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A RIGOROUS DERIVATION FROM THE KINETIC CUCKER–SMALE
MODEL TO THE PRESSURELESS EULER SYSTEM

WITH NONLOCAL ALIGNMENT

ALESSIO FIGALLI AND MOON-JIN KANG

We consider the kinetic Cucker–Smale model with local alignment as a mesoscopic description for the
flocking dynamics. The local alignment was first proposed by Karper, Mellet and Trivisa (2014), as a
singular limit of a normalized nonsymmetric alignment introduced by Motsch and Tadmor (2011). The
existence of weak solutions to this model was obtained by Karper, Mellet and Trivisa (2014), and in
the same paper they showed the time-asymptotic flocking behavior. Our main contribution is to provide
a rigorous derivation from a mesoscopic to a macroscopic description for the Cucker–Smale flocking
models. More precisely, we prove the hydrodynamic limit of the kinetic Cucker–Smale model with local
alignment towards the pressureless Euler system with nonlocal alignment, under a regime of strong local
alignment. Based on the relative entropy method, a main difficulty in our analysis comes from the fact
that the entropy of the limit system has no strict convexity in terms of density variable. To overcome this,
we combine relative entropy quantities with the 2-Wasserstein distance.

1. Introduction

This article is mainly devoted to providing a rigorous justification of the hydrodynamic limit of the kinetic
Cucker–Smale model to the pressureless Euler system with nonlocal alignment force. Cucker and Smale
[2007] introduced an agent-based model capturing a flocking phenomenon observed within complex
systems, such as flocks of birds, schools of fish and swarms of insects. The Cucker–Smale (CS) model
has received extensive attention in the mathematical community, as well as physics, biology, engineering
and social science, etc.; see for instance [Carlen et al. 2015; Cañizo et al. 2011; Carrillo et al. 2010; Duan
et al. 2010; Fornasier et al. 2011; Ha et al. 2014c; 2017; Ha and Tadmor 2008; Poyato and Soler 2017;
Zavlanos et al. 2011]. Motsch and Tadmor [2011] proposed a modified Cucker–Smale model by replacing
the original CS alignment by a normalized nonsymmetric alignment. Karper, Mellet, and Trivisa [Karper
et al. 2014] proposed a new kinetic flocking model as a combination of the CS alignment and a local
alignment interaction, where the latter was obtained as a singular limit of the nonsymmetric alignment
introduced by Motsch and Tadmor.
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We consider the kinetic flocking model without Brownian noise, proposed by Karper, Mellet and
Trivisa [Karper et al. 2013] on Td

×Rd :

∂t f + v · ∇x f +∇v · (L[ f ] f )+∇v · ((u− v) f )= 0,

L[ f ](t, x, v)=
∫

Td

∫
Rd
ψ(x − y) f (t, y, w)(w− v) dw dy,

u(t, x)=

∫
Rd v f dv∫
Rd f dv

, ‖ f (0)‖L1(Td×Rd ) = 1.

(1-1)

Here ψ : Td
→ Rd is a Lipschitz communication weight that is positive and symmetric, i.e., ψ(x − y)=

ψ(y − x). The term ∇v · (L[ f ] f ) describes a nonlocal alignment due to the original Cucker–Smale
flocking mechanism, while the last term ∇v · ((u− v) f ) describes a local alignment interaction, because
of the averaged local velocity u. The global existence of weak solutions to (1-1) was proved in [Karper
et al. 2013]. The flocking behaviors of (1-1), however, have not been studied so far. We here provide its
time-asymptotic behavior.

As a mesoscopic description, the kinetic model (1-1) is posed in (t, x, v) ∈ R× Td
× Rd , i.e., in

2d + 1 dimensions. This feature provides an accurate description for a significant number of particles.
However, its numerical test is very costly with respect to an associated macroscopic description. Hence,
it is very important to find a suitable parameter regime on which the complexity of (1-1) is reduced.

The main goal of this article is to show a singular limit of (1-1) in a regime of strong local alignment:

∂t f ε + v · ∇x f ε +∇v · (L[ f ε] f ε)+
1
ε
∇v · ((uε − v) f ε)= 0,

L[ f ε](t, x, v)=
∫

Td

∫
Rd
ψ(x − y) f ε(t, y, w)(w− v) dw dy,

uε =

∫
Rd v f ε dv∫
Rd f ε dv

,

f ε|t=0 = f ε0 , ‖ f ε0 ‖L1(Td×Rd ) = 1.

