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Abstract. We propose a new test of independence of random vectors. We first show that
the null hypothesis implies the nullity of the trace of an operator involving inverse regressions
covariance operators. Then, using an approach based on slicing, we define a test statistic for
which an asymptotic distribution under null hypothesis is derived. Simulations that permit
to evaluate the performance of the proposed test with comparisons with existing methods
are given.

Résumé. Nous proposons un nouveau test d’indépendance de vecteurs aléatoires. Nous
exprimons tout d’abord l’hypothèse d’indépendance au moyen de la nullité de la trace d’un
opérateur dfini à partir des opérateurs de covaraiance de régressions inverses appropriées.
Utilisant ensuite une approche par tranchage, nous définissons une statistique de test pour
laquelle nous obtenons une loi limite sous l’hypothèse nulle d’indépendance. Cela permet de
définir la méthode proposée qui est ensuite évaluée et comparée à des méthodes existantes
par des simulations.
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1. Introduction

Testing for independence of two random vectors X = (X1, ..., Xp)
′

and Y = (Y1, ..., Yq)
′
,

that are respectively p-dimensional and q-dimensional, is a classical problem in statistics.
When Z = (X ′, Y ′)′ has a (p + q)-variate normal distribution with partitioned covariance
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matrix

C =

(
C11 C12

C21 C22

)
the hypothesis of independence may be formulated as C12 = 0. In this context,
several tests have been introduced, including the likelihood ratio test and the Pil-
lai’s test (see, e.g., Anderson, (1984), Bilodeau and Brenner, (1999)). For the more gen-
eral case where Z has an elliptic distribution three methods have been proposed in
Allaire and Lepage, (1990) and, more recently, an approach based on spatial signs have been
introduced in Taskinen, et al. (2003). It is, of course, better to consider distribution-free
methods. In this direction, Cléroux, (1995) introduced a method based on ranks whereas
nonparametric approaches have been proposed, for instance, in Bakirov, et al. (2006),
Gieser and Randles, (1997), Meintanis and Iliopoulos, (2008), Sinha and Wieand, (1977)
and Székely et al. (2007). To the best of our knowledge, there does not exists a method
that is based on a well known result in probability theory that gives connections between
the independence property and conditional expectations. Such a method may be of a great
interest because it is necessarily a distribution-free method since the aforementioned result
holds whatever is the distribution of (X,Y ). In this paper, we tackle an approach based
on this result for defining an independence test between random vectors. Our proposal is
described in Section 2. We first remark that the independence property implies the nullity
of the trace of an operator involving covariance operators of expectations of X conditional
to the coordinates of Y . Then, we adopt ideas used in sliced inverse regression for approxi-
mating these covariance operators and, therefore, to introduce the test statistic that will be
used. The limiting distribution of this statistic under null hypothesis is then derived, and the
related test procedure is described. Section 3 is devoted to the presentation of simulations
that permit to evaluate the performances of the proposed approach and to compare it with
existing methods. All the proofs of lemmas and the theorem are given in Section 4.

2. The proposed method

This section is devoted to the presentation of our proposal for testing for independence be-
tween two random vectors. We first introduce notations and remark that the null hypothesis
implies the nullity of the trace of an operator involving inverse regressions covariance opera-
tors. Then, using an approach based on slicing, as in Li, (1991), we define a test statistic for
which an asymptotic distribution under null hypothesis is derived. That permits to specify
the proposed testing procedure.

