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Abstract. We propose a new test of independence of random vectors. We first show that
the null hypothesis implies the nullity of the trace of an operator involving inverse regressions
covariance operators. Then, using an approach based on slicing, we define a test statistic for
which an asymptotic distribution under null hypothesis is derived. Simulations that permit
to evaluate the performance of the proposed test with comparisons with existing methods
are given.

Résumé. Nous proposons un nouveau test d’indépendance de vecteurs aléatoires. Nous
exprimons tout d’abord I'hypothese d’indépendance au moyen de la nullité de la trace d’'un
opérateur dfini a partir des opérateurs de covaraiance de régressions inverses appropriées.
Utilisant ensuite une approche par tranchage, nous définissons une statistique de test pour
laquelle nous obtenons une loi limite sous ’hypothese nulle d’indépendance. Cela permet de
définir la méthode proposée qui est ensuite évaluée et comparée & des méthodes existantes
par des simulations.
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1. Introduction

Testing for independence of two random vectors X = (X7, ...,Xp)/ and Y = (Y1, ...,Yq)'7
that are respectively p-dimensional and ¢-dimensional, is a classical problem in statistics.
When Z = (X',Y’)" has a (p + ¢)-variate normal distribution with partitioned covariance
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matrix
Cn Cr2
C =
(021 Ca
the hypothesis of independence may be formulated as Ci2 = 0. In this context,

several tests have been introduced, including the likelihood ratio test and the Pil-
lai’s test (see, e.g., Anderson, (1984), Bilodeau and Brenner, (1999)). For the more gen-
eral case where Z has an elliptic distribution three methods have been proposed in
Allaire and Lepage, (1990) and, more recently, an approach based on spatial signs have been
introduced in Taskinen, et al. (2003). It is, of course, better to consider distribution-free
methods. In this direction, Cléroux, (1995) introduced a method based on ranks whereas
nonparametric approaches have been proposed, for instance, in Bakirov, et al. (2006),
Gieser and Randles, (1997), Meintanis and Iliopoulos, (2008), Sinha and Wieand, (1977)
and Székely et al. (2007). To the best of our knowledge, there does not exists a method
that is based on a well known result in probability theory that gives connections between
the independence property and conditional expectations. Such a method may be of a great
interest because it is necessarily a distribution-free method since the aforementioned result
holds whatever is the distribution of (X,Y’). In this paper, we tackle an approach based
on this result for defining an independence test between random vectors. Our proposal is
described in Section 2. We first remark that the independence property implies the nullity
of the trace of an operator involving covariance operators of expectations of X conditional
to the coordinates of Y. Then, we adopt ideas used in sliced inverse regression for approxi-
mating these covariance operators and, therefore, to introduce the test statistic that will be
used. The limiting distribution of this statistic under null hypothesis is then derived, and the
related test procedure is described. Section 3 is devoted to the presentation of simulations
that permit to evaluate the performances of the proposed approach and to compare it with
existing methods. All the proofs of lemmas and the theorem are given in Section 4.

2. The proposed method

This section is devoted to the presentation of our proposal for testing for independence be-
tween two random vectors. We first introduce notations and remark that the null hypothesis
implies the nullity of the trace of an operator involving inverse regressions covariance opera-
tors. Then, using an approach based on slicing, as in Li, (1991), we define a test statistic for
which an asymptotic distribution under null hypothesis is derived. That permits to specify
the proposed testing procedure.

2.1. Formulation of the problem

Denoting by E the mathematical expectation, we assume that E (|| X|[|*) < +oo, where || - ||
denotes the Euclidean norm of R? induced by the usual inner product < -,- > of RP. We are
interested in testing for the hypothesis

HO:XJ.I_Y7

where 1L denotes stochastic independence, against the alternative hypothesis H; stating
that X and Y are not independent. If H, is true, then X 1 Y; for any j € {1,---,¢q}. We
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will express this latter property by means of the covariance operators A; of the conditional
expectations E(X|Y}), given by

Aj = E((E(X]Y)) — p) @ (B(X[Y) — ),

where ;1 = E(X), and ® denotes the tensor product defined as follows: for any pair (z,y)
of elements of an Euclidean space with inner product < -,- >, z ® y is the linear map
h < x,h > y. Using the equality tr(z ® z) = ||z||* (see Dauxois, (1994)), we obtain

tr (A;) = E (tr (B(X]Y;) - ) © (E(X]Y;) - 0) = E ([E(X]Y;) - ul*)

Then X L Y; implies that E (X|Y;) = p almost surely, what is equivalent to having ¢r(A;) =
q

0. Therefore, Ho implies that tr(A) = 0, where A = >~ A;. Consequently, testing for
j=1

Ho against H; can be done by taking a consistent estimator of tr(A) as test statistic.

