

0 1.593 1.576 1.536 1.448 1.089 1.349 1.536 1.852
0.25 1.591 1.547 1.463 1.302 0.879 1.307 1.522 1.865
0.5 1.577 1.491 1.353 1.132 0.681 1.233 1.487 1.894
0.75 1.509 1.381 1.196 0.936 0.500 1.131 1.407 1.863

20 0.9 1.388 1.236 1.030 0.762 0.378 1.011 1.278 1.733
0.95 1.303 1.141 0.928 0.660 0.326 0.937 1.187 1.641
0.99 1.200 1.009 0.773 0.500 0.228 0.851 1.084 1.530

0.9999 1.189 0.919 0.622 0.337 0.115 0.813 1.070 1.526

TABLE III. Simulated values of RATIO(ρ) for symmetric innovations.
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Stable Distributions
n ρ 2 1.75 1.5 1.25 1 Laplace Logistic Uniform

normal Cauchy

0 0.675 0.663 0.648 0.628 0.604 0.635 0.664 0.714
0.25 0.673 0.660 0.642 0.618 0.582 0.627 0.661 0.712
0.5 0.665 0.648 0.623 0.588 0.535 0.603 0.646 0.713
0.75 0.639 0.616 0.585 0.537 0.467 0.561 0.609 0.697

4 0.9 0.614 0.587 0.548 0.491 0.412 0.529 0.582 0.681
0.95 0.603 0.573 0.530 0.469 0.388 0.514 0.571 0.674
0.99 0.592 0.556 0.507 0.443 0.365 0.495 0.560 0.666

0.9999 0.588 0.544 0.493 0.431 0.358 0.478 0.553 0.693

0 0.680 0.662 0.643 0.623 0.602 0.584 0.657 0.762
0.25 0.680 0.658 0.633 0.601 0.556 0.575 0.654 0.762
0.5 0.678 0.649 0.611 0.559 0.483 0.560 0.649 0.763
0.75 0.674 0.632 0.575 0.493 0.381 0.537 0.640 0.765

20 0.9 0.663 0.608 0.529 0.421 0.284 0.510 0.622 0.760
0.95 0.647 0.583 0.490 0.369 0.226 0.483 0.729 0.749
0.99 0.613 0.531 0.421 0.293 0.166 0.432 0.555 0.730

0.9999 0.608 0.504 0.387 0.266 0.152 0.404 0.548 0.750

TABLE IV. Simulated values of PCC(ρ) for symmetric innovations.

To assess the error of calculations, in TABLE V we present the results from 3 independent series of 106 runs each
when the innovations are distributed according to the Cauchy distribution.

MADLS(ρ) MADHUR(ρ) RATIO(ρ)
n ρ 1 2 3 1 2 3 1 2 3

0 2.074 1.865 9.484 1.197 1.187 1.203 0.577 0.636 0.127
0.25 1.797 1.661 9.627 0.860 0.851 0.851 0.478 0.512 0.088
0.5 1.421 1.337 8.668 0.632 0.629 0.630 0.445 0.470 0.072
0.75 0.941 0.982 6.449 0.393 0.396 0.395 0.418 0.404 0.061

4 0.9 0.560 0.570 3.465 0.212 0.214 0.213 0.378 0.375 0.061
0.95 0.363 0.372 1.918 0.123 0.129 0.130 0.357 0.346 0.068
0.99 0.115 0.130 0.428 0.036 0.037 0.036 0.317 0.285 0.085

0.9999 0.002 0.002 0.005 0.0006 0.0007 0.0007 0.272 0.240 0.122
0 0.157 0.176 0.159 0.178 0.178 0.178 1.135 1.011 1.121

0.25 0.157 0.184 0.148 0.142 0.142 0.142 0.905 0.772 0.960
0.5 0.154 0.181 0.139 0.106 0.106 0.106 0.689 0.587 0.766
0.75 0.136 0.154 0.117 0.067 0.067 0.067 0.492 0.436 0.571