2.1. Formulation of the problem

Denoting by E the mathematical expectation, we assume that E
(
‖X‖4

)
< +∞, where ‖ · ‖

denotes the Euclidean norm of Rp induced by the usual inner product < ·, · > of Rp. We are
interested in testing for the hypothesis

H0 : X ⊥⊥ Y,

where ⊥⊥ denotes stochastic independence, against the alternative hypothesis H1 stating
that X and Y are not independent. If H0 is true, then X ⊥⊥ Yj for any j ∈ {1, · · · , q}. We
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will express this latter property by means of the covariance operators Λj of the conditional
expectations E(X|Yj), given by

Λj = E ((E(X|Yj)− µ)⊗ (E(X|Yj)− µ)) ,

where µ = E (X), and ⊗ denotes the tensor product defined as follows: for any pair (x, y)
of elements of an Euclidean space with inner product < ·, · >, x ⊗ y is the linear map
h 7→< x, h > y. Using the equality tr(x⊗ x) = ‖x‖2 (see Dauxois, (1994)), we obtain

tr (Λj) = E (tr ((E(X|Yj)− µ)⊗ (E(X|Yj)− µ))) = E
(
‖E(X|Yj)− µ‖2

)
.

Then X ⊥⊥ Yj implies that E (X|Yj) = µ almost surely, what is equivalent to having tr(Λj) =

0. Therefore, H0 implies that tr (Λ) = 0, where Λ =
q∑
j=1

Λj . Consequently, testing for

H0 against H1 can be done by taking a consistent estimator of tr(Λ) as test statistic.
Following an approach used in Li, (1991) for estimating an inverse regression covariance

operator, we will in fact use a consistent estimator of tr(Λ̃), where Λ̃ is an approximation

of Λ obtained by slicing the ranges of the Yj ’s. For j ∈ {1, ..., q}, let (I
(j)
h )1≤h≤rj be a

partition of Yj(Ω) such that each probability pjh := P (Yj ∈ I
(j)
h ) is non null. Putting

µjh = E(X|Yj ∈ I
(j)
h ) and τjh = µjh − µ, the aforementioned operator Λ̃ is given by

Λ̃ =
∑q
j=1 Λ̃j , where Λ̃j =

rj∑
h=1

pjhτjh ⊗ τjh.

Remark 1. In all of the paper we use tensor notations and operators. However, in a finite-
dimensional framework the related transcriptions into matrix notations, that are useful for
pratical implementation, are easy to obtain from Dauxois, (1994). More precisely, the matrix
related to the operator x⊗ y is given by yx′, where x = (x1, ..., xp)

′
(resp. y = (y1, ..., yq)

′
)

is the matricial representation of the vector x (resp. y) relative to the canonical basis of Rp
(resp. Rq).

2.2. The test statistic

Letting
{(
X(i), Y (i)

)}
1≤i≤n be an i.i.d sample of (X,Y ), we consider for any j ∈ {1, ..., q}

and any h ∈ {1, ..., rj}:

n̂jh =

n∑
i=1

1{
Y

(i)
j ∈I

(j)
h

}, p̂njh =
n̂jh
n
, X

n

jh =
1

n̂jh

n∑
i=1

1
{Y (i)

j
∈I

(j)
h }

X(i), X
n

=
1

n

n∑
i=1

X(i),

(1)

where Y
(i)
j is the j-th coordinate of Y (i), and 1A denotes the indicator function of A. Then,

we estimate Λj by the random operator

Λ̂nj =

rj∑
h=1

p̂njh

(
X
n

jh −X
n
)
⊗
(
X
n

jh −X
n
)
,
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and, putting Λ̂n =
q∑
j=1

Λ̂nj , we take as test statistic the random variable

Ŝ(n) = tr
(

Λ̂n
)
.

It is a strongly consistent estimator of tr(Λ̃). Indeed, the strong law of large numbers ensures
the almost sure convergence of p̂njh (resp. X

n
; resp. X

n

jh) to pjh (resp. µ ; resp. µjh) as

n → +∞ and, therefore, that of τ̂njh = X
n

jh − X
n

to τjh. As the bilinear map (x, y) ∈
Rp ×Rp 7→ x⊗ y ∈ L(Rp) is continuous, we then deduce the almost sure convergence of Λ̂nj
to Λ̃j as n→ +∞, which implies that of Ŝ(n) to tr(Λ̃).