(1-2)

As ε→ 0, it is expected that the solution f ε of (1-2) converges, in some weak sense, to a monokinetic
distribution

δv=u(t,x)⊗ ρ(t, x); (1-3)

see Remark 1.1. Here, δv=u(t,x) denotes a Dirac mass in v centered on u(t, x). Also, as we shall explain
later, at least formally ρ and u should solve the associated limit system given by the pressureless Euler
system with nonlocal flocking dissipation:

∂tρ+∇ · (ρu)= 0,

∂t(ρu)+∇ · (ρu⊗ u)=
∫

Td
ψ(x − y)ρ(t, x)ρ(t, y)(u(t, y)− u(t, x)) dy,

ρ|t=0 = ρ0, u|t=0 = u0, ‖ρ0‖L1(Td ) = 1.

(1-4)

The main difficulty in the justification of this limit comes from the singularity of the monokinetic
distribution. To the best of our knowledge, there is no general method to handle the hydrodynamic limit
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from some kinetic equations to the pressureless Euler systems, no matter what regime is considered.
Indeed, there are few results on this kinds of limit; see [Jabin and Rey 2017; Kang 2018; Kang and
Vasseur 2015] (see also [Jabin 2000] for a general treatment of similar regimes that lead to the Dirac
formation and pressureless gases equations).

Remark 1.1. In this paper we will use the symbol ⊗ in two different contexts: if µ is a measure on a
complete metric space X , and {νx}x∈X is a family of measures on a complete metric space Y, then νx ⊗µ

denotes the measure on X × Y defined as∫
X×Y

ϕ d[νx ⊗µ] =

∫
X

(∫
Y
ϕ(x, y) dνx(y)

)
dµ(x) for all ϕ ∈ Cc(X × Y ).

When νx is independent of x (that is, νx = ν for all x), we use the more standard notation µ⊗ ν (instead
of ν⊗µ, as done before) to denote the product measure:∫

X×Y
ϕ d[µ⊗ ν] =

∫
X

(∫
Y
ϕ(x, y) dν(y)

)
dµ(x) for all ϕ ∈ Cc(X × Y ).

Finally, if a, b ∈ Rd are vectors, then a⊗ b denotes the (d × d)-matrix with entries

(a⊗ b)i j = ai bj for all i, j = 1, . . . , d.

The meaning will always be clear from the context.

It is worth mentioning that the pressureless Euler system without the nonlocal alignment has been used
for the formation of large-scale structures in astrophysics and the aggregation of sticky particles [Silk
et al. 1983; Zeldovich 1970]. For more theoretical studies on the pressureless gases, we for example refer
to [Bouchut 1994; Bouchut and James 1999; Boudin 2000; Brenier and Grenier 1998; Huang and Wang
2001; Poupaud and Rascle 1997; Weinan et al. 1996].

The macroscopic flocking model (1-4) or its variants have been formally derived under a monokinetic
ansatz (1-3), and studied in various topics; see for example [Do et al. 2018; Ha et al. 2014a; 2014b; 2015;
Tadmor and Tan 2014]. In [Ha et al. 2014b], the authors showed the global well-posedness of (1-4) with
suitably smooth and small initial data, and the time-asymptotic flocking behavior. In [Ha et al. 2015], the
authors dealt with a moving boundary problem of (1-4) with compactly supported initial density. We also
refer to [Ha et al. 2014a] for a reformulation of (1-4) into hyperbolic conservation laws with damping in
one dimension.

In [Karper et al. 2015], the authors showed the hydrodynamic limit of the kinetic flocking model (1-1)
with Brownian motion, that is, a Vlasov–Fokker–Planck-type equation, under the regime of strong local
alignment and strong Brownian motion:

∂t f ε + v · ∇x f ε +∇v · (L[ f ε] f ε)+
1
ε
∇v · ((uε − v) f ε)− 1

ε
1v f ε = 0. (1-5)

In this case, as ε→ 0, f ε converges to a smooth local equilibrium given by a local Maxwellian, contrary
to (1-3). There, the authors used the relative entropy method, heavily relying on a strict convexity of the
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entropy of the isothermal Euler system (as a limit system of (1-5)):

∂tρ+∇ · (ρu)= 0,

∂t(ρu)+∇ · (ρu⊗ u)+∇ρ =
∫

Td
ψ(x − y)ρ(t, x)ρ(t, y)(u(t, y)− u(t, x)) dy.

The relative entropy method based on a strict convex entropy has been successfully used to prove the
hydrodynamic limit of Vlasov–Fokker–Planck-type equations; we refer to [Berthelin and Vasseur 2005;
Carrillo et al. 2016; Goudon et al. 2004; Mellet and Vasseur 2008; Vasseur 2008].

On the other hand, the pressureless Euler system (1-4) has a convex entropy given by

η(ρ, ρu)= ρ 1
2(|u|

2), (1-6)

which is not strictly convex with respect to ρ. For this reason, the associated relative entropy (1-6) is
not enough to control the convergence of the nonlocal alignment term (compare with [Kang and Vasseur
2015], where the nonlocal alignment is not present). To overcome this difficulty, we first estimate an
L2-distance of characteristics generated by vector fields uε and u that controls the 2-Wasserstein distance
of densities, and then combine the estimates of the relative entropy and the L2-distance of characteristics.

