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GROSS–PITAEVSKII DYNAMICS FOR BOSE–EINSTEIN CONDENSATES

CHRISTIAN BRENNECKE AND BENJAMIN SCHLEIN

We study the time-evolution of initially trapped Bose–Einstein condensates in the Gross–Pitaevskii
regime. We show that condensation is preserved by the many-body evolution and that the dynamics of
the condensate wave function can be described by the time-dependent Gross–Pitaevskii equation. With
respect to previous works, we provide optimal bounds on the rate of condensation (i.e., on the number of
excitations of the Bose–Einstein condensate). To reach this goal, we combine the method of Lewin, Nam
and Schlein (2015), who analyzed fluctuations around the Hartree dynamics for N -particle initial data
in the mean-field regime, with ideas of Benedikter, de Oliveira and Schlein (2015), who considered the
evolution of Fock-space initial data in the Gross–Pitaevskii regime.

1. Introduction and main results

Trapped gases of N bosons in the Gross–Pitaevskii regime can be described by the Hamilton operator

H trap
N =

N∑
j=1

[−1x j + Vext(x j )] +

N∑
i< j

N 2V (N (xi − x j )) (1-1)

acting on the Hilbert space L2
s (R

3N ), the subspace of L2(R3N ) consisting of functions that are symmetric
with respect to permutations of the N particles. Here, Vext is a confining external potential. As for the
interaction potential V, we assume it to be pointwise nonnegative, spherically symmetric and compactly
supported (but our results could be easily extended to potentials decaying sufficiently fast at infinity).

Characteristically for the Gross–Pitaevskii regime, the interaction N 2V (N · ) appearing in (1-9) scales
with N so that its scattering length is of the order N−1. The scattering length a0 of the unscaled potential V
is defined by the condition that the solution of the zero-energy scattering equation[

−1+ 1
2 V (x)

]
f (x)= 0, (1-2)

with the boundary condition f (x)→ 1 for |x | →∞, has the form

f (x)= 1−
a0

|x |
(1-3)

outside the support of V. Equivalently, a0 is determined by

8πa0 =

∫
V (x) f (x) dx . (1-4)
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By scaling, (1-2) also implies that [
−1+ 1

2 N 2V (N x)
]

f (N x)= 0,

with f (N x)→ 1 for |x | →∞. In particular, this means that the rescaled potential N 2V (N · ) in (1-9)
has scattering length a0/N.

It was shown in [Lieb et al. 2000], and more recently in [Nam et al. 2016], that the ground state
energy EN of the Hamilton operator (1-1) is such that

lim
N→∞

EN

N
= min
ϕ∈L2(R3)
‖ϕ‖2=1

E trap
GP (ϕ), (1-5)

with the Gross–Pitaevskii energy functional

E trap
GP (ϕ)=

∫ [
|∇ϕ(x)|2+ Vext(x)|ϕ(x)|2+ 4πa0|ϕ(x)|4

]
dx . (1-6)

Furthermore, Bose–Einstein condensation in the ground state of (1-1) was established in [Lieb and
Seiringer 2002]. More precisely, it was also shown in that paper that if γ (1)N = tr2,...,N |ψN 〉〈ψN | denotes
the one-particle reduced density associated with the ground state of (1-1), then

γ
(1)
N → |φGP〉〈φGP|, (1-7)

where φGP ∈ L2(R3) is the unique nonnegative minimizer of (1-6), among all ϕ ∈ L2(R3) with ‖ϕ‖2 = 1.
The interpretation of (1-7) is straightforward: in the ground state of (1-1), all particles, up to a fraction
vanishing in the limit of large N, are in the same one-particle state φGP.

In typical experiments, one observes the time-evolution of trapped Bose gases prepared in (or close to)
their ground state, resulting from a change of the external fields. As an example, consider the situation in
which the trapping potential is switched off at time t = 0. In this case, the dynamics is described, at the
microscopic level, by the many-body Schrödinger equation

i∂tψN, t = HNψN, t , (1-8)

with the translation-invariant Hamilton operator

HN =

N∑
j=1

−1x j +

N∑
i< j

N 2V (N (xi − x j )) (1-9)

and with the ground state of (1-1) as initial data. The next theorem shows how the solution of (1-8) can
be described in terms of the time-dependent Gross–Pitaevskii equation.

Theorem 1.1. Let Vext : R
3
→ R be locally bounded with Vext(x)→∞ as |x | →∞. Let V ∈ L3(R3) be

nonnegative (V (x)≥ 0 for almost every x ∈ R3), compactly supported and spherically symmetric. Let
ψN be a sequence in L2

s (R
3N ), with one-particle reduced density γ (1)N = tr2,...,N |ψN 〉〈ψN |. We assume

that, as N →∞,
aN = 1−〈φGP, γ

(1)
N φGP〉 → 0,

bN = |N−1
〈ψN , H trap

N ψN 〉− E trap
GP (φGP)| → 0,

(1-10)
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where φGP ∈ H 4(R3) is the unique nonnegative minimizer of the Gross–Pitaevskii energy functional (1-6).
Let ψN, t = e−i HN tψN be the solution of (1-8) with initial data ψN and let γ (1)N, t be the one-particle reduced
density associated with ψN, t . Then there are constants C, c > 0 such that

1−〈ϕt , γ
(1)
N, tϕt 〉 ≤ C[aN + bN + N−1

] exp(c exp(c|t |)) (1-11)

for all t ∈ R. Here ϕt is the solution of the time-dependent Gross–Pitaevskii equation

i∂tϕt =−1ϕt + 8πa0|ϕt |
2ϕt , (1-12)

with the initial data ϕt=0 = φGP.

Remarks. (1) The condition aN = 1−〈φGP, γ
(1)
N φGP〉→ 0 is equivalent to γ (1)N →|φGP〉〈φGP|. Similarly,

the bound (1-11) implies that γ (1)N, t → |ϕt 〉〈ϕt |. More precisely, using the fact that |ϕt 〉〈ϕt | is a rank-one
projection, it follows from (1-11) that

tr |γ (1)N, t − |ϕt 〉〈ϕt || ≤ 2‖γ (1)N, t − |ϕt 〉〈ϕt |‖HS

≤ 23/2
[1−〈ϕt , γ

(1)
N, tϕt 〉]

1/2

≤ C[aN + bN + N−1
]
1/2 exp(c exp(c|t |)).

Hence, (1-11) is a statement about the stability of Bose–Einstein condensation with respect to the
many-body Schrödinger equation (1-8).

(2) Existence, uniqueness and decay of the minimizer φGP of the Gross–Pitaevskii energy functional
(1-6) were established in [Lieb et al. 2000]. In Theorem 1.1 we additionally assume that φGP ∈ H 4(R3).
This condition follows from elliptic regularity and from the results of [Gagelman and Yserentant 2012]
(establishing decay of the derivatives of φGP), under suitable assumptions on Vext (for example, if
Vext ∈ C2(R3) and its derivatives grow at most exponentially at infinity).

(3) As discussed above, it follows from [Lieb et al. 2000; Lieb and Seiringer 2002] that the assumptions
(1-10) are satisfied if we take ψN as the ground state of (1-1). In this case, we expect both aN and bN to
be of the order N−1; indeed, aN , bN ' N−1 was recently shown in [Boccato et al. 2018b] for systems
of bosons trapped in a box with volume 1 (with periodic boundary conditions), interacting through a
sufficiently small potential; in fact, the limit of NaN , NbN was computed precisely in [Boccato et al.
2018a]. In this case, (1-11) implies that

1−〈ϕt , γ
(1)
N, tϕt 〉 ≤ C N−1 exp(c exp(c|t |)) (1-13)

and therefore that, for every fixed time t ∈R, Bose–Einstein condensation holds with the optimal rate N−1

(meaning that the number of excitations of the condensate remains bounded, uniformly in N †).

(4) To keep the notation as simple as possible, we consider the time-evolution (1-8) generated by the
translation-invariant Hamiltonian (1-9). With the same techniques we use to prove Theorem 1.1, we could
also have included in (1-9) an external potential Wext, at least if the difference Wext− Vext is bounded

†If N [1−〈ϕt , γ
(1)
N, tϕt 〉] → 0, as N →∞, the expectation of the number of excitations of the condensate would tend to zero

and thus ψN, t could be approximated, in norm, by the factorized wave function ϕ⊗N
t ; this cannot be true.
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below. Under this assumption, the convergence (1-11) remains true, of course provided we introduce
the external potential Wext also in the time-dependent Gross–Pitaevskii equation (1-12). The external
potential may also depend on time, under reasonable assumptions on the time-dependence (for example,
if the time-derivative of Wext is bounded). Physically, this would describe experiments where the system
prepared at equilibrium (in the ground state) is perturbed by a change of the external potential, rather than
by switching it off (we could also consider the situation where the external potential depends on time).

Theorem 1.1 is meant to describe the time-evolution of data prepared in the ground state of the trapped
Hamilton operator (1-1). This is the reason why, in (1-10), we assumed ψN to exhibit Bose–Einstein
condensation in the minimizer of the Gross–Pitaevskii energy functional (1-6). From the mathematical
point of view, one may ask more generally whether it is possible to show that the evolution of an initial
data exhibiting Bose–Einstein condensate in an arbitrary one-particle wave function ϕ ∈ H 1(R3) (not
necessarily minimizing the Gross–Pitaevskii functional (1-6)) continues to exhibit condensation in the
solution of (1-12) with initial data ϕt=0 = ϕ, also for t 6= 0. In the next theorem we show that the answer
to this question is positive; the only difference with respect to (1-11) is the fact that, to get the same rate
of convergence at time t , we need a stronger bound on the condensation of the initial data.

Theorem 1.2. Assume that V ∈ L3(R3) is nonnegative (V (x)≥ 0 for almost every x ∈ R3), compactly
supported and spherically symmetric. Let ψN be a sequence in L2

s (R
3N ), with one-particle reduced

density γ (1)N = tr2,...,N |ψN 〉〈ψN |. Assume that, for a ϕ ∈ H 4(R3),

ãN = tr |γ (1)N − |ϕ〉〈ϕ|| → 0,

b̃N = |N−1
〈ψN , HNψN 〉− EGP(ϕ)| → 0

(1-14)

as N →∞. Here EGP is the translation-invariant Gross–Pitaevskii functional

EGP(ϕ)=

∫
[|∇ϕ|2+ 4πa0|ϕ|

4
] dx . (1-15)

Let ψN, t = e−i HN tψN be the solution of the Schrödinger equation (1-8) with initial data ψN and let
γ
(1)
N, t denote the one-particle reduced density associated with ψN, t . Then

1−〈ϕt , γ
(1)
N, tϕt 〉 ≤ C[ãN + b̃N + N−1

] exp(c exp(c|t |)), (1-16)

where ϕt denotes the solution of the time-dependent Gross–Pitaevskii equation (1-12), with initial data
ϕ0 = ϕ.

A first proof of the convergence of the reduced density associated with the solution of the Schrödinger
equation (1-8) towards the orthogonal projection onto the solution of the time-dependent Gross–Pitaevskii
equation (1-12) was obtained in [Erdős et al. 2002; 2007; 2009b; 2010]; part of the proof was later
simplified in [Chen et al. 2015], using also ideas from [Klainerman and Machedon 2008]. In these works,
convergence was established with no control on its rate. A new proof of the convergence towards the
Gross–Pitaevskii dynamics was later given in [Pickl 2015]; in this case, convergence was shown to hold
with a rate N−η, for a nonoptimal η > 0, whose value could be explicitly determined following the
proof; this approach was adapted to two-dimensional systems in [Jeblick et al. 2016], to systems with
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magnetic fields in [Olgiati 2017] and to pseudospinor condensates in [Michelangeli and Olgiati 2017].
More recently, convergence with a rate similar to (1-11), (1-16) was proven to hold in [Benedikter et al.
2015] for a class of Fock space initial data. The novelty of (1-11), (1-16) is the fact that convergence is
shown with an optimal rate determined by the properties of the N -particle initial data.

More results are available about quantum dynamics in the mean-field regime. In this case, the evolution
of the Bose gas is generated by a Hamilton operator of the form

H mf
N =

N∑
j=1

−1x j +
1
N

N∑
i< j

V (xi − x j ). (1-17)

In the limit N →∞, the solution of the Schrödinger equation ψN, t = e−i Hmf
N tψN , for initial data ψN

exhibiting Bose–Einstein condensation in a one-particle wave function ϕ ∈ L2(R3), can be approximated
by products of the solution of the nonlinear Hartree equation

i∂tϕt =−1ϕt + (V ∗ |ϕt |
2)ϕt . (1-18)

Convergence towards Hartree dynamics has been established in different settings, using different methods
in several works, including [Adami et al. 2007; Ammari and Breteaux 2012; Ammari et al. 2016;
Anapolitanos and Hott 2016; Ammari and Nier 2009; Bardos et al. 2000; Chen and Holmer 2017; Elgart
and Schlein 2007; Erdős and Yau 2001; Fröhlich et al. 2007; 2009; Ginibre and Velo 1979a; 1979b;
Hepp 1974; Knowles and Pickl 2010; Rodnianski and Schlein 2009; Spohn 1980]. In the mean-field
regime, it is also possible to find a norm approximation of the many-body evolution by taking into account
fluctuations around the Hartree dynamics (1-18); see, for example, [Ben Arous et al. 2013; Chen 2012;
Grillakis et al. 2010; 2011; Kirkpatrick et al. 2011; Lewin et al. 2015a; Mitrouskas et al. 2016].

It is also interesting to consider the many-body evolution in scaling limits interpolating between the
mean-field regime described by the Hamilton operator (1-17) and the Gross–Pitaevskii regime described
by (1-9). A norm-approximation of the time-evolution in these intermediate regimes was recently obtained
in [Boccato et al. 2017; Grillakis and Machedon 2013; Kuz 2017; Nam and Napiórkowski 2016; 2017].

To prove Theorem 1.1 and Theorem 1.2 we will combine the strategies used in [Benedikter et al. 2015]
and [Lewin et al. 2015a]. Let us briefly recall the main ideas of these papers. In [Benedikter et al. 2015],
the Bose gas was described on the Fock space F =

⊕
n≥0 L2

s (R
3n) by the Hamilton operator

HN =

∫
∇xa∗x∇xax dx + 1

2

∫
N 2V (N (x − y))a∗x a∗yayax dx dy,

where a∗x , ax are the usual operator-valued distributions, creating and, respectively, annihilating a particle
at the point x ∈ R3. Notice that HN commutes with the number of particles operator N =

∫
a∗x ax dx , and

that its restriction to the sector of F with exactly N particles coincides with (1-9).
On the Fock space F , a Bose–Einstein condensate can be described by a coherent state of the form

W (
√

Nϕ)�, where � = {1, 0, 0, . . . } is the vacuum vector, ϕ ∈ L2(R3) is a normalized one-particle
orbital, and where, for every f ∈ L2(R3),

W ( f )= exp(a∗( f )− a( f ))



1518 CHRISTIAN BRENNECKE AND BENJAMIN SCHLEIN

is a Weyl operator with wave function f . Here, we denoted by

a∗( f )=
∫

f (x)a∗x dx and a( f )=
∫

f̄ (x)ax dx

the usual creation and annihilation operators on F , creating and annihilating a particle with wave function f .
A simple computation shows that

W (
√

Nϕ)�= e−N/2
{

1, N 1/2ϕ, . . . ,
N n/2ϕ⊗n
√

n!
, . . .

}
.

In the coherent state W (
√

Nϕ)�, the number of particles is Poisson distributed, with mean and variance
equal to N.

On the Fock space F , it is interesting to study the dynamics of approximately coherent initial states.
In the Gross–Pitaevskii regime, however (in contrast with the mean-field limit), we cannot expect the
evolution of approximately coherent initial data to remain approximately coherent. On every sector of
F with a fixed number of particles, the coherent state W (

√
Nϕ)� is factorized; it describes therefore

uncorrelated particles. On the other hand, already from [Erdős et al. 2009a; 2010] and more recently
also from [Chen and Holmer 2016], we know that, in the Gross–Pitaevskii regime, particles develop
substantial correlations. To provide a better approximation of the many-body dynamics, Weyl operators
were combined in [Benedikter et al. 2015] with appropriate Bogoliubov transformations, leading to
so-called squeezed coherent states. To be more precise, let f denote the solution of the zero-energy
scattering equation (1-2) and w = 1− f (keep in mind that, for |x | � 1, w(x)= a0/|x |). Using w, we
define

kN, t(x; y)=−Nw(N (x − y))ϕt(x)ϕt(y), (1-19)

where ϕt is the solution of the time-dependent Gross–Pitaevskii equation (1-12). In fact, in [Benedikter
et al. 2015] and also later in the present paper, it is more convenient to replace ϕt with the solution of
the slightly modified, N -dependent, Gross–Pitaevskii equation (4-8); to simplify the presentation, we
neglect these technical details in this introduction. With (1-19), it is easy to check that kN, t ∈ L2(R3

×R3),
with ‖kN, t‖2 bounded, uniformly in N and in t . This implies that (1-19) is the integral kernel of a
Hilbert–Schmidt operator. Hence, we can define, on F , the unitary Bogoliubov transformation

Tt = exp
[

1
2

∫
dx dy (kN, t(x; y)a∗x a∗y − h.c.)

]
, (1-20)

whose action on creation and annihilation operators is explicitly given by

T ∗t a∗(g)Tt = a∗(coshkN, t (g))+ a(sinhkN, t (ḡ)) (1-21)

for all g ∈ L2(R3). Here coshkN, t and sinhkN, t are the bounded operators (sinhkN, t is even Hilbert–Schmidt)
defined by the convergent series

coshkN, t =

∞∑
n=0

(kN, t k̄N, t)
n

(2n)!
and sinhkN, t =

∞∑
n=0

(kN, t k̄N, t)
nkN, t

(2n+ 1)!
. (1-22)
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Using the Bogoliubov transformation Tt to generate correlations at time t , it makes sense to study the
time-evolution of initial data close to the squeezed coherent state W (

√
Nϕ)T0�, and to approximate it

with a Fock-space vector of the same form. More precisely, for ξN ∈ F close to the vacuum (in a sense to
be made precise later), we may consider the time-evolution

e−iHN t W (
√

Nϕ)T0ξN =W (
√

Nϕt)TtξN, t , (1-23)

where we defined ξN, t = UN (t)ξN and the fluctuation dynamics

UN (t)= T ∗t W ∗(
√

Nϕt)e−iHN t W (
√

Nϕ0)T0. (1-24)

In order to show that the one-particle reduced density γ (1)N, t associated with the left-hand side of (1-23) is
close to the orthogonal projection onto the solution of the Gross–Pitaevskii equation (4-8), it is enough to
prove that the expectation of the number of particles in ξN, t is small, compared with the total number of
particles N (assuming this is true for ξN , at time t=0). In other words, the problem of proving convergence
towards the Gross–Pitaevskii dynamics reduces to the problem of showing that the expectation of the
number of particles remains approximately preserved by the fluctuation dynamics (1-24). In [Benedikter
et al. 2015], this strategy was used to show that the one-particle reduced density γ (1)N, t associated with
9N, t = e−iHN t W (

√
Nϕ)T0ξN is such that

‖γ
(1)
N, t − |ϕt 〉〈ϕt |‖HS ≤ C N−1/2 exp(c exp(c|t |))

for any ξN ∈ F with ‖ξN‖ = 1 and such that

〈ξN , [N +N 2/N +HN ]ξN 〉 ≤ C

uniformly in N.
While the method of [Benedikter et al. 2015] works well to show convergence towards the Gross–

Pitaevskii dynamics for the evolution of Fock-space data of the form W (
√

Nϕ)T0ξN , it is difficult to
apply it to N -particle initial data in L2

s (R
3N ) (a special class of N -particle states for which this is indeed

possible is discussed in Appendix C of that paper). An alternative approach, tailored on N -particle initial
data, was proposed in [Lewin et al. 2015a] for bosons in the mean-field limit. An important observation
in that paper (and already in [Lewin et al. 2015b]) is the fact that, for a fixed normalized ϕ ∈ L2(R3),
every ψN ∈ L2

s (R
3N ) can be uniquely represented as

ψN =

N∑
n=0

ψ
(n)
N ⊗s ϕ

⊗(N−n) (1-25)

for a sequence {ψ (n)N }
N
n=0 with ψ (n)N ∈ L2

⊥ϕ(R
3)⊗sn, the symmetric tensor product of n copies of the

orthogonal complement of ϕ in L2(R3).
This remark allows us to define a unitary map

U (ϕ) : L2
s (R

3N )→ F≤N
⊥ϕ through U (ϕ)ψN = {ψ

(0)
N , ψ

(1)
N , . . . , ψ

(N )
N }. (1-26)

Here F≤N
⊥ϕ =

⊕N
n=0 L2

⊥
(R3)⊗sn is the Fock space constructed on the orthogonal complement L2

⊥ϕ(R
3)

of ϕ, truncated to have at most N particles. The map U (ϕ) factors out the condensate described by the
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one-particle wave function ϕ and allows us to focus on its orthogonal excitations. Notice that a similar idea
(but with no second quantization) was used in [Pickl 2015; Mitrouskas et al. 2016] to identify excitations
of the condensate. Using the unitary map (1-26), we can introduce, for the mean-field dynamics generated
by (1-17), a fluctuation dynamics

Wmf
N, t =U (ϕt)e−i Hmf

N tU∗(ϕ) : F≤N
⊥ϕ → F≤N

⊥ϕt
, (1-27)

where ϕt is the solution of the time-dependent Hartree equation (1-18). Much as above, to prove
convergence towards Hartree dynamics, it is enough to control the growth of the expectation of the
number of particles operator with respect to Wmf

N, t . This strategy was used in [Lewin et al. 2015a] to find
a norm-approximation for the many-body evolution in the mean-field regime.

It is natural to ask whether the techniques developed in [Lewin et al. 2015a] to study the time-evolution
of bosonic systems in the mean-field regime can also be used to study the dynamics in the Gross–Pitaevskii
limit. Much as above, where we argued that coherent states are not a good ansatz to describe the evolution
of Fock space initial data, we cannot expect here that factorized N -particles states of the form U∗ϕt

�=ϕ⊗N
t

provide a good approximation for the solution of the Schrödinger equation (1-8) in the Gross–Pitaevskii
regime. Instead, much as in [Benedikter et al. 2015], we need to modify the ansatz to take into account
correlations developed by the many-body evolution. As explained above, in that paper correlations were
modeled by means of Bogoliubov transformations of the form (1-20). Unfortunately, since they do
not preserve the number of particles, these Bogoliubov transformations do not leave the space F≤N

⊥ϕt
,

where excitations of the Bose–Einstein condensate are described, invariant. For this reason, to adapt the
techniques of [Lewin et al. 2015a] to the Gross–Pitaevskii regime that we are considering here, we are
going to introduce on F≤N

+ modified creation and annihilation operators, defined by

b∗( f )= a∗( f )

√
N −N

N
and b( f )=

√
N −N

N
a( f ) (1-28)

for all f ∈ L2
⊥ϕt
(R3). As we will discuss in the next section, these new fields create and, respectively,

annihilate excitations of the Bose–Einstein condensate leaving, at the same time, the total number of
particles invariant. We will use the modified creation and annihilation operators to define a generalized
Bogoliubov transformation having the form

St = exp
[

1
2

∫
dx dy (ηt(x; y)b∗x b∗y − h.c.)

]
(1-29)

for a kernel ηt ∈ L2(R3
× R3), orthogonal to ϕt in both its variables. Compared with the standard

Bogoliubov transformations in (1-20), (1-29) has an important advantage: it maps F≤N
⊥ϕt

back into itself.
With (1-29), we can therefore define the modified fluctuation dynamics

WN, t = S∗t U (ϕt)e−i HN tU∗(ϕ0)S0 : F≤N
+ → F≤N

+ , (1-30)

which plays a role similar to that played by (1-24) in [Benedikter et al. 2015], describing the time-evolution
of excitations of the Bose–Einstein condensate. To prove Theorems 1.1 and 1.2 it will then be enough
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to show a bound for the growth of the expectation of the number of particles with respect to WN, t . To
achieve this goal, we will establish several properties of the generator

GN, t = (i∂t S∗t )St + S∗t [(i∂tU (ϕt))U∗(ϕt)+U (ϕt)HN U∗(ϕt)]St

of (1-30), which is defined so that

i∂tWN, t = GN, tWN, t .

Technically, the main challenge we will have to face is the fact that, in contrast with (1-21), there is
no explicit formula for the action of the generalized Bogoliubov transformation (1-29) on creation and
annihilation operators. For this reason, we will have to expand expressions like S∗t b(g)St in absolutely
convergent infinite series, and we will have to control the contribution of several different terms. The
main tool to control these expansions is Lemma 3.2 below.

2. Fock space

In this section, we introduce some notation and we discuss some basic properties of operators on Fock
spaces. Let

F =
⊕
n≥0

L2
s (R

3n)=
⊕
n≥0

L2(R3)⊗sn

denote the bosonic Fock space over the one-particle space L2(R3). Here L2
s (R

3n) is the subspace of
L2(R3n) consisting of all ψ ∈ L2(R3n) with

ψ(xπ1, xπ2, . . . , xπn)= ψ(x1, . . . , xn)

for all permutations π ∈ Sn . We use the notation �= {1, 0, . . . } ∈ F for the vacuum vector, describing a
state with no particles.

On F , it is convenient to introduce creation and annihilation operators. For g ∈ L2(R3), we define the
creation operator a∗(g) and the annihilation operator a(g) by

(a∗(g)9)(n)(x1, . . . , xn)=
1
√

n

n∑
j=1

g(x j )9
(n−1)(x1, . . . , x j−1, x j+1, . . . , xn),

(a(g)9)(n)(x1, . . . , xn)=
√

n+ 1
∫

ḡ(x)9(n+1)(x, x1, . . . , xn).

Notice that creation operators are linear in their argument, and annihilation operators are antilinear.
Creation and annihilation operators can be extended to closed unbounded operators on F ; a∗(g) is the
adjoint of a(g). They satisfy canonical commutation relations

[a(g), a∗(h)] = 〈g, h〉, [a(g), a(h)] = [a∗(g), a∗(h)] = 0 (2-1)

for all g, h ∈ L2(R3) (here 〈g, h〉 denotes the usual inner product on L2(R3)). It is also convenient to
introduce operator-valued distributions ax , a∗x , formally creating and annihilating a particle at x ∈R. They
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are such that

a( f )=
∫

f̄ (x)ax dx, a∗( f )=
∫

f (x)a∗x dx

and satisfy the commutation relations

[ax , a∗y ] = δ(x − y), [ax , ay] = [a∗x , a∗y ] = 0.

It is also useful to introduce on F the number of particles operator, defined by (N9)(n) = n9(n). In
terms of operator-valued distributions, N can be written as

N =
∫

a∗x ax dx .

Creation and annihilation operators are bounded by the square root of the number of particles operator;
i.e., we have

‖a( f )9‖ ≤ ‖ f ‖2‖N 1/29‖, ‖a∗( f )9‖ ≤ ‖ f ‖2‖(N + 1)1/29‖ (2-2)

for every f ∈ L2(R3).
For a one-particle operator B : L2(R3)→ L2(R3) we define d0(B) : F→ F through (d0(B)9)(n) =∑n
j=1 Bjψ

(n) for any 9 = {ψ (n)}n∈N ∈F . Here Bj = 1⊗· · ·⊗ B⊗· · ·⊗1 acts as B on the j -th particles
and as the identity on all other particles. If B has the integral kernel B(x; y), we can write

d0(B)=
∫

B(x; y)a∗x ay dx dy.

If B is a bounded operator on the one-particle space L2(R3), then d0(B) can be bounded with respect to
the number of particles operator, i.e., we have the operator inequality

±d0(B)≤ ‖B‖op N (2-3)

and (since d0(B) commutes with N ) also

‖d0(B)9‖ ≤ ‖B‖op‖N9‖.

We will also need bounds for operators on the Fock space, quadratic in creation and annihilation
operators, that do not necessarily preserve the number of particles. For j ∈ L2(R3

×R3), we introduce
the notation

A]1,]2( j)=
∫

a]1( jx)a]2
x dx =

∫
j ]̄1(x; y)a]1

y a]2
x dx dy, (2-4)

where jx(y) := j (x; y), ]1, ]2 ∈ { · , ∗}, ]̄1 = · if ]1 = ∗ and ]̄1 = ∗ if ]1 = · , and where we use the
notation a] = a if ]= · , a] = a∗ if ]= ∗ and, similarly, j ] = j if ]= · and j ] = j̄ if ]= ∗. If ]1 = ·

and ]2 = ∗ (i.e., if a creation operator lies on the right of an annihilation operator), in order to define
A]1,]2( j) we also require that x→ j (x; x) is integrable. In the next lemma, which follows easily from
(2-2), we show how to bound these operators through the number of particles operator N.
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Lemma 2.1. Let j ∈ L2(R3
×R3). Then for any 9 ∈ F ,

‖A[]1,]2
( j)9‖ ≤

√
2‖(N + 1)9‖

{
‖ j‖2+

∫
| j (x; x)| dx if ]1 = · , ]2 = ∗,

‖ j‖2 otherwise.

We will work on certain subspaces of F . For a fixed ϕ ∈ L2(R3) (ϕ will later be the condensate wave
function), we use the notation L2

⊥ϕ(R
3) for the orthogonal complement of the one-dimensional space

spanned by ϕ in L2(R3). We denote by

F⊥ϕ =
⊕
n≥0

L2
⊥ϕ(R

3)⊗sn

the Fock space constructed over L2
⊥ϕ(R

3). A vector 9 = {ψ (0), ψ (1), . . . } ∈ F lies in F⊥ϕ if ψ (n) is
orthogonal to ϕ, in each of its coordinates, for all n ≥ 1, i.e., if∫

ϕ̄(x) ψ (n)(x, y1, . . . , yn−1) dx = 0

for all n ≥ 1. We will also need Fock spaces with a truncated number of particles. For N ∈N\{0}, we
define

F≤N
=

N⊕
n=0

L2(R3)⊗sn and F≤N
⊥ϕ =

N⊕
n=0

L2
⊥ϕ(R

3)⊗sn

as the Fock spaces over L2(R3) and over L2
⊥ϕ(R

3) consisting of states with at most N particles. As
already explained in the Introduction (but see Section 4 for more details), on the space F≤N

⊥ϕ we will
describe orthogonal fluctuations around a condensate with wave function ϕ ∈ L2(R3).

On F≤N and F≤N
⊥ϕ , we introduce modified creation and annihilation operators. For f ∈ L2(R3), we

define

b( f )=

√
N −N

N
a( f ) and b∗( f )= a∗( f )

√
N −N

N
. (2-5)

We clearly have b( f ), b∗( f ) :F≤N
→F≤N. If moreover f ⊥ ϕ we also have b( f ), b∗( f ) :F≤N

⊥ϕ →F≤N
⊥ϕ .

As we will discuss in the next section, the importance of these fields arises from the application of the
map U (ϕ), defined in (1-25), since

U (ϕ)a∗( f )a(ϕ)U∗(ϕ)= a∗( f )
√

N −N =
√

Nb∗( f ),

U (ϕ)a∗(ϕ)a( f )U∗(ϕ)=
√

N −N a( f )=
√

N b( f ).
(2-6)

If ϕ is the condensate wave function and f ⊥ ϕ, the operator b∗( f ) excites a particle from the condensate
to its orthogonal complement, while b( f ) annihilates an excitation back into the condensate. On states
exhibiting Bose–Einstein condensation, we expect a(ϕ), a∗(ϕ)'

√
N and thus that the action of modified

b∗- and b-fields is close to the action of the original creation and annihilation operators.
It is also convenient to introduce operator-valued distributions

bx =

√
N −N

N
ax and b∗x = a∗x

√
N −N

N
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so that

b( f )=
∫

f̄ (x) bx dx and b∗( f )=
∫

f (x)b∗x dx .