Following an approach used in Li, (1991) for estimating an inverse regression covariance

operator, we will in fact use a consistent estimator of ¢r(A), where A is an approximation

of A obtained by slicing the ranges of the Yj’s. For j € {1,...,q}, let (I}(LJ))lghgrj be a

partition of Y;(€2) such that each probability p;, := P(Y; € I,(f)) is non null. Putting

pin = E(XY; € I(])) and Tjh = Hjh — 1, the aforementioned operator A is given by

A= Z A WhereA = leﬂﬂ]h(@ﬂh

Remark 1. In all of the paper we use tensor notations and operators. However, in a finite-
dimensional framework the related transcriptions into matrix notations, that are useful for
pratical implementation, are easy to obtain from Dauxois, (1994). More precisely, the matrix
related to the operator x ® y is given by yx’, where x = (21, ..., xp)/ (resp. y = (Y1, - yq)/)
is the matricial representation of the vector x (resp. y) relative to the canonical basis of R?
(resp. RY).

2.2. The test statistic

Letting {(X(i), Y(i)) }1<i<n
and any h € {1,...,7;}:

be an i.i.d sample of (X,Y’), we consider for any j € {1,...,q}

3
)

—
3

N

s ~n _ Tjh X _ 1+ (1)
Mjh = Z 1{1/j“>el,<§)}’ Pjn = = Jh - nJh Z {Ymelm} , X = n ZX )
(1)

where Yj(i) is the j-th coordinate of Y (¥, and 1,4 denotes the indicator function of A. Then,
we estimate A; by the random operator

Aj :Zﬁ?h (th_y >® (th_y )7
h=1
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~ q
and, putting A" = > A7, we take as test statistic the random variable
i=1

S = ¢ (K") .

It is a strongly consistent estimator of ¢tr(A). Indeed, the strong law of large numbers ensures
the almost sure convergence of ﬁ?h (resp. X" resp. X;Lh) to p;n (resp. p ; resp. pjp) as
n — oo and, therefore, that of 77} = X;Lh - X" to Tjn. As the bilinear map (z,y) €
RP X R? — x @y € L(RP) is continuous, we then deduce the almost sure convergence of /AX;‘

to /~\j as n — 400, which implies that of S to tr(K).

Now, we will give the asymptotic distribution of S under Ho. For j € {1, -+ ,q}, let us
introduce the diagonal matrix A; = diag (pjhpjg, . jrj) and put I'; = A;l oK I, where
®% denotes the Kronecker product and I, is the p x p identity matrix. Then, we consider
the matrices

s 0 0
0 I 0
= : (2)
0 0 Ty
and
01111 01112 .-+ Ollgr,
01211 01212 .-+ Ol2gr,
T = : ) (3)
Uqrqll Uqrq12 Uqrqqrq
where
oirje = VI 4 pipje (V — ViR — VW)) ;
with
V) = E (X = i) @ (X — i) Vs € In)
VD = E((vieny (X = pir) © (Liyseny (X = p0)))
and

V=E((X - 1) ® (X —p).
Then, we have:
Theorem 1. Under Hy, nS™ converges in distribution, as n — +oo, to @ = U'TU where

U is a centered random vector having a normal distribution in RP? with covariance operator
equal to 2.
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2.3. The test procedure

For a given significance level « €]0, 1[, the hypothesis Hg will be rejected if Fg (ng(”)) >
1 — a, where Fg denotes the cumulative distribution function of Q. Since Q is a quadratic
form of a normally distributed random vector, Fg can be computed or approximated by using
formulas given in Mathai and Provost, (1992) and which involve the eigenvalues of DEI DS
In practice ¥ and I' are unknown. So, they are to be replaced by consistent estimators. For
estimating I', we consider

0 0

N 0 Ip 0

™ = 2 : (4)
0 0 rm

~ ~ \ 1 ~
where I'} = (A;‘) @K I,, with A% = diag (ﬁ?pﬁ?za ...,;B?Tj). The estimation of ¥ is
achieved by considering the pg x pg matrix f]n given by