As a related work on (1-5), we refer to [Carrillo et al. 2016], where the authors studied the flocking
behavior and hydrodynamic limit of a coupled system of (1-5) and fluid equations via drag force.

The rest of this paper is organized as follows. In Section 2, we mention different scales of Cucker–Smale
models from a microscopic level to a macroscopic level, and then specify some known existence results
on the two descriptions (1-1) and (1-4). In Section 3, we present our main theorem on the hydrodynamic
limit, and collect some useful results on the relative entropy method and the optimal transportation theory
that are used in the proof of the main theorem. In Section 4, we present some structural hypotheses to
guarantee the hydrodynamic limit in a general setting. Then we apply the general result to our systems by
verifying the hypotheses in Section 5. In the Appendix, we provide the proof of the long time-asymptotic
flocking dynamics and the existence of monokinetic solutions for the kinetic model (1-1).

2. Various scales of Cucker–Smale models

We first present various scales of Cucker–Smale models, from a microscopic level to a macroscopic level.
Then we state some known results on global existence of weak solutions to the kinetic description (1-1),
and local existence of smooth solutions to the limit system (1-4). Those results are crucially used in the
proof of the main theorem. Finally, in Theorem 2.2, we present the time-asymptotic flocking behavior of
the kinetic model (1-1).

Variants of Cucker–Smale models. We briefly present the kinetic CS model and its variants. Cucker and
Smale [2007] proposed a mathematical model to explain the flocking phenomenon:

dxi

dt
= vi , i = 1, . . . , N ,

dvi

dt
=

1
N

N∑
j=1

ψ(x j − xi )(vj − vi ),

(2-1)
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where xi , vi ∈ Rd denote the spatial position and velocity of the i-th particle for an ensemble of N self-
propelled particles. The kernel ψ(|x j − xi |) is a communication weight given by

ψ(x j − xi )=
λ

(1+ |x j − xi |
2)β
, β ≥ 0, λ > 0. (2-2)

The system (2-1) with (2-2) was used as an analytical description of the Vicsek model [Vicsek et al. 1995]
without resorting to the first principle of physics.

When the number of particles is sufficiently large, the ensemble of particles can be described by the
one-particle density function f = f (t, x, v) at the spatial-velocity position (x, v) ∈ Rd

×Rd at time t .
Then, the evolution of f is governed by the following Vlasov-type equation:

∂t f + v · ∇x f +∇v · (L[ f ] f )= 0,

L[ f ](t, x, v)=
∫

R2d
ψ(x − y) f (t, y, w)(w− v) dw dy.

(2-3)

This was first introduced by Ha and Tadmor [2008] using the BBGKY hierarchy from the particle CS
model (2-1). A rigorous mean-field limit was given in [Ha and Liu 2009].

Motsch and Tadmor [2011] recognized a drawback of the CS model (2-1), which is due to the
normalization factor 1/N. More precisely, when a small group of agents are located far away from a
much larger group of agents, the internal dynamics of the small group is almost halted since the total
number of agents is relatively very large. To solve this issue, they replaced the nonlocal alignment L[ f ]
by a normalized nonsymmetric alignment operator:

L[ f ](t, x, v) :=

∫
R2d K r (x − y) f (t, y, w)(w− v) dw dy∫

R2d K r (x − y) f (t, y, w) dw dy
,

where the kernel K r is a communication weight and r denotes the radius of influence of K r.
In [Karper et al. 2014], the authors considered the case when the communication weight is extremely

concentrated near each agent, so that the alignment term L[ f ] corresponds to a short-range interaction.
More precisely, they rigorously justified the singular limit r → 0, i.e., as K r converges to the Dirac
distribution δ0, in which case L[ f ] converges to a local alignment term:

L[ f ](t, x, v)→

∫
Rd f (t, x, w)(w− v) dw∫

Rd f (t, x, w) dw
= u(t, x)− v,

where u(t, x) denotes the averaged local velocity defined as

u(t, x)=

∫
Rd v f (t, x, v) dv∫
Rd f (t, x, v) dv

.