We find the modified canonical commutation relations

[bx , b∗y] =
(

1−
N
N

)
δ(x − y)−

1
N

a∗yax , [bx , by] = [b∗x , b∗y] = 0. (2-7)

Furthermore

[bx , a∗yaz] = δ(x − y)bz, [b∗x , a∗yaz] = −δ(x − z)b∗y, (2-8)

which leads to [bx ,N ]= bx and [b∗x ,N ]=−b∗x . From (2-2), we immediately obtain the following bounds
for the b-fields.

Lemma 2.2. Let f ∈ L2(R3). For any ξ ∈ F≤N, we have

‖b( f )ξ‖ ≤ ‖ f ‖2

∥∥∥∥N 1/2
(

N −N + 1
N

)1/2

ξ

∥∥∥∥≤ ‖ f ‖2‖N 1/2ξ‖,

‖b∗( f )ξ‖ ≤ ‖ f ‖2

∥∥∥∥(N + 1)1/2
(

N −N
N

)1/2

ξ

∥∥∥∥≤ ‖ f ‖2‖(N + 1)1/2ξ‖.

Notice, moreover, that since N ≤ N on F≤N, the operators b( f ), b∗( f ) : F≤N
→ F≤N are bounded with

‖b( f )‖, ‖b∗( f )‖ ≤ (N + 1)1/2‖ f ‖2.

We will also consider quadratic expressions in the b-fields. For an integral kernel j ∈ L2(R3
×R3), we

define, similarly to (2-4),

B]1,]2( j)=
∫

b]1( jx)b]2
x dx =

∫
j ]̄1(x; y)b]1

y b]2
x dx dy. (2-9)

If ]1 = · and ]2 = ∗, we also require that x→ j (x; x) is integrable. From Lemma 2.1, we obtain the
following bounds.

Lemma 2.3. Let j ∈ L2(R3
×R3). Then

‖B]1,]2( j)9‖
‖(N + 1)((N −N + 2)/N )9‖

≤
√

2
{
‖ j‖2+

∫
| j (x; x)| dx if ]1 = · , ]2 = ∗,

‖ j‖2 otherwise

for all 9 ∈ F≤N. Since N ≤ N on F≤N, the operator B]1,]2( j) is bounded, with

‖B]1,]2( j)‖ ≤
√

2N
{
‖ j‖2+

∫
| j (x; x)| dx if ]1 = · , ]2 = ∗,

‖ j‖2 otherwise.

Remark. For ϕ ∈ L2(R3), let qϕ = 1 − |ϕ〉〈ϕ| be the orthogonal projection onto L2
⊥ϕ(R

3). If j ∈
(q
ϕ]̄1
⊗q

ϕ]̄2
)(L2(R3

×R3)), we have B]1,]2( j) :F≤N
⊥ϕ →F≤N

⊥ϕ (here we use the notation ]̄=∗ if ]= · and
]̄= · if ]= ∗, and ϕ] = ϕ if ]= ∗, ϕ] = ϕ̄ if ]= · ).
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We will consider products of several creation and annihilation operators, as well. In particular, two
types of monomials in creation and annihilation operators will play an important role in our analysis. We
define

5
(2)
],[( j1, . . . , jn)=

∫
b[0

x1
a]1

y1
a[1

x2
a]2

y2
a[2

x3
· · · a]n−1

yn−1
a[n−1

xn
b]n

yn

n∏
`=1

j`(x`; y`) dx` dy`, (2-10)

where jk ∈ L2(R3
×R3) for k = 1, . . . , n and where ] = (]1, . . . , ]n), [ = ([0, . . . , [n−1) ∈ { · , ∗}

n . In
other words, for every index i ∈ {1, . . . , n}, we have either ]i = · (meaning that a]i = a or b]i = b) or
]i = ∗ (meaning that a]i = a∗ or b]i = b∗) and analogously for [i , if i ∈ {0, . . . , n− 1}. Furthermore, for
`= 1, . . . , n− 1, we impose the condition that either ]` = · and [` = ∗ or ]` = ∗ and [` = · (so that the
product a]`y`a

[`
x`+1 always preserves the number of particles). If [i−1 = · and ]i = ∗ (i.e., if the product

a[i−1
xi a]i

yi for i = 2, . . . , n, or the product b[0
x1a]1

y1 for i = 1, is not normally ordered) we require additionally
x→ ji (x; x) to be integrable. An operator of the form (2-10), with all the properties listed above, will be
called a 5(2)-operator of order n.

Next, we define

5
(1)
],[( j1, . . . , jn; f )=

∫
b[0

x1
a]1

y1
a[1

x2
a]2

y2
a[2

x3
· · · a]n−1

yn−1
a[n−1

xn
a]n

yn
a[n( f )

n∏
`=1

j`(x`; y`) dx` dy`, (2-11)

where f ∈ L2(R3), jk ∈ L2(R3
×R3) for all k = 1, . . . , n, ]= (]1, . . . , ]n) ∈ { · , ∗}

n , [= ([0, . . . , [n) ∈

{ · , ∗}n+1 with the condition that, for all ` = 1, . . . , n, we either have ]` = · and [` = ∗ or ]` = ∗ and
[`= · . Additionally, we assume that x→ ji (x; x) is integrable if [i−1= · and ]i =∗ for an i = 1, . . . , n.
An operator of the form (2-11) will be called a 5(1)-operator of order n. Operators of the form b( f ),
b∗( f ), for an f ∈ L2(R3), will be called 5(1)-operators of order zero. It will also be useful to consider

5̃
(1)
],[( j1, . . . , jn; f )=

∫
a[0( f )a]0

x1
a[1

y1
a]1

x2
a[2

y2
a]2

x3
· · · a[n−1

yn−1
a]n−1

xn
b[n

yn

n∏
`=1

j`(x`; y`) dx` dy`, (2-12)

where f ∈ L2(R3), jk ∈ L2(R3
×R3) for all k= 1, . . . , n, ]= (]0, . . . , ]n−1)∈ { · , ∗}

n , [= ([0, . . . , [n)∈

{ · , ∗}n+1 with the condition that, for every ` ∈ {0, . . . , n− 1}, either ]` = · and [` = ∗ or ]` = ∗ and
[` = · . As above, we also assume that x→ ji (x; x) is integrable if [i−1 = · and ]i = ∗ for i = 1, . . . , n.
Observe that

5
(1)
],[( j1, . . . , jn; f )∗ = 5̃(1)

]′,[′( jn, . . . , j1; f ),

with [′ = ([̄n, . . . , [̄0), ]′ = (]̄n, . . . , ]̄1), where [̄= · if [= ∗ and [̄= ∗ if [= · (and similarly for ]̄).
Notice that 5(2)-operators involve two b-operators and therefore may create or annihilate up to two

excitations of the condensate (depending on the choice of [0 and ]n , they may also leave the number
of excitations invariant). 5(1)- and 5̃(1)-operators, on the other hand, create or annihilate exactly one
excitation. The conditions on the number of creation and annihilation operators guarantee that 5(2)-,
5(1)- and 5̃(1)-operators always map F≤N back into itself. In the next lemma we collect bounds that we
are going to use to control these operators.
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Lemma 2.4. Let n∈N, f ∈ L2(R3), j1, . . . , jn ∈ L2(R3
×R3). We assume the operators5(2)

],[( j1, . . . , jn)
and 5(1)

],[( j1, . . . , jn; f ) are defined as in (2-10), (2-11). Then we have the bounds

‖5
(2)
],[( j1, . . . , jn)ξ‖ ≤ 6n

n∏
`=1

K [`−1,]`
`

∥∥∥∥(N + 1)n
(

1−
N − 2

N

)
ξ

∥∥∥∥,
‖5

(1)
],[( j1, . . . , jn; f )ξ‖ ≤ 6n

‖ f ‖
n∏
`=1

K [`−1,]`
`

∥∥∥∥(N + 1)n+1/2
(

1−
N − 2

N

)1/2

ξ

∥∥∥∥,
(2-13)

where

K [`−1,]`
` =

{
‖ j`‖2+

∫
| j`(x; x)| dx if [`−1 = · and ]` = ∗,

‖ j`‖2 otherwise.

Since N ≤ N on F≤N, it follows that5(2)
],[( j1, . . . , jn),5

(1)
],[( j1, . . . , jn; f ) are bounded operators on F≤N,

with

‖5
(2)
],[( j1, . . . , jn)‖ ≤ (12N )n

n∏
`=1

K [`−1,]`
` ,

‖5
(1)
],[( j1, . . . , jn; f )‖ ≤ (12N )n

√
N‖ f ‖2

n∏
`=1

K [`−1,]`
` .

Remark. If ji ∈ (qϕ [̄i−1⊗q
ϕ]̄i
)L2(R3

×R3) for all i = 1, . . . , , n and if f ∈ L2
⊥
(R3), then5(2)

],[( j1, . . . , jn)
and 5(1)

],[( j1, . . . , jn; f ) map F≤N
⊥ϕ into itself.

Proof. We consider operators of the form (2-10). Let us assume, for example, that [0 = · and ]n = · .
Then we have, writing bx1 = ax1(1−N/N )1/2 and byn = ayn (1−N/N )1/2 and using the pull-through
formula g(N )ax = ax g(N − 1),

5
(2)
],[( j1, . . . , jn)=

∫
ax1

(
N −N

N

)1/2

a]1
y1
· · · a]n−1

yn−1
a[n−1

xn
ayn

(
N −N

N

)1/2 n∏
`=1

j`(x`; y`) dx` dy`

=

∫
ax1a]1

y1
· · · a]n−1

yn−1
a[n−1

xn
ayn

(
N −N + 1

N

)1/2(N −N
N

)1/2 n∏
`=1

j`(x`; y`) dx` dy`

=

n∏
`=1

A[`−1,]`( j`)
(

N −N + 1
N

)1/2(N −N
N

)1/2

,

where we used the definition (2-4). The first bound in (2-13) follows therefore from Lemma 2.1. The
other estimates can be shown similarly. �

3. Generalized Bogoliubov transformations

For a kernel η ∈ L2(R3
×R3) with η(x; y)= η(y; x), we define

B(η)= 1
2

∫
[η(x; y)b∗x b∗y − η̄(x; y)bx by] dx dy. (3-1)
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Observe that, with the notation introduced in (2-9),

B(η)= 1
2 [B∗,∗(η)− B∗

∗,∗(η)] = −
1
2 [B · ,·(η)− B∗

· ,·(η)].

Generalized Bogoliubov transformations are unitary operators having the form

eB(η)
= exp

[
1
2

∫
(η(x; y)b∗x b∗y − η̄(x; y)bx by)

]
. (3-2)

It is clear that B(η), eB(η)
: F≤N

→ F≤N. Furthermore, if η ∈ (qϕ ⊗ qϕ)L2(R3
× R3) then we have

B(η), eB(η)
: F≤N
⊥ϕ → F≤N

⊥ϕ for any normalized ϕ ∈ L2(R3) (as above, qϕ = 1− |ϕ〉〈ϕ| is the projection
into the orthogonal complement of ϕ). It may be helpful to observe that, with the unitary operator U (ϕ)
defined in (1-26), we can write, according to (2-6),

B(η)= 1
2

U (ϕ)
∫

dx dy
[
η(x; y)a∗x a∗y

a(ϕ)a(ϕ)
N

− η̄(x; y)
a∗(ϕ)a∗(ϕ)

N
axay

]
U∗(ϕ). (3-3)

On states exhibiting Bose–Einstein condensation in ϕ (so that a(ϕ), a∗(ϕ)'
√

N ), we can therefore expect
the generalized Bogoliubov transformation (3-2) to be close to the standard Bogoliubov transformation

e B̃(η)
= exp

[
1
2

∫
(η(x; y)a∗x a∗y − η̄(x; y)axay)

]
, (3-4)

whose action on creation and annihilation operators is explicitly given by

e−B̃(η)a( f )e B̃(η)
= a(coshη( f ))+ a∗(sinhη( f̄ )), (3-5)

with the operators coshη, sinhη defined as in (1-22). Standard Bogoliubov transformations of the form
(3-4) were used in [Benedikter et al. 2015] to model correlations in the Gross–Pitaevskii regime for
approximately coherent Fock space initial data. In the present paper, since (3-4) does not map F≤N

⊥ϕ

into itself (it does not respect the truncation N ≤ N ), we prefer to work with generalized Bogoliubov
transformations of the form (3-2). The price that we have to pay is the fact that, in contrast to (3-5),
the action of exp(B(η)) on creation and annihilation operators is not explicit. Let us remark here that
generalized Bogoliubov transformations of the form exp(B(η)) were already used in [Seiringer 2011;
Grech and Seiringer 2013] to study the excitation spectrum in the mean-field regime. Here we will need
more detailed information on the action of these operators; the rest of this section is therefore devoted to
the study of the properties of generalized Bogoliubov transformations.

First of all, we need the following generalization of Lemma 4.3 of [Benedikter et al. 2015]; a similar
result was also proven in [Seiringer 2011].

Lemma 3.1. Let η ∈ L2(R3
×R3). Let B(η) be the antisymmetric operator defined in (3-1). For every

n1, n2 ∈ Z there exists a constant C = C(n1, n2, ‖η‖2) such that

e−B(η)(N + 1)n1(N + 1−N )n2eB(ϕ)
≤ C(N + 1)n1(N + 1−N )n2

as operator inequality on F≤N.
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Proof. We use Gronwall’s inequality. For a fixed ξ ∈ F≤N and s ∈ [0; 1], let

f (s)= 〈ξ, e−s B(η)(N + 1)n1(N + 1−N )n2es B(η)ξ〉.

We compute

f ′(s)= 〈ξ, e−s B(η)
[(N +1)n1(N+1−N )n2, B(η)]es B(η)ξ〉

= 〈es B(η)ξ, {(N +1)n1[(N+1−N )n2, B(η)]+[(N +1)n1, B(η)](N+1−N )n2}es B(η)ξ〉. (3-6)

From the pull-through formula Nb∗ = b∗(N + 1), we conclude that

[(N + 1−N )n2, B(η)] = 1
2 B∗,∗(η)[(N − 1−N )n2 − (N + 1−N )n2] + h.c.,

[(N + 1)n1, B(η)] = 1
2 B∗,∗(η)[(N + 3)n1 − (N + 1)n1] + h.c.

By the mean value theorem, we can find functions θ1, θ2 :N→ (0; 2) (depending also on N , n1, n2) such
that

(N − j + 1)n2 − (N − j − 1)n2 = 2n2(N + 1− j − θ1( j))n2−1,

( j + 3)n1 − ( j + 1)n1 = 2n1( j + 1+ θ2( j)).

Hence, the first term on the right-hand side of (3-6) can be written as

〈es B(η)ξ,(N+1)n1[(N+1−N )n2, B(η)]es B(η)ξ〉

=
1
2

〈
(N+1)n1es B(η)ξ,

(
B∗,∗(η)(N+1−N−θ1(N ))n2−1

+h.c.
)
es B(η)ξ

〉
=

1
2

〈
(N+1)n1/2(N+3−N−θ1(N−2))n2/2es B(η)ξ, B∗,∗(η)(N+3)n1/2(N+1−N−θ1(N ))n2/2−1es B(η)ξ

〉
+

1
2

〈
(N+1)n1/2(N+1−N−θ1(N ))n2/2es B(η)ξ, B · ,·(η)(N−1)n1/2(N+3−N−θ1(N−2))n2/2−1es B(η)ξ

〉
.

The Cauchy–Schwarz inequality implies with Lemma 2.3

|〈es B(η)ξ, (N + 1)n1[(N + 1−N )n2, B(η)]es B(η)ξ〉|

≤C‖(N+1)n1/2(N+3−N−θ1(N−2))n2/2es B(η)ξ‖‖(N+3)n1/2+1(N+1−N−θ1(N ))n2 N−1es B(η)ξ‖,

with a constant C depending on ‖η‖2. Since on F≤N we have N ≤ N and since 0 ≤ θ1(n) ≤ 2 for all
n ∈ N, we conclude that

|〈es B(η)ξ, (N + 1)n1[(N + 1−N )n2, B(η)]es B(η)ξ〉| ≤ C f (s)

for a constant C depending on ‖η‖2, n1, n2. The second term on the right-hand side of (3-6) can be
bounded similarly. We infer that f ′(s) ≤ C f (s). Gronwall’s inequality implies that f (s) ≤ eCs f (0).
Hence, taking s = 1, and renaming the constant C , we obtain

〈ξ, e−B(η)(N + 1)n1(N + 1−N )n2eB(η)ξ〉 ≤ C〈ξ, (N + 1)n1(N + 1−N )n2ξ〉,

which concludes the proof of the lemma. �
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We will need to express the action of the generalized Bogoliubov transformation eB(η) on the b-fields
by means of a convergent series of nested commutators. To this end, we start by noticing that, for
f ∈ L2(R3),

e−B(η)b( f )eB(η)
= b( f )+

∫ 1

0
ds d

ds
e−s B(η)b( f )es B(η)

= b( f )−
∫ 1

0
ds e−s B(η)

[B(η), b( f )]es B(η)

= b( f )− [B(η), b( f )] +
∫ 1

0
ds1

∫ s1

0
ds2 e−s2 B(η)

[B(η), [B(η), b( f )]]es2 B(η).

Iterating m times, we obtain

e−B(η)b( f )eB(η)

=

m−1∑
n=1

(−1)n
ad(n)B(η)(b( f ))

n!
+

∫ 1

0
ds1

∫ s1

0
ds2 · · ·

∫ sm−1

0
dsm e−sm B(η)ad(m)B(η)(b( f ))esm B(η), (3-7)

where we introduced the notation ad(n)B(η)(A) defined recursively by

ad(0)B(η)(A)= A and ad(n)B(η)(A)= [B(η), ad(n−1)
B(η) (A)].

We will show later that, under suitable assumptions on η, the error term on the right-hand side of
(3-7) is negligible in the limit m → ∞. This means that the action of the generalized Bogoliubov
transformation B(η) on b( f ) and similarly on b∗( f ) can be described in terms of the nested commutators
adB(η)(A) for A = b( f ) or A = b∗( f ). In the next lemma, we give a detailed analysis of these terms.

For a kernel η ∈ L2(R3
×R3), we will use the notation

η(n) =


1 for n = 0,
(ηη̄)` if n = 2`, ` ∈ N\{0},
(ηη̄)`η if n = 2`+ 1, ` ∈ N.

(3-8)

Here we, identify η ∈ L2(R3
×R3) with the Hilbert–Schmidt operator acting on L2(R3), having integral

kernel η. To avoid keeping track of complex conjugations of η-kernels, we also introduce the following
notation. For \ ∈ { · , ∗} we write η\ = η if \ = · and η\ = η̄ if \ = ∗. More generally, for n ∈ N, and
(\1, . . . , \n) ∈ { · , ∗}

n , we will use the notation η(n)\ = η\1η\2 · · · η\n , in the sense of products of operators.
Also for a function f ∈ L2(R3), we use the notation f\ = f if \= · and f\ = f̄ if \= ∗.

Lemma 3.2. Let η ∈ L2(R3
×R3) be such that η(x; y)= η(y; x) for all x, y ∈ R3. Let B(η) be defined

as in (3-1). Let n ∈ N and f ∈ L2(R3). Then the nested commutators ad(n)B(η)(b( f )) can be written as the
sum of exactly 2nn! terms, with the following properties:

(i) Possibly up to a sign, each term has the form

3132 · · ·3i
1

N k5
(1)
],[(η

( j1)
\1
, . . . , η

( jk)
\k
; η

(s)
\ ( f♦)) (3-9)
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for some i, k, s ∈ N, j1, . . . , jk ∈ N\{0}, ♦ ∈ { · , ∗}, ] ∈ { · , ∗}k , [ ∈ { · , ∗}k+1, \v ∈ { · , ∗} jv for all
v = 1, . . . , k and \ ∈ { · , ∗}s . In (3-9), each operator 3w : F≤N

→ F≤N is a factor (N −N )/N, a factor
(N + 1−N )/N or an operator of the form

1
N p5

(2)
],[(η

(m1)
\1

, η
(m2)
\2

, . . . , η
(m p)

\p
) (3-10)

for some p,m1, . . . ,m p ∈ N\{0}, ], [ ∈ { · , ∗}p, \v ∈ { · , ∗}mv for all v = 1, . . . , p.

(ii) If a term of the form (3-9) contains m ∈N factors (N −N )/N or (N + 1−N )/N and j ∈N factors
of the form (3-10) with 5(2)-operators of order p1, . . . , pj ∈ N\{0}, then we have

m+ (p1+ 1)+ · · ·+ (pj + 1)+ (k+ 1)= n+ 1. (3-11)

(iii) If a term of the form (3-9) contains (considering all 3-operators and the 5(1)-operator) the kernels
η
(i1)
\1
, . . . , η

(im)
\m

and the wave function η(s)\ ( f♦) for some m, s ∈ N, i1, . . . , im ∈ N\{0}, \r ∈ { · , ∗}ir for
all r = 1, . . . ,m, \ ∈ { · , ∗}s then

i1+ · · ·+ im + s = n.

(iv) There is exactly one term having the form(
N −N

N

)n/2(N + 1−N
N

)n/2

b(η(n)( f )) (3-12)

if n is even, and

−

(
N −N

N

)(n+1)/2(N −N + 1
N

)(n−1)/2

b∗(η(n)( f̄ )) (3-13)

if n is odd.

(v) If the 5(1)-operator in (3-9) is of order k ∈ N\{0}, it has either the form∫
b[0

x1

k−1∏
i=1

a]i
yi

a[i
xi+1

a∗yk
a(η(2r)( f ))

k∏
i=1

η
( ji )
\i
(xi ; yi ) dxi dyi

or the form ∫
b[0

x1

k−1∏
i=1

a]i
yi

a[i
xi+1

ayk a∗(η(2r+1)( f̄ ))
k∏

i=1

η
( ji )
\i
(xi ; yi ) dxi dyi

for some r ∈ N, j1, . . . , jk ∈ N\{0}. If it is of order k = 0, then it is either given by b(η(2r)
\ ( f♦)) or by

b∗(η(2r+1)
\ ( f♦)), for some r ∈ N.

(vi) For every nonnormally ordered term of the form∫
dx dy η(i)\ (x; y)axa∗y ,

∫
dx dy η(i)\ (x; y)bxa∗y ,

∫
dx dy η(i)\ (x; y)ax b∗y, or

∫
dx dy η(i)\ (x; y)bx b∗y

appearing either in the 3-operators or in the 5(1)-operator in (3-9), we have i ≥ 2.
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Remark. Similarly, the nested commutator ad(n)(b∗( f )) can be written as the sum of 2nn! terms of the
form

1
N k 5̃

(1)
],[(η

( j1)
\1
, . . . , η

( jk)
\k
; η

(`)
\k+1
( f♦))3132 · · ·3i

satisfying properties analogous to those listed in (i)–(vi).

Proof. We prove the lemma by induction. For n = 0 all claims are trivially satisfied. For the induction
step from n to n+ 1 we first compute, using (2-7) and (2-8), the commutators

[B(η), bz] = −
N −N

N
b∗(ηz)+

1
N

∫
dx dy η(x; y)b∗xa∗yaz

=−b∗(ηz)
N + 1−N

N
+

1
N

∫
dx dy η(x; y)aza∗yb∗x ,

[B(η), b∗z ] = −b(ηz)
N −N

N
+

1
N

∫
dx dy η̄(x; y)a∗z aybx

=−
N + 1−N

N
b(ηz)+

1
N

∫
dx dy η̄(x; y)bxaya∗z ,

[B(η), a∗z aw] = [B(η), awa∗z ] = −b∗z b∗(ηw)− b(ηz)bw,

[B(η), N −N ] = [B(η), N + 1−N ] =
∫

dx dy (η(x, y)b∗x b∗y + η̄(x; y)bx by).

(3-14)

From ad(n+1)
B(η) (b( f ))= [B(η), ad(n)B(η)(b( f ))] and by linearity, it is enough to analyze

[B(η),3132 · · ·3i N−k5
(1)
],[(η

( j1)
\1
, . . . , η

( jk)
\k
; η

(`)
\k+1
( f♦))], (3-15)

with the operator 3132 · · ·3i N−k5
(1)
],[(η

( j1)
\1
, . . . , η

( jk)
\k
; η

(s)
\ ( f♦)) satisfying properties (i)–(vi). Applying

the Leibniz rule [A, BC] = [A, B]C+ B[A,C], the commutator (3-15) is given by a sum of terms, where
B(η) is either commuted with a 3-operator, or with the 5(1)-operator.

Let’s consider first the case that B(η) is commuted with a 3-operator, assuming further that 3 is either
the operator (N −N )/N or the operator (N + 1−N )/N. The last line in (3-14) implies that such an
operator 3 is replaced, after commutation with B(η), by the sum

N−15(2)
∗,∗(η)+ N−15(2)

· ,·(η̄). (3-16)

With this replacement, we generate two terms contributing to ad(n+1)
B(η) (b( f )). Let us check that these new

terms satisfy the properties (i)–(vi) (of course, with n replaced by (n+ 1)). Property (i) is obviously true.
Also (ii) remains valid, because replacing a factor (N −N )/N or (N +1−N )/N by one of the two sum-
mands in (3-16), the index m will decrease by 1, but there will be an additional factor of 2 because we added
a 5(2)-operator of order 1. Since exactly one additional kernel η\ is inserted, also (iii) continues to hold
true. The factor 5(1) is not affected by the replacement; hence the new terms will continue to satisfy (v).
Furthermore, since both terms in (3-16) are normally ordered, also (vi) remains valid, by the induction as-
sumption. We observe, finally, that the two terms we generated here do not have the form appearing in (iv).
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Next, we consider the commutator of B(η)with a3-operator of the form3=N−p5
(2)
],[(η

(m1)
\1

, . . . ,η
(m p)

\p
)

for a p ∈ N (p ≤ n by (ii)). By definition,

3= N−p
∫

b[0
x1

p−1∏
i=1

a]i
yi

a[i
xi+1

b]p
yp

p∏
i=1

η
(mi )
\i

(xi ; yi ) dxi dyi . (3-17)

If [B(η), · ] hits b[0
x1 , the first two relations in (3-14) imply that 3 is replaced by a sum of two operators,

the first one being either

−
N −N

N
N−p5

(2)
],[̃
(η
(m1+1)
\1

, η
(m2)
\2

, . . . , η
(m p)

\p
) or

−
N + 1−N

N
N−p5

(2)
],[̃
(η
(m1+1)
\1

, η
(m2)
\2

, . . . , η
(m p)

\p
)

(3-18)

depending on whether [0 = · or [0 = ∗ (here [̃= ([̄0, [1, . . . , [p−1) with [̄0 = · if [0 = ∗ and [̄0 = ∗ if
[0 = · ). The second operator emerging when [B(η), · ] hits b[0

x1 is a 5(2)-operator of order p+1 given by

N−(p+1)5
(2)
]̃,[̃
(η\0, η

(m1)
\1

, . . . , η
(m p)

\p
), (3-19)

where ]̃= ([̄0, ]1, . . . , ]p), [̃= ([̄0, [0, . . . , [p−1) and \0 = [0.
For both terms (3-18) and (3-19), (i) is clearly correct and also (ii) remains true (when we replace (3-17)

with (3-18), the number of (N −N )/N - or (N −N + 1)/N -operators increases by 1, while everything
else remains unchanged; similarly, when we replace (3-17) with (3-19), the order of the 5(2)-operator
increases by 1, while the rest remains unchanged). Property (iii) remains true as well, since, in (3-18), the
power m1+ 1 of the first η-kernel is increased by one unit and, in (3-19), there is one additional factor
η, compared with (3-17). Property (v) remains valid, since the 5(1)-operator on the right is not affected
by this commutator. Property (vi) remains true in (3-18), because m1+ 1 ≥ 2. It remains true also in
(3-19). In fact, according to (3-14), when switching from (3-17) to (3-19), we are effectively replacing
b→ b∗a∗a or b∗→ baa∗. Hence, the first pair of operators in (3-19) is always normally ordered. As for
the second pair of creation and annihilation operators (the one associated with the kernel η(m1)

\1
in (3-19)),

the first field is of the same type as the original b-field appearing in (3-17); hence nonnormally ordered
pairs cannot be created. Finally, we remark that the terms we generated here are certainly not of the form
in (iv) (because for terms as in (iv) all 3-factors must be either (N −N )/N or (N + 1−N )/N, and this
is not the case, for terms containing (3-18) or (3-19)).

The same arguments can be applied if B(η) hits the factor b]p
yp on the right of (3-17) (in this case,

we use the identities for the first two commutators in (3-14) having the b-field to the left of the factors
(N + 1−N )/N and (N −N )/N and to the right of the aza∗y and a∗z ay-operators).

If now B(η) hits a term a∗yr
axr+1 or ayr a∗xr+1

in (3-17), for an r=1, . . . , p−1, then (3-14) implies that3=
N−p5

(2)
],[(η

(m1)
\1

, . . . , η
(m p)

\p
) is replaced by the sum of the two terms, given by

−[N−r5
(2)
]′,[′(η

(m1)
\1

, . . . , η
(mr+1)
\′r

)][N−(p−r)5
(2)
]
′′
,[
′′ (η

(mr+1)
\r+1

, . . . , η
(m p)

\p
)] (3-20)
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and by

−[N−r5
(2)
]
′′′
,[
′ (η

(m1)
\1

, . . . , η
(mr )
\′r

)][N−(p−r)5
(2)
]
′′
,[
′′′ (η

(mr+1+1)
\
′

r+1
, . . . , η

(m p)

\p
)], (3-21)

with [′ = ([0, . . . , [r−1), [′′ = ([r , . . . , [p−1), [
′′′

= ([̄r , [r+1, . . . , [p−1) and with ]′ = (]1, . . . , ]r−1, ]̄r ),
]
′′

= (]r+1, . . . , ]p), ]
′′′

= (]1, . . . , ]r ) (here, we set ]̄r = ∗ if ]r = · and ]̄r = · if ]r = ∗, and similarly
for [̄r−1). The precise forms of \′r and \′r+1 do not play an important role (they are given by \′r = (\r , ]r )

and \′r+1 = (\r+1, [r )). The new terms containing (3-20) and (3-21) clearly satisfy (i). Furthermore, (ii)
remains true because the contribution of the original 3 to the sum in (3-11), which was given by p+ 1 is
now replaced by (r+1)+(p−r+1)= p+2. Clearly, (iii) remains true as well, since, for both terms (3-20)
and (3-21), the total powers of the η-kernels is increased exactly by 1. As before, the terms we generated
do not have the form (iv). Property (v) continues to hold true, because the 5(1)-term is unaffected. As for
(vi), we observe that nonnormally ordered pairs can only be created where ]r is changed to ]̄r (in the term
where ]′ appears) or where [r is changed to [̄r (in the term where [′′′ appears). In both cases, however, the
change ]r → ]̄r and [r → [̄r comes together with an increase in the power of the corresponding η-kernel
(i.e., η(mr )

\r
is changed to η(mr+1)

\′r
in the first case, while η(mr+1)

\r+1
is changed to η(mr+1+1)

\′r+1
in the second case).