Now, we will give the asymptotic distribution of Ŝ(n) under H0. For j ∈ {1, · · · , q}, let us
introduce the diagonal matrix ∆j = diag

(
pj1, pj2, ..., pjrj

)
and put Γj = ∆−1j ⊗K Ip, where

⊗K denotes the Kronecker product and Ip is the p × p identity matrix. Then, we consider
the matrices

Γ =


Γ1 0 ... 0
0 Γ2 ... 0
...

...
...

...
0 0 ... Γq

 (2)

and

Σ =


σ1111 σ1112 ... σ11qrq
σ1211 σ1212 ... σ12qrq

...
... ...

...
σqrq11 σqrq12 ... σqrqqrq

 , (3)

where

σikj` = V (ikj`) + pikpj`

(
V − V (ik) − V (j`)

)
,

with

V (ik) = E ((X − µik)⊗ (X − µik) |Yi ∈ Ik) ,

V (ikj`) = E
((

1{Yi∈Ik} (X − µik)
)
⊗
(
1{Yj∈I`} (X − µj`)

))
,

and

V = E ((X − µ)⊗ (X − µ)) .

Then, we have:

Theorem 1. Under H0, nŜ
(n) converges in distribution, as n→ +∞, to Q = U ′ΓU where

U is a centered random vector having a normal distribution in Rpq with covariance operator
equal to Σ.
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2.3. The test procedure

For a given significance level α ∈]0, 1[, the hypothesis H0 will be rejected if FQ
(
nŜ(n)

)
>

1− α, where FQ denotes the cumulative distribution function of Q. Since Q is a quadratic
form of a normally distributed random vector, FQ can be computed or approximated by using
formulas given in Mathai and Provost, (1992) and which involve the eigenvalues of Σ

1
2 ΓΣ

1
2 .

In practice Σ and Γ are unknown. So, they are to be replaced by consistent estimators. For
estimating Γ, we consider

Γ̂(n) =


Γ̂n1 0 .... 0

0 Γ̂n2 .... 0
...

...
...

...

0 0 ... Γ̂nq

 (4)

where Γ̂nj =
(

∆̂n
j

)−1
⊗K Ip, with ∆̂n

j = diag
(
p̂nj1, p̂

n
j2, ..., p̂

n
jrj

)
. The estimation of Σ is

achieved by considering the pq × pq matrix Σ̂n given by

Σ̂n =


σ̂n1111 σ̂n1112 ... σ̂n11qrq
σ̂n1211 σ̂n1212 ... σ̂n12qrq

...
...

...
...

σ̂nqrq11 σ̂nqrq12 ... σ̂nqrqqrq

 , (5)

where

σ̂nikj` = V (ikj`)
n + p̂nikp̂

n
j`

(
V̂n − V̂ (ik)

n − V̂ (j`)
n

)
with

V̂ (ikj`)
n =

1

n

n∑
t=1

(
1
{Y (t)

i
∈Ik}

(
X(t) −Xn

ik

))
⊗
(

1
{Y (t)

j
∈I`}

(
X(t) −Xn

j`

))

V̂ (jk)
n =

1

njk

n∑
i=1

1
{Y (i)

j
∈Ik}

(
X(i) −Xn

jk

)
⊗
(
X(i) −Xn

jk

)
V̂n =

1

n

n∑
i=1

(
X(i) −Xn

)
⊗
(
X(i) −Xn

)
.
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Remark 2. Practical implementation can be done by using Remark 1 that shows that, by
identifying each vector with its matrix relative to canonical basis, we can write :

Λ̂nj =

rj∑
h=1

p̂njhτ̂
n
jh

(
τ̂njh
)′

(6)

V̂ (ikj`)
n =

1

n

n∑
t=1

(
1
{Y (t)

j
∈I`}

(
X(t) −Xn

j`

))(
1
{Y (t)

i
∈Ik}

(
X(t) −Xn

ik

))′
(7)

V̂ (jk)
n =

1

njk

n∑
i=1

1
{Y (i)

j
∈Ik}

(
X(i) −Xn

jk

)(
X(i) −Xn

jk

)′
. (8)

V̂n =
1

n

n∑
i=1

(
X(i) −Xn

)(
X(i) −Xn

)′
(9)

Remark 3. The proposed method is achieved from the following algorithm:

1. Compute X
n

and for j = 1, · · · , q and h = 1, ..., rj compute n̂jh, X
n

jh and p̂njh from (1).