Hence, their new model became (1-1), which consists of two kinds of alignment force: a nonlocal
alignment due to the original CS model, plus a local alignment.
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Existence of weak solutions to (1-2). In [Karper et al. 2013], the authors showed the existence of weak
solutions to the kinetic Cucker–Smale model with local alignment, noise, self-propulsion, and friction:

∂t f + v · ∇x f +∇v · (L[ f ] f )+∇v · ((u− v) f )= σ1v f −∇v · ((a− b|v|2)v f ),

L[ f ] =
∫

R2d
ψ(x − y) f (t, y, w)(w− v) dw dy,

(2-4)

where the kernel ψ is the same as (1-2) and a, b, and σ are nonnegative constants. By their result applied
with a = b= σ = 0 inside the periodic domain Td, we obtain existence of solutions for (1-2). To precisely
state such an existence result, we need to define a (mathematical) entropy F( f ε) and kinetic dissipations
D1( f ε), D2( f ε) for (1-2):

F( f ε) :=
∫

Rd

|v|2

2
f ε dv,

D1( f ε) :=
∫

Td×Rd
f ε|uε − v|2 dv dx,

D2( f ε) := 1
2

∫
T2d×R2d

ψ(x − y) f ε(x, v) f ε(y, w)|v−w|2 dx dy dv dw.

(2-5)

Proposition 2.1. For any ε > 0, assume that f ε0 satisfies

f ε0 ≥ 0, f ε0 ∈ L1
∩ L∞(R2d), |v|2 f ε0 ∈ L1(R2d). (2-6)

Then there exists a weak solution f ε ≥ 0 of (1-2) such that

f ε ∈ C(0, T ; L1(R2d))∩ L∞((0, T )×R2d),

|v|2 f ε ∈ L∞(0, T ; L1(R2d)),
(2-7)

and (1-2) holds in the sense of distributions, that is, for any ϕ ∈ C∞c ([0, T )×R2d), the weak formulation
holds:∫ t

0

∫
R2d

f ε
(
∂tϕ+v ·∇xϕ+ L[ f ε] ·∇vϕ+

1
ε
(uε−v) ·∇vϕ

)
dv dx ds+

∫
R2d

f ε0 ϕ(0, · ) dv dx = 0. (2-8)

Moreover, f ε preserves the total mass and satisfies the entropy inequality∫
Td

F( f ε)(t) dx + 1
ε

∫ t

0
D1( f ε)(s) ds+

∫ t

0
D2( f ε)(s) ds ≤

∫
Td

F( f ε0 ) dx . (2-9)

The entropy inequality (2-9) is crucially used in the proof of Theorem 3.1.

Flocking behavior of the kinetic model (1-1). We now present the time-asymptotic flocking behavior of
solutions to the kinetic model (1-1). For that, we define the following two Lyapunov functionals:

E1(t) :=
∫

Td×Rd
f (t, x, v)|u(t, x)− v|2 dv dx,

E2(t) :=
∫

T2d
ρ(t, x)ρ(t, y)|u(t, x)− u(t, y)|2 dx dy,
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where ρ(t, x) =
∫

Rd f (t, x, v) dv. We remark that E1 measures a local alignment, and E2 measures
alignment of the averaged local velocities. Then, for the flocking estimate, we combine the two functionals
as follows:

E(t) := E1(t)+ 1
2E2(t). (2-10)

Theorem 2.2. Let f be a solution to (1-1). Then, we have the time-asymptotic flocking estimate

E(t)≤ E(0) exp (−2 min{1, ψm}t), t > 0, (2-11)

where ψm is the minimum communication weight:

ψm := min
x,y∈Td

ψ(x − y) > 0.

In addition, if u is uniformly Lipschitz continuous on a time interval [0, T ], namely

`T := sup
t∈[0,T ]

‖∇x u‖L∞(Td ) <∞,

then
E1(t)≤ E1(0)e2(`T−1) for all t ∈ [0, T ]. (2-12)

Proof. We postpone the proof to the Appendix. �

Remark 2.3. As an interesting consequence of (2-12) one obtains that, for smooth solutions, E1(0)= 0
implies that E1(t)= 0 for all t ∈ [0, T ]. In other words, monokinetic initial conditions remain monokinetic
as long as the velocity field is Lipschitz. One can note that monokinetic solutions to (1-1) simply
correspond to solutions of the pressureless Euler system (1-4); hence the short time existence of Lipschitz
solutions is guaranteed by Proposition 2.4 and Remark 2.5 below.

Formal derivation of the hydrodynamic Cucker–Smale system (1-4). We consider the hydrodynamic
variables ρε :=

∫
Rd f ε dv and ρεuε :=

∫
Rd v f ε dv.

First of all, integrating (1-2) with respect to v, we get the continuity equation

∂tρ
ε
+∇x · (ρ

εuε)= 0.

Multiplying (1-2) by v, and then integrating it with respect to v, we have

∂t(ρ
εuε)+∇x ·

(∫
Rd
v⊗ v f ε dv

)
=

∫
Td
ψ(x − y)ρε(t, x)ρε(t, y)(uε(t, y)− uε(t, x)) dy,

where we used

uε =

∫
Rd v f ε dv∫
Rd f ε dv

.