Since mr + 1,mr+1+ 1≥ 2, even if nonnormally ordered terms are created, they still satisfy (vi).
Next, let us consider the terms arising from commuting B(η) with the operator

N−k5
(1)
],[(η

( j1)
\1
, . . . , η

( jk)
\k
; η

(s)
\ ( f♦))

= N−k
∫

b[0
x1

k−1∏
i=1

a]i
yi

a[i
xi+1

a]k
yk

a[k (η
(s)
\ ( f♦))

k∏
i=1

η
( ji )
\i
(xi ; yi ) dxi dyi . (3-22)

We argue similarly to the case in which B(η) hits a 5(2)-operator like (3-17). In particular, if B(η) hits
the operator b[0

x1 , the operator (3-22) is replaced by the sum of two terms, the first one being

−
N −N

N
N−p5

(1)
],[̃
(η
(m1+1)
\′1

, η
(m2)
\2

, . . . , η
(mk)
\k
; η

(s)
\ ( f♦)) or

−
N + 1−N

N
N−p5

(1)
],[̃
(η
(m1+1)
\′1

, η
(m2)
\2

, . . . , η
(mk)
\k
; η

(s)
\ ( f♦)),

depending on whether [0 = · or [0 = ∗ (with [̃= ([̄0, [1, . . . , [k−1)) and the second one being

N−(k+1)5
(1)
]̃,[̃
(η, η

(m1)
\1

, . . . , η
(mk)
\k

, η
(s)
\ ( f♦)),

with ]̃= ([̄0, ]1, . . . , ]k) and [̃= ([̄0, [1, . . . , [k). As we did in the analysis of (3-18) and (3-19), one can
show that both these terms satisfy all properties (i), (ii), (iii), (v), (vi) (we will discuss (iv) below).

If instead B(η) hits one of the factors a]r
yr a[rxr+1 for an r = 1, . . . , k − 1, the resulting two terms will

have the form

−[N−r5
(2)
]′,[′(η

(m1)
\1

, . . . , η
(mr+1)
\′r

)][N−(k−r)5
(1)
]
′′
,[
′′ (η

(mr+1)
\r+1

, . . . , η
(mk)
\k
; η

(s)
\ ( f♦))] (3-23)

or

−[N−r5
(2)
]
′′′
,[
′ (η

(m1)
\1

, . . . , η
(mr )
\′r

)][N−(k−r)5
(1)
]
′′
,[
′′′ (η

(mr+1+1)
\
′

r+1
, . . . , η

(mk)
\k
; η

(s)
\ ( f♦))], (3-24)
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with ]′, ]
′′

, ]
′′′

and [′, [
′′

, [
′′′

as defined after (3-21). Proceeding much as we did in (3-21), we can show
that these terms satisfy (i), (ii), (iii), (v) and (vi).

Let us now consider the case that (3-22) is commuted with the last pair of operators appearing in (3-22).
From the induction assumption, we know that this pair can only be a∗yk

a(η(2r)( f )) or ayk a∗(η(2r+1)( f̄ )).
In the first case, (3-22) is replaced by

−5
(2)
],[′(η

( j1)
\1
, . . . , η

( jk)
\k
) b∗(η(2r+1)( f̄ ))−5(2)

]′,[′(η
( j1)
\1
, . . . , η

( jk−1)
\k−1

, η
( jk+1)
\′k

) b(η(2r)( f )). (3-25)

In the second case, it is replaced by

−5
(2)
]′,[′(η

( j1)
\1
, . . . , η

( jk−1)
\k−1

, η
( jk+1)
\′k

)b∗(η(2r+1)( f̄ ))−5(2)
]′,[′(η

( j1)
\1
, . . . , η

( jk)
\k
)b(η(2r+2)( f )). (3-26)

In (3-25), (3-26), we used the notation [′ = ([0, . . . , [k−1), ]′ = (]1, . . . , ]̄k) (as usual, the precise form
of \′k is not important). From the expressions (3-25), (3-26), we see that also in this case, (i), (ii), (iii),
(v) and (vi) are satisfied.

As for (iv), from the induction assumption we know that there is exactly one term in the expansion
for ad(n)B(η)(b( f )) given by (3-12) if n is even and by (3-13) if n is odd. Let us take, for example, (3-12).
If we commute the zero-order 5(1)-operator b(η(n)( f )) in (3-12) with B(η), we obtain exactly the term
in (3-13), with n replaced by n+ 1 (together with a second term, containing a 5(1)-operator of order 1).
Similarly, if we take (3-13) and we commute the 5(1)-operator b∗(η(n)( f̄ )) with B(η), we get (3-12),
with n replaced by n+ 1. Looking at the terms above, it is clear that there can be only one term with
this form. This shows that also in the expansion for ad(n+1)

B(η) (b( f )), there is exactly one term of the form
given in (iv).

Finally, let us count the number of terms in the expansion for ad(n+1)
B(η) (b( f )). By the inductive

assumption, the expansion for ad(n)B(η)(b( f )) contains exactly 2nn! terms. By (ii), each of these terms is
a product of exactly n+ 1 operators, each of them being (N −N ), (N + 1−N ), a field operator b]x or
a quadratic factor a]ya[x commuting with the number of particles operator. By (3-14), the commutator
of B(η) with each such factor gives a sum of two terms. Therefore, by the product rule, ad(n+1)

B(η) (b( f ))
contains 2n(n!)× 2(n+ 1)= 2(n+1)(n+ 1)! summands. This concludes the proof of the lemma. �

From Lemma 3.2, we immediately obtain a convergent series expansion for the conjugation of the
fields b( f ) and b∗( f ) with the unitary operator exp(B(η)).

Lemma 3.3. Let η ∈ L2(R3
×R3) be symmetric, with ‖η‖2 sufficiently small. Then we have

e−B(η)b( f )eB(η)
=

∞∑
n=0

(−1)n

n!
ad(n)B(η)(b( f )),

e−B(η)b∗( f )eB(η)
=

∞∑
n=0

(−1)n

n!
ad(n)B(η)(b

∗( f )),

(3-27)

where the series on the right-hand sides are absolutely convergent.
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Proof. From (3-7) we have

e−B(η)b( f )eB(η)

=

m−1∑
n=1

(−1)n
ad(n)B(η)(b( f ))

n!
+

∫ 1

0
ds1

∫ s1

0
ds2 · · ·

∫ sm−1

0
dsm e−sm B(η)ad(m)B(η)(b( f ))esm B(η). (3-28)

To prove (3-27), we show that the norm of the error term converges to zero as m→∞. By Lemma 3.2,
ad(n)B(η)(b( f ) is given by a sum of 2nn! terms of the form

31 · · ·3i
1

N k5
(1)
],[(η

( j1)
\1
, . . . , η

( jk)
\k
; η(`)( f♦)), (3-29)

with i, k, ` ∈ N, j1, . . . , jk ∈ N\{0} and where each 3r is (N −N )/N, (N + 1−N )/N or an operator
of the form

1
N p5

(2)
],[(η

(m1)
\1

, . . . , η
(m p)

\p
).

On F≤N, we have the bounds ‖(N −N )/N‖ ≤ 1 and ‖(N + 1−N )/N‖ ≤ 2. Lemma 2.4 implies that

N−p
‖5

(2)
],[(η

(m1)
\1

, . . . , η
(m p)

\p
)‖ ≤ (12)p(2‖η‖2)m1+···+m p

and that
N−k
‖5

(1)
],[(η

( j1)
\1
, . . . , η

( jk)
\k
; η(`)( f♦))‖ ≤ (12)k

√
N‖ f ‖2(2‖η‖2)`+ j1+···+ jk .

Here we used the fact that, if a kernel η( j) is associated with a normally ordered pair of creation and
annihilation operators, then ‖η( j)

‖HS ≤ ‖η‖
j
HS. If instead η( j) is associated with a nonnormally ordered

pair, then point (vi) in Lemma 3.2 implies that j ≥ 2. Hence,∫ ∣∣∣∣η( j)(x; x)
∣∣∣∣ dx =

∫ ∣∣∣∣∫ η(x; y)η( j−1)(y; x) dy
∣∣∣∣ dx

≤

(∫
|η(x; y)|2 dx dy

)1/2(∫
|η( j−1)(x; y)|2 dx dy

)1/2

≤ ‖η‖2‖η
( j−1)
‖2 ≤ ‖η‖

j
2.

Therefore, if the term (3-29) contains 5(2)-operators of order p1, . . . , pj ∈ N\{0}, we can bound∥∥∥∥31 · · ·3i
1

N k5
(1)
],[(η

( j1)
\1
, . . . , η

( jk)
\k
; η(`)( f♦))

∥∥∥∥≤ 12p1+···+pj+k
√

N (2‖η‖2)m ≤
√

N‖ f ‖2Cm
‖η‖m

and therefore, since ad(m)B(η)(b( f )) is the sum of 2mm! terms,

‖ad(m)B(η)(b( f ))‖ ≤
√

N‖ f ‖2(2C‖η‖2)mm! . (3-30)

This proves, first of all, that the series on the right-hand side of (3-27) converges absolutely, if ‖η‖2 ≤
(4C)−1. Under this condition, (3-30) also implies that the error term on the right-hand side of (3-28)
converges to zero, as m→∞, since∥∥∥∥∫ 1

0
ds1 · · ·

∫ sm−1

0
dsm e−sm B(η)adB(η)(b( f ))esm B(η)

∥∥∥∥≤√N‖ f ‖2(2C‖η‖)m . �
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4. Fluctuation dynamics

In this section, we are going to define the fluctuation dynamics describing the evolution of orthogonal
excitations of the Bose–Einstein condensate.

Instead of comparing the solution of the many-body Schrödinger equation (1-8) directly with the solution
of the Gross–Pitaevskii equation (1-12), it is convenient to introduce a modified, N -dependent, Gross–
Pitaevskii equation. To this end, we fix `> 0 and we consider the ground state f` of the Neumann problem(

−1+ 1
2 V
)

f` = λ` f` (4-1)

on the ball |x |≤ N`, such that the radial derivative ∂r f`(x) is zero for |x |= N` (we omit the N -dependence
in the notation for f` and for λ`; notice that λ` scales as N−3). The solution f` is radial, and we can nor-
malize it so that f`(x)= 1 for |x | = N`. We extend f` to R3 by setting f`(x)= 1 for all |x |> N`. We also
definew`=1− f` (so thatw`(x)=0 if |x |>N`). By scaling, we observe that f`(N · ) satisfies the equation(

−1+ 1
2 N 2V (N · )

)
f`(N · )= N 2λ` f`(N · ) (4-2)

on the ball |x | ≤ ` (` > 0 will be kept fixed, independent of N ). With this choice, we expect that f`
will be close, in the limit of large N, to the solution of the zero-energy scattering equation (1-2). This
is confirmed by the next lemma, where we collect some important properties of f`. Most of the these
results are taken from Lemma A.1 of [Erdős et al. 2006].

Lemma 4.1. Let V ∈ L3(R3) be a nonnegative, spherically symmetric potential with V (x) = 0 for all
|x |> R. Fix ` > 0 and let f` denote the solution of (4-1):

(i) We have

λ` =
3a0

N 3`3

(
1+O

(
a0

N`

))
.

(ii) We have 0≤ f`, w` ≤ 1 and ∫
dx V (x) f`(x)= 8πa0+O(N−1). (4-3)

(iii) There exists a constant C > 0, depending on the potential V, such that

w`(x)≤
C
|x | + 1

and |∇w`(x)| ≤
C

|x |2+ 1
(4-4)

for all |x | ≤ N`.

Proof. Statement (i), the fact that 0≤ f`, w` ≤ 1, and statement (iii) follow from Lemma A.1 in [Erdős
et al. 2006]. We have to show (4-3). To this end, we adapt the proof of Lemma 5.1(iv) of [Erdős et al.
2010]. With r = |x |, we may write m(r)= r f`(r). We find that, for all r ∈ (R, N`],

m(r)= λ−1/2
` sin(λ1/2

` (r − N`))+ N` cos(λ1/2
` (r − N`)). (4-5)

By expanding up to the order O(λ2
`) we obtain

m(r)= r − a0+O(N−1), m′(r)= 1+O(N−1). (4-6)
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Hence ∫
dx V (x) f`(x)= 4π

∫ R

0
dr r V (r)m(r)

= 8π
∫ R

0
dr (rm′′(r)+ λ`r2 f`(r))

= 8π
∫ R

0
dr rm′′(r)+ O(N−3)

= 8π(Rm′(R)−m(R))+O(N−1)= 8πa0+O(N−1), (4-7)

completing the proof. �

Next, we introduce the modified Gross–Pitaevskii equation†

i∂t ϕ̃t =−1ϕ̃t + (N 3V (N · ) f`(N · ) ∗ |ϕ̃t |
2)ϕ̃t , (4-8)

with initial data ϕ̃t=0 = ϕ describing the Bose–Einstein condensate at time t = 0. While in Theorem 1.2
the notation ϕ is already used to indicate the initial condensate wave function, in the proof of Theorem 1.1
we will choose ϕ = φGP to be the minimizer of the Gross–Pitaevskii functional (1-6). In both cases, we
assume that ϕ ∈ H 4(R3).

Notice that, in contrast with the initial data ϕ, the solution ϕ̃t depends on N. With (4-3), one can
show that ϕ̃t converges towards the solution of the original Gross–Pitaevskii equation (1-12) as N →∞.
This fact and some other important properties of the solutions of (1-12) and (4-8) are listed in the next
proposition, whose proof can be found in Theorem 3.1 of [Benedikter et al. 2015], with the only difference
that, in that paper, the modified Gross–Pitaevskii equation was defined through the solution f of the
zero-energy scattering equation, while here we work with the Neumann ground state f`. The only relevant
consequence is the fact that, here, the integral of f` against V is not exactly equal to 8πa0; the error,
however, is of order N−1 by (4-3).

Proposition 4.2. Let V ∈ L3(R3) be a nonnegative, spherically symmetric, compactly supported potential.
Let ϕ ∈ H 1(R3) with ‖ϕ‖2 = 1:

(i) Well-posedness: For any ϕ ∈ H 1(R3), with ‖ϕ‖2 = 1, there exist unique global solutions t→ ϕt and
t→ ϕ̃t in C(R, H 1(R3)) of the Gross–Pitaevskii equation (1-12) and, respectively, of the modified Gross–
Pitaevskii equation (4-8) with initial datum ϕ. We have ‖ϕt‖2 = ‖ϕ̃t‖2 = 1 for all t ∈ R. Furthermore,
there exists a constant C > 0 such that

‖ϕt‖H1, ‖ϕ̃t‖H1 ≤ C.

(ii) Propagation of higher regularity: If ϕ ∈ H m(R3) for some m ≥ 2, then ϕt , ϕ̃t ∈ H m(R3) for every
t ∈ R. Moreover, there exist constants C > 0, depending on m and on ‖ϕ‖Hm , and c > 0, depending on m

†It is convenient to work with this modified equation, rather than directly with the Gross–Pitaevskii equation (1-12), to obtain
a cleaner cancellation between the contributions (5-47) and (5-100) to the generator of the fluctuation dynamics (4-24).
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and on ‖ϕ‖H1 , such that, for all t ∈ R,

‖ϕt‖Hm , ‖ϕ̃‖Hm ≤ Cec|t |. (4-9)

(iii) Regularity of time-derivatives: Suppose ϕ ∈ H 4(R3). Then there exist C > 0, depending on ‖ϕ‖H4 ,
and c > 0, depending on ‖ϕ‖H1 , such that, for all t ∈ R,

‖ ˙̃ϕ‖H2, ‖ ¨̃ϕ‖H2 ≤ Cec|t |.

(iv) Comparison of dynamics: Suppose ϕ ∈ H 2(R3). Then there exists a constant c > 0, depending on
‖ϕ‖H2 , such that, for all t ∈ R,

‖ϕt − ϕ̃t‖2 ≤ C N−1 exp(c exp(c|t |). (4-10)

To compare the many-body evolution ψN, t with products of the solution ϕ̃t of the modified Gross–
Pitaevskii equation (1-12), we are going to define a unitary map (already discussed in Section 1, after
(1-25)) that was first introduced in [Lewin et al. 2015a; 2015b] in the mean-field setting. To this end, we
remark that every ψN ∈ L2

s (R
3N ) has a unique representation of the form

ψN =

N∑
n=0

ψ
(n)
N ⊗s ϕ̃

⊗(N−n)
t , (4-11)

where ψ (n)N ∈ L2
⊥ϕ̃t
(R3)⊗sn is symmetric with respect to permutations and orthogonal to ϕ̃t , in each

of its coordinates, and where, for ψ (n)N ∈ L2
⊥
(R3)⊗sn and ψ (k)N ∈ L2

⊥
(R3)⊗sk , ψ (n)N ⊗s ψ

(k)
N denotes the

symmetrized product defined by

ψ
(k)
N ⊗sψ

(n)
N (x1, . . . , xk+n)=

1
√

k!n!(k+n)!

∑
σ∈Sk+n

ψ
(k)
N (xσ(1), . . . , xσ(k))ψ

(n)
N (xσ(k+1), . . . , xσ(k+n)). (4-12)

Using the representation (4-11), we define UN, t : L2
s (R

3N )→ F≤N
⊥ϕ̃t

by setting

UN, tψN = {ψ
(0)
N , ψ

(1)
N , . . . , ψ

(N )
N }. (4-13)

In terms of creation and annihilation operators, the map UN, t is given by

UN, tψN =

N⊕
n=0

(1− |ϕ̃t 〉〈ϕ̃t |)
⊗n a(ϕ̃t)

N−n
√
(N − n)!

ψN .

Here, and frequently in the sequel, we identify the wave function ψN ∈ L2
s (R

3N ) with the Fock-space
vector {0, . . . , 0, ψN , 0, . . . } ∈ F . From (4-11) and by the requirement of orthogonality, it is easy to
check that ‖ψN‖

2
=
∑N

n=0 ‖ψ
(n)
N ‖

2. Hence, UN, t : L2
s (R

3N )→ F≤N
⊥ϕ̃t

is a unitary map, with inverse

U∗N, t {ψ
(0)
N , ψ

(1)
N , . . . , ψ

(N )
N } =

N∑
n=0

a∗(ϕ̃t)
N−n

√
(N − n)!

ψ
(n)
N .
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The action of UN, t on creation and annihilation operators is determined by the following rules, see [Lewin
et al. 2015a; 2015b]:

UN, t a∗(ϕ̃t)a(ϕ̃t)U∗N, t = N −N ,

UN, t a∗( f )a(ϕ̃t)U∗N, t = a∗( f )
√

N −N =
√

N b∗( f ),

UN, t a∗(ϕ̃t)a(g)U∗N, t =
√

N −Na(g)=
√

N b(g),

UN, t a∗( f )a(g)U∗N, t = a∗( f )a(g)

(4-14)

for all f, g ∈ L2
⊥ϕ̃t
(R3). Here we used modified creation and annihilation operators, as defined in (2-5).

With UN, t we factor out the condensate and we focus on its orthogonal excitations. Observe, however,
that UN, t does not remove correlations, which are known to play a crucial role in the Gross–Pitaevskii
regime; see, for example, [Erdős et al. 2009a; 2010; 2016]. To remove correlations from the excitation
vectors, we are going to use a generalized Bogoliubov transformation, as introduced in Section 3. We
define

kt(x; y)=−Nw`(N (x − y))ϕ̃t(x)ϕ̃t(y). (4-15)

From Lemma 4.1, it follows that kt ∈ L2(R3
×R3), with L2-norm bounded uniformly in N. Hence, kt is

the integral kernel of a Hilbert–Schmidt operator on L2(R3), which we denote again with kt . We define a
new Hilbert–Schmidt operator setting

ηt = (1− |ϕ̃t 〉〈ϕ̃t |) kt (1− | ¯̃ϕt 〉〈 ¯̃ϕt |). (4-16)

Also in this case, we will denote by ηt both the Hilbert–Schmidt operator defined in (4-16) and its integral
kernel. Note that ηt ∈ (qϕ̃t ⊗ qϕ̃t )L

2(R3
×R3), where qϕ̃t = 1− |ϕ̃t 〉〈ϕ̃t |. Let us write ηt = kt +µt , with

the Hilbert–Schmidt operator

µt = |ϕ̃t 〉〈ϕ̃t | kt | ¯̃ϕt 〉〈 ¯̃ϕt | − |ϕ̃t 〉〈ϕ̃t | kt − kt | ¯̃ϕt 〉〈 ¯̃ϕt |. (4-17)

In the next lemma we collect some important properties of the operators ηt , kt , µt .

Lemma 4.3. Let ϕ̃t be the solution of (4-8) with initial datum ϕ ∈ H 4(R). Let w` = 1− f`, with f` the
ground state solution of the Neumann problem (4-1). Let kt , ηt , µt be defined as in (4-15), (4-16), (4-17).
Then there exist constants C, c > 0 depending only on ‖ϕ‖H4 (in many cases, these constants actually
depend only on lower Sobolev norms of ϕ) and on V such that the following bounds hold true for all t ∈R:

(i) We have
‖ηt‖2 ≤ C, ‖η(n)t ‖2 ≤ ‖ηt‖

n
2 ≤ Cn and lim

`→0
sup

t∈R, N∈N

‖ηt‖2 = 0 (4-18)

and also

‖∇jηt‖2 ≤ C
√

N , ‖∇jµt‖2 ≤ C, ‖∇jη
(n)
t ‖2 ≤ C‖ηt‖

n−2
2 , ‖1jη

(n)
t ‖2 ≤ C‖ηt‖

n−2
2

for j = 1, 2 and for all n ≥ 2. Here ∇1ηt and ∇2ηt denote the kernels ∇xηt(x; y) and ∇yηt(x; y) (11ηt

and 12ηt are defined similarly). Decomposing coshηt = 1+ pηt and sinhηt = ηt + rηt , we obtain

‖ sinhηt ‖2, ‖pηt‖2, ‖rηt‖2, ‖∇j pηt‖2, ‖∇jrηt‖2 ≤ C. (4-19)
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(ii) For a.e. x, y ∈ R3 and n ∈ N, n ≥ 2, we have the pointwise bounds

|ηt(x; y)| ≤
C

|x − y| + N−1 |ϕ̃t(x)||ϕ̃t(y)|,

|η
(n)
t (x; y)| ≤ C‖ηt‖

n−2
2 |ϕ̃t(x)||ϕ̃t(y)|,

|µt(x; y)|, |pηt (x; y)|, |rηt (x; y)| ≤ C |ϕ̃t(x)||ϕ̃t(y)|.

(4-20)

(iii) We have

sup
x

∫
|ηt(x; y)|2 dy, sup

x

∫
|kt(x; y)|2 dy, sup

x

∫
|µt(x; y)|2 dy ≤ C‖ϕ̃t‖H2 ≤ Cec|t |

and
sup

x

∫
|η
(n)
t (x; y)|2 dy ≤ C‖ηt‖

n−2
2 ‖ϕ̃t‖H2 ≤ C‖ηt‖

n−2
2 ec|t |

for all n ≥ 2. Therefore

sup
x

∫
|pηt (x; y)|2 dy, sup

x

∫
|rηt (x; y)|2 dy, sup

x

∫
| sinhηt (x; y)|2 dy ≤ Cec|t |.

(iv) For j = 1, 2 and n ≥ 2, we have

‖∂tηt‖2, ‖∂
2
t ηt‖2 ≤ Cec|t |, ‖∂tη

(n)
t ‖2 ≤ Cnec|t |

‖ηt‖
n−1
2

and also

‖∂t∇jηt‖2 ≤ C
√

Nec|t |, ‖∂t∇jµt‖2 ≤ Cec|t |, ‖∂t∇jη
(n)
t ‖2 ≤ Cn‖ηt‖

n−2ec|t |.

Therefore
‖∂t pηt‖2, ‖∂trηt‖2, ‖∂t sinhηt ‖2, ‖∇j∂t pηt‖2, ‖∇j∂trηt‖2 ≤ Cec|t |.

(v) For a.e. x, y ∈ R3, we have the pointwise bounds

|∂tηt(x; y)| ≤ C
[

1+
1

|x − y| + N−1

][
| ˙̃ϕt(x)||ϕ̃t(y)| + |ϕ̃t(x)|| ˙̃ϕt(y)| + |ϕ̃t(x)||ϕ̃t(y)|

]
.

Moreover, for n ≥ 2, we have

|∂tη
(n)
t (x; y)| ≤ Cnec|t |

‖ηt‖
n−2
2

[
| ˙̃ϕt(x)||ϕ̃t(y)| + |ϕ̃t(x)|| ˙̃ϕt(y)| + |ϕ̃t(x)||ϕ̃t(y)|

]
.

Therefore

|∂tµt(x; y)|, |∂trηt (x; y)|, |∂t pηt (x; y)| ≤ Cec|t |[
| ˙̃ϕt(x)||ϕ̃t(y)| + |ϕ̃t(x)|| ˙̃ϕt(y)| + |ϕ̃t(x)||ϕ̃t(y)|

]
.

(vi) Finally, we find

sup
x

∫
|∂tηt(x; y)|2 dy, sup

x

∫
|∂t kt(x; y)|2 dy, sup

x

∫
|∂µt(x; y)|2 dy ≤ Cec|t |.

Furthermore, for all n ≥ 2,

sup
x

∫
|∂tη

(n)
t (x; y)| dy ≤ Cnec|t |

‖ηt‖
n−2
2
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and therefore

sup
x

∫
|∂t pηt (x; y)|2 dy, sup

x

∫
|∂trηt (x; y)|2 dy, sup

x

∫
|∂t sinhηt (x; y)|2 dy ≤ Cec|t |.

Proof. To prove (4-18) observe that, using Lemma 4.1 and Young’s inequality,

‖ηt‖
2
2 ≤ ‖kt‖

2
2 ≤ C

∫
χ(|x − y| ≤ `)
|x − y|2

|ϕ̃t(x)|2 |ϕ̃t(y)|2 dx dy ≤ C`‖ϕ̃t‖
2
4 ≤ C`‖ϕ̃t‖

2
H1 ≤ C`

uniformly in N ∈N and in t ∈ R. The proof of the other bounds is a simple generalization of the proof of
Lemmas 3.3 and 3.4 in [Benedikter et al. 2015]; we omit the details. �

We model correlations in the solution ψN, t of the many-body Schrödinger equation (1-8) by means
of the generalized Bogoliubov transformation exp(B(ηt)) : F≤N

⊥ϕ̃t
→ F≤N

⊥ϕ̃t
with the integral kernel ηt ∈

(qϕ̃t ⊗ qϕ̃t )L
2(R3
×R3) defined in (4-16). We define therefore the fluctuation dynamics

WN, t = e−B(ηt ) UN, t e−i HN t U∗N ,0 eB(η0). (4-21)

Then WN, t : F≤N
⊥ϕ → F≤N

⊥ϕ̃t
is a unitary operator. Clearly, WN, t depends on the length parameter ` (the

radius of the ball in (4-1)), through the modified Gross–Pitaevskii equation (4-8) and also through the
kernel ηt defined in (4-15), (4-16). While WN, t is well-defined for any value of ` > 0, we will have to
choose ` > 0 small to make sure that ‖ηt‖2 is sufficiently small; this will allow us to expand the action of
the generalized Bogoliubov transformation exp(B(ηt)) appearing in (4-21) using the series expansion
(3-27) (because, by (4-18), smallness of ` implies that ‖ηt‖2 is small, uniformly in t).

For ξ ∈ F≤N
⊥ϕ , the operator WN, t is defined so that

e−i HN t U∗N ,0 eB(η0)ξ =U∗N, t eB(ηt )WN, tξ.

It allows us to describe the many-body evolution of initial data of the form

ψN =U∗N ,0eB(η0)ξ, (4-22)

and to express the evolved state again in the form

ψN, t = e−i HN tψN =U∗N, t e
B(ηt )ξt , (4-23)

where ξt =WN, t ξ . As we will see below, a vector of the form (4-22) exhibits Bose–Einstein condensation
in the one-particle state ϕ if and only if the expectation of the number of particles operator 〈ξ,N ξ〉 is
small, compared with the total number of particles N. Hence, to prove Theorems 1.1 and 1.2, we will
have to show first that every initial ψN ∈ L2

s (R
3N ) satisfying (1-10) can be written in the form (4-22) for

a ξ ∈ F≤N
⊥ϕ with 〈ξ,N ξ〉 � N and then that the bound on the expectation of the number of particles is

approximately preserved by WN, t . In fact, it turns out that to control the growth of the expectation of N
along the fluctuation dynamics, it is not enough to have a bound on 〈ξ,N ξ〉; instead, we will also need a
bound on the energy of ξ (this is why we need to assume bN → 0 in (1-10)).
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To control the growth of the number of particles with respect to the fluctuation dynamics it is important
to compute the generator of WN, t . A simple computation shows that

i∂tWN, t = GN, tWN, t ,

with the time-dependent generator

GN, t = (i∂t e−B(ηt ))eB(ηt )+ e−B(ηt )[(i∂tUN, t)U∗N, t +UN, t HN U∗N, t ]e
B(ηt ). (4-24)

Notice, that GN, t maps F≤N
⊥ϕ̃t

into F≤N, but not into F≤N
⊥ϕ̃t

. This is due to the fact that the space F≤N
⊥ϕ̃t

depends on time (and thus GN, t must have a component which allows WN, t to move to different spaces).
We will mostly be interested in the expectation of GN, t for states in F≤N

⊥ϕ̃t
, but at some point (when we

will consider the variation of the expectation of GN, t ) it will be important to remember the component of
GN, t mapping out of F≤N

⊥ϕ̃t
.

In the next proposition, we collect important properties of the generator GN, t .

Theorem 4.4. Let V ∈ L3(R3) be nonnegative, spherically symmetric and compactly supported. Let
WN, t be defined as in (4-21) with the length parameter ` > 0 sufficiently small and using the solution of
the modified Gross–Pitaevskii equation (4-8), with an initial data ϕ ∈ H 4(R3). Let

CN ,t =
1
2
〈
ϕ̃t ,
(
[N 3V (N · )(N − 1− 2N f`(N · ))] ∗ |ϕ̃t |

2)ϕ̃t
〉

+

∫
dx dy |∇x kt(x; y)|2+ 1

2

∫
dx dy N 2V (N (x − y))|kt(x; y)|2

+Re
∫

dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)kt(x; y). (4-25)

Then there exist constants C, c > 0 such that, in the sense of quadratic forms on F≤N
⊥ϕ̃t

,

1
2HN −Cec|t |(N + 1)≤ (GN, t −CN ,t)≤ 2HN +Cec|t |(N + 1),

±i[N ,GN, t ] ≤HN +Cec|t |(N + 1),

±∂t(GN, t −CN ,t)≤HN +Cec|t |(N + 1),

±Re[a∗(∂t ϕ̃t)a(ϕ̃t),GN, t ] ≤HN +Cec|t |(N + 1),

(4-26)

where HN is the Fock-space Hamiltonian

HN =

∫
dx ∇xa∗x∇xax +

1
2

∫
dx dy N 2V (N (x − y))a∗x a∗yayax . (4-27)

Note that, on F≤N
⊥ϕ̃t

, we have

[a∗(∂t ϕ̃t)a(ϕ̃t),GN, t ] = a∗(∂t ϕ̃t)a(ϕ̃t)GN, t .