Then compute τ̂njh = X
n

jh −X
n

and Λ̂nj from (6) .

2. Compute Ŝ(n) = tr

(
q∑
j=1

Λ̂nj

)
and, for j = 1, ..., q, compute ∆̂n

j , Γ̂nj =
(

∆̂n
j

)−1
⊗K Ip

and Γ̂(n) by using (4) .

3. Compute V̂n from (9) and for i, j = 1, · · · , q, k = 1, ..., ri and ` = 1, ..., rj , compute

V̂
(ikj`)
n and V̂

(jk)
n from (7) and (8) respectively.

4. For i, j = 1, · · · , q, k = 1, ..., ri and ` = 1, ..., rj , compute

σ̂nikj` = V̂ (ikj`)
n + pnikp

n
j`

(
V̂n − V̂ (ik)

n − V̂ (j`)
n

)
.

5. Compute the matrix Σ̂(n) given in ( 5).

6. Compute the eigenvalues λ1, ..., λqrq of
(

Σ̂(n)
)1/2

Γ̂(n)
(

Σ̂(n)
)1/2

. Then consider the func-

tion FQ (t) := P
(
χ2
ν < t/c

)
where

c =

(
qrq∑
j=1

λ2j

)
(
qrq∑
j=1

λj

) and ν =

(
qrq∑
j=1

λj

)2

(
qrq∑
j=1

λ2j

) .

7. Compute pc = 1− FQ
(
nŜ(n)

)
. If pc ≥ α then accept H0; otherwise reject it.

3. Simulation results

In order to check the efficacy of the proposed method and to compare it with that of existing
methods, a simulation study is performed here. We computed empirical sizes and empirical
powers over 1000 replications, with nominal significance level α = 0.05, 0.10, from our
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method, denoted here as REG, and three known methods. These methods are the likelihood
ratio test (LRT), the method based on ranks given in Cléroux, (1995) and denoted here as
CLL, and the method introduced in Meintanis and Iliopoulos, (2008) denoted by MI. For
sample sizes n = 50, 100, 200, 300, 400, 500, we generated 1000 independent replicates of a
pair Z = (X ′, Y ′)′ of random vectors by using the following models:

Model 1: Z has a centered normal distribution in R10 with covariance matrix C given by

C =

(
I5 γI5
γI5 I5

)
where I5 denotes the 5× 5 identity matrix and γ is a real belonging to[0, 1].

Model 2: Z is a two-dimensional random vector with coordinates defined by

X =

√
3

20
(aX1 + bY1) and Y =

√
3

20
(bX1 + aY1) ,

where X1 and Y1 are independent random variables having a student distribution with 5
degrees of freedom, and

a =
√

1 + γ +
√

1− γ, b =
√

1 + γ −
√

1− γ,

where γ belongs to [0, 1].

For both models, H0 holds if and only if γ = 0. Table 1 gives outputs for empirical sizes from
our method. Satisfactory results are provided, except for low sample size (n = 50). The most
accurate results are obtained for n ≥ 200. The obtained results for empirical powers, for γ
from 0 up to 0.4, are given in Figures 1 to 3 for Model 1, and in Figures 4 to 6 for Model
2. They show that, for moderate values of γ and sufficiently large values of n, our method
outperforms all the considered existing methods except LRT that gives the best results in
all the tackled situations. However, for n = 100 our method is also outperformed by CLL,
and by MI when γ is small. For large values of γ all the methods give the same empirical
power equal to 1.