~n ~n ~n
01111 %1112 -+ O11gr,
=N =N =N

~ 01211 O1212 - O12¢r,

Zn == 9 (5)
-~n -~n -~n
Uqrqll O'qr412 Uqrqqrq

where
Triege = V™9 + 07 (‘771 — Vi - ‘Aﬂgﬂ))
with

o 1 —
i) _ 1 o _x" o _x"
ViR = = ; (1{Yi(t)€1k} (x Xk)> ® (1{40@[} (x Xﬂ)>

n

. 1 & o o
o = Ly @ _ %" @ _ %"
‘/n - Njk P 1{yj(i)elk} (X XJk) ® (X XJk)

~ 1 <& N L
_ 1 (@) _ wn @ _ 5"
Vn—n_(X X)@(X X).

i=1
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Remark 2. Practical implementation can be done by using Remark 1 that shows that, by
identifying each vector with its matrix relative to canonical basis, we can write :

T
Ay = > 7 (7n) (6)
h=1
A~ 1 n . . l
ki) — 1 o _x" o _x"
=32 (i (0T (100 (- F) @
~/- 1 <& ) . . . /
Go = L O _x") (x9 X"
v = ;1{1/;”%} (x0-X5) (X9 -X3) - (8)

s 2 (50X (x0 X )

Remark 3. The proposed method is achieved from the following algorithm:

1. Compute X = and for j=1,---,q and h = 1, ...,Tj compute ﬁjh,Y?h and ﬁ;‘h from (1).
Then compute 77}, = X, — X" and JAX;L from (6) .

_

J
and T'™ by using (4) .

3. Compute V,, from (9) and for ¢,j = 1,---,¢, k = 1,...,7; and ¢ = 1,...,r;, compute
V%0 and V9% from (7) and (8) respectively.

4. Fori,j=1,---,q,k=1,...,m,and £ = 1,...,7;, compute

N N PN N1
2. Compute S™ = ¢r ( A?) and, for j = 1,...,q, compute A}, I'} = (A;l) K I,
1

Oikje = V(kI0 PirPje (‘771 — V0 — ‘A/rfﬂ)) -

5. Compute the matrix (™) given in (5).
~ N1/2 o . \1/2
6. Compute the eigenvalues Ay, ..., Ay, of (Z(”)) r (Z(")) . Then consider the func-
tion Fo (t) := P (x2 < t/c) where

qrq 9 qrq 2

RN IRV
c=NT J oondy=2N—" 7

qrq qrq

J=1 J=1

7. Compute p. =1 —Fqg (né\(")) . If p. > « then accept Ho; otherwise reject it.

3. Simulation results

In order to check the efficacy of the proposed method and to compare it with that of existing
methods, a simulation study is performed here. We computed empirical sizes and empirical
powers over 1000 replications, with nominal significance level a = 0.05, 0.10, from our
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method, denoted here as REG, and three known methods. These methods are the likelihood
ratio test (LRT), the method based on ranks given in Cléroux, (1995) and denoted here as
CLL, and the method introduced in Meintanis and Iliopoulos, (2008) denoted by MI. For
sample sizes n = 50,100, 200, 300, 400, 500, we generated 1000 independent replicates of a
pair Z = (X', Y") of random vectors by using the following models:

Model 1: Z has a centered normal distribution in R'® with covariance matrix C' given by

I ~is
C =
( s s
where I5 denotes the 5 x 5 identity matrix and « is a real belonging to[0, 1].

Model 2: Z is a two-dimensional random vector with coordinates defined by

3 3
X = \/%(aXl—i—bYl) and Y = \/Q—O(le—i—aYl),

where X; and Y; are independent random variables having a student distribution with 5
degrees of freedom, and

e =TT+ /I3, b= /Ty -7,

where 7 belongs to [0, 1].

For both models, H( holds if and only if v = 0. Table 1 gives outputs for empirical sizes from
our method. Satisfactory results are provided, except for low sample size (n = 50). The most
accurate results are obtained for n > 200. The obtained results for empirical powers, for ~
from 0 up to 0.4, are given in Figures 1 to 3 for Model 1, and in Figures 4 to 6 for Model
2. They show that, for moderate values of v and sufficiently large values of n, our method
outperforms all the considered existing methods except LRT that gives the best results in
all the tackled situations. However, for n = 100 our method is also outperformed by CLL,
and by MI when + is small. For large values of v all the methods give the same empirical
power equal to 1.