The proof of Theorem 4.4 is given in the next section. From the technical point of view, it represents
the main part of our paper. In Section 6, we show then how to use the properties of GN, t established in
Theorem 4.4 to complete the proof of Theorems 1.1 and 1.2.
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5. Analysis of the generator of fluctuation dynamics

In this section we study the properties of the generator

GN, t = (i∂t e−B(ηt ))eB(ηt )+ e−B(ηt )[(i∂tUN, t)U∗N, t +UN, t HN U∗N, t ]e
B(ηt ) (5-1)

of the fluctuation dynamics (4-21); the goal is to prove Theorem 4.4.
As forms on F≤N

⊥ϕ̃t
×F≤N

⊥ϕ̃t
, we find, see Lemma 6 in [Lewin et al. 2015a],

(i∂tUN, t)U∗N, t =−〈i∂t ϕ̃t , ϕ̃t 〉(N −N )−
√

N [b(i∂t ϕ̃t)+ b∗(i∂t ϕ̃t)]. (5-2)

Using (4-14) to compute UN, t HN U∗N, t , a lengthy but straightforward computation, see Appendix B of
[Lewin et al. 2015a], shows that

(i∂tUN, t)U∗N, t +UN, t HN U∗N, t =

4∑
j=0

L( j)
N, t ,

where

L(0)N, t =
1
2

〈
ϕ̃t , [N 3V (N · )(1−2 f`(N · ))∗|ϕ̃t |

2
]ϕ̃t
〉
(N−N )− 1

2

〈
ϕ̃t , [N 3V (N · )∗|ϕ̃t |

2
]ϕ̃t
〉
(N+1)

(N−N )
N

,

L(1)N, t =
√

N b([N 3V (N · )w`(N · )∗|ϕ̃t |
2
]ϕ̃t)−

N+1
√

N
b([N 3V (N · )∗|ϕ̃t |

2
]ϕ̃t)+h.c.,

L(2)N, t =

∫
dx ∇xa∗x∇xax+

∫
dx dy N 3V (N (x−y))|ϕ̃t(y)|2

(
b∗x bx−

1
N

a∗x ax

)
+

∫
dx dy N 3V (N (x−y))ϕ̃t(x) ¯̃ϕt(y)

(
b∗x by−

1
N

a∗x ay

)
+

1
2

[∫
dx dy N 3V (N (x−y))ϕ̃t(x)ϕ̃t(y)b∗x b∗y+h.c.

]
,

L(3)N, t =

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)b∗xa∗yax+h.c.,

L(4)N, t =
1
2

∫
dx dy N 2V (N (x−y))a∗x a∗yayax .

(5-3)
The generator (5-1) of the fluctuation dynamics is therefore given by

GN, t = (i∂t e−B(ηt ))eB(ηt )+

4∑
j=0

e−B(ηt )L( j)
N, t e

B(ηt ).

In the next subsections, we will study separately the six terms contributing to GN, t . Before doing so,
however, we collect some preliminary results, which will be useful for our analysis.

Notation and conventions. For the rest of this section we employ the short-hand notation ηx , kx , µx for
the wave functions ηx(y) = ηt(x; y), kx(y) = kt(x; y) and µx(y) = µt(x; y). We will always assume
that supt∈R ‖ηt‖2 is sufficiently small, so that we can use the expansions obtained in Lemma 3.3. Finally,
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by C and c we denote generic constants which only depend on fixed parameters, but not on N or t , and
which may vary from one line to the next.

5A. Preliminary results. In this subsection we show some simple but important auxiliary results which
will be used throughout the rest of Section 5. Recall the operators

5
(2)
],[( j1, . . . , jn)=

∫
b[0

x1

n−1∏
i=1

a]i
yi

a[i
xi+1

b]n
yn

n∏
i=1

ji (xi ; yi ) dxi dyi ,

5
(1)
],[( j1, . . . , jn; f )=

∫
b[0

x1

n−1∏
i=1

a]i
yi

a[i
xi+1

a]n
yn

a[n ( f )
n∏

i=1

ji (xi ; yi ) dxi dyi

introduced in Section 2. For each i ∈ {1, . . . , n}, we recall in particular the condition that either ]i = ∗

and [i = · or ]i = · and [i = ∗.
In the next lemma, we consider commutators of these operators with the number of particles operator N

and with operators of the form a∗(g1)a(g2).

Lemma 5.1. Let n ∈ N, f, g1, g2 ∈ L2(R3), j1, . . . , jn ∈ L2(R3
×R3):

(i) We have

[N ,5(2)
],[( j1, . . . , jn)] = κ[0,]n5

(2)
],[( j1, . . . , jn) for all ], [ ∈ { · , ∗}n,

[N ,5(1)
],[( j1, . . . , jn; f )] = ν[05

(1)
],[( j1, . . . , jn; f ) for all ] ∈ { · , ∗}n, [ ∈ { · , ∗}n+1.

Here κ[0,]n = 2 if [0 = ]n = ∗, κ[0,]n = −2 if [0 = ]n = · , and κ[0,]n = 0 otherwise, while ν[0 = 1 if
[0 = ∗ and ν[0 =−1 if [0 = · .

(ii) The commutator
[a∗(g1)a(g2),5

(2)
],[( j1, . . . , jn)]

can be written as the sum of 2n terms, all having the form

5
(2)
],[( j1, . . . , ji−1, hi , ji+1, . . . , jn)

for some i ∈ {1, . . . , n}. Here hi ∈ L2(R3
×R3) has (up to a possible sign) one of the forms

hi (x; y)= g1(x) ji (ḡ2)(y), hi (x; y)= g1(y) ji (ḡ2)(y) (5-4)

or one of those forms with g1 and ḡ2 exchanged. Here ji (g)(x)=
∫

ji (x; z)g(z) dz. Notice that

‖hi‖2 ≤ ‖g1‖2‖g2‖2‖ ji‖2 (5-5)

and

|hi (x; y)| ≤max
{
|g1(x)|‖ ji ( · ; y)‖2‖g2‖2, |g1(y)|‖ ji (x; .)‖2‖g2‖2,

|g2(x)|‖ ji ( · ; y)‖2‖g1‖2, |g2(y)|‖ ji (x; .)‖2‖g1‖2
}
. (5-6)

(iii) The commutator
[a∗(g1)a(g2),5

(1)
],[( j1, . . . , jn; f )] (5-7)
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can be written as the sum of 2n+ 1 terms; 2n of them have the form

5
(1)
],[( j1, . . . , ji−1, hi , ji+1, . . . , jn; f ),

where hi is (up to a possible sign) one of the kernels appearing in (5-4) (or the same with g1 and ḡ2

exchanged), and satisfying the bounds in (5-5), (5-6). The remaining term in the expansion for (5-7) has
the form

5
(1)
],[( j1, . . . , jn; k), (5-8)

where k ∈ L2(R3) is (up to a possible sign) one of the functions

k(x)= 〈g1, f 〉 g2(x), k(x)= 〈g2, f 〉 g1(x) (5-9)

or one of their complex conjugated functions. In any event, we have

‖k‖2 ≤ ‖g1‖2‖g2‖2‖ f ‖2

and

|k(x)| ≤ ‖ f ‖2 max{‖g1‖2 |g2(x)|, ‖g2‖2 |g1(x)|}.

(iv) If f ∈ L2(R3) and/or j1, . . . , jn ∈ L2(R3
×R3) depend on time t ∈ R, we have

∂t5
(2)
],[( j1, . . . , jn)=

n∑
i=1

5
(2)
],[( j1, . . . , ji−1, ∂t ji , ji+1, . . . , jn),

∂t5
(1)
],[( j1, . . . , jn; f )=5(1)

],[( j1, . . . , jn; ∂t f )+
n∑

i=1

5
(1)
],[( j1, . . . , ji−1, ∂t ji , ji+1, . . . , jn; f ).

Proof. Part (i) follows from (N + 1)bx = bxN and Nb∗x = b∗x(N + 1). Part (iv) follows easily from the
Leibniz rule. To prove part (ii), we apply the Leibniz rule:

[a∗(g1)a(g2),5
(2)
],[( j1, . . . , jn)]

=

∫
[a∗(g1)a(g2), b[0

x1
]

n∏
i=1

a]i
yi

a[i
xi+1

b]n
yn

n∏
i=1

ji (xi ; yi ) dxi dyi

+

n−1∑
m=1

∫
b[0

x1

m−1∏
i=1

a]i
yi

a[i
xi+1
[a∗(g1)a(g2), a]m

ym
a[m

xm+1
]

n−1∏
i=m+1

a]i
yi

a[i
xi+1

b]n
yn

n∏
i=1

ji (xi ; yi ) dxi dyi

+

∫
b[0

x1

n∏
i=1

a]i
yi

a[i
xi+1
[a∗(g1)a(g2), b]n

yn
]

n∏
i=1

ji (xi ; yi ) dxi dyi . (5-10)

Using the commutation relations

[a∗(g1)a(g2), bx ] = −g1(x)b(g2),

[a∗(g1)a(g2), b∗x ] = ḡ2(x)b∗(g1),

[a∗(g1)a(g2), a∗x ay] = [a∗(g1)a(g2), aya∗x ] = ḡ2(x)a∗(g1)ay − g1(y)a∗x a(g2),

(5-11)
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we conclude that on the right-hand side of (5-10) we have 2n terms, each of them a 5(2)-operator (with
the same indices ], [ as the 5(2)-operator on the left-hand side of (5-10)). Furthermore, from (5-11) it
is clear that for each 5(2)-operator on the right-hand side of (5-10), only one j-kernel will differ from
the j-kernels of the 5(2)-operator on the left-hand side of (5-10). In the first term on the right-hand side
of (5-10), we only have to replace the j1-kernel (either with g1(x1) j1(ḡ2)(y1) or with ḡ2(x1) j1(g1)(y1),
depending on [0 ∈ { · , ∗}). Similarly, in the last term on the right-hand side of (5-10), only the jn-kernel
has to be changed. In the m-th term in the sum, on the other hand, the commutator leads to the sum of
two 5(2)-operators, one where the kernel jm is changed and one where the kernel jm+1 is replaced. From
(5-11), it is easy to check that the new kernel can only have one of the forms listed in (5-4). The bounds
(5-5), (5-6) follow easily from the explicit formula in (5-4). Part (iii) can be shown similarly; the only
difference is that, in this case, the commutator can hit the last pair a]n

yn a[n ( f ) instead of the b]n
yn appearing

in the 5(2)-operator. �

It follows from Lemma 5.1 that

[N , e−B(η)b( f )eB(η)
] =

∞∑
n=0

(−1)n

n!
[N , ad(n)B(η)(b( f ))],

[a∗(g1)a(g2), e−B(η)b( f )eB(η)
] =

∞∑
n=0

(−1)n

n!
[a∗(g1)a(g2), ad(n)B(η)(b( f ))],

∂t(e−B(η)b( f )eB(η))=

∞∑
n=0

(−1)n

n!
∂t ad(n)B(η)(b( f )),

(5-12)

where the series on the right-hand sides are absolutely convergent.
In the next subsections we are going to study what happens to the operators L( j)

N, t defined in (5-3) when
they are conjugated with the generalized Bogoliubov transformation eB(ηt ). The general strategy is to
expand e−B(ηt )L( j)

N, t e
B(ηt ) using (3-27), and then use Lemma 3.2 to express all nested commutators. For

this reason, we will have to bound the action of operators of the form

31 · · ·3i N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η(s)(g)). (5-13)

To this end, we will use the next lemma.

Lemma 5.2. Let g ∈ L2(R3), n, i1, i2, k1, k2, `1, `2 ∈ N and j1, . . . , jk1,m1, . . . ,mk2 ∈ N\{0}. For
s= 1, . . . , i1, s ′= 1, . . . , i2, we denote by each of3s ,3′s′ a factor (N−N )/N or a factor (N−N+1)/N
or an operator of the form

N−p 5
(2)
],[(η

(q1)
t,\1
, . . . , η

(qp)

t,\p
). (5-14)

(i) Assume that the operator

31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(`1)
t,♦ (g))

appears in the expansion of ad(n)B(ηt )
(b(g)) discussed in Lemma 3.2. Then

‖(N + 1)−1/231 · · ·3i N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(`1)
t,♦ (g))ξ‖ ≤ Cn

‖ηt‖
n
‖g‖‖ξ‖.
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If at least one of the 3s-operators has the form (5-14) or if k ≥ 1, we also have

‖(N+1)−1/231 · · ·3i N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
;η

(`1)
t,♦ (g))ξ‖≤Cn N−1/2

‖ηt‖
n
‖g‖‖(N+1)1/2ξ‖. (5-15)

(ii) Let r : L2(R3)→ L2(R3) be a bounded linear operator. We use the notation

(η(s)r)x(y) := (η(s)r)(x; y)

(if s = 0, (η(s)r)x(y)= rx(y)= r(x; y) as a distribution). Assume that the operator

31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1)
t,♦ r)x)

appears in the expansion of ad(n)B(ηt )
(b(rx)) discussed in Lemma 3.2. Then

‖31 · · ·3i N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; (η

(`1)
t,♦ r)x)ξ‖

≤

{
Cn
‖ηt‖

n−1
‖(ηtr)x‖‖(N + 1)1/2ξ‖ if `1 ≥ 1,

Cn
‖ηt‖

n
‖a(rx)ξ‖ if `1 = 0.

(5-16)

Proof. Let us start with part (i). If 31 is either the operator (N −N )/N or (N −N +1)/N, then, on F≤N,

‖(N + 1)−1/231 · · ·3i N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(`1)
t,♦ (g))ξ‖

≤ 2‖(N + 1)−1/232 · · ·3i N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(`1)
t,♦ (g))ξ‖. (5-17)

If instead 31 has the form (5-14) for a p ≥ 1, we apply Lemma 2.4 and we find, using Lemma 3.2(vi),

‖(N + 1)−1/231 · · ·3i1 N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(`1)
t,♦ (g))ξ‖

≤ C p
‖ηt‖

p̄
‖(N + 1)−1/232 · · ·3i N−k5

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(`1)
t,♦ (g))ξ‖, (5-18)

where we used the notation p̄ = q1 + · · · + qp for the total number of ηt -kernels appearing in (5-14).
Iterating the bounds (5-17) and (5-18), we conclude that

‖(N + 1)−1/231 · · ·3i1 N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(`1)
t,♦ (g))ξ‖

≤ Cr+p1+···+ps‖ηt‖
p̄1+···+ p̄s‖(N + 1)1/2 N−k5

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(`1)
t,♦ (g))ξ‖ (5-19)

if r of the operators 31, . . . , 3i1 have either the form (N −N )/N or the form (N −N + 1)/N, and
the other s = i1 − r are 5(2)-operators of the form (5-14) of order p1, . . . , ps , containing p̄1, . . . , p̄s

ηt -kernels. Again with Lemma 2.4, we obtain

‖(N + 1)−1/231 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1)
t,♦ (g))ξ‖

≤ Cr+p1+···+ps+ j1+···+ jk1+l1‖ηt‖
p̄1+···+ p̄s+ j1+···+ jk1+l1‖g‖‖ξ‖

≤ Cn
‖ηt‖

n
‖g‖‖ξ‖. (5-20)
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This shows the first bound in part (i). Now, assume that at least one of the3m-operators, for m∈{1, . . . , i1},
has the form (5-14). Since, for 9 ∈ F≤N,

‖(N + 1)−1/2 N−p5
(2)
],[(η

(q1)
t,\1
, . . . , η

(qp)

t,\p
)9‖ ≤ C p

‖ηt‖
q1+···+qp N−p

‖(N + 1)p−1/29‖

≤ C p
‖ηt‖

q1+···+qp N−1/2
‖9‖

for any p ≥ 1, in this case we can improve (5-20) to

‖(N + 1)−1/231 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1)
t,♦ (g))ξ‖ ≤ Cn N−1/2

‖ηt‖
n
‖g‖‖(N + 1)1/2ξ‖.

Similarly, if k1 ≥ 1, we have by Lemma 2.4,

N−k1‖(N+1)−1/25
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k
; η

(`1)
t,\k+1

(g))ξ‖ ≤ N−k1Ck1‖ηt‖
j1+···+ jk1+`1‖g‖‖(N+1)k1−1/2ξ‖

≤ Ck N−1/2
‖ηt‖

j1+···+ jk1+`1‖g‖‖(N+1)1/2ξ‖.

Hence, also in this case, the bound (5-15) holds true. If `1 ≥ 1, part (ii) can be proven similarly to part (i),
noticing that

‖(η
(`1)
t,♦ r)x‖ ≤ ‖ηt‖

`1−1
‖(ηtr)x‖.

If instead `1 = 0, it follows from Lemma 3.2(v) that the field operator associated with (η(`1)
t,♦ r)x = rx (the

one appearing on the right of 5(1)) is an annihilation operator (acting directly on ξ ). Hence, (5-16) holds
true also in this case. �

Often, we will also have to bound the action of products of operators of the form (5-13). In this case,
the next lemma will be useful.

Lemma 5.3. Let g ∈ L2(R3), n, i1, i2, k1, k2, `1, `2 ∈ N and j1, . . . , jk1,m1, . . . ,mk2 ∈ N\{0}. For
s= 1, . . . , i1, s ′= 1, . . . , i2, we denote by each of3s ,3′s′ a factor (N−N )/N or a factor (N−N+1)/N
or an operator of the form (5-14). Assume that the operators

31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1+1)
t,♦ r)x),

3′1 · · ·3
′

i2
N−k25

(1)
],[(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)

(5-21)

appear in the expansions of ad(n)B(ηt )
(b((ηtr)x)) and ad(k)B(ηt )

(bx) respectively for some n, k ∈ N, x ∈ R3.
Then∥∥(N + 1)−1/231 · · ·3i1 N−k15

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1+1)
t,♦ r)x)

×3′1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)ξ

∥∥
≤

{
Cn+k
‖ηt‖

n+k−1
‖(ηtr)x‖‖ηx‖‖(N + 1)1/2ξ‖ if `2 > 0,

Cn+k
‖ηt‖

n+k
‖(ηtr)x‖‖axξ‖ if `2 = 0. (5-22)



GROSS–PITAEVSKII DYNAMICS FOR BOSE–EINSTEIN CONDENSATES 1549

Similarly, if the operators

31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1)
t,♦ ∂tηt,♦̃)x),

3′1 · · ·3
′

i2
N−k25

(1)
],[(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)

appear in the expansions of ad(n)B(ηt )
(b(∂tηt)) and ad(k)B(ηt )

(bx) respectively for some n, k ∈ N, x ∈ R3, we
have∥∥(N + 1)−1/231 · · ·3i1 N−k15

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1)
t,♦ ∂tηt,♦̃)x)

××3′1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)ξ

∥∥
≤

{
Cn+k
‖ηt‖

n+k−1
‖(∂tηt)x‖‖ηx‖‖(N + 1)1/2ξ‖ if `2 > 0,

Cn+k
‖ηt‖

n+k
‖(∂tηt)x‖‖axξ‖ if `2 = 0.

(5-23)

Proof. We can bound, first of all

‖(N + 1)−1/231 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1+1)
t r)x)9‖ ≤ Cn

‖ηt‖
n
‖(ηtr)x‖‖9‖

and

‖(N + 1)−1/231 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1)
t,♦ ∂tηt,♦̃)x)9‖ ≤ Cn

‖ηt‖
n
‖(∂tηt)x‖‖9‖.

Choosing now

9 =3′1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)ξ,

and proceeding as in Lemma 5.2(ii), distinguishing the cases `2 ≥ 1 and `2 = 0, we obtain (5-22) and
(5-23). �

Finally, the next lemma will be important to bound products of operators of the form (5-13), with
arguments labeled by different positions x, y ∈R3 (as opposed to (5-21), where both operators are labeled
by the same x ∈ R3).

Lemma 5.4. Let g ∈ L2(R3), n, i1, i2, k1, k2, `1, `2 ∈ N and j1, . . . , jk1,m1, . . . ,mk2 ∈ N\{0}. For
s = 1, . . . , i1, s ′ = 1, . . . , i2, we denote by 3s , 3′s′ a factor (N −N )/N or a factor (N −N + 1)/N or
an operator of the form (5-14). Assume that the operators

31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1)
y,♦ ),

3′1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)

appear in the expansions of ad(k)B(ηt )
(by) and ad(n)B(ηt )

(bx) respectively for some n, k ∈ N. For α ∈ N, t ∈ R,
we define

Dx,y =
∥∥(N + 1)(α−1)/231 · · ·3i1 N−k15

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1)
y,♦ )

×3′1 · · ·3
′

i2
N−k25

(1)
],[(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k1
; η

(`2)
x,♦′)ξ

∥∥
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for all x, y ∈ R3. Then, if `1 > 0, we have

Dx,y ≤

{
Cn+k
‖ηt‖

n+k−2
‖ηx‖‖ηy‖‖(N + 1)(α+1)/2ξ‖ if `2 ≥ 1,

Cn+k
‖ηt‖

n+k−1
‖ηy‖‖ax(N + 1)α/2ξ‖ if `2 = 0

(5-24)

for all x, y ∈ R3, t ∈ R. If instead `1 = 0, we distinguish three cases. For `2 > 1, we obtain

Dx,y ≤ Cn+k
‖ηt‖

n+k−2{
‖ηy‖‖ηx‖(‖(N + 1)(α−1)/2ξ‖+ n/N‖(N + 1)(α+1)/2ξ‖)

+‖ηt‖‖ηx‖‖ay(N + 1)α/2ξ‖
}

(5-25)

for all x, y ∈ R3, t ∈ R. If `1 = 0 and `2 = 1, we find

Dx,y ≤ Cn+k
‖ηt‖

n+k−2{[n‖ηx‖‖ηy‖+‖ηt‖|ηt(x; y)|
]
‖(N + 1)(α−1)/2ξ‖

+‖ηt‖‖ηx‖‖ay(N + 1)α/2ξ‖
}

(5-26)

for all x, y ∈ R3, t ∈ R. If `1 = 0 and `2 = 1 and we additionally assume that k + n ≥ 2 (since `1 ≤ k,
`2 ≤ n from Lemma 3.2, this assumption only excludes the case k = `1 = 0, n = `2 = 1), we find the
improved estimate

Dx,y ≤ Cn+k
‖ηt‖

n+k−2{N−1[n‖ηx‖‖ηy‖+‖ηt‖|ηt(x; y)|
]
‖(N + 1)(α+1)/2ξ‖

+‖ηt‖‖ηx‖‖ay(N + 1)α/2ξ‖
}

(5-27)

for all x, y ∈ R3, t ∈ R. Finally, let `1 = `2 = 0. Then

Dx,y ≤ Cn+k
‖ηt‖

n+k−1
{nN−1

‖ηy‖‖ax(N + 1)α/2ξ‖+‖ηt‖‖axay(N + 1)(α−1)/2ξ‖} (5-28)

for all x, y ∈ R3, t ∈ R. If , however, `1 = `2 = 0 and, additionally, k + n ≥ 1 (excluding the case
n = `1 = k = `2 = 0), we find the improved bound

Dx,y ≤ Cn+k
‖ηt‖

n+k−1
{nN−1

‖ηy‖‖axξ‖+ N−1/2
‖ηt‖‖axay(N + 1)α/2ξ‖} (5-29)

again for all x, y ∈ R3, t ∈ R.

Proof. If `1 > 0, we can proceed as in the proof of Lemma 5.3 to show (5-24). So, let us focus on the
case `1 = 0. In this case, the field operator on the right of the first 5(1)-operator (the one on the left) is
an annihilation operator, ay . To estimate Dx,y , we need to commute ay to the right, until it hits ξ . To
commute ay through factors of N, we just use the pull-through formula ay N = (N + 1)ay . When we
commute ay through a pair of creation and/or annihilation operators associated with a kernel η( j)

t for a
j ≥ 1 (as the ones appearing in the 5(2)-operators of the form (5-14) or in the operator 5(1)-operator), we
generate a creation or an annihilation operator with argument η( j)

y whose L2-norm is uniformly bounded.
At the same time, we spare a factor N−1. For example, we have[

ay,

∫
a∗xi

ayiη
( j)(xi ; yi ) dxi dyi

]
= a(η̄( j)

y ).

At the end, we have to commute ay through the field operator with argument η(`2)
x,♦′ . The commutator

is trivial if `2 is even (because then the corresponding field operator is an annihilation operator; see
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Lemma 3.2(v)). It is given by
[ay, a∗(η(`2)

x,♦′)] = η
(`2)
t,♦′ (x; y) (5-30)

if `2 is odd. If `2 ≥ 2, we can bound

|η
(`2)
t,♦′ (x; y)| ≤ ‖ηt‖

`2−2
‖ηx‖‖ηy‖

and we obtain (taking into account the fact that there are at most n pairs of fields with which ay has to be
commuted)

Dx,y ≤ Ck+n
‖ηt‖

k+n−2{nN−1
‖ηy‖‖ηx‖‖(N + 1)(α+1)/2ξ‖

+‖ηx‖‖ηy‖‖(N + 1)(α−1)/2ξ‖+‖ηt‖‖ηx‖‖ay(N + 1)α/2ξ‖
}
.

If instead `2 = 1, the right-hand side of (5-30) blows up as N →∞. To make up for this singularity, we
use the additional assumption k+ n ≥ 2. Combining this information with `1 = 0, `2 = 1, we conclude
that either k1 > 0 or k2 > 0 or there exists i ∈ N such that either 3i or 3′i is a 5(2)-operator of the form
(5-14) with p ≥ 1. This factor allows us to gain a factor (N + 1)/N in the estimate for the term arising
from the commutator (5-30). We conclude that, in this case,

Dx,y ≤ Ck+n
‖ηt‖

k+n−2{nN−1
‖ηy‖‖ηx‖‖(N + 1)(α+1)/2ξ‖+ N−1

|ηt(x; y)|‖(N + 1)(α+1)/2ξ‖

+‖ηt‖‖ηx‖‖ay(N + 1)α/2ξ‖
}
.

Finally, let us consider the case `2 = 0. Here we proceed as before, commuting ay to the right. The
commutator produces at most n factors, whose norm can be bounded much as before. We easily conclude
that

Dx,y ≤ Ck+n
‖ηt‖

k+n−1
{nN−1

‖ηx‖‖ay(N + 1)α/2ξ‖+‖ηt‖‖axay(N + 1)(α−1)/2ξ‖}.

If we impose the additional condition k+ n ≥ 1, we deduce that either k1 > 0 or k2 > 0 or there exists
i ∈ N such that either 3i or 3′i is a 5(2)-operator of the form (5-14) with p ≥ 1. Much as we argued in
the case `2 = 1, when estimating the contribution with the two annihilation operators ax , ay acting on ξ ,
we can therefore extract an additional factor (N + 1)/N. Under this additional condition, we obtain

Dx,y ≤ Ck+n
‖ηt‖

k+n−1
{nN−1

‖ηx‖‖ayξ‖+ N−1/2
‖ηt‖‖axay(N + 1)(α−1)/2ξ‖},

which proves (5-29). �

5B. Analysis of e−B(ηt )L(0)N, t e
B(ηt ). From the definition (5-3), we can write

L(0)N, t = CN ,t −〈ϕ̃t , [N 3V (N · )w`(N · ) ∗ |ϕ̃t |
2
]ϕ̃t 〉N

+
1

2N
〈ϕ̃t , [N 3V (N · ) ∗ |ϕ̃t |

2
]ϕ̃t 〉N +

1
2N
〈ϕ̃t , [N 3V (N · ) ∗ |ϕ̃t |

2
]ϕ̃t 〉N 2,

with
CN ,t =

N
2
〈ϕ̃t , [N 3V (N · )w`(N · ) ∗ |ϕ̃t |

2
]ϕ̃t 〉−

1
2
〈ϕ̃t , [N 3V (N · ) ∗ |ϕ̃t |

2
]ϕ̃t 〉.

The properties of the other terms are described in the next proposition.
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Proposition 5.5. Under the same assumptions as in Theorem 4.4, there exist constants C, c> 0 such that

|〈ξ, e−B(ηt )(L(0)N, t −CN ,t)eB(ηt )ξ〉| ≤ C〈ξ, (N + 1)ξ〉,

|〈ξ, [N , e−B(ηt )(L(0)N, t −CN ,t)eB(ηt )]ξ〉| ≤ C〈ξ, (N + 1)ξ〉,

|〈ξ, [a∗(g1)a(g2), e−B(ηt )(L(0)N, t −CN ,t)eB(ηt )]ξ〉| ≤ C‖g1‖‖g2‖〈ξ, (N + 1)ξ〉,

|∂t 〈ξ, e−B(ηt )(L(0)N, t −CN ,t)eB(ηt )ξ〉| ≤ Cec|t |
〈ξ, (N + 1)ξ〉

(5-31)

for all t ∈ R, g1, g2 ∈ L2(R3), ξ ∈ F≤N.

In order to show Proposition 5.5, we need to conjugate the number of particles operator N with the
generalized Bogoliubov transformation e−B(ηt ). To this end, we make use of the following lemma, where,
for later convenience, we consider conjugation of more general quadratic operators.

Lemma 5.6. Let r : L2(R3)→ L2(R3) be a bounded linear operator. Consider the Fock-space operators

R1 =

∫
dx dy r(y; x)b∗x by and R2 =

∫
dx dy r(y; x)a∗x ay

mapping F≤N in itself. Then we have the bounds

|〈ξ1, e−B(ηt )Ri eB(ηt )ξ2〉| ≤ C‖r‖op‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖,

|〈ξ1, [N , e−B(ηt )Ri eB(ηt )]ξ2〉| ≤ C‖r‖op ‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖,

|〈ξ1, [a∗(g1)a(g2), e−B(ηt )Ri eB(ηt )]ξ2〉| ≤ C‖r‖op‖g1‖‖g2‖‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖

(5-32)

for i = 1, 2 and all ξ1, ξ2 ∈ F≤N. Furthermore, if r = rt is differentiable in t , we find

|∂t 〈ξ1, e−B(ηt )Ri eB(ηt )ξ2〉| ≤ Cec|t |(‖r‖op+‖ṙ‖op) ‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖ (5-33)

for i = 1, 2 and all ξ1, ξ2 ∈ F≤N.

Proof. We consider first the operator R1. By Lemma 3.3, we expand

e−B(ηt )R1eB(ηt )=

∫
dx e−B(ηt )b∗(rx)bx eB(ηt )=

∑
k,n≥0

(−1)k+n

k! n!

∫
dx ad(n)B(ηt )

(b∗(rx))ad(k)B(ηt )
(bx), (5-34)

with the notation rx(y)= r(x; y). According to Lemma 3.2 the operator∫
dx ad(n)B(ηt )

(b∗(rx)) ad(k)B(ηt )
(bx)

is given by the sum of 2n+kn! k! terms having the form

E :=
∫

dx N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1)
t,♦ r)x)∗

×3∗i1
· · ·3∗13

′

1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′), (5-35)
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where i1, i2, k1, k2, `1, `2 ≥ 0, j1, . . . , jk1,m1, . . . ,mk2 ≥ 1, and where each operator 3i , 3′i is a factor
(N −N )/N, a factor (N + 1−N )/N or a 5(2)-operator of the form

N−p5
(2)
],[(η

(q1)
t,\

1
, . . . , η

(qp)

t,\
p
) (5-36)

for a p ≥ 1 and powers q1, . . . , qp ≥ 1. With Cauchy–Schwarz we find

|〈ξ1,Eξ2〉| ≤

∫
dx ‖31 · · ·3i1 N−k15

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1)
t,♦ r)x)ξ1‖

×‖3′1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)ξ2‖ (5-37)

for every ξ1, ξ2 ∈ F≤N. With Lemma 5.2(ii), we find that

|〈ξ1,Eξ2〉| ≤ Ck+n
‖r‖op‖ηt‖

n+k
‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖, (5-38)

where we used the fact that∫
dx ‖a(rx)ξ1‖

2
= 〈ξ1, d0(r2)ξ1〉 ≤ ‖r2

‖op‖N 1/2ξ1‖
2
≤ ‖r‖2op‖N

1/2ξ1‖
2.