Model 1 Model 2
n α = 0.05 α = 0.10 α = 0.05 α = 0.10

50 0.018 0.052 0.024 0.06
100 0.027 0.078 0.038 0.084
200 0.047 0.089 0.032 0.093
300 0.047 0.104 0.047 0.091
400 0.038 0.083 0.042 0.094
500 0.044 0.097 0.046 0.095

Table 1. Empirical sizes from REG, with sample size n and nominal significance level α.
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Fig 1: n= 100,  αα=0.05
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Fig. 1. Empirical power versus γ for Model 1, n = 100 and α = 0.05.
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Fig 2: n= 300,  αα=0.05
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Fig. 2. Empirical power versus γ for Model 1, n = 300 and α = 0.05.

4. Proofs

4.1. Lemmas

Putting E = Rp and F = Rr1 × Rr2 × ...× Rrq , we introduce the operators
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Fig 3: n= 500,  αα=0.05
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Fig. 3. Empirical power versus γ for Model 1, n = 500 and α = 0.05.
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Fig 4: n= 100,  αα=0.05
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Fig. 4. Empirical power versus γ for Model 2, n = 100 and α = 0.05.

Π0 :

(
u
v

)
∈ E × F 7→

(
u
0

)
∈ E × F,

Π1 :

(
A
x

)
∈ L (E × F )× (E × F ) 7→ A ∈ L (E × F ) ,

Π2 :

(
A
x

)
∈ L (E × F )× (E × F ) 7→ x ∈ E × F.

Journal home page: www.jafristat.net



J. G. Aghoukeng Jiofack and G. M. Nkiet, Journal Afrika Statistika, Vol. 7, 2012, pages 425–440.
Testing independence of random vectors by inverse regressions. 434

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γγ

E
m

pi
ric

al
 p

ow
er

Fig 5: n= 300,  αα=0.05

REG
LRT
CLL
MI

Fig. 5. Empirical power versus γ for Model 2, n = 300 and α = 0.05.
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Fig. 6. Empirical power versus γ for Model 2, n = 500 and α = 0.05.

Furthermore, we consider the random vectors

Wj :=

rj∑
h=1

1{
Yj∈I(j)h

}f (j)h ,W
(i)
j :=

rj∑
h=1

1{
Y

(i)
j ∈I

(j)
h

}f (j)h
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where
{
f
(j)
1 , ..., f

(j)
rj

}
is the canonical basis of Rrj , and the random vectors valued into E×F

given by:

Z =


X − µ
W1

...
Wq

 , Z(i) =


X(i) −Xn

W
(i)
1
...

W
(i)
q

 , Z0 =


X
W1

...
Wq

 .

Then, putting

T =

(
Z0 ⊗ Z0

Z0

)
, VZ = E(Z ⊗ Z), V

(n)
Z =

1

n

n∑
i=1

Z(i) ⊗ Z(i),

and considering the linear map ϕ from L (E × F )× (E × F ) to L (E × F ) defined by:

ϕ(S) = Π1 (S)−Π2 (S)⊗Π0 (µ1)− µ1 ⊗Π0 (Π2 (S))−Π0 (Π2 (S))⊗ µ1

−Π0 (µ1)⊗ (Π2 (S)) + Π0 (Π2 (S))⊗Π0 (µ1) + Π0 (µ1)⊗Π0 (Π2 (S))

where µ1 = E(Z0), and denoting by ⊗̃ the tensor product between elements of L(E × F )
(associated with the inner product of this space defined by: < A,B >= tr(AB∗)), we have:

Lemma 1. As n → +∞, Hn =
√
n
(
V

(n)
Z − VZ

)
converges in distribution to a random

variable H having a centered normal distribution in L (E × F ) with covariance operator
equal to E

[
(ϕ(T − E(T ))) ⊗̃ (ϕ(T − E(T )))

]
.

Proof.

Clearly, Z = Z0 −Π0(µ1) and Z(i) = Z
(i)
0 −Π0(Z

n

0 ), where

Z
(i)
0 =


X(i)

W
(i)
1
...

W
(i)
q

 and Z
n

0 =
1

n

n∑
i=1

Z
(i)
0 .