Then, we rewrite the system for ρε and uε as

∂tρ
ε
+∇x · (ρ

εuε)= 0,

∂t(ρ
εuε)+∇x · (ρ

εuε⊗ uε + Pε)=
∫

Td
ψ(x − y)ρε(t, x)ρε(t, y)(uε(t, y)− uε(t, x)) dy,

(2-13)
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where Pε is the stress tensor given by

Pε :=
∫

Rd
(v− uε)⊗ (v− uε) f ε dv.

If we take ε→ 0 in (1-2), the local alignment term ∇v · ((uε − v) f ε) converges to 0. Hence, if ρε→ ρ

and ρεuε → ρu for some limiting functions ρ and u, we have that f ε → δv=u ⊗ ρ (in some suitable
sense). Hence, the stress tensor Pε should vanish in the limit, since∫

Rd
(v− u)⊗ (v− u)δv=uρ dv = 0.

Therefore, at least formally, the limit quantities ρ and u satisfy the pressureless Euler system with nonlocal
alignment:

∂tρ+∇x · (ρu)= 0,

∂t(ρu)+∇x · (ρu⊗ u)=
∫

Td
ψ(x − y)ρ(t, x)ρ(t, y)(u(t, y)− u(t, x)) dy.

Existence of classical solutions to (1-4). We present here the local existence of classical solutions to the
pressureless Euler system (1-4).

Proposition 2.4. Assume that

ρ0 > 0 in Td and (ρ0, u0) ∈ H s(Td)× H s+1(Td) for s > 1
2 d + 1. (2-14)

Then, there exists T∗ > 0 such that (1-4) has a unique classical solution (ρ, u) satisfying

ρ ∈ C0([0, T∗]; H s(Td))∩C1([0, T∗]; H s−1(Td)),

u ∈ C0([0, T∗]; H s+1(Td))∩C1([0, T∗]; H s(Td)).
(2-15)

Remark 2.5. Since s > 1
2 d + 1, by the Sobolev inequality it follows that (ρ, u) ∈ C1([0, T∗]×Td).

Proposition 2.4 has been proven in [Ha et al. 2014b]. There, the authors obtained also a global
well-posedness of classical solutions, provided an initial datum is suitably smooth and small.

3. Main result and preliminaries

We first present our main result on the hydrodynamic limit of (1-2). We next present useful results on the
relative entropy method and the optimal transportation theory, which are used as main tools in the next
section.

Main result. For the hydrodynamic limit, we consider a well-prepared initial data f ε0 satisfying (2-6) and

(A1)
∫

Td

∫
Rd ( f ε0

1
2 |v|

2
− ρ0

1
2 |u0|

2) dv dx =O(ε),

(A2) ‖ρε0 − ρ0‖L1(Td ) =O(ε),

(A3) ‖uε0− u0‖L∞(Td ) =O(ε).

We now specify our main result on the hydrodynamic limit.
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Theorem 3.1. Assume that the initial data f ε0 and (ρ0, u0) satisfy (2-6), (2-14), and (A1)–(A3). Let
f ε be a weak solution to (1-2) satisfying (2-9), and (ρ, u) be a local-in-time smooth solution to (1-4)
satisfying (2-15) up to the time T∗. Then, there exists a positive constant C∗ (depending on T∗) such that,
for all t ≤ T∗, ∫

Td
ρε(t)|(uε − u)|2(t) dx +W 2

2 (ρ
ε(t), ρ(t))≤ C∗ε, (3-1)

where ρε =
∫

Rd f ε dv, ρεuε =
∫

Rd v f ε dv, and W2 denotes the 2-Wasserstein distance.
Therefore, we have

f ε⇀ δv=u(t,x)⊗ ρ(t, x) in M((0, T∗)×Td
×Rd), (3-2)

where M((0, T∗)×Td
×Rd) is the space of nonnegative Radon measures on (0, T∗)×Td

×Rd.

The proof of this result is postponed to Section 5. In the next subsections we collect some preliminary
facts that will be used later in the proof.

Relative entropy method. First of all, we rewrite the limit system (1-4) in an abstract form using the
notation

P = ρu, U =
(
ρ

P

)
, A(U )=

(
PT

(P ⊗ P)/ρ

)
,

F(U )=
(

0∫
Td ψ(x − y)ρ(t, x)ρ(t, y)(u(t, y)− u(t, x)) dy

)
.

Then we can rewrite (1-4) as the balance law

∂tU + divx A(U )= F(U ). (3-3)

We consider the relative entropy and relative flux

η(V |U )= η(V )− η(U )− Dη(U ) · (V −U ),

A(V |U )= A(V )− A(U )− D A(U ) · (V −U ),
(3-4)

where D A(U ) · (V −U ) is a matrix defined as

(D A(U ) · (V −U ))i j =

d+1∑
k=1

∂Uk Ai j (U )(Vk −Uk), 1≤ i ≤ d + 1, 1≤ j ≤ d.