From (5-34), we conclude that, if supt ‖ηt‖ is small enough,

|〈ξ1, e−B(ηt )R1eB(ηt )ξ2〉| ≤ C‖r‖op‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖. (5-39)

This proves the first bound in (5-32), if i = 1. The other two bounds in (5-32) and the bound in (5-33)
for i = 1 can be proven similarly. To be more precise, we first expand the operator e−B(ηt )R1eB(ηt ) as in
(5-34), where the (n, k)-th term can be written as the sum of 2n+kk! n! terms of the form (5-35). Then we
use Lemma 5.1 to express the commutator of (5-35) with N or with a∗(g1)a(g2) or its time-derivative
as a sum of at most 2(k + n + 1) terms having again the form (5-35), with just one of the ηt -kernels
appropriately replaced. Finally, we proceed as above to show that the matrix elements of such a term can
be bounded as in (5-38). We omit further details.

Let us now consider the operator R2. We start by writing

e−B(ηt )R2eB(ηt ) = R2+

∫ 1

0
ds e−s B(ηt )[R2, B(ηt)]es B(ηt )

= R2+

∫ 1

0
ds
∫

dx dy r(y; x)e−s B(ηt )[a∗x ay, B(ηt)]es B(ηt )

= R2+

∫ 1

0
ds
∫

dx e−s B(ηt )[b((ηtr)x)bx + h.c.]es B(ηt ).

Expanding as in Lemma 3.3 and then integrating over s, we find

e−B(ηt )R2eB(ηt ) = R2+
∑

k,n≥0

(−1)k+n

k! n! (k+ n+ 1)

∫
dx [ad(n)B(ηt )

(b((ηtr)x))ad(k)B(ηt )
(bx)+ h.c.]. (5-40)



1554 CHRISTIAN BRENNECKE AND BENJAMIN SCHLEIN

With Lemma 3.2, we can write the operator∫
dx ad(n)B(ηt )

(b((ηtr)x))ad(k)B(ηt )
(bx) (5-41)

as a sum of 2n+kk! n! contributions of the form

E=
∫

dx 31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1+1)
t,♦ r)x)

×3′1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′), (5-42)

where each 3i and 3′i is (N −N )/N, (N + 1−N )/N or an operator of the form

N−p 5
(2)
],[(η

(q1)
t,\

1
, . . . , η

(qp)

t,\
p
). (5-43)

From Lemma 5.3, we obtain that

|〈ξ1,Eξ2〉| ≤ ‖(N + 1)1/2ξ1‖

∫
dx
∥∥(N + 1)−1/231 · · ·3i1 N−k15

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1+1)
t,♦ r)x)

×3′1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)ξ2

∥∥
≤ Cn+k

‖r‖op ‖ηt‖
k+n+1

‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖.

This implies that, if supt ‖ηt‖ is small enough,

|〈ξ1, e−B(ηt )R2eB(ηt )ξ2〉| ≤ C‖r‖op‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖.

As in the analysis of R1 above, also here one can show the other bounds in (5-32) for the commutators of
e−B(ηt )R1eB(ηt ) with N and with a∗(g1)a(g2) and for its time-derivative. �

Next, we use Lemma 5.6 to show Proposition 5.5.

Proof of Proposition 5.5. To control L(0)N, t we start by noticing that, with Young’s inequality,

|〈ϕ̃t , [N 3V (N · ) ∗ |ϕ̃t |
2
]ϕ̃t 〉| ≤

∫
N 3V (N (x − y))|ϕ̃t(x)|2 |ϕ̃t(y)|2 dx dy

≤ C‖ϕ̃t‖
4
4 ≤ C‖ϕ̃t‖

4
H1 ≤ C (5-44)

and

|∂t 〈ϕ̃t , [N 3V (N · ) ∗ |ϕ̃t |
2
]ϕ̃t 〉| ≤ C‖ϕ̃t‖

3
4‖
˙̃ϕt‖4 ≤ C‖ϕ̃t‖

3
H1‖ϕ̃t‖H3 ≤ Cec|t | (5-45)

for constants C, c > 0. Similarly, we also have

|〈ϕ̃t , [N 3V (N · )w`(N · ) ∗ |ϕ̃t |
2
]ϕ̃t 〉| ≤ C,

|∂t 〈ϕ̃t , [N 3V (N · )w`(N · ) ∗ |ϕ̃t |
2
]ϕ̃t 〉| ≤ Cec|t |.

(5-46)

By (5-44), (5-45), (5-46), it is enough to show the four bounds in (5-31) with L(0)N, t −CN ,t replaced by
N and by N 2/N. If we replace L(0)N, t −CN ,t with N, the bounds in (5-31) follow from Lemma 5.6. To
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prove that these bounds also hold for N 2/N, we use again Lemma 5.6. Setting ξ2= e−B(ηt )(N/N )eB(ηt )ξ ,
we have

|〈ξ, e−B(ηt )(N 2/N )eB(ηt )ξ〉| = |〈ξ, e−B(ηt )N eB(ηt )ξ2〉| ≤ C‖(N + 1)1/2ξ‖‖(N + 1)1/2ξ2‖.

Since, by Lemma 3.1,

‖(N + 1)1/2ξ2‖
2
= N−2

〈ξ, e−B(ηt )N eB(ηt )(N + 1)e−B(ηt )N eB(ηt )ξ〉

≤ N−2
〈ξ, (N + 1)3ξ〉 ≤ C〈ξ, (N + 1)ξ〉

for all ξ ∈ F≤N, we have

|〈ξ, e−B(ηt )(N 2/N )eB(ηt )ξ〉| ≤ C‖(N + 1)1/2ξ‖2.

Using Lemma 5.6 and the Leibniz rule, we also find

|〈ξ, [N , e−B(ηt )(N 2/N )eB(ηt )]ξ〉| ≤ C‖(N + 1)1/2ξ‖2,

|〈ξ, [a∗(g1)a(g2), e−B(ηt )(N 2/N )eB(ηt )]ξ〉| ≤ C‖g1‖‖g2‖‖(N + 1)1/2ξ‖2,

|〈ξ, ∂t(e−B(ηt )(N 2/N )eB(ηt ))ξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖2. �

5C. Analysis of e−B(ηt )L(1)N, t e
B(ηt ). We recall that

L(1)N, t =
√

Nb(hN, t)−
N + 1
√

N
b(h̃N, t)+ h.c.,

where we used the notation
hN, t = (N 3V (N · )w`(N · ) ∗ |ϕ̃t |

2)ϕ̃t ,

h̃N, t = (N 3V (N · ) ∗ |ϕ̃t |
2)ϕ̃t .

We write

e−B(ηt )L(1)N, t e
B(ηt ) =

√
N [b(coshηt (hN, t))+ b∗(sinhηt (h̄N, t))+ h.c.] + E (1)N, t . (5-47)

In the next proposition we show that the operator E (1)N, t , defined in (5-47), its commutator with N and its
time-derivative can all be controlled by the number of particles operator N (while the first term on the
right-hand side of (5-47) will cancel with contributions arising from conjugation of L(3)N, t ).

Proposition 5.7. Under the same assumptions as in Theorem 4.4, there exist constants C, c> 0 such that

|〈ξ, E (1)N, tξ〉| ≤ C〈ξ, (N + 1)ξ〉,

|〈ξ, [N , E (1)N, t ]ξ〉| ≤ C〈ξ, (N + 1)ξ〉,

|〈ξ, [a∗(g1)a(g2), E (1)N, t ]ξ〉| ≤ C‖g1‖‖g2‖〈ξ, (N + 1)ξ〉,

|∂t 〈ξ, E (1)N, tξ〉| ≤ Cec|t |
〈ξ, (N + 1)ξ〉

(5-48)

for all ξ ∈ F≤N.
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Proof. We start with the observation that

‖hN, t‖, ‖h̃N, t‖ ≤ C‖ϕ̃t‖
3
H1 ≤ C,

‖∂t hN, t‖, ‖∂t h̃N, t‖ ≤ ‖ϕ̃t‖
2
H1‖ϕ̃t‖H3 ≤ Cec|t |

(5-49)

uniformly in N and for all t ∈ R. Recall that, by (5-47),

E (1)N, t =
[
e−B(ηt )L(1)N, t e

B(ηt )−
√

N
(
b(coshηt (hN, t))+ b∗(sinhηt (hN, t))+ h.c.

)]
=
√

N
[
e−B(ηt )b(hN, t)eB(ηt )−

(
b(coshηt (hN, t))+ b∗(sinhηt (hN, t))

)]
+ h.c.

+ N−1/2e−B(ηt )(N + 1)b(h̃N, t)eB(ηt ). (5-50)

Set

D(g)= e−B(ηt )b(g)eB(ηt )− b(coshηt (g))− b∗(sinhηt (g)).

We observe that Proposition 5.7 follows if we prove that

|〈ξ1, D(g)ξ2〉| ≤ C N−1/2
‖g‖‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖,

|〈ξ1, [N , D(g)]ξ2〉| ≤ C N−1/2
‖g‖‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖,

|〈ξ1, [a∗(g1)a(g2), D(g)]ξ2〉| ≤ C N−1/2
‖g‖‖g1‖‖g2‖‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖,

|〈ξ1, ∂t D(g)ξ2〉| ≤ C N−1/2(‖g‖+‖ġ‖)‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖

(5-51)

for every, possibly time-dependent, g ∈ L2(R3). In fact, applying (5-51) with g = hN, t , we obtain the
desired bounds for the first line on the right-hand side of (5-50). To bound the expectation of the operator
on the second line on the right-hand side of (5-50), on the other hand, we apply (5-51) with g = h̃N, t ,
ξ1 = ξ and ξ2 = e−B(ηt )(N + 1)eB(ηt )ξ . We find

N−1/2
|〈ξ, e−B(ηt )(N + 1)b(h̃N, t)eB(ηt )ξ〉|

= N−1/2
|〈ξ2, e−B(ηt )b(h̃N, t)eB(ηt )ξ〉|

≤ N−1/2
|〈ξ2, [b(coshηt (h̃N, t))+ b∗(sinhηt (h̃N, t))]ξ〉| +C N−1

‖h̃N, t‖‖(N + 1)1/2ξ‖‖(N + 1)1/2ξ2‖

≤ C N−1/2
‖(N + 1)1/2ξ‖‖ξ2‖+C N−1

‖(N + 1)1/2ξ‖‖(N + 1)1/2ξ2‖, (5-52)

where we used Lemma 2.2, the fact that coshηt , sinhηt are bounded operators (uniformly in t and N ), and
(5-49). From Lemma 3.1, we obtain

‖ξ2‖
2
= 〈ξ, e−B(ηt )(N + 1)2eB(ηt )ξ〉 ≤ C〈ξ, (N + 1)2ξ〉 = C‖(N + 1)ξ‖2

and, similarly,

‖(N + 1)1/2ξ2‖
2
= 〈ξ, e−B(ηt )(N + 1)eB(ηt )(N + 1)e−B(ηt )(N + 1)eB(ηt )ξ〉

≤ C〈ξ, e−B(ηt )(N + 1)3eB(ηt )ξ〉

≤ C〈ξ, (N + 1)3ξ〉 = C‖(N + 1)3/2ξ‖2.
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Inserting the last two bounds in the right-hand side of (5-52), we conclude that

N−1/2
|〈ξ, e−B(ηt )(N + 1)b(h̃N, t)eB(ηt )ξ〉| ≤ C‖(N + 1)1/2ξ‖2

for all ξ ∈ F≤N. Similarly, we can control the commutators of the second line on the right-hand side of
(5-50) with N and with a∗(g1)a(g2) and its time-derivative.

We still have to show (5-51). To this end, we use Lemma 3.3 to expand

e−B(ηt )b(g)eB(ηt ) =

∑
n≥0

(−1)n

n!
ad(n)B(ηt )

(b(g)). (5-53)

According to Lemma 3.2, the nested commutator ad(n)B(ηt )
(b(g)) can be written as a sum of 2nn! terms,

having the form

31 · · ·3i N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(s)
t,\k+1

(g�)), (5-54)

where each 3m is (N −N )/N, (N −N + 1)/N or a 5(2)-operator of the form

N−p5
(2)
]′,[′(η

(m1)

t,\′1
, . . . , η

(m p)

t,\′p
). (5-55)

Exactly one of these 2nn! terms has the form
(N−N )r

N r
(N+1−N )r

N r b(η(2r)
t (g)) if n = 2r is even,

−
(N−N )r+1

N r+1
(N+1−N )r

N r b∗(η(2r+1)
t (ḡ)) if n = 2r + 1 is odd.

(5-56)

All other terms are of the form (5-54), with either k > 0 or with at least one factor 3i being of the form
(5-55). Let us suppose that n = 2r is even. Then we write (5-56) as

(N−N )r

N r

(N+1−N )r

N r b(η(2r)
t (g))= b(η(2r)

t (g))+
[
(N−N )r

N r

(N+1−N )r

N r −1
]

b(η(2r)
t (g)). (5-57)

Inserting the term b(η(2r)
t (g)) on the right-hand side of (5-53) and summing over all r ∈N, we reconstruct∑

r≥0

1
(2r)!

b(η(2r)
t (g))= b(coshηt (g)).

On the other hand, the contribution of the second term on the right-hand side of (5-57) has matrix elements
bounded by∣∣∣∣〈ξ1,

[
(N −N )r

N r

(N + 1−N )r

N r − 1
]

b(η(2r)
t (g))ξ2

〉∣∣∣∣
≤

∥∥∥∥[(N −N )r

N r

(N + 1−N )r

N r − 1
]
ξ1

∥∥∥∥‖b(η(2r)
t (g))ξ2‖

≤ 2r N−1/2
‖ηt‖

2r
‖g‖‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖ (5-58)
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since 1− (1− x)r ≤ r x for all 0≤ x ≤ 1. Similarly, the contribution (5-56) with n = 2r + 1 odd can be
shown to reconstruct the operator b∗(sinhηt (ḡ)), up to an error that can be estimated as in (5-58).

As for the other terms of the form (5-54), excluding (5-56), we can bound their matrix elements using
part (i) of Lemma 5.2. We obtain

|〈ξ1,31 · · ·3i N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(s)
t,\k+1

)ξ2〉|

≤ ‖(N + 1)1/2ξ1‖ ‖(N + 1)−1/231 · · ·3i N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(s)
t,\k+1

(g�))ξ2‖

≤ Cn
‖ηt‖

n N−1/2
‖g‖‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖. (5-59)

We conclude that

|〈ξ1, {e−B(ηt )b(g)eB(ηt )− b(coshηt (g))− b∗(sinhηt (ḡ))}ξ2〉|

≤ N−1/2
‖g‖‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖

∑
n≥2

nCn
‖ηt‖

n

≤ C N−1/2
‖g‖‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖ (5-60)

if the parameter ` > 0 in the definition (4-16) of the kernel ηt is small enough.
Since, by Lemma 5.1(i), the commutator of every term of the form (5-54) with N is again a term of

the same form, just multiplied with a constant κ ∈ {0,±1,±2}, we conclude that

|〈ξ1, [N , {e−B(ηt )b(g)eB(ηt )− b(coshηt (g))− b∗(sinhηt (ḡ))}]ξ2〉|

≤ C N−1/2
‖g‖‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖. (5-61)

Since, again by Lemma 5.1, parts (ii) and (iii), the commutator of every term of the form (5-54) with
a∗(g1)a(g2) can be written as a sum of at most 2n terms having again the form (5-54), just with one of
the ηt -kernels or with the function η(s)t,\k+1

(g�) appearing in the 5(1)-operator replaced according to (5-4)
and (5-9), we also find that

|〈ξ1, [a∗(g1)a(g2), {e−B(ηt )b(g)eB(ηt )− b(coshηt (g))− b∗(sinhηt (ḡ))}]ξ2〉|

≤ C N−1/2
‖g‖‖g1‖‖g2‖‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖. (5-62)

Finally, since by Lemma 5.1(iv) the time-derivative of each term of the form (5-54) can be written as a
sum of at most n+ 1 terms having again the form (5-54), but with one of the ηt -kernels or the function
η
(s)
t,\k+1

(g�) appearing in the 5(1)-operator replaced by their time-derivative, we get (since ‖η̇t‖ ≤ Cec|t |)

|∂t 〈ξ1, [e−B(ηt )b(g)eB(ηt )− b(coshηt (g))− b∗(sinhηt (ḡ))]ξ2〉|

≤ C N−1/2ec|t |(‖g‖+‖ġ‖)‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖, (5-63)

completing the proof. �



GROSS–PITAEVSKII DYNAMICS FOR BOSE–EINSTEIN CONDENSATES 1559

5D. Analysis of e−B(ηt )L(2)N, t e
B(ηt ). Recall that

L(2)N, t = K+
∫

dx dy N 3V (N (x − y))|ϕ̃t(y)|2
[
b∗x bx −

1
N

a∗x ax

]
+

∫
dx dy N 3V (N (x − y))ϕ̃t(x) ¯̃ϕt(y)

[
b∗x by −

1
N

a∗x ay

]
+

1
2

∫
dx dy N 3V (N (x − y))[ϕ̃t(x)ϕ̃t(y)b∗x b∗y + h.c.], (5-64)

with the notation

K =
∫

dx ∇xa∗x∇xax

for the kinetic energy operator.
In the next two subsections we consider first the conjugation of the kinetic energy operator and then of

the rest of L(2)N, t with eB(ηt ).

5D1. Analysis of e−B(ηt )KeB(ηt ). We write

e−B(ηt )KeB(ηt )

= K+
∫
|∇x kt(x; y)|2 dx dy+

∫
dx dy (1w`)(N (x − y))[ϕ̃t(x)ϕ̃t(y)b∗x b∗y + h.c.] + E (K )N, t . (5-65)

In the next proposition, we collect important properties of the error term E (K )N, t defined in (5-65).

Proposition 5.8. Under the same assumptions as in Theorem 4.4, there exist constants C, c> 0 such that

|〈ξ, E (K )N, t ξ〉| ≤ Cec|t |
‖(HN +N + 1)1/2ξ‖‖(N + 1)1/2ξ‖,

|〈ξ, [N , E (K )N, t ]ξ〉| ≤ Cec|t |
‖(HN +N + 1)1/2ξ‖‖(N + 1)1/2ξ‖,

|〈ξ, [a∗(g1)a(g2), E (K )N, t ]ξ〉| ≤ Cec|t |
‖g1‖H1‖g2‖H1‖(HN +N + 1)1/2ξ‖‖(N + 1)1/2ξ‖,

|∂t 〈ξ, E (K )N, t ξ〉| ≤ Cec|t |
‖(HN +N + 1)1/2ξ‖‖(N + 1)1/2ξ‖,

(5-66)

where we used the notation HN = K+VN , with

VN =
1
2

∫
dx dy N 2V (N (x − y))a∗x a∗yayax . (5-67)

Proof. We write

e−B(ηt )KeB(ηt )−K =
∫ 1

0
e−s B(ηt )[K, B(ηt)]es B(ηt ) =

∫ 1

0
ds
∫

dx e−s B(ηt )[∇xa∗x∇xax , B(ηt)]es B(ηt ).

From (3-14), we find

e−B(ηt )KeB(ηt )−K =
∫ 1

0
ds
∫

dx [e−s B(ηt )b(∇xηx)∇x bx es B(ηt )+ h.c.]

=

∑
k,n≥0

(−1)k+n

k! n! (k+ n+ 1)

∫
dx [ad(n)B(ηt )

(b(∇xηx))ad(k)B(ηt )
(∇x bx)+ h.c.].
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From the sum on the right-hand side we extract the term with k = n = 0 and also the term with n = 0,
k = 1. We obtain

e−B(ηt )KeB(ηt )−K =
∫

dx [b(∇xηx)∇x bx+h.c.]

+

∫
dx b(∇xηx)b∗(∇xηx)−

1
N

∫
dx b(∇xηx)Nb∗(∇xηx)

−
1

2N

∫
dx dz dy[ηt(z, y)b(∇xηx)b∗ya∗z∇xax+h.c.]

+

∗∑
k,n

(−1)k+n

k! n! (k+n+1)

∫
dx[ad(n)B(ηt )

(b(∇xηx))ad(k)B(ηt )
(∇x bx)+h.c.], (5-68)

where
∗∑

denotes the sum over all indices k, n ≥ 0, excluding the two pairs (k, n)= (0, 0) and (k, n)=
(1, 0). We discuss now the terms on the right-hand side of (5-68) separately.

The first term on the right-hand side of (5-68) can be decomposed as in (4-17), giving∫
dx b(∇xηx)∇x bx =

∫
dx b(∇x kx)∇x bx +

∫
dx b(∇xµx)∇x bx . (5-69)

The second term on the right-hand side of (5-69) contributes to the error E (K )N, t . Its expectation is bounded
by ∣∣∣∣∫ dx 〈ξ, b(∇xµx)∇x bxξ〉

∣∣∣∣≤ ‖(N + 1)1/2ξ‖
∫

dx ‖∇xµx‖‖∇x bxξ‖

≤ ‖∇xµ‖‖(N + 1)1/2ξ‖‖K1/2ξ‖ ≤ C‖(N + 1)1/2ξ‖‖K1/2ξ‖.

The expectation of the commutators of this term with N and with a∗(g1)a(g2) and also its time-derivative
can be bounded similarly, using the formula

[a∗(g1)a(g2), b(∇xµx)∇x bx ] = 〈g1,∇xµx 〉b(g2)∇x bx + b(∇xµx)∇g1(x)b(g2)

and the fact that ‖∂t∇xµt‖< Cec|t |, uniformly in N.
As for the first term on the right-hand side of (5-69), we integrate by parts and we use the definition

(4-15), to write∫
dx b(∇x kx)∇x bx =

∫
dx dy N 3(1w`)(N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y) bx by

+ 2
∫

dx dy N 2(∇w`)(N (x − y))(∇ϕ̃t)(x)ϕ̃t(y) bx by

+

∫
dx dy Nw`(N (x − y))(1ϕ̃t)(x)ϕ̃t(y)bx by . (5-70)

The first term on the right-hand side of (5-70) is exactly the (hermitian conjugate of the) contribution that
we isolated on the second line of (5-65); it does not enter the error term E (K )N, t . The second and third terms
on the right-hand side of (5-70), on the other hand, are included in E (K )N, t . The expectation of the third
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term is bounded by∣∣∣∣∫ dx dy Nw`(N (x − y))(1ϕ̃t)(x)ϕ̃t(y) 〈ξ, bx byξ〉

∣∣∣∣
≤

∫
dx |1ϕ̃t(x)|‖b∗(Nw`(N (x − · ))ϕ̃t)ξ‖ ‖bxξ‖

≤ sup
x
‖Nw`(N (x − · ))ϕ̃t‖‖1ϕ̃t‖‖(N + 1)1/2ξ‖2 ≤ Cec|t |

‖(N + 1)1/2ξ‖2. (5-71)

To bound the expectation of the second term on the right-hand side of (5-70), we integrate by parts. We find∫
dx dy N 2(∇w`)(N (x − y))(∇ϕ̃t)(x)ϕ̃t(y) 〈ξ, bx byξ〉

= −

∫
dx dy Nw`(N (x − y))(1ϕ̃t)(x)ϕ̃t(y)〈ξ, bx byξ〉

−

∫
dx dy Nw`(N (x − y))(∇ϕ̃t)(x)ϕ̃t(y)〈ξ, by∇x bxξ〉.

Proceeding as in (5-71), we conclude that∣∣∣∣∫ dx dy N 2(∇w`)(N (x − y))(∇ϕ̃t)(x)ϕ̃t(y) 〈ξ, bx byξ〉

∣∣∣∣
≤ sup

x
‖Nw`(N (x − · ))ϕ̃t‖

[
‖1ϕ̃t‖‖(N + 1)1/2ξ‖2+‖∇ϕ̃t‖‖(N + 1)1/2ξ‖‖K1/2ξ‖

]
≤ Cec|t |[

‖(N + 1)1/2ξ‖2+‖(N + 1)1/2ξ‖‖K1/2ξ‖
]
.

Notice that the last estimate and the estimate (5-71) for the third term on the right-hand side of (5-70)
continue to hold, if we replace the operator whose expectation we are bounding with its commutator with
N or with a∗(g1)a(g2) or with its time-derivative.

Now, let us consider the second term on the right-hand side of (5-68). We observe that∫
dx b(∇xηx)b∗(∇xηx)

= ‖∇xηx‖
2
−

N
N
‖∇xηx‖

2
+

∫
dx dy dz ∇xηt(x; z)∇x η̄t(y; x)

(
b∗z by −

1
N

a∗z ay

)
. (5-72)

Denoting by D the operator with the integral kernel

D(z; y)=
∫

dx ∇xηt(z; x)∇x η̄t(x; y), (5-73)

we have∣∣∣∣∫ dx dy dz ∇xηt(x; z)∇x η̄t(y; x)〈ξ, b∗z byξ〉

∣∣∣∣≤ |〈ξ, d0(D)ξ〉| ≤ ‖D‖2‖N 1/2ξ‖2. (5-74)

Since, by Lemma 4.3, ‖D‖2 ≤ C , we obtain∣∣∣∣∫ dx dy dz ∇xηt(x; z)∇x η̄t(y; x)〈ξ, b∗z byξ〉

∣∣∣∣≤ C‖N 1/2ξ‖2
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and similarly for the a∗z ay term. As for the first term on the right-hand side of (5-72), we use the
decomposition ηt = kt +µt . Since ‖∇xµt‖ is finite, uniformly in N and in t , we find∣∣∣∣∫ dx‖∇xηx‖

2
−

∫
dx dy |∇x kt(x; y)|2

∣∣∣∣≤ C.

The second term on the right-hand side of (5-72) can be controlled using N−1
‖∇xηx‖

2
≤C . Furthermore,

one can show that ∫
dx 〈ξ, [N , b(∇xηx)b∗(∇xηx)]ξ〉 = 0,∣∣∣∣∫ dx 〈ξ, [a∗(g1)a(g2), b(∇xηx)b∗(∇xηx)]ξ〉

∣∣∣∣≤ C‖g1‖‖g2‖‖(N + 1)1/2ξ‖2

and ∣∣∣∣∂t

[∫
dx 〈ξ, [b(∇xηx)b∗(∇xηx)]ξ〉−

∫
dx dy|∇x kt(x; y)|2

]∣∣∣∣≤ CeK |t |
‖(N + 1)1/2ξ‖2.

Here we used the formula[
a∗(g1)a(g2),

∫
dx b(∇xηx)b∗(∇xηx)

]
=

∫
dx 〈∇xηx , g1〉b(g2)b∗(∇xηx)+

∫
dx 〈g2,∇xηx 〉b(∇xηx)b∗(g1)

for the commutator with a∗(g1)a(g2) and the bounds in Proposition 4.2 for ∂t ϕ̃t .
The third term on the right-hand side of (5-68) can be controlled similarly.
To control the fourth term on the right-hand side of (5-68) we proceed as follows. First of all, we com-

mute the annihilation operator b(∇xηx) to the right of the two creation operators b∗ya∗z . Using (2-7), we find

1
2N

∫
dx dy dz ηt(z; y)b(∇xηx)b∗ya∗z∇xax =

1
2N

∫
dx dy dz ηt(z; y)b∗ya∗z a(∇xηx)∇x bx

+
1
N

∫
dx dy dz ηt(z; y)∇xηt(x; y)

(
1−

N
N
−

1
2N

)
a∗z∇xax

−
1

2N 2

∫
dx dy dz ηt(z; y)a∗ya(∇xηx)a∗z∇xax . (5-75)

To bound the expectation of the last term, we use the additional N−1 factor to compensate for‖∇xηt‖'N 1/2.
We find∣∣∣∣ 1
2N 2

∫
dx dy dz ηt(z; y)〈ξ, a∗ya(∇xηx)a∗z∇xaxξ〉

∣∣∣∣
≤

1
2N 2

[∫
dx dy dz |ηt(y; z)|2‖∇xaxξ‖

2
]1/2[∫

dx dy dz ‖aza∗(∇xηx)ayξ‖
2
]1/2

≤
‖ηt‖‖∇xηt‖

2N 2 ‖K1/2ξ‖‖(N + 1)3/2ξ‖

≤ C N−1/2
‖K1/2ξ‖‖(N + 1)1/2ξ‖.
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Similarly, the expectation of the second term on the right-hand side of (5-75) is bounded by∣∣∣∣ 1
N

∫
dx dy dz ηt(z; y)∇xηt(x; y)

〈
ξ,

(
1−

N
N
−

1
2N

)
a∗z∇xaxξ

〉∣∣∣∣
≤

1
N

[∫
dx dy dz |ηt(z; y)|2‖∇xaxξ‖

2
]1/2[∫

dx dy dz |∇xηt(x; y)||2‖azξ‖
2
]1/2

≤
‖ηt‖‖∇xηt‖

N
‖(N + 1)1/2ξ‖‖K1/2ξ‖

≤ C N−1/2
‖(N + 1)1/2ξ‖‖K1/2ξ‖.

We are left with the first term on the right-hand side of (5-75). Here, we consider the decomposition

1
2N

∫
dx dy dz ηt(z; y)b∗ya∗z a(∇xηx)∇x bx

=
1

2N

∫
dx dy dz ηt(z; y)b∗ya∗z a(∇x kx)∇x bx

+
1

2N

∫
dx dy dz ηt(z; y)b∗ya∗z a(∇xµx)∇x bx =:M1+M2. (5-76)

Since ∇xµt ∈ L2(R3
×R3), with norm bounded uniformly in N and t , we easily find

|〈ξ,M2ξ〉| ≤ C N−1/2
‖(N + 1)1/2ξ‖‖K1/2ξ‖.

To control the term M1, on the other hand, we integrate by parts. We obtain

M1 =
1

2N

∫
dx dy dz dw ηt(z; y)(−1x kt)(x;w)b∗ya∗z awbx

=
N 2

2

∫
dx dy dz dw ηt(z; y)(1w`)(N (x −w))ϕ̃t(x)ϕ̃t(w)b∗ya∗z awbx

+
N
2

∫
dx dy dz dw ηt(z; y)(∇w`)(N (x −w))∇ϕ̃t(x)ϕ̃t(w)b∗ya∗z awbx

+
1
2

∫
dx dy dz dw ηt(z; y)w`(N (x −w))1ϕ̃t(x)ϕ̃t(w)b∗ya∗z awbx

=M11+M12+M13. (5-77)

Since |(∇w`)(N x)| ≤ C/(N 2
|x |2), we have

|〈ξ,M12ξ〉|

≤ C N−1
∫

dx dy dz dw |ηt(z; y)|
|∇ϕ̃t(x)||ϕ̃t(w)|

|x −w|2
‖azbyξ‖‖awbxξ‖

≤ C N−1
[∫

dx dy dz dw
|∇ϕ̃t(x)|2 |ϕ̃t(w)|

2

|x −w|2
‖azbyξ‖

2
]1/2[∫

dx dy dz dw
|ηt(y; z)|2

|x −w|2
‖awbxξ‖

2
]1/2

≤ C N−1
‖ηt‖‖(N + 1)ξ‖‖(N + 1)1/2(K+N )1/2ξ‖

≤ C‖(N + 1)1/2ξ‖‖(K+N )1/2ξ‖,
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where we used Hardy’s inequality |x |−2
≤C(1−1). The expectation of M13 can be bounded analogously.