Therefore,

Hn =
√
n

[
1

n

n∑
i=1

Z
(i)
0 ⊗ Z

(i)
0 − E (Z0 ⊗ Z0)−

(
Z
n

0 − µ1

)
⊗Π0

(
Z
n

0

)
− µ1 ⊗Π0

(
Z
n

0 − µ1

)
−Π0

(
Z
n

0 − µ1

)
⊗ Zn0 −Π0 (µ1)⊗

(
Z
n

0 − µ1

)
+Π0

(
Z
n

0 − µ1

)
⊗Π0

(
Z
n

0

)
+ Π0 (µ1)⊗Π0

(
Z
n

0 − µ1

)]
.

Considering the L (E × F )× (E × F ) -valued random variables
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T (i) =

(
Z

(i)
0 ⊗ Z

(i)
0

Z
(i)
0

)
, i = 1, 2, ..., n,

and putting Kn =
√
n

(
1
n

n∑
i=1

T (i) − E(T )

)
, we can write

Hn = Π1 (Kn)−Π2 (Kn)⊗Π0

(
Z
n

0

)
− µ1 ⊗Π0 (Π2 (Kn))

−Π0 (Π2 (Kn))⊗ Zn0 −Π0 (µ1)⊗ (Π2 (Kn))

+ Π0 (Π2 (Kn))⊗Π0

(
Z
n

0

)
+ Π0 (µ1)⊗Π0 (Π2 (Kn))

= ϕn (Kn) , (10)

where ϕn is the random operator from L (E × F )× (E × F ) to L (E × F ) defined as:

ϕn(S) = Π1 (S)−Π2 (S)⊗Π0

(
Z
n

0

)
− µ1 ⊗Π0 (Π2 (S))−Π0 (Π2 (S))⊗ Zn0

−Π0 (µ1)⊗ (Π2 (S)) + Π0 (Π2 (S))⊗Π0

(
Z
n

0

)
+ Π0 (µ1)⊗Π0 (Π2 (S))

= g(S,Z
n

0 ), (11)

and g is the continuous map from (L (E × F )× (E × F )) × (E × F ) to L (E × F ) defined
as:

g(S,C) = Π1 (S)−Π2 (S)⊗Π0 (C)− µ1 ⊗Π0 (Π2 (S))−Π0 (Π2 (S))⊗ C
−Π0 (µ1)⊗ (Π2 (S)) + Π0 (Π2 (S))⊗Π0 (C) + Π0 (µ1)⊗Π0 (Π2 (S)) .

The central limit theorem in L (E × F )×(E × F ) ensures that Kn converges in distribution,
as n → +∞, to a random operator K having a centered normal distribution in L (E × F )×
(E × F ) with covariance operator Γ1 = E((T − E(T )) ⊗̃ (T − E(T ))). Furthermore, from the
strong law of large numbers, we have the almost sure convergence, in E × F , of Z

n

0 to µ1

as n → +∞. We deduce (see Billingsley, (1968)) that (Kn, Z
n

0 ) converges in distribution
to (K,µ1), as n → +∞. From the continuity of g, it follows that g(Kn, Z

n

0 ) converges in
distribution, as n → +∞, to g(K,µ1) = ϕ(K). Then, from (10) and (11), Hn converges
in distribution to H = ϕ(K). Since ϕ is linear, H has a centered normal distribution in
L (E × F ) with covariance operator Γ2 = E((ϕ (T − E(T )))⊗ (ϕ (T − E(T )))). �

The following lemma gives the limiting distribution of Λ̂n under H0. Any operator S of
L(E × F ) can be partitioned in the form

S =


S00 S01 ... S0q

S10 S11 ... S1q

...
...

...
...

Sq0 Sq1 ... Sqq


where
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S00 ∈ L(Rp), S0j ∈ L(Rrj ,Rp), Sj0 ∈ L (Rp,Rrj ) , Sk` ∈ L(Rr` ,Rrk)

with 1 ≤ j, k, ` ≤ q. In this context, let us consider the operators

Π0j : S ∈ L (E × F ) 7→ S0j ∈ L (Rrj ,Rp)

and the map

ψ : A ∈ L (E × F ) 7→
q∑
j=1

rj∑
h=1

p−1jh

(
Π0j (A) f

(j)
h

)
⊗
(

Π0j (A) f
(j)
h

)
∈ L (E) .