Model 1 Model 2
n a =0.05 a=0.10 a =0.05 a=0.10
50 0.018 0.052 0.024 0.06
100 0.027 0.078 0.038 0.084
200 0.047 0.089 0.032 0.093
300 0.047 0.104 0.047 0.091
400 0.038 0.083 0.042 0.094
500 0.044 0.097 0.046 0.095

Table 1. Empirical sizes from REG, with sample size n and nominal significance level a.
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Fig 1: n= 100, a=0.05

1.0
|

Empirical power
0.6

0.4
|

0.2

0.0 0.1 0.2 0.3 0.4

Fig. 1. Empirical power versus « for Model 1, n = 100 and « = 0.05.

Fig 2: n= 300, a=0.05

1.0

—— REG
————— LRT
CLL

Empirical power
0.6
I

0.4

0.2
|

0.0 0.1 0.2 0.3 0.4

Fig. 2. Empirical power versus v for Model 1, n = 300 and a = 0.05.

4. Proofs
4.1. Lemmas

Putting £ = RP and F' = R™ x R™ x ... x R, we introduce the operators
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Fig 3: n=500, a=0.05

0.8
|

0.6

—— REG
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cLL
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0.0 0.1 0.2 0.3 0.4
Yy
Fig. 3. Empirical power versus « for Model 1, n = 500 and « = 0.05.
Fig 4: n=100, a=0.05
S
-
«© |
o
g © |
= o
g
g
5
£ T |
w o —— REG
————— LRT
CLL
~ MI
8
<o
o
T T T T T
0.0 0.1 0.2 0.3 0.4




J. G. Aghoukeng Jiofack and G. M. Nkiet, Journal Afrika Statistika, Vol. 7, 2012, pages 425—440.
Testing independence of random vectors by inverse regressions.

434

Fig 5: n= 300, a=0.05

1.0
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————— LRT
cLL

0.2

0.0
|

0.0 0.1 0.2 0.3 0.4
Yy
Fig. 5. Empirical power versus « for Model 2, n = 300 and « = 0.05.
Fig 6: n= 500, a=0.05
= _|
i
< _|
o
5]
z 5
(=1
g
.3 _—
= -
L = — REG
--- LRT
CLL
g JE 2 2 2 (PP M
<= _]
o
T T T
0.2 0.3 0.4
v

Fig. 6. Empirical power versus « for Model 2, n = 500 and « = 0.05.

Furthermore, we consider the random vectors

W= 1{%€I£;>}f,§j’,W}“ = 1{39<i>6157>}f;§j)
h=1 h=1
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where { fl(j ), e ,(,J] )} is the canonical basis of R"7, and the random vectors valued into F x F'
given by:
X —p X0 —x" X
W, , @ 147
Z = . ’ Z(’L) = . ) ZO = .
W, Wq(i) W,

Then, putting
L= ,
T = (ZOS;ZO) Vz=E(Z02),V{" = =3 2020,
=1

and considering the linear map ¢ from £ (E x F) x (E x F) to L (E x F) defined by:

@(S8) =, (8) — T2 (S) @ g (1) — p1 @ Tl (T2 (S)) — T (T2 (S)) @
— 1o (p1) @ (Hz (S)) + o (2 (S)) @ o (p1) + o (p1) @ T (T12 (5))

where y; = E(Zp), and denoting by ® the tensor product between elements of £(E x F)
(associated with the inner product of this space defined by: < A, B >= tr(AB*)), we have:

Lemma 1. As n — +oo, H, = \/n (Vz(n) — VZ> converges in distribution to a random

variable H having a centered normal distribution in L(E x F) with covariance operator
equal to &/ [(gp(T —E(T)))® (o(T — IE(T)))} .

Proof.
Clearly, Z = Zy — Hy(p1) and Z0) = Z(gi) — HO(ZS), where

X (@)
70 Wi and Zp = = i z"
0o - 0 — n P 0 -
R
Therefore,
H, = vn % i:zé“ ® 2 —E(Zo ® Zo) — (7;; - m) ® I, (ZQ)
i=1

— 1 ® I (73 — ,u1) — 1l (7{} — ,u1) ®7§ — Ty (1) ® (73 — /“)
+11g (78 - Ml) ® I (73) + o (p1) ® I (73 - M1)] .