Let us focus now on the term M11. Here we use the fact that f` = 1−w` solves the Neumann problem
(4-1) to write

M11 =−
N 2

2

∫
dx dy dz dw ηt(z; y)V (N (x −w)) f`(N (x −w))ϕ̃t(x)ϕ̃t(w)b∗ya∗z awbx

+ N 2λ`

∫
dx dy dz dw ηt(z; y) f`(N (x −w))χ(|x −w| ≤ `)ϕ̃t(x)ϕ̃t(w)b∗ya∗z awbx

=:M111+M112. (5-78)

Since, by Lemma 4.1, λ` ≤ C N−3 and 0≤ f` ≤ 1, it is easy to check that

|〈ξ,M112ξ〉| ≤ C‖(N + 1)1/2ξ‖2.

As for the first term on the right-hand side of (5-78), it can be estimated by

|〈ξ,M111ξ〉| ≤

∫
dx dy dz dw |ηt(z; y)|N 2V (N (x −w))|ϕ̃t(w)||ϕ̃t(x)|‖azbyξ‖‖awbxξ‖

≤

[∫
dx dy dz dw |ηt(z; y)|2 N 2V (N (x −w))‖awbxξ‖

2
]1/2

×

[∫
dx dy dz dw N 2V (N (x −w))|ϕ̃t(w)|

2
|ϕ̃t(x)|2‖azbyξ‖

2
]1/2

≤ C N−1/2
‖ηt‖‖V

1/2
N ξ‖‖(N + 1)ξ‖ ≤ C‖V1/2

N ξ‖‖(N + 1)1/2ξ‖,

where we used the fact that 0≤ f` ≤ 1 and the notation (5-67).
Summarizing, we have shown that the expectation of the fourth term on the right-hand side of (5-68)

can be bounded by∣∣∣∣ 1
2N

∫
dx dy dz ηt(y; z)〈ξ, b(∇xηx)b∗ya∗z∇xaxξ〉

∣∣∣∣≤C‖(N +1)1/2ξ‖‖(K+N +VN +1)1/2ξ‖. (5-79)

Also in this case, it is easy to check that the same estimate holds true for the expectations of the
commutators of this term with N and with a∗(g1)a(g2) and for the expectation of its time-derivative.

Finally, we have to deal with the last term on the right-hand side of (5-68). According to Lemma 3.2,
the operator ∫

dx ad(n)B(ηt )
(b(∇xηx))ad(k)B(ηt )

(∇x bx)

is given by the sum of 2n+kn! k! terms, all having the form

E :=
∫

dx 31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; ∇xη

(`1+1)
x,♦ )

×3′1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; ∇xη

(`2)
x,♦′), (5-80)
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with k1, k2, `1, `2 ≥ 0, j1, . . . , jk1,m1, . . . ,mk2 ≥ 1, and where each operator 3i , 3′i is a factor
(N −N )/N, a factor (N + 1−N )/N or a 5(2)-operator of the form

N−p5
(2)
],[(η

(q1)
t,\

1
, . . . , η

(qp)

t,\
p
), (5-81)

with p, q1, . . . , qp ≥ 1. Here we used the fact that η(`1)
\ (∇xηx,♦)= ∇xη

(`1+1)
x,♦′ for an appropriate choice

of ♦′ ∈ { · , ∗}`1+1.
We study the expectation of a term of the form (5-80), distinguishing several cases, depending on the

values of `1, `2 ∈ N.

Case 1: `1 ≥ 1, `2 ≥ 2. In this case, ∇xη
(`1+1)
t,♦ ,∇xη

(`2)
t,♦ ∈ L2(R3

×R3), with norm bounded uniformly
in N and t . Hence, with Lemma 2.4, we can bound

|〈ξ,Eξ〉| ≤ Ck+n
‖ηt‖

k+n−`1−`2‖∇xη
(`1+1)
t ‖‖∇xη

(`2)
t ‖‖(N + 1)1/2ξ‖2.

Now we observe that, for example,

‖∇xη
(`2)
t ‖ ≤ ‖∇xη

(2)
t ‖‖η

(`2−2)
t ‖ ≤ ‖∇xη

(2)
t ‖‖ηt‖

`2−2
≤ C‖ηt‖

`2−2.

Similarly, ‖∇xη
(`1+1)
t ‖ ≤ C‖ηt‖

`1−1. Hence, in this case,

|〈ξ,Eξ〉| ≤ Ck+n
‖ηt‖

k+n−3
‖(N + 1)1/2ξ‖2.

Case 2: `1 ≥ 1, `2 = 1. In this case we integrate by parts, writing

〈ξ,Eξ〉 =
∫

dx
〈
ξ,31 · · ·3i1 N−k5

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
;−1xη

(`1+1)
x,♦ )

×3′1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; ηx,♦′)ξ

〉
.

Since, by Lemma 4.3, ‖1xη
(2)
t ‖ ≤ Cec|t |, we conclude by Lemma 2.4 that, in this case,

|〈ξ,Eξ〉| ≤ Ck+n
‖ηt‖

k+n−1
‖1xη

(2)
t ‖‖(N + 1)1/2ξ‖2 ≤ Ck+nec|t |

‖ηt‖
k+n−1

‖(N + 1)1/2ξ‖2.

Case 3: `1 ≥ 1, `2 = 0. In this case, the second 5(1)-operator in (5-80) has the form

N−k25
(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; ∇xδx)= N−k2

∫
b[0

x1

k2−1∏
j=1

a]j
yj a

[j
x j+1a

]k2
yk2
∇xax

k2∏
j=1

η
(m j )

t,\′j
(x j ; yj ) dx j dyj .

Here we used part (v) of Lemma 3.2 to conclude that the last field on the right, the one carrying the deriva-
tive, must be an annihilation operator (or possibly a b-operator). Repeatedly applying Lemma 2.1 on pairs
of creation and annihilation operators, but leaving the last annihilation operator ∇xax untouched, we find

|〈ξ,Eξ〉| ≤ Ck+n
‖ηt‖

k+n−`1‖(N + 1)1/2ξ‖
∫

dx ‖∇xη
(`1+1)
x ‖‖∇xaxξ‖

≤ Ck+n
‖ηt‖

k+n−`1‖∇xη
(`1+1)
t ‖‖(N + 1)1/2ξ‖‖K1/2ξ‖

≤ Ck+n
‖ηt‖

k+n−1
‖(N + 1)1/2ξ‖‖K1/2ξ‖.
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Case 4: `1 = 0, `2 ≥ 2. Here we proceed as in Case 2, integrating by parts and moving the derivative
over x from ∇xηx,♦ (whose L2 norm blows up) to ∇xη

(`2)
x,♦′ (using the fact that ‖1xη

(2)
t ‖<∞).

Case 5: `1 = 0, `2 = 1. In this case, by part (v) of Lemma 3.2, the two 5(1)-operators in (5-80) have
the form

5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; ∇xη

(`1+1)
x,♦ )=

∫
b[0

x1

k1∏
i=1

a]j
yj a

[j
x j+1a]n

yn
a(∇xηx)

k1∏
i=1

η
( ji )
t,\i (xi ; yi ) dxi dyi (5-82)

and

5
(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; ∇xη

(`2)
x,♦′)=

∫
b
[′0
x1

k2∏
j=1

a
]′j
yj a

[′j
x j+1a]

′
n

yn a∗(∇xηx)

k2∏
i=1

η
(mi )
t,\i (xi ; yi ) dxi dyi . (5-83)

Since ‖∇xηt‖ ' N 1/2 blows up as N →∞, to estimate (5-80) in this case we first have to commute the
annihilation operator a(∇xηx,♦) in (5-82) with the creation operator a∗(∇xηx,♦′) in (5-83). We proceed
much as we did to bound the second term on the right-hand side of (5-68) in the case n = 0, k = 1,
starting in (5-72). Here, however, we first have to commute the annihilation operator a(∇xηx,♦) through
the 3′i -operators and through the creation operators in (5-83).

If 3′i = (N−N )/N or 3′i = (N+1−N )/N, we just pull the annihilation operator a(∇xηx,♦) through,
using the fact that a(∇xηx,♦)N = (N + 1)a(∇xηx,♦). On the other hand, to commute a(∇xηx,♦) through
the 3′i -operators having the form (5-81) and through the creation operators in (5-83) (excluding the very
last one on the right), we use the canonical commutation relations (2-1). The important observation here
is the fact that every creation operator appearing in (5-81) and in (5-83) is associated with an ηt -kernel;
the commutator produces a new creation or annihilation operator, this time with a wave function whose
L2-norm remains bounded, uniformly in N. For example, we have[

a(∇xηx),

∫
a∗xi

ayiη
(mi )(xi ; yi ) dxi dyi

]
= a(∇xη

(mi+1)
x ). (5-84)

Since mi + 1 ≥ 2, we have ‖∇xη
(mi+1)

‖ ≤ C , uniformly in N. Similar formulas hold for commutators
of a(∇xηx) with a pair of not normally ordered creation and annihilation operators or with the product of
two creation operators. In fact, not only the L2-norm but even the H 1-norm of the wave function of the
annihilation operator on the right-hand side of (5-84) is bounded, uniformly in N. This means that terms
resulting from commutators like (5-84) can be bounded integrating by parts and moving the derivative
in (5-83) to the argument of the annihilation operator in (5-84). We conclude that E= F1+F2, where

F1 =

∫
dx 31 · · ·3i1 N−k1

∫
b[0

x1

k1∏
i=1

a]j
yj a

[j
x j+1a]n

yn

k1∏
i=1

η
( ji )
t,\i (xi ; yi ) dxi dyi

×3′1 · · ·3
′

i2
N−k2

∫
b
[′0
x ′1

k1∏
i=1

a
]′j

y′j
a
[′j

x ′j+1
a]
′
n

y′n

k1∏
i=1

η
( ji )
t,\i (x

′

i ; y′i ) dx ′i dy′i a(∇xηx,♦)a∗(∇xηx,♦′),

while F2, which contains the contribution of all commutators, is bounded by

|〈ξ,F2ξ〉| ≤ nCk+n
‖ηt‖

k+n−1
‖(N + 1)1/2ξ‖2.
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To estimate F1, we write it as F1 = F11+F12, with

F11 = ‖∇xηt‖
231 · · ·3i1 N−k1

∫
b[0

x1

k1∏
i=1

a]j
yj a

[j
x j+1a]n

yn

k1∏
i=1

η
( ji )
t,\i (xi ; yi ) dxi dyi

×3′1 · · ·3
′

i2
N−k2

∫
b
[′0
x ′1

k1∏
i=1

a
]′j

y′j
a
[′j

x ′j+1
a]
′
n

y′n

k1∏
i=1

η
( ji )
t,\i (x

′

i ; y′i ) dx ′i dy′i (5-85)

and

F12 =

∫
dx 31 · · ·3i1 N−k1

∫
b[0

x1

k1∏
i=1

a]j
yj a

[j
x j+1a]n

yn

k1∏
i=1

η
( ji )
t,\i (xi ; yi ) dxi dyi

×3′1 · · ·3
′

i2
N−k2

∫
b
[′0
x ′1

k1∏
i=1

a
]′j

y′j
a
[′j

x ′j+1
a]
′
n

y′n

k1∏
i=1

η
( ji )
t,\i (x

′

i ; y′i ) dx ′i dy′i a∗(∇xηx,♦′)a(∇xηx,♦). (5-86)

The contribution F11 can be estimated by

|F11| ≤ Ck+n
‖ηt‖

k+n−1
‖∇xηt‖

2 N−α‖(N + 1)α/2ξ‖2, (5-87)

where α = k1 + p1 + · · · + pr + k2 + p′1 + · · · + p′r ′ if r of the operators 31, . . . , 3i1 and r ′ of the
operators 3′1, . . . , 3

′

i2
are 5(2)-operators of the form (5-81), with orders p1, . . . , pr > 0 and, respectively,

p′1, . . . , p′r ′ > 0. Now observe that, since `2 = 1, we must have k ≥ 1. Since we are excluding here the
case n = 0, k = 1, we must either have n ≥ 1 and k = 1, or k ≥ 2. In both cases k+ n ≥ 2. According
to Lemma 3.2, the total number of ηt -kernels in every term of the form (5-80) is equal to k+ n+ 1≥ 3.
This implies that there is at least one ηt -kernel, in addition to the two ηt -kernels which produced the
commutator ‖∇xηt‖

2 in (5-85). We conclude that, in (5-87), we have α ≥ 1, and therefore, on F≤N,

|F11| ≤ Ck+n
‖ηt‖

k+n−1
‖∇xηt‖

2 N−1
‖(N + 1)1/2ξ‖2 ≤ Ck+n

‖ηt‖
k+n−1

‖(N + 1)1/2ξ‖2

since ‖∇xηt‖
2
≤C N by Lemma 4.3. To control F12 we notice that, with the operator D defined in (5-73),

0≤
∫

dx a∗(∇xηx,♦′)a(∇xηx,♦)= d0(D)≤ ‖D‖2N ≤ CN .

This easily implies that
|〈ξ,F12ξ〉| ≤ Ck+n

‖ηt‖
k+n−1

‖(N + 1)1/2ξ‖2.

We conclude that, in this case,

|〈ξ,Eξ〉| ≤ nCk+n
‖ηt‖

k+n−1
‖(N + 1)1/2ξ‖2.

Case 6: `1 = 0, `2 = 0. In this case, the term (5-80) has the form

E=
∫

dx 31 · · ·3i1 N−k1

∫
b[0

x1

k1∏
i=1

a]i
yi

a[i
xi+1

a]n
yn

a(∇xηx,♦)

k1∏
i=1

η( ji )(xi ; yi ) dxi dyi

×3′1 · · ·3
′

i2
N−k2

∫
b
[′0
x ′1

k1∏
i=1

a
]′i
y′i

a
[′i
x ′i+1

a]
′
n

y′n
∇xax

k2∏
i=1

η(mi )(x ′i ; y′i ) dx ′i dy′i . (5-88)
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Notice that a term of this form (with n = 0 and k = 1) already appears in the fourth line of (5-68) and was
studied starting in (5-75) (to be more precise, in this case the first 5(1)-operator in (5-80) is of order zero
(for n = 0, there is no other choice), and therefore the operator a(∇xηx,♦) appearing in (5-88) is replaced
by b(∇xηx,♦)). We will bound (5-88) following the same strategy used in (5-75). First we have to commute
the operator a(∇xηx,♦) in (5-88) to the right, close to the ∇xax -operator. As already explained in Case 5,
the annihilation and creation operators produced while commuting a(∇xηx,♦) to the right will have wave
function with H 1-norm bounded, uniformly in N. Integrating by parts over x , we obtain E=G1+G2, with

G1 =

∫
dx 31 · · ·3i1 N−k1

∫
b[0

x1

k1∏
i=1

a]j
yj a

[j
x j+1a]n

yn

k1∏
i=1

η
( ji )
t,\i (xi ; yi ) dxi dyi

×3′1 · · ·3
′

i2
N−k2

∫
b
[′0
x ′1

k1∏
i=1

a
]′j

y′j
a
[′j

x ′j+1
a]
′
n

y′n

k1∏
i=1

η
( ji )
t,\i (x

′

i ; y′i ) dx ′i dy′i a(∇xηx,♦)∇xax

and

|〈ξ,G2ξ〉| ≤ nCk+n
‖ηt‖

k+n−1
‖(N + 1)1/2ξ‖2.

To bound G1, we proceed exactly as we did starting in (5-76). Using the decomposition ηt = µt + kt

and the fact that ∇xµt has bounded L2-norm, uniformly in N, we conclude that G1 = G11+G12, with

G11 =31 · · ·3i1 N−k1

∫
b[0

x1

k1∏
i=1

a]j
yj a

[j
x j+1a]n

yn

k1∏
i=1

η
( ji )
t,\i (xi ; yi ) dxi dyi

×3′1 · · ·3
′

i2
N−k2

∫
b
[′0
x ′1

k1∏
i=1

a
]′j

y′j
a
[′j

x ′j+1
a]
′
n

y′n

k1∏
i=1

η
( ji )
t,\i (x

′

i ; y′i ) dx ′i dy′i

∫
dx (−1x kt)(x; y)axay

and

|〈ξ,G12ξ〉| ≤ Ck+n
‖ηt‖

k+n−1
‖(N + 1)1/2ξ‖‖K1/2ξ‖.

By Cauchy–Schwarz, the term G11 is bounded by

|〈ξ,G11ξ〉| ≤ Ck+n
‖ηt‖

k+n−1 N−α‖(N + 1)αξ‖
∫

dx dy |1x kt(x; y)|‖axayξ‖, (5-89)

where α = k1 + p1 + · · · + pr + k2 + p′1 + · · · + p′r ′ if r of the operators 31, . . . , 3i1 and r ′ of the
operators 3′1, . . . , 3

′

i2
are 5(2)-operators of the form (5-81), with orders p1, . . . , pr > 0 and, respectively,

p′1, . . . , p′r > 0. The important observation now is that, since we excluded the case k = n = 0, we have
k+n ≥ 1, and therefore every term of the form (5-80) must have at least two ηt -kernels in it. This implies
that, in (5-89), α ≥ 1, and therefore that

|G11| ≤ Ck+n
‖ηt‖

k+n−1 N−1/2
‖(N + 1)1/2ξ‖

∫
dx dy |1x kt(x; y)|‖axayξ‖.

Proceeding as we did from (5-77) to (5-79), we conclude that

|G11| ≤ Ck+n
‖ηt‖

k+n−1
‖(N + 1)1/2ξ‖‖(HN +N + 1)1/2ξ‖.
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Summarizing, we proved that the last term on the right-hand side of (5-68) is a sum over all
(k, n) 6= (0, 0), (1, 0) of 2n+kn! k! terms of the form (5-80), each of them having expectation bounded by

|〈ξ,Eξ〉| ≤ Ck+nec|t |
‖ηt‖

max(0,k+n−3)
‖(N + 1)1/2ξ‖‖(HN +N + 1)1/2ξ‖.

Similarly, one can show that

|〈ξ, [N ,E]ξ〉| ≤ Ck+nec|t |
‖ηt‖

max(0,k+n−3)
‖(N+1)1/2ξ‖‖(HN+N+1)1/2ξ‖,

|〈ξ, [a∗(g1)a(g2),E]ξ〉| ≤ Ck+nec|t |
‖ηt‖

max(0,k+n−3)
‖g1‖H1‖g2‖H1‖(N+1)1/2ξ‖‖(HN+N+1)1/2ξ‖,

|〈ξ, ∂t [E]ξ〉| ≤ Ck+nec|t |
‖ηt‖

max(0,k+n−3)
‖(N+1)1/2ξ‖‖(HN+N+1)1/2ξ‖.

Inserting in (5-68) we conclude that, if supt∈R ‖ηt‖ is small enough, the operator E (K )N, t defined in (5-65)
satisfies the bounds in (5-66). �

5D2. Analysis of e−B(ηt )(L(2)N, t −K)eB(ηt ). Recall that

L(2)N, t −K =
∫

dx (N 3V (N · ) ∗ |ϕ̃t |
2)(x)[b∗x bx − N−1a∗x ax ]

+

∫
dx dy N 3V (N (x − y))ϕ̃t(x) ¯̃ϕt(y)[b∗x by − N−1a∗x ay]

+
1
2

∫
dx dy N 3V (N (x − y))[ϕ̃t(x)ϕ̃t(y)b∗x b∗y + h.c.]. (5-90)

We define the error term E (2)N, t through the equation

e−B(ηt )(L(2)N, t −K)eB(ηt ) = Re
∫

dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)kt(y; x)

+
1
2

∫
dx dy N 3V (N (x − y))[ϕ̃t(x)ϕ̃t(y)b∗x b∗y + h.c.] + E (2)N, t . (5-91)

The properties of the error term E (2)N, t are described in the next proposition.

Proposition 5.9. Under the same assumptions as in Theorem 4.4, there exist constants C, c> 0 such that

|〈ξ, E (2)N, tξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖,

|〈ξ, [N , E (2)N, t ]ξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖,

|〈ξ, [a∗(g1)a(g2), E (2)N, t ]ξ 〉| ≤ Cec|t |
‖g1‖H2‖g2‖H2‖(N + 1)1/2ξ‖‖(V1/2

N +N + 1)1/2ξ‖,

|∂t 〈ξ, E (2)N, tξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(V1/2

N +N + 1)1/2ξ‖

(5-92)

for all ξ ∈ F≤N.

Proof. The conjugation of the first two terms on the right-hand side of (5-90) can be controlled with
Lemma 5.6, taking r to be the multiplication operator with the convolution N 3V (N · ) ∗ |ϕ̃t |

2 in the
first case (so that ‖r‖op = ‖N 3V (N · ) ∗ |ϕ̃t |

2
‖∞ ≤ C‖ϕ̃t‖

2
∞
≤ Cec|t |) and the operator with integral

kernel r(x; y)= N 3V (N (x− y))ϕ̃t(x)ϕ̃t(y) in the second case (then ‖r‖op≤ supx
∫
|r(x; y)| dy≤Cec|t |,
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uniformly in N ). Hence, to show Proposition 5.9 it is enough to prove the bounds (5-92), with E (2)N, t
replaced by

Ẽ (2)N, t =
1
2

∫
dx dy N 3V (N (x − y))[ ¯̃ϕt(x) ¯̃ϕt(y)e−B(ηt )bx byeB(ηt )+ h.c.]

−Re
∫

dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)kt(x; y)

−
1
2

∫
dx dy N 3V (N (x − y))[ ¯̃ϕt(x) ¯̃ϕt(y)bx by + h.c.]. (5-93)

By Lemma 3.3, we can write∫
dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)e−B(ηt )bx byeB(ηt )

=

∑
n,k≥0

(−1)k+n

k! n!

∫
dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)ad(n)B(ηt )

(bx)ad(k)B(ηt )
(by)

=

∫
dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)bx by

−

∫
dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)bx [B(ηt), by]

+

∗∑
n,k

(−1)k+n

k! n!

∫
dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)ad(n)B(ηt )

(bx)ad(k)B(ηt )
(by), (5-94)

where we isolated the terms with (n, k)= (0, 0) and (n, k)= (0, 1) and the sum
∗∑

runs over all other pairs
(n, k) ∈N×N. The first term on the right-hand side of (5-94) (the one associated with (k, n)= (0, 0)) is
subtracted in (5-93) and does not enter the error term Ẽ (2)N, t . The second term on the right-hand side of
(5-94), on the other hand, is given by

P := −
∫

dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)bx [B(ηt), by]

=
N − 1−N

N

∫
dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y) bx b∗(ηy)

−
1
N

∫
dx dy dw dz N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y) ηt(z;w) bx b∗z a∗way .

Commuting in both terms the annihilation field bx to the right, we find

P=
N − 1−N

N
N −N

N

∫
dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y) ηt(x; y)

+
N − 1−N

N

∫
dx dy dz N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)

[
b∗(ηy)bx −

1
N

a∗(ηy)ax

]
− 2

N −N
N 2

∫
dx dy dz N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)a∗(ηy)ax

−
N −N

N 2

∫
dx dy dz dw N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y) ηt(z;w)a∗wa∗z axay

=: P1+P2+P3+P4. (5-95)
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Writing ηt = kt + µt , and using the pointwise bounds |µt(x; y)| ≤ C |ϕ̃t(x)||ϕ̃t(y)| and |kt(x; y)| ≤
C N |ϕ̃t(x)||ϕ̃t(y)| from Lemma 4.3, we obtain that∣∣∣∣〈ξ,P1ξ〉−

∫
dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)kt(x; y)

∣∣∣∣≤ C‖(N + 1)1/2ξ‖2.

The expectation of the operator P2, and analogously the expectation of the operator P3, can be bounded by

|〈ξ,P2ξ〉|

≤ ‖(N + 1)1/2ξ‖
∫

dx dy N 3V (N (x − y))|ϕ̃t(x)||ϕ̃t(y)|‖ηy‖‖bxξ‖

≤ ‖ϕ̃t‖
2
∞
‖(N + 1)1/2ξ‖

[∫
dx dy N 3V (N (x − y))‖ηy‖

2
]1/2[∫

dx dy N 3V (N (x − y))‖bxξ‖
2
]1/2

≤ Cec|t |
‖ηt‖‖(N + 1)1/2ξ‖2.

As for the last term on the right-hand side of (5-95), its expectation is estimated by

|〈ξ,P3ξ〉|

≤ ‖ηt‖‖(N+1)ξ‖
∫

dx dy N 2V (N (x−y))|ϕ̃t(x)||ϕ̃t(y)|‖axayξ‖

≤‖ηt‖‖(N+1)ξ‖
[∫

dx dy N 2V (N (x−y))‖axayξ‖
2
]1/2[∫

dx dy N 2V (N (x−y))|ϕ̃t(x)|2 |ϕ̃t(y)|2
]1/2

≤C‖ηt‖‖(N+1)1/2ξ‖‖V1/2
N ξ‖.

We conclude that∣∣∣∣〈ξ,Pξ〉−
∫

dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)kt(x; y)
∣∣∣∣

≤ Cec|t |
‖ηt‖‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖. (5-96)

Let us now consider the terms in the sum on the last line of (5-94), where we excluded the pairs
(k, n)= (0, 0) and (k, n)= (0, 1). By Lemma 3.2, the operator∫

dx dy N 3V (N (x − y))ϕ̃t(x)ϕ̃t(y)ad(n)B(ηt )
(bx)ad(k)B(ηt )

(by) (5-97)

can be expressed as the sum of 2n+kn! k! terms having the form

E=
∫

dx dy N 3V (N (x − y))ϕ̃t(x)ϕ̃t(y)31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1)
x,♦ )

×3′1 · · ·3
′

i2
N−k25

(2)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
y,♦′), (5-98)

where k1, k2, i1, i2 ≥ 0, j1, . . . , jk1,m1, . . . ,mk2 > 0 and where each 3i , 3′i is a factor (N −N )/N or
(N + 1−N )/N or a 5(2)-operator of the form

N−p 5
(2)
],[(η

(q1)
t,\

1
, . . . , η

(qp)

t,\
p
). (5-99)



1572 CHRISTIAN BRENNECKE AND BENJAMIN SCHLEIN

With Lemma 5.4, we obtain

|〈ξ,Eξ〉|

≤ ‖(N + 1)1/2ξ‖
∫

dx dy N 3V (N (x − y))|ϕ̃t(x)||ϕ̃t(y)|

× ‖(N + 1)−1/231 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1)
x,♦ )

×3′1 · · ·3
′

i2
N−k25

(1)
],[(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
y,♦′)ξ‖

≤ Ck+n
‖ηt‖

n+k−2
‖(N + 1)1/2ξ‖

∫
dx dy N 3V (N (x − y))|ϕ̃t(x)||ϕ̃t(y)|

×
{
n‖ηx‖‖ηy‖‖(N + 1)1/2ξ‖+‖ηt‖‖ηy‖‖axξ‖

+Cec|t |
‖ηt‖‖(N + 1)1/2ξ‖+ N−1/2

‖ηt‖
2
‖axayξ‖

}
,

where (in the last term in the braces) we used the pointwise bound

N−1
|ηt(x; y)| ≤ Cec|t |

from Lemma 4.3. The contribution of the first three terms in the braces can be bounded by Cauchy–
Schwarz, since ‖ϕ̃t‖∞ ≤ Cec|t |. We find

|〈ξ,Eξ〉| ≤ Ck+nnec|t |
‖ηt‖

k+n−1
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖.

Since the expectation of (5-97) is the sum of 2n+kk! n! such contributions, inserting in (5-94) and
taking into account also (5-96), we conclude that

|〈ξ, Ẽ (2)N, tξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖

if supt ‖ηt‖ is small enough. As usual, we can prove similarly that the same bounds hold true for the
expectation of the commutators of Ẽ (2)N, t with the number of particles operator N and with a∗(g1)a(g2),
for arbitrary g1, g2 ∈ H 2(R3) (this assumption allows us to extract ‖gj‖∞ ≤ C‖gj‖H2) and also for the
time-derivative of Ẽ (2)N, t . �

5E. Analysis of e−B(ηt )L(3)N, t e
B(ηt ). Recall from (5-3) that

L(3)N, t =

∫
dx dy N 5/2V (N (x − y))ϕ̃t(y)[b∗xa∗yax + h.c.].

We conjugate L(3)N, t with the unitary operator eB(ηt ). We define the error term E (3)N, t through the equation

e−B(ηt )L(3)N, t e
B(ηt ) =−

√
N [b(coshηt (hN, t))+ b∗(sinhηt (h̄N, t))+ h.c.] + E (3)N, t , (5-100)

where we recall, from (5-47) that,

hN, t = (N 3V (N · )w`(N · ) ∗ |ϕ̃t |
2)ϕ̃t .

In the next proposition we collect the important properties of the error term E (3)N, t .
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Proposition 5.10. Under the same assumptions as in Theorem 4.4, there exist constants C, c > 0 such
that

|〈ξ, E (3)N, tξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖,

|〈ξ, [N , E (3)N, t ]ξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖,

|〈ξ, [a∗(g1)a(g2), E (3)N, t ]ξ〉| ≤ Cec|t |
‖g1‖H2‖g2‖H2‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖,

|∂t 〈ξ, E (3)N, tξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖

(5-101)

for all ξ ∈ F≤N.

Proof. We start by writing

e−B(ηt )a∗yax eB(ηt ) = a∗yax +

∫ 1

0
ds e−s B(ηt )[a∗yax , B(ηt)]es B(ηt )

= a∗yax +

∫ 1

0
e−s B(ηt )[b∗yb∗(ηx)+ b(ηy)bx ]es B(ηt ).

From Lemma 3.3, we conclude that

e−B(ηt )a∗yax eB(ηt )=a∗yax+
∑

k,r≥0

(−1)k+r

k! r ! (k+ r + 1)
[ad(k)B(ηt )

(b∗y)ad(r)B(ηt )
(b∗(ηx))+ad(k)B(ηt )

(b(ηy))ad(r)B(ηt )
(bx)].

Inserting in the expression for L(3)N, t , we conclude that

e−B(ηt )L(3)N, t e
B(ηt )

=

∑
n≥0

(−1)n

n!

∫
dx dy N 5/2V (N (x − y))ϕ̃t(y)ad(n)B(ηt )

(b∗x)a
∗

yax

+

∑
n,k,r≥0

(−1)n+k+r

n! k! r ! (k+ r + 1)

∫
dx dy N 5/2V (N (x − y))ϕ̃t(y) ad(n)B(ηt )

(b∗x)

×[ad(k)B(ηt )
(b∗y)ad(r)B(ηt )

(b∗(ηx))+ ad(k)B(ηt )
(b(ηy))ad(r)B(ηt )

(bx)] + h.c.

We divide the triple sum into several parts. We find

e−B(ηt )L(3)N, t e
B(ηt )

=

∑
n≥0

(−1)n

n!

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)ad(n)B(ηt )

(b∗x)a
∗

yax

+

∑
n,r≥0

(−1)n+r

n!(r+1)!

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)ad(n)B(ηt )

(b∗x)b
∗

yad(r)B(ηt )
(b∗(ηx))

+

∑
n,r≥0,k≥1

(−1)n+k+r

n!k!r !(k+r+1)

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)ad(n)B(ηt )

(b∗x)ad(k)(b∗y)ad(r)B(ηt )
(b∗(ηx))

+

∑
n,r≥0,k≥1

(−1)n+k+r

n!k!r !(k+r+1)

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b(ηy))ad(r)B(ηt )

(bx)

+h.c.
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In the terms with k = 0, we distinguish furthermore the case n = 1 from n 6= 1. We find

e−B(ηt )L(3)N, t e
B(ηt )

=−

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)[B(ηt),b∗x ]a

∗

yax

−

∑
r≥0

(−1)r

(r+1)!

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)[B(ηt),b∗x ]b

∗

y ad(r)B(ηt )
(b∗(ηx))

+

∑
n 6=1

(−1)n

n!