Then, we have:

Lemma 2. Under H0, nΛ̂n converges in distribution to ψ (H) as n→ +∞.

Proof.

Since we have τjh = 0 under H0, we can write

nΛ̂n =

q∑
j=1

rj∑
h=1

(
p̂njh
)−1√

n
(
p̂njhτ̂

n
jh − pjhτjh

)
⊗
√
n
(
p̂njhτ̂

n
jh − pjhτjh

)
.

Moreover, from

E (Wj ⊗ (X − µ)) = E

((
rj∑
h=1

1{
Yj∈I(j)h

}f (j)h

)
⊗X −

(
rj∑
h=1

1{
Yj∈I(j)h

}f (j)h

)
⊗ µ

)

=

rj∑
h=1

f
(j)
h ⊗ (pjhτjh)

and n−1
n∑
i=1

(
W

(i)
j ⊗

(
X(i) −Xn

))
=

rj∑
h=1

f
(j)
h ⊗

(
p̂njhτ̂

n
jh

)
, we easily obtain the equality

Π0j (Hn) =
rj∑
h=1

f
(j)
h ⊗

(√
n
(
pnjhτ

n
jh − pjhτjh

))
. Thus:

nΛ̂n =

q∑
j=1

rj∑
h=1

(
p̂njh
)−1 (

Π0j (Hn) f
(j)
h

)
⊗
(

Π0j (Hn) f
(j)
h

)
= ψn(Hn),

where ψn is the random map from L(E × F ) to L(E) defined as:

ψn(S) =

q∑
j=1

rj∑
h=1

(
p̂njh
)−1 (

Π0j (S) f
(j)
h

)
⊗
(

Π0j (S) f
(j)
h

)
.

Putting ∆n = ψn(Hn)− ψ(Hn), we have

∆n =

q∑
j=1

rj∑
h=1

(
Π0j (Hn) f

(j)
h

)
⊗
(

((p̂njh)−1 − p−1jh ) Π0j (Hn) f
(j)
h

)
=

q∑
j=1

rj∑
h=1

gjh
(
Hn, p̂

n
jh

)
,
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where

gjh : (A, x) ∈ L (E × F )× R∗+ 7→
(

Π0j (A) f
(j)
h

)
⊗
(

(x−1 − p−1jh )Π0j (A) f
(j)
h

)
.

Since p̂njh converges in probability to p` as n → +∞ , we deduce from Lemma 1 and the

continuity of gjh that gjh

(
Hn,p̂njh

)
converges in distribution to gjh (H, pjh), as n → +∞.

Clearly, gjh (H, pjh) = 0; then, the preceding convergence property is a convergence in
probability. Consequently, ∆n converges in probability to 0 as n → +∞ and, therefore,
ψn(Hn) and ψ(Hn) have the same limiting distribution. As ψ is continuous and Hn converges

in distribution to H, nΛ̂n converges in distribution to ψ(H). �

4.2. Proof of Theorem 1

From Lemma 2, we deduce that under H0, ntr
(

Λ̂n
)

converges in distribution, as n→ +∞,

to Q = tr (ψ(H)). Now, it remains to prove that Q has the required expression. We have

tr (ψ(H)) =

q∑
j=1

rj∑
h=1

p−1jh tr
((

Π0j (H) f
(j)
h

)
⊗
(

Π0j (H) f
(j)
h

))

=

q∑
j=1

rj∑
h=1

p−1jh

〈
Π0j (H) f

(j)
h ,

(
Π0j (H) f

(j)
h

)〉

=

q∑
j=1

rj∑
h=1

(
Π0j (H) f

(j)
h

)′ (
p−1jh Ip

)(
Π0j (H) f

(j)
h

)
=

q∑
j=1

U ′jΓjUj ,

where

Uj =


Π0j (H) f

(j)
1

Π0j (H) f
(j)
2

...