By the theory of conservation laws, the system (3-3) has a convex entropy η(U )= ρ 1
2 |u|

2 with entropy
flux G given by the identity

∂Ui G j (U )=
d+1∑
k=1

∂Ukη(U ) ∂Ui Ak j (U ), 1≤ i ≤ d + 1, 1≤ j ≤ d.

Since η(U )= |P|2/(2ρ), and

Dη(U )=
(

Dρη

DPη

)
=

(
−|P|2/(2ρ2)

P/ρ

)
=

(
−|u|2/2

u

)
, (3-5)
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for given V =
( q

qw

)
, U =

(
ρ
ρu

)
, we have

η(V |U )= 1
2q|w|2− 1

2ρ|u|
2
+

1
2 |u|

2(q − ρ)− u(qw− ρu)

=
1
2q|u−w|2. (3-6)

The next proposition provides a cornerstone to verify the hydrodynamic limit through the relative
entropy method. For its proof, we refer to the proof of Proposition 4.2 in [Karper et al. 2015]; see also
[Vasseur 2008].

Proposition 3.2. Let U be a strong solution to balance law (3-3) and V be any smooth function. Then,
the following holds:

d
dt

∫
Td
η(V |U ) dx = d

dt

∫
Td
η(V ) dx −

∫
Td
∇x
(
Dη(U )

)
: A(V |U ) dx

−

∫
Td

Dη(U ) · [∂t V + divx A(V )− F(V )] dx

−

∫
Td
[D2η(U )F(U )(V −U )+ Dη(U )F(V )] dx .

Wasserstein distance and representation formulae for solutions of the continuity equation. For p ≥ 1,
the p-Wasserstein distance between two probability measures µ1 and µ2 on Rd is defined by

W p
p (µ1, µ2) := inf

ν∈3(µ1,µ2)

∫
R2d
|x − y|2 dν(x, y),

where 3(µ1, µ2) denotes the set of all probability measures ν on R2d with marginals µ1 and µ2, i.e,

π1#ν = µ1, π2#ν = µ2,

where π1 : (x, y) 7→ x and π2 : (x, y) 7→ y are the natural projections from Rd
× Rd to Rd, and π#ν

denotes the push forward of ν through a map π , i.e., π#ν(B) := ν(π−1(B)) for any Borel set B. This
same definition can be extended to measures on the torus Td with the understanding that |x − y| denotes
the distance on the torus.

To make a connection between the L2-distance of velocities and the 2-Wasserstein distance of densities
(see Lemma 5.2), we will use two different representation formulas for solutions to the continuity equation

∂tµt + divx(utµt)= 0. (3-7)

Let us recall that, if the velocity field ut : R
d
→ Rd is Lipschitz with respect to x , uniformly in t , then for

any x there exists a global-in-time unique characteristic X generated by ut starting from x ,

Ẋ(t, x)= ut(X (t, x)), X (0, x)= x,

and the solution µt of (3-7) is the push forward of the initial data µ0 through X (t), i.e.,

µt = X (t)#µ0; (3-8)
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e.g., see [Ambrosio et al. 2005, Proposition 8.1.8]. On the other hand, if the velocity field ut is not
Lipschitz with respect to x , the uniqueness of the characteristics is not guaranteed anymore. Still, a
probabilistic representation formula for solutions to (3-7) holds (recall that a curve of probability measures
in Rd is called narrowly continuous if it is continuous in the duality with continuous bounded functions):

Proposition 3.3. For a given T > 0, let µt : [0, T ] → P(Rd) be a narrowly continuous solution of (3-7)
for a Borel vector field ut satisfying∫ T

0

∫
Rd
|ut(x)|p dµt(x) dt <∞ for some p > 1.

Let 0T denote the space of continuous curves from [0, T ] into Rd. Then, there exists a probability
measure η on 0T ×Rd satisfying the following properties:

(i) η is concentrated on the set of pairs (γ, x) such that γ is an absolutely continuous curve solving
the ODE

γ̇ (t)= ut(γ (t)) for a.e. t ∈ (0, T ), with γ (0)= x .

(ii) µt satisfies∫
Rd
ϕ(x) dµt(x)=

∫
0T×Rd

ϕ(γ (t)) dη(γ, x) for all ϕ ∈ C0
b(R

d), t ∈ [0, T ].

Again, this result readily extends on the torus.
Note that, in the case when ut is Lipschitz, there exists a unique curve γ solving the ODE and starting

from x (i.e., γ = X ( · , x)), so the measure η is given by the formula

dη(γ, x)= δγ=X ( · ,x)⊗ dµ0(x).

We refer to [Ambrosio et al. 2005, Theorem 8.2.1] for more details and a proof.

Useful inequality. We here present a standard inequality that is used in the proof of Lemma 5.2, for the
convenience of the reader:

Lemma 3.4. Let ρ1, ρ2 : T
d
→ R be two probability densities. Then

W 2
2 (ρ1, ρ2)≤

1
8 d‖ρ1− ρ2‖L1(Td ).