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)ad(n)B(ηt )

(b∗x)a
∗

yax

+

∑
n 6=1,r≥0

(−1)n+r

n!(r+1)!

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)ad(n)B(ηt )

(b∗x)b
∗

yad(r)B(ηt )
(b∗(ηx))

+

∑
n,r≥0,k≥1

(−1)n+k+r

n!k!r !(k+r+1)

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b∗y)ad(r)B(ηt )

(b∗(ηx))

+

∑
n,r≥0,k≥1

(−1)n+k+r

n!k!r !(k+r+1)

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b(ηy))ad(r)B(ηt )

(bx)

+h.c. (5-102)

We start by estimating the contribution of the last term on the right-hand side of (5-102). We are
interested in the expectation∣∣∣∣∫ dx dy N 5/2V (N (x − y))ϕ̃t(y) 〈ξ, ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b(ηy))ad(r)B(ηt )

(bx)ξ〉

∣∣∣∣
≤

∫
dx dy N 5/2V (N (x − y))|ϕ̃t(y)|‖ad(n)B(ηt )

(bx)ξ‖‖ad(k)B(ηt )
(b(ηy))ad(r)B(ηt )

(bx)ξ‖

for n, r ≥ 0 and k ≥ 1. According to Lemma 3.3, the norm ‖ad(n)B(ηt )
(bx)ξ‖ is bounded by the sum of 2nn!

terms of the form
P1,x = ‖31 · · ·3i N−k5

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(s)
x,♦)ξ‖

for i, k, s≥ 0, j1, . . . , jk ≥ 1, where each3i is a factor (N−N )/N or (N+1−N )/N or a5(2)-operator
of the form

N−p5
(2)
]′,[′(η

(q1)

t,\′1
, . . . , η

(qp)

t,\′p
). (5-103)

From Lemma 5.2, we find

P1,x ≤

{
Cn
‖ηt‖

n−1
‖ηx‖‖(N + 1)1/2ξ‖ if s ≥ 1,

Cn
‖ηt‖

n
‖axξ‖ if s = 0

(5-104)

for all x ∈R3. Similarly, the norm ‖ad(k)B(ηt )
(b(ηy))ad(r)B(ηt )

(bx)ξ‖ is bounded by the sum of 2k+r k! r ! terms
having the form

P2,x,y = ‖31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . ,η

( jk1 )

t,\k1
;η
(`1+1)
y,♦ )×3′1 · · ·3

′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . ,η

(mk2 )

t,\′k2
;η
(`2)
x,♦′)ξ‖,
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which can be estimated (with Lemma 5.4) by

P2,x,y ≤

{
Ck+r
‖ηt‖

k+r−2
‖ηx‖‖ηy‖‖(N + 1)ξ‖ if `2 ≥ 1,

Ck+r
‖ηt‖

k+r−1
‖ηy‖‖ax(N + 1)1/2ξ‖ if `2 = 0

for all x, y ∈ R3. Combining this estimate with (5-104) we find that∣∣∣∣∫ dx dy N 5/2V (N (x − y))ϕ̃t(y) 〈ξ, ad(n)B(ηt )
(b∗x)ad(k)B(ηt )

(b(ηy))ad(r)B(ηt )
(bx)ξ〉

∣∣∣∣
≤ n! k! r !Cn+k+r

‖ηt‖
n+k+r−3

∫
dx dyN 5/2V (N (x − y))|ϕ̃t(y)|‖ηy‖

×
[
‖ηx‖‖(N + 1)1/2ξ‖+‖ηt‖‖axξ‖

]
×
[
‖ηx‖‖(N + 1)ξ‖+‖ηt‖‖ax(N + 1)1/2ξ‖

]
≤ n! k! r !Cn+k+r ec|t |N−1/2

‖ηt‖
n+k+r−3

×

∫
dx
[
‖ηx‖‖(N + 1)1/2ξ‖+‖ηt‖‖axξ‖

][
‖ηx‖‖(N + 1)ξ‖+‖ηt‖‖ax(N + 1)1/2ξ‖

]
,

where we first used the bounds ‖ϕ̃t‖∞ ≤ Cec|t | from Proposition 4.2 and supy ‖ηy‖ ≤ Cec|t | from
Lemma 4.3, and then we integrated over y to obtain the N−1/2 factor. Applying Cauchy–Schwarz in the
x-integral, we conclude that∣∣∣∣∫ dx dy N 5/2V (N (x − y))ϕ̃t(y) 〈ξ, ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b(ηy))ad(r)B(ηt )

(bx)ξ〉

∣∣∣∣
≤ n! k! r !Cn+k+r ec|t |N−1/2

‖ηt‖
n+k+r−1

‖(N + 1)1/2ξ‖‖(N + 1)ξ‖

≤ n! k! r !Cn+k+r ec|t |
‖ηt‖

n+k+r−1
‖(N + 1)1/2ξ‖2 (5-105)

for all ξ ∈ F≤N.
Let us now consider the fifth sum on the right-hand side of (5-102). The expectation of every term in

this sum is bounded by∣∣∣∣∫ dx dy N 5/2V (N (x − y))ϕ̃t(y)〈ξ, ad(n)B(ηt )
(b∗x)ad(k)B(ηt )

(b∗y)ad(r)B(ηt )
(b∗(ηx))ξ〉

∣∣∣∣
≤

∫
dx dy N 5/2V (N (x − y))|ϕ̃t(y)| ‖ad(k)B(ηt )

(by) ad(n)B(ηt )
(bx)ξ‖ ‖ad(r)B(ηt )

(b∗(ηx))ξ‖, (5-106)

where we assume k ≥ 1, n, r ≥ 0. According to Lemma 3.2, ‖ad(r)B(ηt )
(b∗(ηx))ξ‖ is bounded by the sum

of 2rr ! terms of the form

Q1,x = ‖31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η(`1+1)

x ) ξ‖

for a i1, k1, `1 ≥ 0 and j1, . . . , jk1 ≥ 1. Each 3i is a factor (N −N )/N, a factor (N + 1−N )/N or a
5(2)-operator of the form (5-103). From Lemma 5.2, we have

Q1,x ≤ Cr
‖ηt‖

r
‖ηx‖‖(N + 1)1/2ξ‖
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for all x ∈R3. On the other hand, using again Lemma 3.2, we can bound the norm ‖ad(k)B(ηt )
(by)ad(n)B(ηt )

(bx)ξ‖

by the sum of 2n+kk! n! terms having the form

Q2,x,y = ‖31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k2
; η

(`1)
y,♦ )3

′

1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)ξ‖,

where i1, i2, k1, k2, `1, `2 ≥ 0 and j1, . . . , jk1,m1, . . . ,mk2 ≥ 1 and where each 3i - and 3′i -operator is a
factor (N −N )/N, a factor (N −N + 1)/N or a 5(2)-operator of the form (5-103). Using Lemma 5.4,
we obtain (using the assumption k ≥ 1 to apply (5-27) and using (5-28) with α = 1)

Q2,x,y ≤ Cn+k
‖ηt‖

n+k−2{[(n+ 1)‖ηx‖‖ηy‖+‖ηt‖N−1
|ηt(x; y)|

]
‖(N + 1)ξ‖

+‖ηy‖‖ηt‖‖ax(N + 1)1/2ξ‖+‖ηt‖
2
‖axayξ‖

}
for all x, y ∈R3. With the bound supx ‖ηx‖, supx,y N−1

|ηt(x; y)| ≤Cec|t | from Lemma 4.3, we conclude
that∣∣∣∣∫ dx dy N 5/2V (N (x − y))ϕ̃t(y)〈ξ, ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b∗y)ad(r)B(ηt )

(ηx)ξ〉

∣∣∣∣
≤ n! k! r !Cn+k+r ec|t |

‖ηt‖
n+k+r

‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖ (5-107)

for all ξ ∈ F≤N.
Let us now study the fourth term on the right-hand side of (5-102). As we did for the other terms, we

bound the expectation∣∣∣∣∫ dx dy N 5/2V (N (x − y))ϕ̃t(y)〈ξ, ad(n)B(ηt )
(b∗x)b

∗

yad(r)B(ηt )
(b∗(ηx))ξ〉

∣∣∣∣
≤

∫
dx dy N 5/2V (N (x − y))|ϕ̃t(y)|‖byad(n)B(ηt )

(bx)ξ‖‖ad(r)B(ηt )
(b∗(ηx))ξ‖, (5-108)

where we assume that n 6= 1, r ≥ 0. According to Lemma 3.2, ‖ad(r)B(ηt )
(b∗(ηx))ξ‖ can be bounded by

the sum of 2rr ! terms of the form

R1,x = ‖31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1+1)
x,♦ )ξ‖

for i1, k1, `1 ≥ 0 and j1, . . . , jk1 ≥ 1. According to Lemma 5.2, such a term can always be estimated by

R1,x ≤ Cr
‖ηt‖

r
‖ηx‖‖(N + 1)1/2ξ‖ (5-109)

for all x ∈ R3. On the other hand, the norm ‖byad(n)B(ηt )
(bx)ξ‖ can be bounded by the sum of 2nn!

contributions having the form

R2,x,y = ‖by31 · · ·3i15
(k1)
],[ (η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1)
x,♦ )ξ‖ (5-110)

for i1, k1, `1 ≥ 0 and j1, . . . , jk1 ≥ 1. With Lemma 5.4, we find that

R2,x,y ≤ Cn
‖ηt‖

n−2{[(1+ n/N )‖ηx‖‖ηy‖+‖ηt‖N−1
|ηt(x; y)|

]
‖(N + 1)ξ‖

+‖ηt‖‖ηx‖‖ay(N + 1)1/2ξ‖+ (n/N )‖ηt‖‖ηy‖‖ax(N + 1)1/2ξ‖+‖ηt‖
2
‖axayξ‖

}
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for all x, y ∈R3. With ‖ϕ̃t‖∞≤Cec|t | and supx,y N−1
|ηt(x; y)|≤Cec|t | we conclude, similarly to (5-107),

that∣∣∣∣∫ dx dy N 5/2V (N (x − y))ϕ̃t(y)〈ξ, ad(n)B(ηt )
(b∗x)b

∗

yad(r)B(ηt )
(b∗(ηx))ξ〉

∣∣∣∣
≤ (n+ 1)! r !Cn+r ec|t |

‖ηt‖
r+n
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖. (5-111)

The expectation of terms in the third sum on the right-hand side of (5-102) is bounded by∣∣∣∣∫ dx dy N 5/2V (N (x − y))ϕ̃t(y)〈ξ, ad(n)B(ηt )
(b∗x)a

∗

yaxξ〉

∣∣∣∣
≤

∫
dx dy N 5/2V (N (x − y))|ϕ̃t(y)|‖ayad(n)B(ηt )

ξ‖‖axξ‖,

which is similar to the right-hand side of (5-108), the only difference being that instead of the norm
‖ad(r)B(ηt )

(b∗(ηx))ξ‖ we have ‖axξ‖ (and the fact that in the other norm, we have the field ay instead of by ;
it is clear, however, that both fields can be treated similarly). Analogously to (5-111), we conclude that∣∣∣∣∫ dx dy N 5/2V (N (x − y))ϕ̃t(y)〈ξ, ad(n)B(ηt )

(b∗x)a
∗

yaxξ〉

∣∣∣∣
≤ (n+ 1)!Cnec|t |

‖ηt‖
n−1
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖. (5-112)

Let us now switch to the second term on the right-hand side of (5-102) (the sum over r ≥ 0). First of
all, we compute the commutator

[B(ηt), b∗x ] = −b(ηx)

(
1−

N
N

)
+

1
N

∫
dz dw η̄(z;w)a∗x awbz.

Hence the r -th term in the sum is proportional to

−

∫
dx dy N 5/2V (N (x − y))ϕ̃t(y)

(N − 1−N )

N
b(ηx)b∗yad(r)B(ηt )

(b∗(ηx))

+

∫
dx dy N 5/2V (N (x − y))ϕ̃t(y)N−15

(1)
(∗,· ),∗(ηt , δx)

∗b∗yad(r)B(ηt )
(b∗(ηx))

=: S1+S2. (5-113)

The expectation of S2 can be bounded as follows:

|〈ξ,S2ξ〉| ≤

∫
dx dy N 5/2V (N (x − y))|ϕ̃t(y)|‖by N−15

(1)
(∗,· ),∗(ηt , δx)ξ‖‖ad(r)B(ηt )

(b∗(ηx))ξ‖.

As in (5-109), we find

‖ad(r)B(ηt )
(b∗(ηx))ξ‖ ≤ Crr !‖ηt‖

r
‖ηx‖‖(N + 1)1/2ξ‖.

Since, on the other hand,

‖by N−15
(1)
(∗,· ),∗(ηt , δx)ξ‖ ≤ C N−1

‖ηy‖‖ax(N + 1)1/2ξ‖+C‖ηt‖‖axayξ‖,
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we conclude that

|〈ξ,S2ξ〉| ≤ Cr ec|t |
‖ηt‖

r+1
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖

for all ξ ∈ F≤N. We are left with the operator S1 defined in (5-113). Commuting b(ηx) with b∗y we write
it as

S1 =−

∫
dx dy N 5/2V (N (x − y))ηt(x; y)ϕ̃t(y)

(N −N )(N −N − 1)
N 2 ad(r)B(ηt )

(b∗(ηx))

−

∫
dx dy N 5/2V (N (x − y))ϕ̃t(y)

(N −N − 1)
N

[
b∗yb(ηx)−

1
N

a∗ya(ηx)

]
ad(r)B(ηt )

(b∗(ηx))

=: S11+S12.

The expectation of S12 is estimated by

|〈ξ,S12ξ〉| ≤ Cr ec|t |
‖ηt‖

r+1
‖(N + 1)1/2ξ‖2.

As for S11, we decompose it as

S11 =−

∫
dx dy N 5/2V (N (x − y))kt(x; y)ϕ̃t(y)

(N −N )(N −N − 1)
N 2 ad(r)B(ηt )

(b∗(ηx))

−

∫
dx dy N 5/2V (N (x − y))µt(x; y)ϕ̃t(y)

(N −N )(N −N − 1)
N 2 ad(r)B(ηt )

(b∗(ηx)),

=: S111+S112.

Since |µt(x; y)| ≤ Cec|t | from Lemma 4.3, it is easy to estimate the expectation of the term S112 by

|〈ξ,S112ξ〉| ≤ Cr ec|t |
‖ηt‖

r+1
‖(N + 1)1/2ξ‖2.

As for the term S111, we use the fact that, by Lemma 3.2, the nested commutator ad(r)B(ηt )
(b∗(ηx)) is given

by (
1−

N − 1
N

)m(
1−

N − 2
N

)m

b∗((ηt η̄t)
mηx)

if r = 2m is even and by

−

(
1−

N + 1
N

)m+1(
1−

N
N

)m

b((ηt η̄t)
m+1
x )

if r = 2m+ 1 is odd, up to terms (2rr ! − 1 of them) having the form

31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1+1)
x,♦ ),

where either k1 ≥ 1 or at least one of the 3-operators is a 5(2)-operator of the form (5-103). We conclude
that, if r = 2m is even,

S111 =
√

N
∫

dx dy N 3V (N (x − y))w`(N (x − y))|ϕ̃t(y)|2ϕ̃t(x)b∗((ηt η̄t)
mηx)+S1112, (5-114)
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while, if r = 2m+ 1 is odd,

S111 =−
√

N
∫

dx dy N 3V (N (x − y))w`(N (x − y))|ϕ̃t(y)|2ϕ̃t(x)b∗((ηt η̄t)
m+1
x )+S1112, (5-115)

where, in both cases, the expectation of the error term S1112 is bounded by

|〈ξ,S1112ξ〉| ≤ Cr
‖ηt‖

r
∫

dx dy N 3/2V (N (x − y)) |kt(x; y)|‖ηx‖‖(N + 1)1/2ξ‖‖(N + 1)ξ‖

≤ Cr
‖ηt‖

r+1
‖(N + 1)1/2ξ‖2

for all ξ ∈ F≤N. Here, once again, we used the fact that N−1
|ηt(x; y)| ≤ C . Summing over all r ≥ 0, we

conclude that

−

∑
r≥0

(−1)r

(r + 1)!

∫
dx dy N 5/2V (N (x − y))ϕ̃t(y)[B(ηt), b∗x ]b

∗

yad(r)B(ηt )
(b∗(ηx))

=−
√

N [b((coshηt −1)(hN, t))+ b∗(sinhηt (hN, t))] +S,

where
|〈ξ, Sξ〉| ≤ ec|t |

∑
r≥0

(C‖ηt‖)
r
‖(N + 1)1/2ξ‖2 ≤ Cec|t |

‖(N + 1)1/2ξ‖2 (5-116)

for all ξ ∈ F≤N.
Finally, we consider the first term on the right-hand side of (5-102). This term can be handled much as

we did with the second term (the sum over r ≥ 0). We obtain that

−

∫
dx dy N 5/2V (N (x − y))ϕ̃t(y)[B(ηt), b∗x ]a

∗

yax =−
√

Nb(hN, t)+ S̃,

where the expectation of S̃ can be bounded as we did with the expectation of S in (5-116).
Recalling the definition of E (3)N, t in (5-100), it follows from (5-105), (5-107), (5-111), (5-112) and

(5-116) that
|〈ξ, E (3)N, tξ〉| ≤ Cec|t |

‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖.

The bounds in (5-101) for the expectations of [N , E (3)N, t ], [a
∗(g1)a(g2), E (3)N, t ] and of the time-derivative

∂tE (3)N, t can be proven analogously. We omit the details. �

5F. Analysis of e−B(ηt )L(4)N, t e
B(ηt ). Recall from (5-3) that

L(4)N, t = VN =
1
2

∫
dx dy N 2V (N (x − y))a∗x a∗yayax .

We conjugate L(4)N, t with the unitary operator eB(ηt ). We define the error term E (4)N, t through the equation

e−B(ηt )L(4)N, t e
B(ηt ) = VN +

1
2

∫
dx dy N 2V (N (x − y))|kt(x; y)|2

+
1
2

∫
dx dy N 2V (N (x − y))[kt(x; y)b∗x b∗y + h.c.] + E (4)N, t . (5-117)

In the next proposition we collect some important properties of the operator E (4)N, t .
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Proposition 5.11. Under the same assumptions as in Theorem 4.4, there exist constants C, c > 0 such
that

|〈ξ, E (4)N, tξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖,

|〈ξ, [N , E (4)N, t ]ξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖,

|〈ξ, [a∗(g1)a(g2), E (4)N, t ]ξ〉| ≤ Cec|t |
‖g1‖H2‖g2‖H2‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖,

|∂t 〈ξ, E (4)N, tξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖

(5-118)

for all ξ ∈ F≤N.

Proof. We start by writing

e−B(ηt )a∗x a∗yayax eB(ηt ) = a∗x a∗yayax +

∫ 1

0
ds e−s B(ηt )[a∗x a∗yayax , B(ηt)]es B(ηt ).

A straightforward computation gives

e−B(ηt )a∗x a∗yayax eB(ηt )= a∗x a∗yayax+

∫ 1

0
ds e−s B(ηt )[b∗x b∗y(axa∗(ηy)+a∗(ηx)ay)+h.c.]es B(ηt ). (5-119)

Now we observe that

e−s B(ηt )[axa∗(ηy)+ a∗(ηx)ay]es B(ηt )

= axa∗(ηy)+ a∗(ηx)ay +

∫ s

0
dτ e−τ B(ηt )[axa∗(ηy)+ a∗(ηx)ay, B(ηt)]eτ B(ηt )

= ηt(x; y)+ a∗(ηy)ax + a∗(ηx)ay +

∫ s

0
dτ e−τ B(ηt )[2b∗(ηx)b∗(ηy)+ b(η(2)y )bx + b(η(2)x )by]eτ B(ηt ).

Inserting in (5-119), expanding as in Lemma 3.3, and integrating over s, τ , we obtain

e−B(ηt )L(4)N, t e
B(ηt ) = VN +W1+W2+W3+W4, (5-120)

where

W1 =
1
2

∑
n,k≥0

(−1)n+k

n! k! (n+ k+ 1)

∫
dx dy N 2V (N (x − y))ηt(x; y) ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b∗y),

W2 =
∑

n,k≥0

(−1)n+k

n! k! (n+ k+ 1)

∫
dx dy N 2V (N (x − y)) ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b∗y)a

∗(ηx)ay,

W3 =
∑

n,k,m,r≥0

(−1)n+k+m+r

n! k!m! r ! (m+ r + 1)(n+ k+m+ r + 2)

×

∫
dx dy N 2V (N (x − y)) ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b∗y)ad(m)B(ηt )

(b(η(2)x ))ad(r)B(ηt )
(by),

W4 =
∑

n,k,m,r≥0

(−1)n+k+m+r

n! k!m! r ! (m+ r + 1)(m+ r + n+ k+ 2)

×

∫
dx dy N 2V (N (x − y)) ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b∗y)ad(m)B(ηt )

(b∗(ηx))ad(r)B(ηt )
(b∗(ηy)).
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Let us now estimate the expectation of W2. By Cauchy–Schwarz, we have∣∣∣∣∫ dx dy N 2V (N (x − y))〈ξ, ad(n)B(ηt )
(b∗x)ad(k)B(ηt )

(b∗y)a
∗(ηx)ayξ〉

∣∣∣∣
≤

∫
dx dy N 2V (N (x − y))‖(N + 1)1/2ad(k)B(ηt )

(by)ad(n)B(ηt )
(bx)ξ‖‖(N + 1)−1/2a∗(ηx)ayξ‖.

We bound

‖(N + 1)−1/2a∗(ηx)ayξ‖ ≤ ‖ηx‖‖ayξ‖ (5-121)

On the other hand, according to Lemma 3.3, ‖(N + 1)1/2ad(k)B(ηt )
(by)ad(n)B(ηt )

(bx)ξ‖ is bounded by the sum
of 2n+kn! k! contributions having the form

Tx,y =
∥∥(N + 1)1/231 · · ·3i1 N−k15

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1)
y,t,♦)

×3′1 · · ·3
′

i2
N−k25

(1)
],[(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)ξ

∥∥, (5-122)

with i1, i2, k1, k2, `1, `2 ≥ 0, j1, . . . , jk1,m1, . . . ,mk2 ≥ 0 and where each 3i - or 3′i -operator is a factor
(N −N )/N, a factor (N −N + 1)/N or a 5(2)-operator of the form

N−p5
(2)
],[(η

(q1)
t,\

1
, . . . , η

(qp)

t,\
p
). (5-123)

According to Lemma 5.4, we have

Tx,y ≤ (n+ 1)Ck+n
‖ηt‖

k+n−2{
‖ηx‖‖ηy‖‖(N + 1)3/2ξ‖

+‖ηt‖‖ηx‖‖ay(N + 1)ξ‖+‖ηt‖‖ηy‖‖ax(N + 1)ξ‖

+‖ηt‖|ηt(x; y)|‖(N + 1)1/2ξ‖+‖ηt‖
2
√

N‖axayξ‖
}

(5-124)

for all x, y ∈ R3. For ξ ∈ F≤N, we obtain∣∣∣∣∫ dx dy N 2V (N (x−y))ηt(x; y)〈ξ,ad(n)B(ηt )
(b∗x)ad(k)B(ηt )

(b∗y)a
∗(ηx)ayξ〉

∣∣∣∣
≤ (n+1)!k!Cn+k

‖ηt‖
n+k−2

∫
dx dy N 2V (N (x−y))‖ηx‖‖ayξ‖

×
{[

N‖ηx‖‖ηy‖+‖ηt‖|ηt(x; y)|
]
‖(N+1)1/2ξ‖

+N‖ηt‖‖ηy‖‖axξ‖+N‖ηt‖‖ηx‖‖ayξ‖+N 1/2
‖axayξ‖

}
≤ (n+1)!k!Cn+k

‖ηt‖
n+k
‖(N+1)1/2ξ‖‖(VN+N+1)1/2ξ‖

and therefore

|〈ξ,W2ξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖

if supt ‖ηt‖ is small enough.
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Now, let us consider the expectation of the term W3. By Cauchy–Schwarz, we have∣∣∣∣∫ dx dy N 2V (N (x − y))〈ξ, ad(n)B(ηt )
(b∗x)ad(k)B(ηt )

(b∗y)ad(m)B(ηt )
(b(η(2)x ))ad(r)(by)ξ〉

∣∣∣∣
≤

∫
N 2V (N (x − y)) ‖(N + 1)1/2ad(k)B(ηt )

(by)ad(n)B(ηt )
(bx)ξ‖‖(N + 1)−1/2ad(m)B(ηt )

(b(η(2)x ))ad(r)(by)ξ‖.

Expanding ad(m)B(ηt )
(b(η(2)x ))ad(r)B(ηt )

(by) as in Lemma 3.2 and using Lemma 5.4, we obtain

‖(N + 1)−1/2ad(m)B(ηt )
(b(η(2)x ))ad(r)B(ηt )

(by)ξ‖

≤ m! r !Cm+r
‖ηt‖

m+r
[‖ηx‖‖ηy‖‖(N + 1)1/2ξ‖+‖ηt‖‖ηx‖‖ayξ‖]. (5-125)

As for the norm ‖(N + 1)1/2ad(k)B(ηt )
(by)ad(n)B(ηt )

(bx)ξ‖, we can estimate it as the sum of 2n+kn! k! contri-
butions of the form (5-122). Using (5-124) and integrating over x, y, we conclude

|〈ξ,W3ξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖

if supt ‖ηt‖ is small enough.
Let us now switch to W4. We proceed analogously as we did for W3. The only difference is that,

instead of (5-125), we need to bound

‖(N + 1)−1/2ad(m)B(ηt )
(b(ηx))ad(r)B(ηt )

(b(ηy))ξ‖ ≤ m! r !Cm+r
‖ηt‖

m+r
‖ηx‖‖ηy‖‖(N + 1)1/2ξ‖.

We find

|〈ξ,W4ξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖

if supt ‖ηt‖ is small enough.
Finally, we consider the term W1 in (5-120). We extract from the sum over n, k ≥ 0 the terms with

(n, k)= (0, 0) and (n, k)= (0, 1). We obtain that

W1 =
1
2

∫
dx dy N 2V (N (x − y))ηt(x; y)b∗x b∗y

−
1
4

∫
dx dy N 2V (N (x − y))ηt(x; y)[B(ηt), b∗x ]b

∗

y + W̃1, (5-126)

with

W̃1 =
1
2

∗∑
n,k

(−1)n+k

n! k! (n+ k+ 1)

∫
dx dy N 2V (N (x − y))ηt(x; y)ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b∗y), (5-127)

where
∗∑

excludes the terms (n, k)= (0, 0), (1, 0). We bound the expectation of W̃1 by∣∣∣∣∫ dx dy N 2V (N (x − y))ηt(x; y)〈ξ, ad(n)B(ηt )
(b∗x)ad(k)B(ηt )

(b∗y)ξ〉
∣∣∣∣

≤

∫
dx dy N 2V (N (x − y))|ηt(x; y)|‖(N + 1)−1/2ad(k)B(ηt )

(by)ad(n)B(ηt )
(bx)ξ‖‖(N + 1)1/2ξ‖.
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Following Lemma 3.3, we can bound the norm ‖(N + 1)−1/2ad(k)B(ηt )
(by)ad(n)B(ηt )

(bx)ξ‖ by the sum of
2n+kn! k! terms of the form

T̃x,y =
∥∥(N + 1)−1/231 · · ·3i1 N−k15

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1)
y,t,♦)

×3′1 · · ·3
′

i2
N−k25

(1)
],[(η

(m1)
t,\1

, . . . , η
(mk2 )

t,\k2
; η

(`2)
x,♦′)ξ

∥∥, (5-128)

with i1, i2, k1, k2, `1, `2 ≥ 0, j1, . . . , jk1,m1, . . . ,mk2 ≥ 0 and where each 3i - or 3′i -operator is a factor
(N −N )/N, a factor (N −N + 1)/N or a 5(2)-operator of the form (5-123). With Lemma 5.4 we find

T̃x,y ≤ (n+ 1)Ck+n
‖ηt‖

k+n−2{
‖ηx‖‖ηy‖‖(N + 1)1/2ξ‖+‖ηt‖‖ηx‖‖ayξ‖+‖ηt‖ηy‖‖axξ‖

+‖ηt‖N−1
|ηt(x; y)|‖(N + 1)1/2ξ‖+‖ηt‖

2
‖axayξ‖

}
for all x, y ∈R3. The important difference with respect to (5-124) is that here, when we consider the cases
`1 = `2 = 0 and `1 = 0, `2 = 1 we can apply (5-27) and (5-29), rather than (5-26) and (5-28), because the
assumption (n, k) 6= (0, 0), (1, 0) implies that k+ n ≥ 2 (the case (n, k)= (0, 1) is not compatible with
`2 = 1). Using supx,y N−1

|ηt(x; y)| ≤ Cec|t | from Lemma 4.3, we conclude that

|〈ξ, W̃1ξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖

if supt ‖ηt‖ is small enough.
As for the second term on the right-hand side of (5-126), we have

[B(ηt), b∗x ] = −b(ηx)
N −N

N
+

1
N

∫
dz dw a∗x azbw ηt(z;w).

Hence

−

∫
dx dy N 2V (N (x − y))ηt(x; y)[B(ηt), b∗x ]b

∗

y

=

∫
dx dy N 2V (N (x − y))ηt(x; y)b(ηx)b∗y

N −N + 1
N

− N−1
∫

dx dy dz dw N 2V (N (x − y))ηt(x; y)ηt(z;w)a∗x azbwb∗y

=

∫
dx dy N 2V (N (x − y))ηt(x; y)b∗yb(ηx)

N −N + 1
N

+

∫
dx dy N 2V (N (x − y))|ηt(x; y)|2

N −N
N

N −N + 1
N

− N−1
∫

dx dy dz N 2V (N (x − y))ηt(x; y)ηt(x; z)a∗yaz
N −N + 1

N

− N−1
∫

dx dy dz dw N 2V (N (x − y))ηt(x; y)ηt(z;w)a∗x azbwb∗y .

We conclude that

−

∫
dx dy N 2V (N (x − y))ηt(x; y)[B(ηt), b∗x ]b

∗

y =

∫
dx dy N 2V (N (x − y))|kt(x; y)|2+W12,
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where
|〈ξ,W12ξ〉| ≤ Cec|t |

‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖.

Similarly, the first term on the right-hand side of (5-126) can be decomposed as∫
dx dy N 2V (N (x − y))ηt(x; y)b∗x b∗y =

∫
dx dy N 2V (N (x − y))kt(x; y)b∗x b∗y +W11,

where
W11 =

∫
dx dy N 2V (N (x − y))µt(x; y)b∗x b∗y

is such that
|〈ξ,W11ξ〉| ≤ Cec|t |

‖(N + 1)1/2ξ‖‖V1/2
N ξ‖

since |µ(x; y)| ≤ Cec|t | uniformly in N. �

5G. Analysis of (i∂t e−B(ηt ))eB(ηt ). This subsection is devoted to the study of the first term in the
generator GN, t in (5-1). The properties of (i∂t e−B(ηt ))eB(ηt ) are collected in the next proposition.

Proposition 5.12. Under the same assumptions as in Theorem 4.4, there exist constants C, c > 0 such
that

|〈ξ, (i∂t e−B(ηt ))eB(ηt )ξ〉| ≤ C‖(N + 1)1/2ξ‖2,

|〈ξ, [N , (i∂t e−B(ηt ))eB(ηt )]ξ〉| ≤ C‖(N + 1)1/2ξ‖2,

|〈ξ, [a∗(g1)a(g2), (i∂t e−B(ηt ))eB(ηt )]ξ〉| ≤ C‖g1‖‖g2‖‖(N + 1)1/2ξ‖2,

|〈ξ, [∂t(i∂t e−B(ηt ))eB(ηt )]ξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖2

(5-129)

for all ξ ∈ F≤N.