Considering the £ (E x F) x (E x F') -valued random variables
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, (@) o ()
70 (Zo Z®¢)ZO ) Ci=1,2,...n,
0

and putting K, = v/n <71L ST — E(T)), we can write
i=1

H, =Ty (K) =T (Ky) © Mo (Z5) = © T (I3 (K.,))
(

) =
— o (12 (K)) ® Zy — Mo (1) @ (2 (Ky))
+ o (112 (K,)) © Tho (Zg ) + o (1) @ o (112 (K,,))
= ¢n (Kn) (10)
where ¢y, is the random operator from £ (E x F) x (E x F') to L (E x F) defined as:

en(S) =T (8) ~ T2 (8) @ Ty (Zg ) — m @ o (T2 (8)) — o (TT2 () & Zg
— o () © (I3 () + o (I () @ o (Zg ) + o (1) @ o (ILx (5)
= 9(5778)’ (11)

and ¢ is the continuous map from (L(E X F) x (E X F)) x (E x F) to L(E x F) defined
as:

9(5,C) =11, (5) = 2 (S) @ Iy (C) — p1 ® I (2 (S)) — Ho (2 (5)) @ C
— 1o (1) ® (T2 (5)) + Mo (112 (S)) @ o (C) + o (1) @ o (2 (5)) -

The central limit theorem in £ (E x F') x (E x F') ensures that K,, converges in distribution,
as n — +00, to a random operator K having a centered normal distribution in £ (E x F') x
(E x F) with covariance operator I'y = E((T — E(T)) ® (T — E(T))). Furthermore, from the
strong law of large numbers, we have the almost sure convergence, in F x F, of Zg to uq
as n — +oo. We deduce (see Billingsley, (1968)) that (K,,Z,) converges in distribution
to (K, 1), as n — +oo. From the continuity of g, it follows that g(Kn,fg) converges in
distribution, as n — +o00, to g(K, p1) = ¢(K). Then, from (10) and (11), H, converges
in distribution to H = ¢(K). Since ¢ is linear, H has a centered normal distribution in
L (E x F) with covariance operator I's = E((¢ (T —E(T))) ® (¢ (T —E(T)))). O

The following lemma gives the limiting distribution of A" under Ho. Any operator S of
L(E x F) can be partitioned in the form

Soo 501 Soq

SlO Sll Slq
S = : : : :

Seo Syt o Se

where
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Soo € L(RP), So; € L(R™,RP), Sj0 € L(RP,R"), Sie € LIR™,R™)
with 1 < j,k,¢ < q. In this context, let us consider the operators

My : S € L(Ex F)— Sy; € L (R™,RP)
and the map

W:AeL(ExF) f:f:pjh (o (4) 1) @ (o (4) 1) € £(B).

Then, we have:

Lemma 2. Under Hy, nA" converges in distribution to ¢ (H) as n — +00.

Proof.

Since we have 7,5, = 0 under Hy, we can write

Z Z p]h pjh - Pthjh) ®@+/n (ﬁ?ﬁfh - pthjh) .

j=1h=1

Moreover, from

E(W;® (X —p) = E ((i l{nelij)}f’(lj)> ®X — <XJ: 1{3/7,61}<7j>}f,§j)> ®M>
h=1 ' h=1 /

T
=y @ (inmin)
h=1

and n~ W(Z) ® ( X )) Z (j) (f)?h?;‘h), we easily obtain the equality

Io; (H. ) Z_: '® (\/ﬁ (p?hT;lh - pthjh)). Thus:
q

- Z i (ﬁ?h)_l (HOJ' (Hn) i(lj)) ® (HOj (Hn) f}(zj)) = ¢n(Hn)v

j=1h=1
where 1, is the random map from L(E X F) to L(E) defined as:

Un(S) = zq:Z @) (Hoj (5) f;gj)) ® (HOJ‘ (5) f}sj)) '

J Tj

D= 323 (Moy () £57) @ (5™ =5l oy () 1) = 323 (s )

j=1h=1 j=1h=1

Journal home page: www.jafristat.net



J. G. Aghoukeng Jiofack and G. M. Nkiet, Journal Afrika Statistika, Vol. 7, 2012, pages 425—440.
Testing independence of random vectors by inverse regressions. 438

where

s (Aa) € L (B F) xRy = (T (4) £7) © (@7 = 23)00; ()17

Since ﬁj" converges in probability to p; as n — +oo , we deduce from Lemma 1 and the

continuity of g, that g;; (Hn,ﬁ?h) converges in distribution to g;, (H, pjn), as n — +00.