Proof. The idea is simple: to estimate the transportation cost from ρ1 to ρ2 it suffices to consider a
transport plan that keeps at rest all the mass in common between ρ1 and ρ2 (namely min{ρ1, ρ2}) and
sends ρ1−min{ρ1, ρ2} onto ρ2−min{ρ1, ρ2} in an arbitrary way. For instance, assuming without loss of
generality that ρ1 6= ρ2 (otherwise the result is trivial), we set

m := ‖ρ1−min{ρ1, ρ2}‖L1(Td ) = ‖ρ2−min{ρ1, ρ2}‖L1(Td ) =
1
2‖ρ1− ρ2‖L1(Td ) > 0.

Then, a possible choice of transport plan between ρ1 and ρ2 is given by

π(dx, dy) := δx=y(dy)⊗min{ρ1(x), ρ2(x)}dx

+
1
m
[ρ1(x)−min{ρ1(x), ρ2(x)}]dx ⊗[ρ2(y)−min{ρ1(y), ρ2(y)}]dy.
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Since the diameter of Td is bounded by 1
2

√
d , we deduce that the W 2

2 -cost to transport ρ1−min{ρ1, ρ2}

onto ρ2−min{ρ1, ρ2} is at most∫
T2d
|x− y|2 dπ(x, y)= 1

m

∫
T2d
|x− y|2(ρ1(x)−min{ρ1(x), ρ2(x)})(ρ2(y)−min{ρ1(y), ρ2(y)}) dx dy

≤
1
4 d‖ρ1−min{ρ1, ρ2}‖L1(Td ) =

1
8 d‖ρ1−ρ2‖L1(Td ),

as desired. �

4. Structural lemma

In a general system, we first present some structural hypotheses to provide a Gronwall-type inequality on
the relative entropy that is also controlled by 2-Wasserstein distance.

Hypotheses. Let f ε be a solution to a given kinetic equation KEε scaled with ε > 0 corresponding to
initial data f ε0 . Let U ε and U ε

0 consist of hydrodynamic variables of f ε and f ε0 respectively.
Let U be a solution to a balance law (as a limit system of KEε):

∂tU + divx A(U )= F(U ), U |t=0 =U0.

(H1) The kinetic equation KEε has a kinetic entropy F such that
∫
F( f ε)(t) dx ≥ 0 and∫

F( f ε)(t) dx + 1
ε

∫ t

0
D1( f ε)(s) ds+

∫ t

0
D2( f ε)(s) ds ≤

∫
Td

F( f ε0 ) dx,

where D1, D2 ≥ 0 are some dissipations.

(H2) There exists a constant C > 0 (independent of ε) such that∫
η(U ε

0 |U0) dx ≤ Cε,
∫
(F( f ε0 )− η(U

ε
0 )) dx ≤ Cε,

∫
Td

F( f ε0 ) dx ≤ C.

(H3) The balance law has a convex entropy η, and the following minimization property holds:

η(U ε)≤ F( f ε).

(H4) There exists a constant C > 0 (independent of ε) such that∣∣∣∣∫ ∇x(Dη(U )) : A(U ε
|U ) dx

∣∣∣∣≤ C
∫
η(U ε

|U ) dx .

(H5) There exists a constant C > 0 (independent of ε) such that∣∣∣∣∫ Dη(U ) · [∂tU ε
+ divx A(U ε)− F(U ε)] dx

∣∣∣∣≤ C D1( f ε).

(H6) Let ρε be the hydrodynamic variable of f ε as the local mass, and ρ be the corresponding variable
for the balance law. Then,

−

∫
[D2η(U )F(U )(U ε

−U )+ Dη(U )F(U ε)] dx ≤ D2( f ε)+CW 2
2 (ρ

ε, ρ)+C
∫
η(U ε

|U ) dx .
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(H7) There exists a constant C > 0 (independent of ε) such that

W 2
2 (ρ

ε, ρ)(t)≤ C
∫ t

0

∫
η(U ε

|U ) dx ds+Cε.

Remark 4.1. (1) The hypotheses (H1)–(H5) provide a basic structure in applying the relative entropy
method to hydrodynamic limits as in previous results, for example, [Kang and Vasseur 2015; Karper
et al. 2015; Mellet and Vasseur 2008]. On the other hand, the hypotheses (H6)–(H7) provide a crucial
connection between the relative entropy and Wasserstein distance.

(2) The (kinetic) entropy inequality (H1) plays an important role in controlling the dissipations D1, D2

in (H5) and (H6).

(3) (H2) is related to a kind of well-prepared initial data.

Lemma 4.2. Assume the hypotheses (H1)–(H7). Then, for a given T > 0, there exists a constant C > 0
such that ∫

η(U ε
|U )(t) dx +W 2

2 (ρ
ε, ρ)(t)≤ Cε, t ≤ T .