Proof. As in Section 6.5 of [Benedikter et al. 2015], we expand (i∂t e−B(ηt ))eB(ηt ) as

(i∂t e−B(ηt ))eB(ηt ) =−

∫ 1

0
ds e−s B(ηt )[i∂t B(ηt)]es B(ηt )

=
i
2

∑
k,n≥0

(−1)n+k

k! n! (n+ k+ 1)

∫
dx ad(k)B(ηt )

(b((∂tηt)x))ad(n)B(ηt )
(bx)+ h.c. (5-130)

We bound the expectations∣∣∣∣∫ dx 〈ξ, ad(k)B(ηt )
(b((∂tηt)x))ad(n)B(ηt )

(bx)ξ〉

∣∣∣∣
≤ ‖(N + 1)1/2ξ‖

∫
dx ‖(N + 1)−1/2ad(k)B(ηt )

(b((∂tηt)x))ad(n)B(ηt )
(bx)ξ‖.

According to Lemma 3.3, the norm ‖(N +1)−1/2ad(k)B(ηt )
(b((∂tηt)x))ad(n)B(ηt )

(bx)ξ‖ is bounded by the sum
of 2n+kn! k! terms of the form

Zx = ‖(N + 1)−1/231 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1)
t,♦ ∂tηt)x)

×3′1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)ξ‖, (5-131)
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with integers i1, k1, `1, i2, k2, `2 ≥ 0, j1, . . . , jk1,m1, . . . ,mk2 ≥ 1 and where each 3i , 3′i is a factor
(N −N )/N or (N + 1−N )/N or a 5(2)-operator of the form

N−p5
(2)
],[(η

(q1)
t,\

1
, . . . , η

(qp)

t,\
p
).

From Lemma 5.3, we conclude that

Zx ≤

{
Cn+k
‖ηt‖

n+k−1
‖(∂tηt)x‖‖ηx‖‖(N + 1)1/2ξ‖ if `2 > 0,

Cn+k
‖ηt‖

n+k
‖(∂tηt)x‖‖axξ‖ if `2 = 0

for all x ∈ R3. With Cauchy–Schwarz, we obtain∣∣∣∣∫ dx 〈ξ, ad(k)B(ηt )
(b((∂tηt)x))ad(n)B(ηt )

(bx)ξ〉

∣∣∣∣≤ n! k!Cn+k
‖ηt‖

n+k
‖∂tηt‖‖(N + 1)1/2ξ‖2.

From (5-130), we conclude that, if supt ‖ηt‖ is sufficiently small,

|〈ξ, (i∂t e−B(ηt ))eB(ηt )ξ〉| ≤ C‖(N + 1)1/2ξ‖2.

The other bounds in (5-129) can be proven analogously, first expanding (i∂t e−B(ηt ))eB(ηt ) as in (5-130),
then using Lemmas 3.3 and 3.2 to write the nested commutators on the right-hand side of (5-130) as sums
of factors like in (5-131), and then commuting each of these factors with N, with a∗(g1)a(g2), or taking
its time-derivative; we omit the details. �

5H. Proof of Theorem 4.4. Recall from (5-1) that

GN, t = (i∂t e−B(ηt ))eB(ηt )+

4∑
j=0

e−B(ηt )L( j)
N, t e

B(ηt ),

with L( j)
N, t defined as in (5-3), for j = 0, . . . , 4. It follows from Propositions 5.5 and 5.7–5.12 that

e−B(ηt )L(0)N, t e
B(ηt ) =N, t +Ẽ (0)N, t ,

e−B(ηt )L(1)N, t e
B(ηt ) =

√
N [b(coshηt (hN, t))+ b∗(sinhηt (h̄N, t))+ h.c.] + Ẽ (1)N, t ,

e−B(ηt )L(2)N, t e
B(ηt ) = K+

∫
|∇x kt(x; y)|2 dx dy

+

∫
dx dy (1w`)(N (x − y))[ϕ̃t(x)ϕ̃t(y)b∗x b∗y + h.c.]

+Re
∫

dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)kt(y; x)

+
1
2

∫
dx dy N 3V (N (x − y))[ϕ̃t(x)ϕ̃t(y)b∗x b∗y + h.c.] + Ẽ (2)N, t ,

e−B(ηt )L(3)N, t e
B(ηt ) =−

√
N [b(coshηt (hN, t))+ b∗(sinhηt (h̄N, t))+ h.c.] + Ẽ (3)N, t ,

e−B(ηt )L(4)N, t e
B(ηt ) = VN +

1
2

∫
dx dy N 2V (N (x − y))|kt(x; y)|2

+
1
2

∫
dx dy N 2V (N (x − y))[kt(x; y)b∗x b∗y + h.c.] + Ẽ (4)N, t ,

(i∂t e−B(ηt ))eB(ηt ) = Ẽ (5)N, t ,

(5-132)
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where the error terms Ẽ ( j)
N, t are such that

|〈ξ, Ẽ ( j)
N, tξ〉| ≤ Cec|t |

‖(HN +N + 1)1/2ξ‖‖(N + 1)1/2ξ‖,

|〈ξ, [N , Ẽ ( j)
N, t ]ξ〉| ≤ Cec|t |

‖(HN +N + 1)1/2ξ‖‖(N + 1)1/2ξ‖,

|〈ξ, [a∗(g1)a(g2), Ẽ
( j)
N, t ]ξ〉| ≤ Cec|t |

‖g1‖H2‖g2‖H2‖(HN +N + 1)1/2ξ‖‖(N + 1)1/2ξ‖,

|∂t 〈ξ, Ẽ
( j)
N, tξ〉| ≤ Cec|t |

‖(HN +N + 1)1/2ξ‖‖(N + 1)1/2ξ‖

(5-133)

for all j = 0, 1, . . . , 5. With the scattering equation (4-2), we conclude that

GN, t =CN ,t+HN+Ẽ N, t+N
∫

dx dy
[
−1+ 1

2 N 2V (N (x−y))
]
(1−w`(N (x−y)))ϕ̃t(x)ϕ̃t(y)b∗x b∗y+h.c.

=CN ,t+HN+A+Ẽ N, t , (5-134)

with
A= N 3λ`

∫
dx dy f`(N (x − y))χ(|x − y| ≤ `)[ϕ̃t(x)ϕ̃t(y)b∗x b∗y + h.c.]

and where Ẽ N, t satisfies the same estimates (5-133) as all error terms Ẽ ( j)
N, t , j = 0, . . . , 5. Since N 3λ`≤C

(see Lemma 4.1) and f`(N (x − y))≤ 1 we have, with Lemma 2.2,

|〈ξ,Aξ〉| ≤ C‖(N + 1)1/2ξ‖2

and similarly,±[N ,A], ±[a∗(g1)a(g2),A], ±∂t A≤C(N+1). Setting EN, t =A+Ẽ N, t , we conclude that

GN, t = CN ,t +HN + EN, t ,

where EN, t satisfies again the same bounds (5-133) as Ẽ N, t . This immediately implies that, in the sense
of forms on F≤N

⊥ϕ̃t
×F≤N

⊥ϕ̃t
,

1
2HN −Cec|t |(N + 1)≤ GN, t −CN ,t ≤ 2HN +Cec|t |(N + 1),

±i[GN, t ,N ] ≤HN +Cec|t |(N + 1),

∂t [GN, t −CN ,t ] ≤HN +Cec|t |(N + 1).
Moreover, since

[HN , a∗(g1)a(g2)] =

∫
dx ∇g1(x)∇xa∗x a(g2)−

∫
dx a∗(g1)∇ ḡ2(x)∇xax

+

∫
dx dy N 2V (N (x − y))g1(y)a∗x a∗yaxa(g2)

−

∫
dx dy N 2V (N (x − y)) ḡ2(x)a∗(g1)a∗yayax ,

we obtain that

|〈ξ, [HN , a∗(g1)a(g2)]ξ〉|

≤
[
‖∇g1‖‖g2‖+‖g1‖‖∇g2‖

]
‖K1/2ξ‖‖N 1/2ξ‖+

[
‖g2‖‖g1‖∞+‖g1‖‖g2‖∞

]
×

[∫
dx dy N 2V (N (x − y))‖axayξ‖

2
]1/2[∫

dx dy N 2V (N (x − y))‖ay(N + 1)1/2ξ‖2
]1/2

≤ ‖g1‖H2‖g2‖H2‖H1/2
N ξ‖‖(N + 1)1/2ξ‖
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for all ξ ∈ F≤N. Combining with the bounds (5-133) for the error operator EN, t , and choosing g1 = ∂t ϕ̃t

and g2 = ϕ̃t , we find that

±Re[GN, t , a∗(∂t ϕ̃t)a(ϕ̃t)] ≤HN +CeK |t |(N + 1).

This concludes the proof of Theorem 4.4.

6. Bounds on the growth of fluctuations

In this section, we are going to complete the proofs of Theorems 1.1 and 1.2. The main ingredient to
reach this goal is a bound on the growth of the expectation of the number of particles operator with
respect to the fluctuation dynamics WN, t , which we prove in the next proposition using the properties of
the generator GN, t established in Theorem 4.4.

Proposition 6.1. Under the same assumptions as in Theorem 4.4, there exist constants C, c> 0 such that

〈WN, t ξ,NWN, tξ〉 ≤ C 〈ξ, ((GN ,0−CN ,0)+ (N + 1))ξ〉 exp(c exp(c|t |)),

〈WN, t ξ,HNWN, tξ〉 ≤ C 〈ξ, ((GN ,0−CN ,0)+ (N + 1))ξ〉 exp(c exp(c|t |))
(6-1)

for all ξ ∈ F≤N
⊥ϕ . Here HN is the Hamilton operator defined in (4-27).

Remark. From (4-26), we also have

〈WN, t ξ,NWN, tξ〉 ≤ C 〈ξ, (HN +N + 1)ξ〉 exp(c exp(c|t |)),

〈WN, t ξ,HNWN, tξ〉 ≤ C 〈ξ, (HN +N + 1)ξ〉 exp(c exp(c|t |)).

Proof. First of all, we observe that, from the first bound in (4-26),

1
2HN +N ≤ (GN, t −CN ,t)+CeK |t |(N + 1). (6-2)

Hence, it is enough to control the growth of the expectation of the operator on the right-hand side. We
follow here the approach of [Lewin et al. 2015a]. We define qt = 1−|ϕ̃t 〉〈ϕ̃t | as the orthogonal projection
onto L2

⊥ϕ̃t
(R3). We define moreover 0t :F≤N

→F≤N
⊥ϕt

by imposing that 0t |Fj = q⊗ j
t for all j = 1, . . . , N

(Fj is the sector of F≤N with exactly j particles). We have, restricting our attention to t ≥ 0 (the case
t < 0 can be handled very similarly),

〈WN, t ξ, [(GN, t −CN ,t)+CeK t(N +1)]WN, t ξ〉 = 〈WN, t ξ, [(0tGN, t0t −CN ,t)+CeK t(N +1)]WN, t ξ〉.

Hence, since N commutes with 0t ,

i∂t 〈WN, t ξ, [(GN, t −CN ,t)+CeK t(N + 1)]WN, t ξ〉

= 〈WN, t ξ, [0tGN, t0t , (0tGN, t0t −CN ,t)+CeK t(N + 1)]WN, t ξ〉

+ 〈WN, t ξ, ∂t [(0tGN, t0t −CN ,t)+CeK t(N + 1)]WN, t ξ〉

=CeK t
〈WN, t ξ, [GN, t ,N ]WN, t ξ〉+〈WN, t ξ, ∂t [(0tGN, t0t−CN ,t)+CeK t(N+1)]WN, t ξ〉. (6-3)

We observe that
0= ∂t‖ϕ̃t‖

2
2 = 〈

˙̃ϕt , ϕ̃t 〉+ 〈ϕ̃t , ˙̃ϕt 〉.
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This implies that
q̇t =−|ϕ̃t 〉〈 ˙̃ϕt | − | ˙̃ϕt 〉〈ϕ̃t | = −|ϕ̃t 〉〈qt ˙̃ϕt | − |qt ˙̃ϕt 〉〈ϕ̃t |.

Therefore

∂t0
( j)
t =−

j∑
i=1

qt ⊗ · · ·⊗ [|ϕ̃t 〉〈qt ˙̃ϕt |qt + qt |qt ˙̃ϕt 〉〈ϕ̃t |] ⊗ · · ·⊗ qt

=−

j∑
i=1

[|ϕ̃t 〉〈qt ˙̃ϕt |i0
( j)
t −0

( j)
t |qt ˙̃ϕt 〉〈ϕ̃t |i ].

We conclude that
∂t0t =−a∗(ϕ̃t)a(qt ˙̃ϕt)0t −0t a∗(qt ˙̃ϕt)a(ϕ̃t).

Thus

〈WN, t ξ, ∂t [(0tGN, t0t −CN ,t)+CeK t(N + 1)]WN, t ξ〉

= 〈WN, t ξ, [(∂t0t)(GN, t −CN ,t)+ (GN, t −CN ,t)(∂t0t)]WN, t ξ〉

+〈WN, t ξ, [∂t(GN, t −CN ,t)+C K eK t(N + 1)]WN, t ξ〉

=2 Re〈WN, t ξ, [a∗(qt ˙̃ϕt)a(ϕ̃t),GN, t ]WN, t ξ〉+〈WN, t ξ, [∂t(GN, t−CN ,t)+C K eK t(N+1)]WN, t ξ〉,

where we used the fact that a(ϕ̃t)WN, tξ = 0 for all t ∈ R. Together with (6-3), we find

i∂t 〈WN, t ξ, [(GN, t −CN ,t)+CeK t(N + 1)]WN, t ξ〉

= CeK t
〈WN, t ξ, [GN, t ,N ]WN, t ξ〉+ 〈WN, t ξ, [∂t(GN, t −CN ,t)+C K eK t(N + 1)]WN, t ξ〉

+ 2 Re〈WN, t ξ, [a∗(qt ˙̃ϕt)a(ϕ̃t),GN, t ]WN, t ξ〉.

From Theorem 4.4, we obtain that

|∂t 〈WN, t ξ, [(GN, t−CN ,t)+CeK t(N+1)]WN, t ξ〉|≤ C̃eK |t |
〈WN, t ξ, [HN+CeK t(N+1)]WN, tξ〉

≤ C̃eK |t |
〈WN, t ξ, [(GN, t−CN ,t)+CeK |t |(N+1)]WN, tξ〉.

Applying Gronwall’s inequality, we find a constant c > 0 such that

〈WN, t ξ, [(GN, t −CN ,t)+CeK |t |(N + 1)]WN, tξ〉 ≤ 〈ξ, [(GN ,0−CN ,0)+C(N + 1)]ξ〉 exp(c exp(c|t |)),

With (6-2), we conclude that

〈WN, tξ,NWN, tξ〉 ≤ C〈ξ, [(GN ,0−CN ,0)+ (N + 1)]ξ〉 exp(c exp(c|t |)),

〈WN, tξ,HNWN, tξ〉 ≤ C〈ξ, [(GN ,0−CN ,0)+ (N + 1)]ξ〉 exp(c exp(c|t |))
as claimed. �

To apply Proposition 6.1 to the proof of Theorems 1.1 and 1.2, we need to control the expectation on
the right-hand side of (6-1) for vectors ξ ∈ F≤N

⊥ϕ describing orthogonal excitations around the condensate
wave function ϕ for initial N -particle wave functions ψN satisfying (1-10). To this end, we use the next
lemma.
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Lemma 6.2. As in (4-25), let

CN ,t =
1
2
〈
ϕ̃t ,
(
[N 3V (N · )(N − 1− 2N f`(N · ))] ∗ |ϕ̃t |

2)ϕ̃t
〉

+

∫
dx dy |∇x kt(x; y)|2+ 1

2

∫
dx dy N 2V (N (x − y))|kt(x; y)|2

+Re
∫

dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)kt(x; y),

where ϕ̃t is the solution of the modified Gross–Pitaevskii equation (4-8), with initial data ϕ̃t=0 = ϕ (we
assumed in the construction of the fluctuation dynamics that ϕ ∈ H 4(R3); in this lemma, we only need
ϕ ∈ H 1(R3)). Then there is a constant C > 0, independent of N and t , such that

|[CN ,t + N 〈i∂t ϕ̃t , ϕ̃t 〉]− NEGP(ϕ)| ≤ C,

with the translation-invariant Gross–Pitaevskii energy functional EGP defined in (1-15).

Proof. We have

N 〈i∂t ϕ̃t , ϕ̃t 〉 = N 〈ϕ̃t ,−1ϕ̃t 〉+ N 〈ϕ̃t , (N 3V (N · ) f`(N · ) ∗ |ϕ̃t |
2)ϕ̃t 〉.

Therefore

CN ,t + N 〈i∂t ϕ̃t , ϕ̃t 〉 = N‖∇ϕ̃t‖
2
+
(N − 1)

2
〈ϕ̃t , [N 3V (N · ) ∗ |ϕ̃t |

2
]ϕ̃t 〉

+

∫
dx dy |∇x kt(x; y)|2+ 1

2

∫
dx dy N 2V (N (x − y))|kt(x; y)|2

+Re
∫

dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)kt(x; y). (6-4)

Obviously,

(N − 1)
2
〈ϕ̃t , [N 3V (N · ) ∗ |ϕ̃t |

2
]ϕ̃t 〉 =

N
2
〈ϕ̃t , [N 3V (N · ) ∗ |ϕ̃t |

2
]ϕ̃t 〉+O(1), (6-5)

where O(1) denotes a quantity with absolute value bounded by a constant, independent of N and of t .
Furthermore

1
2

∫
dx dy N 2V (N (x − y))|kt(x, y)|2

=
N
2

∫
dx dy N 3V (N (x − y))w`(N (x − y))2|ϕ̃t(x)|2 |ϕ̃t(y)|2. (6-6)

Finally, we consider the third term on the right-hand side of (6-4), the one with ∇x kt . We recall that
kt(x; y)=−Nw`(N (x − y))ϕ̃t(x)ϕ̃t(y). Hence, we find

−1x kt(x; y)= N 3(1w`)(N (x − y))ϕ̃t(x)ϕ̃t(y)+ Nw`(N (x − y))1ϕ̃t(x)ϕ̃t(y)
+2N 2(∇w`)(N (x − y)) · ∇ϕ̃t(x)ϕ̃t(y). (6-7)
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Since, by (4-1), 1w` =−1 f` =− 1
2 V f`+ λ` f` we have∫

dx dy k̄t(x; y)(−1x kt)(x; y)

=−
N
2

∫
dx dy N 3V (N (y− x))(w`(N (x − y))− 1)w`(N (x − y))|ϕ̃t(x)|2 |ϕ̃t(y)|2

− N 3λ`

∫
dx dy f`(N (x − y))Nw`(N (x − y)) |ϕ̃t(x)|2 |ϕ̃t(y)|2

+ 2
∫

dx dy Nw`(N (y− x))N 2(∇w`)(N (y− x)) · ∇ ¯̃ϕt(x)ϕ̃t(x)|ϕ̃t(y)|2

−

∫
dx dy N 2w2

`(N (x − y))(1ϕ̃t)(x)ϕ̃t(x)|ϕ̃t(y)|2

=
N
2

∫
dx dy N 3V (N (y− x))(1−w`(N (x − y)))w`(N (x − y))|ϕ̃t(x)|2 |ϕ̃t(y)|2

+ 2
∫

dx dy Nw`(N (y− x))N 2(∇w`)(N (y− x)) · ∇ ¯̃ϕt(x)ϕ̃t(x)|ϕ̃t(y)|2+O(1). (6-8)

In the last step, we used the bounds N 3λ`=O(1), Nw`(N (x−y))≤C |x−y|−1 and 0≤ f`(N (x−y))≤1.
Integrating by parts in the last term, we find

2
∫

dx dy N 2(∇w`)(N (y−x))·∇ ¯̃ϕt(x)Nw`(N (y−x))ϕ̃t(x)|ϕ̃t(y)|2

=−

∫
dx dy ∇x(N 2w`(N (y−x))2)·∇ ¯̃ϕt(x)ϕ̃t(x)|ϕ̃t(y)|2

=

∫
dx dy N 2w`(N (x−y))21 ¯̃ϕt(x)ϕ̃t(x)|ϕ̃t(y)|2+

∫
dx dy N 2w`(N (x−y))2∇ ¯̃ϕt(x)·∇ϕ̃t(x)|ϕ̃t(y)|2.

With (6-8), this leads us (using again the bound Nw`(N (x − y))≤ C |x − y|−1) to∫
dx dy k̄t(x; y)(−1x kt)(x; y)

=
N
2

∫
dx dy N 3V (N (y− x))(1−w`(N (x − y)))w`(N (x − y))|ϕ̃t(x)|2 |ϕ̃t(y)|2+O(1).

Combining this bound with (6-5) and (6-6), we find

CN ,t + N 〈i∂t ϕ̃t , ϕ̃t 〉

= N
[∫
|∇ϕ̃t(x)|2 dx + 1

2

∫
dx dy N 3V (N (x − y)) f`(N (x − y))|ϕ̃t(x)|2 |ϕ̃t(y)|2

]
+O(1).

The expression in the brackets on the right-hand side is exactly the energy functional associated with the
time-dependent modified Gross–Pitaevskii equation (4-8). By energy conservation, we conclude that

CN ,t + N 〈i∂t ϕ̃t , ϕ̃t 〉

= N
[∫
|∇ϕ(x)|2 dx + 1

2

∫
dx dy N 3V (N (x − y)) f`(N (x − y))|ϕ(x)|2 |ϕ(y)|2

]
+O(1). (6-9)
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Observe that, with (4-3),∫
dx dy N 3V (N (x − y)) f`(N (x − y))|ϕ(x)|2 |ϕ(y)|2

=

∫
dx dyV (y) f`(y)|ϕ(x)|2 |ϕ(x + y/N )|2

= [8πa0+O(N−1)]

∫
|ϕ(x)|4 dx +

∫
dx dy V (y) f`(y)|ϕ(x)|2 [|ϕ(x + y/N )|2− |ϕ(x)|2], (6-10)

where∣∣∣∣∫ dx dy V (y) f (y)|ϕ(x)|2[|ϕ(x + y/N )|2− |ϕ(x)|2]
∣∣∣∣

≤ N−1
∫ 1

0
ds
∫

dx dy V (y) f (y)|ϕ(x)|2 |∇ϕ(x + sy/N )||ϕ(x + y/N )||y|

≤ C N−1

for a constant C > 0 depending only on the H 1-norm of ϕ. Inserting the last bound and (6-10) in (6-9),
we conclude that

CN ,t + N 〈i∂t ϕ̃t , ϕ̃t 〉 = NEG P(ϕ)+O(1),

as claimed. �

With Proposition 6.1 and Lemma 6.2, we can now conclude the proof of our main theorems.

Proof of Theorems 1.1 and 1.2. We observe, first of all, that, by Proposition 4.2,

|〈ϕt , γ
(1)
N, tϕt 〉− 〈ϕ̃t , γ

(1)
N, t ϕ̃t 〉| ≤ 2‖ϕt − ϕ̃t‖ ≤ C N−1 exp(c exp(c|t |)). (6-11)

Hence, it is enough to compute

〈ϕ̃t , γ
(1)
N, t ϕ̃t 〉 =

1
N
〈e−i HN tψN , a∗(ϕ̃t)a(ϕ̃t)e−i HN tψN 〉

=
1
N
〈UN, t e−i HN tψN , (N −N )UN, t e−i HN tψN 〉

= 1−
1
N
〈UN, t e−i HN tψN ,NUN, t e−i HN tψN 〉.

We define ξ = e−B(η0)UN ,0ψN ∈ F≤N
⊥ϕ . Then we have ψN =U∗N ,0eB(η0)ξ and therefore

1−〈ϕ̃t , γ
(1)
N, t ϕ̃t 〉 =

1
N
〈WN, tξ, e−B(ηt )N eB(ηt )WN, tξ〉 ≤

C
N
〈WN, tξ,NWN, tξ〉,

where we applied Lemma 3.1. By Proposition 6.1, we conclude that

1−〈ϕ̃t , γ
(1)
N, t ϕ̃t 〉 ≤ N−1 exp(c exp(c|t |)) 〈ξ, [(GN ,0−CN ,0)+C(N + 1)]ξ〉. (6-12)

In order to apply Proposition 6.1, we used here the assumption (valid in the proofs of both Theorem 1.1
and Theorem 1.2) that ϕ̃t=0 = ϕ ∈ H 4(R3).
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Recalling from (1-10) the definition aN = 1−〈ϕ, γ (1)N ϕ〉, we bound, with the above definition of ξ ,

〈ξ,N ξ〉 = 〈UN ,0ψN , eB(η0)N e−B(η0)UN ,0ψN 〉

≤ C〈UN ,0ψN ,NUN ,0ψN 〉

= C〈ψN , (N − a∗(ϕ)a(ϕ))ψN 〉

= C N (1−〈ϕ, γ (1)N ϕ〉)= C NaN .

We still have to bound the expectation of (GN ,0−CN ,0) in the state ξ . We have

GN ,0 = i∂t e−B(ηt )|t=0eB(η0)+ e−B(η0)[(i∂tUN, t)|t=0U∗N ,0+UN ,0 HN U∗N ,0]e
B(η0).

With Proposition 5.12, we find

|〈ξ, i∂t e−B(ηt )|t=0eB(η0)ξ〉| ≤ C〈ξ, (N + 1)ξ〉 ≤ C NaN +C. (6-13)

From (5-2), we obtain

〈eB(η0)ξ, (i∂tUN, t)|t=0 U∗N ,0 eB(η0)ξ〉

= −〈(i∂t ϕ̃t)|t=0, ϕ〉〈UN ,0ψN , (N −N )UN ,0ψN 〉− 2 Re〈UN ,0ψN ,
√

N −Na(q0(i∂t ϕ̃t)|t=0)UN ,0ψN 〉

= −N 〈(i∂t ϕ̃t)|t=0, ϕ〉+ N 〈(i∂t ϕ̃t)|t=0, ϕ〉(1−〈ϕ, γ
(1)
N ϕ〉)− 2N Re〈ϕ, γ (1)N q0(i∂t ϕ̃t)|t=0〉.

Combining this identity with the bound (6-13) and with the observation that, by the definition of ξ ,

〈ξ, e−B(η0)UN ,0 HN U∗N ,0eB(η0)ξ〉 = 〈ψN , HNψN 〉,

we conclude that

〈ξ, (GN ,0−CN ,0)ξ〉

≤ [〈ψN , HNψN 〉− (CN ,0+ N 〈(i∂t ϕ̃t)|t=0, ϕ〉)] − 2N Re〈ϕ, γ (1)N q0(i∂t ϕ̃t)|t=0〉+C NaN +C.

Hence, with Lemma 6.2, we get

〈ξ, (GN ,0−CN ,0)ξ〉 ≤ [〈ψN , HNψN 〉− NEGP(ϕ)]−2N Re〈ϕ, γ (1)N q0(i∂t ϕ̃t)|t=0〉+C NaN +C, (6-14)

where EGP denotes the translation-invariant Gross–Pitaevskii functional defined in (1-15).
To bound the second term on the right-hand side of the last equation, we proceed differently depending

on whether we want to show Theorem 1.1 or Theorem 1.2. To prove Theorem 1.2, we notice that

〈ϕ, γ
(1)
N q0(i∂t ϕ̃t)|t=0〉 = 〈ϕ, γ

(1)
N (i∂t ϕ̃t)|t=0〉− 〈ϕ, γ

(1)
N ϕ〉〈ϕ, (i∂t ϕ̃t)|t=0〉

= 〈ϕ, (i∂t ϕ̃t)|t=0〉(1−〈ϕ, γ
(1)
N ϕ〉)+〈ϕ, (γ (1)− |ϕ〉〈ϕ|)(i∂t ϕ̃t)|t=0〉.

With ãN = tr |γ (1)N − |ϕ〉〈ϕ||, we obtain that

|〈ϕ, γ
(1)
N q0(i∂t ϕ̃t)|t=0〉| ≤ C(aN + ãN ).

Since aN ≤ ãN , we conclude from (6-14) that

〈ξ, (GN ,0−CN ,0)ξ〉 ≤ C[NãN + Nb̃N + 1].
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Inserting in (6-12) and using (6-11), we arrive at

1−〈ϕt , γ
(1)
N ϕt 〉 ≤ C[ãN + b̃N + N−1

] exp(c exp(c|t |)).

This concludes the proof of Theorem 1.2.
To show Theorem 1.1, we use instead the fact that

i∂t ϕ̃t |t=0 =−1ϕ+ (N 3V (N · ) f`(N · ) ∗ |ϕ|2)ϕ.

Since here we assume that the initial data ϕ = φGP is the minimizer of the Gross–Pitaevskii energy
functional (1-6), it must satisfy the Euler–Lagrange equation

−1ϕ+ Vextϕ+ 8πa0|ϕ|
2ϕ = µϕ

for some µ ∈ R. We find

i∂t ϕ̃t |t=0 = µϕ− Vextϕ+ [(N 3V (N · ) f`(N · ) ∗ |ϕ|2)− 8πa0|ϕ|
2
]ϕ.

Using (4-3), the fact that the minimizer ϕ of (1-6) is continuously differentiable and vanishes at infinity,
see [Lieb et al. 2000, Theorem 2.1], we obtain

‖[(N 3V (N · ) f`(N · ) ∗ |ϕ|2)− 8πa0|ϕ|
2
]ϕ‖2 ≤ C N−1

and therefore

−2N Re〈ϕ, γ (1)N q0(i∂t ϕ̃t)|t=0〉 ≤ 2N Re〈ϕ, γ (1)N q0(Vext+ κ)ϕ〉+C

for any constant κ ∈ R. Choosing κ ≥ 0 so that Vext + κ ≥ 0 (from the assumptions, Vext is bounded
below), we find

−2N Re〈ϕ, γ (1)N q0(i∂t ϕ̃t)|t=0〉 ≤ 2N Re〈ϕ, γ (1)N (Vext+ κ)ϕ〉− 2N 〈ϕ, γ (1)N ϕ〉〈ϕ, (Vext+ κ)ϕ〉+C

≤ 2N Re〈ϕ, γ (1)N (Vext+ κ)ϕ〉− 2N 〈ϕ, (Vext+ κ)ϕ〉+C(NaN + 1).

With Cauchy–Schwarz and since 0≤ γ (1)N ≤ 1 implies that (γ (1)N )2 ≤ γ
(1)
N , we get

−2N Re〈ϕ, γ (1)N q0(i∂t ϕ̃t)|t=0〉 ≤ N 〈ϕ, γ (1)N (Vext+ κ)γ
(1)
N ϕ〉− N 〈ϕ, (Vext+ κ)ϕ〉+C(NaN + 1)

≤ N tr γ (1)N Vext− N 〈ϕ, Vextϕ〉+C(NaN + 1).

Inserting back in (6-14) we conclude that, under the assumptions of Theorem 1.1,

〈ξ, (GN ,0−CN ,0)ξ〉 ≤ [〈ψN , H trap
N ψN 〉− NE trap

GP (ϕ)] +C NaN +C ≤ C[NaN + NbN + 1].

With (6-12) and (6-11), we find now

1−〈ϕt , γ
(1)
N, tϕt 〉 ≤ C[aN + bN + N−1

] exp(c exp(c|t |)).

This concludes the proof of Theorem 1.1. �
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