Π0j (H) f
(j)
rj

 = Φj(H)

and

Γj =


p−1j1 Ip 0 ... 0

0 p−1j2 Ip ... 0
...

...
...

...
0 0 ... p−1jrjIp

 = ∆−1j ⊗
K Ip

with ∆j = diag
(
pj1, pj2, ..., pjrj

)
. Putting
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U =


U1
U2
...
Uq

 =


Φ1(H)
Φ2(H)

...
Φq(H)

 = Φ(H) (12)

and taking Γ as defined in (2), we clearly have U ′ΓU = Q. Since Φ is linear and H is centered
and normally distributed with covariance operator equal to that of ϕ(T ), we deduce from
(12) that U is also centered and normally distributed; its covariance operator Σ equals that
of Φ(ϕ(T )), that is

Σ = E [(Φ(ϕ(T )))⊗ (Φ(ϕ(T )))]− E (Φ(ϕ(T ))⊗ E (Φ(ϕ(T )) , (13)

where

Φ(ϕ(T )) = Φ (Z0 ⊗ Z0)− Φ (Z0 ⊗Π0 (µ1))− Φ (µ1 ⊗Π0 (Z0))

−Φ (Π0 (Z0)⊗ µ1)− Φ (Π0 (µ1)⊗ Z0)

+Φ (Π0 (Z0)⊗Π0 (µ1)) + Φ (Π0 (µ1)⊗Π0 (Z0)) .

Since

Π0j (Z0 ⊗ Z0) f
(j)
h = (Wj ⊗X) f

(j)
h = 1{

Yj∈I(j)h

}X;

Π0j (Z0 ⊗Π0 (µ)) f
(j)
h = (Wj ⊗ µ) f

(j)
h = 1{

Yj∈I(j)h

}µ;

Π0j (µ⊗Π0 (Z0)) f
(j)
h = (E (Wj)⊗X) f

(j)
h = pjhX;

Π0j (Π0 (Z0)⊗ µ) = Π0j (Π0 (µ)⊗ Z0) = 0;

Π0j (Π0 (Z0)⊗Π0 (µ)) = Π0j (Π0 (µ)⊗Π0 (Z0)) = 0;

we obtain Φ(ϕ(T )) =
(
u11, ..., u1r1 , ..., uq1, ..., uqrq

)′
, where

ujh = 1{
Yj∈I(j)h

} (X − µ)− pjhX.

Thus, we deduce from (13) that Σ has the form given in (3) with σikj` = E (uik ⊗ uj`) −
E (uik)⊗ E (uj`), where

E (uik ⊗ uj`) = E
(
1{Yi∈Ik} (X − µik)⊗ 1{Yj∈I`} (X − µj`)

)
+ pikpj`E (X ⊗X)

−pj`pikE ((X − µik)⊗ (X − µik) |Yi ∈ Ik)

−pj`pikE ((X − µj`)⊗ (X − µj`) |Yj ∈ I`)
−pj`E

(
1{Yi∈Ik} (X − µik)⊗ µik

)
− pikE

(
µj` ⊗ 1{Yj∈I`} (X − µj`)

)
and

E (uik) = E
(

1{
Yi∈I(i)k

} (X − µ)− pikX
)

= pikµik − pikµ− pikµ = −pikµ.
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Since, under H0, we have µik = µ, it follows that

E
(
1{Yi∈Ik} (X − µik)⊗ µik

)
=
(
E
(
1{Yi∈Ik}X

)
− E

(
1{Yi∈Ik}µik

))
⊗ µik

= (pikµik − pikµik)⊗ µik
= 0

and, similarly, E
(
µj` ⊗

(
1{Yj∈I`} (X − µj`)

))
= 0. Since we obviously have the equal-

ity E (uik) ⊗ E (uj`) = pikpj` µ ⊗ µ, we deduce the required equality: σikj` = V (ikj`) +
pikpj`

(
V − V (ik) − V (j`)

)
. �
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