Clearly, g;n (H, pjn) = 0; then, the preceding convergence property is a convergence in
probability. Consequently, A, converges in probability to 0 as n — +oco and, therefore,
n(Hy) and (H,,) have the same limiting distribution. As ¢ is continuous and H,, converges
in distribution to H, nA™ converges in distribution to Y(H). O

4.2. Proof of Theorem 1

From Lemma 2, we deduce that under Hg, ntr (7\”) converges in distribution, as n — +o0,

to Q@ =tr (¢ (H)). Now, it remains to prove that Q has the required expression. We have

q Tj ) )
() = 303 pyter (Mg (1) 1) @ (o (1) 7))
j=1h=1
= >3 vt (1o (#) £, (1, () £57))
Jj=1h=1
=> > (HOJ‘ (H) f(Lj))/ (pfhlfp) (HOj (H) ;(Lj))
j=1h=1
q
=Y _Ujru;,
j=1
where
To; (H) 17
) (5)
Z/{j HU] (I?)fz :<I>j(H)
To; (H) 1)
and
P Iy 0 0
0 i 0
Fj: p32: p | :Aj_l ®K[p
0 0 pj:é I,

with A; = diag (pjhpjg, ...,pjrj). Putting
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U o, (H)
Us Dy (H)

u=| " |=| ", |=owm) (12)
Uy P, (H)

and taking I" as defined in (2), we clearly have U'TU = Q. Since P is linear and H is centered
and normally distributed with covariance operator equal to that of o(T'), we deduce from
(12) that U is also centered and normally distributed; its covariance operator ¥ equals that
of ®(p(T)), that is

E=E[(2(p(T)) @ (2(p(T)))] — E(@(p(T)) @ E(2(¢(T)), (13)
where
Q(p(T)) = ®(Zo @ Zy) — @ (Zo @ g (1)) — P (11 @ Tl (Z0))
—® (Ilp (Zo) @ pu1) — @ (Ilo (p11) @ Zo)
+® (Ilo (Zo) @ o (p1)) + @ (o (1) ® 1o (Z0)) -
Since

Hoj (Zo® Zo) i = (W3 & X) i) =14, o0 X

Mo; (Zo @ Tho (1)) £ = (W@ p) £ = 1{3/3_6[’(.7‘)}%

Mo (n® Tl (Z0)) £ = (E(W)) @ X) £ = pnX;
Io; (Iy (Zo) ® p) = Io; (Ig (1) ® Zy) = 0;
Ho; (Tlp (Zo) ® Ho (1)) = Tlo; (o () @ Iy (Zo)) = 0;

we obtain ®(p(T)) = (uu, ey Ulpy s oy Ugl ...,uqrq)/7 where
Uin =1y ero) (X =) —pjnX.

Thus, we deduce from (13) that ¥ has the form given in (3) with o = E (uir ® uje) —
E (uir) ® E (uj¢), where

E (uir, ® uje) = E(Livien,y (X — pin) ® Lvsery (X — pje)) + piepjeE (X ® X)
—pjepirE (X — pin) @ (X — pir) [Yi € I)
—pjepikE (X — pje) ® (X — pje) |Yj € Lr)
—piE (Lvieny (X = pin) © pan) — pisE (1150 © Ly, er,y (X = pje))

and

E (uix) =E (1{3,1_61,(;')} (X —p) — pikX> = Dikfbik — Pikfh — Piklt = —Dik[L-
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Since, under Hy, we have p;; = u, it follows that

E (Livieny (X — pin) @ pir) = (E (LyyvieryX) —E (Lgvier g ptik)) © ik
= (pzkﬂzk — Dikltik) @ ik

and, similarly, E (uje ® (l{y ery (X — fje))) = 0. Since we obviously have the equal-

ity E (u;) ® E (ujr) = pirpje 1t ® p, we deduce the required equality: o0 = V(kil) 4
pikpje (V — VIR -V 0@0), 0
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