20 0.9 0.102 0.109 0.090 0.037 0.037 0.037 0.369 0.346 0.417
0.95 0.073 0.077 0.070 0.024 0.024 0.024 0.328 0.309 0.341
0.99 0.033 0.034 0.032 0.007 0.007 0.007 0.230 0.223 0.230

0.9999 0.001 0.001 0.001 0.0002 0.0002 0.0002 0.116 0.114 0.115

TABLE V. Simulated values of MADLS(ρ), MADHUR(ρ) and RATIO(ρ) for Cauchy distribution.

From TABLE V, one can notice that, when γ = 1, the error of simulation of RATIO(ρ) is high. This is due to high
instability of ρ̂LS in small samples when the innovations are distributed according to Cauchy distribution. However,
if γ > 1, the variability of MADLS(ρ) becomes smaller. For example, if γ = 1.25, n=4 and ρ = 0, the MAD of ρ̂LS
varies between 0.7595 and 0.8078. Finally, one can say that, the closer γ to 1, the better is ρ̂HUR and the closer γ to
2, the better is ρ̂LS .

3.5. Gaussian Model with Tukey Contamination

The behavior of RATIO(ρ) under ϵ-contamination of the Tukey type for the distribution of innovations needs a
comment. Some numerical results of simulations are exhibited in TABLE VI.

Journal home page: www.jafristat.net



H. Fellag, Journal Afrika Statistika, Vol. 5, N◦8, 2010, page 252–259.
Some aspects of stability in time series small sample case 258

ρ = 0.0 ρ = 0.95
σ σ

ϵ 1 2 4 8 16 32 1 2 4 8 16 32

0.001 1.82 1.82 1.82 1.82 1.81 1.80 1.32 1.32 1.32 1.32 1.31 1.30
0.005 1.82 1.82 1.82 1.80 1.76 1.69 1.32 1.32 1.31 1.30 1.27 1.23
0.01 1.82 1.82 1.81 1.79 1.71 1.65 1.32 1.32 1.31 1.29 1.24 1.15
0.05 1.82 1.82 1.80 1.71 1.47 1.14 1.32 1.31 1.27 1.17 1.02 0.81
0.1 1.82 1.82 1.78 1.64 1.34 1.05 1.32 1.30 1.22 1.09 0.87 0.64
0.2 1.82 1.83 1.78 1.62 1.34 1.06 1.32 1.28 1.17 0.97 0.71 0.51
0.3 1.82 1.83 1.82 1.70 1.49 1.27 1.32 1.29 1.15 0.95 0.71 0.51
0.4 1.82 1.83 1.83 1.81 1.67 1.41 1.32 1.28 1.14 0.96 0.74 0.56
0.5 1.82 1.84 1.87 1.92 1.87 1.74 1.32 1.29 1.17 0.99 0.81 0.64

TABLE VI. Simulated values of ρ for n=4 and ρ = 0, 0.95.

When ϵ is fixed, greater σ amounts to heavier tails of the mixture and heavy tails do influence the ratio RATIO(ρ)
as it has been shown in 2.3. Hence, the ratio is decreasing monotonically in each row of TABLE VI. However, the
ratio does not change monotonically with ϵ ∈ (0, 0.5) for any fixed σ. One can suspect that the main reason for the
nonmonotonical behavior of the ratio is the kurtosis of the mixture but that explains the phenomenon only partially.

4. Conclusion

The LSE estimator is very popular and widely used in applications (regression, prediction, unit roots). It is very
sensitive to contamination. It can be seen that, despite the median-unbiasedness of ρ̂HUR, the LSE estimator performs
better One can hope that LSE modified according to the Andrew’s suggestion in such a way that it becomes a median-
unbiased estimator would perform better. One can say that an optimal and stable estimator in small sample case is
to be constructed.
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