Proof. First of all, using Proposition 3.2, we have∫
Td
η(U ε

|U )(t) dx ≤ I1+ I2+ I3+ I4+ I5,

where

I1 :=

∫
Td
η(U ε

0 |U0) dx,

I2 :=

∫
Td
(η(U ε)(t)− η(U ε

0 )) dx,

I3 := −

∫ t

0

∫
Td
∇x(Dη(U )) : A(U ε

|U ) dx ds,

I4 := −

∫ t

0

∫
Td

Dη(U ) · [∂tU ε
+ divx A(U ε)− F(U ε)] dx ds,

I5 := −

∫ t

0

∫
Td
[D2η(U )F(U )(U ε

−U )+ Dη(U )F(U ε)] dx ds.

It follows from (H2) that I1 ≤ Cε.
We decompose I2 as

I2 =

∫
Td
(η(U ε)(t)−F( f ε)(t)) dx︸ ︷︷ ︸

=:I 1
2

+

∫
Td
(F( f ε)(t)−F( f ε0 )) dx︸ ︷︷ ︸

=:I 2
2

+

∫
Td
(F( f ε0 )− η(U

ε
0 )) dx︸ ︷︷ ︸

=:I 3
2

. (4-1)

First, I 1
2 ≤ 0 by (H3).

Since (H1) yields

I 2
2 ≤−

∫ t

0
D2( f ε) ds,



856 ALESSIO FIGALLI AND MOON-JIN KANG

it follows from (H6) that

I 2
2 + I5 ≤ C

∫ t

0
W 2

2 (ρ
ε, ρ) ds+C

∫ t

0

∫
Td
η(U ε

|U ) dx ds.

By (H2), I 3
2 ≤ Cε.

It follows from (H4) that

I3 ≤ C
∫ t

0

∫
Td
η(U ε

|U ) dx ds.

Since (H1) and (H2) imply ∫ t

0
D1( f ε)(s) ds ≤ Cε,

we have I4 ≤ Cε.
Therefore, we have∫

η(U ε
|U )(t) dx ≤ Cε+C

∫ t

0

[∫
η(U ε

|U )(s) dx ds+W 2
2 (ρ

ε, ρ)

]
ds.

Hence, combining it with (H7), and using Gronwall’s inequality, we have the desired result. �

5. Proof of Theorem 3.1

The main part of the proof consists in proving the estimate (3-1).

Proof of (3-1). This will be done by verifying the hypotheses (H1)–(H7), and then completed by
Lemma 4.2.

Verification of (H1). (H1) is satisfied thanks to Lemma 5.1 below. There we show that one can replace
the nonlocal dissipation D2 in the kinetic entropy inequality (2-9) by another dissipation D̃2 defined in
terms of the hydrodynamic variables ρε and uε.

Lemma 5.1. For any ε > 0, assume that f ε0 satisfies

f ε0 ∈ L1
∩ L∞(Td

×Rd), |v|2 f ε0 ∈ L1(Td
×Rd).

Then the weak solution f ε in Proposition 2.1 also satisfies∫
Td

F( f ε)(t) dx + 1
ε

∫ t

0
D1( f ε)(s) ds+

∫ t

0
D̃2( f ε)(s) ds ≤

∫
Td

F( f ε0 ) dx, (5-1)

where F and D1 are as in (2-5), and

D̃2( f ε) := 1
2

∫
T2d
ψ(x − y)ρε(t, x)ρε(t, y)|uε(t, x)− uε(t, y)|2 dx dy.
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Proof. Recalling (2-9), it is enough to show D̃2( f ε)≤ D2( f ε). We first rewrite D̃2( f ε) in terms of the
mesoscopic variables as follows: using ψ(x − y)= ψ(y− x), we have

D̃2( f ε)= 1
2

∫
T2d×R2d

ψ(x − y) f ε(t, x, v) f ε(t, y, w)(v−w) · (uε(t, x)− uε(t, y)) dv dw dx dy

=

∫
T2d×R2d

ψ(x − y) f ε(t, x, v) f ε(t, y, w)(v−w) · uε(t, x) dv dw dx dy

=

∫
T2d×R2d

ψ(x − y) f ε(t, x, v) f ε(t, y, w)(v−w) · v dv dw dx dy︸ ︷︷ ︸
=:I1

+

∫
T2d×R2d

ψ(x − y) f ε(t, x, v) f ε(t, y, w)(v−w) · (uε(t, x)− v) dv dw dx dy︸ ︷︷ ︸
=:I2

.

First, we have

I1 =
1
2

∫
T2d×R2d

ψ(x − y) f ε(t, x, v) f ε(t, y, w)|v−w|2 dx dy dv dw = D2( f ε).

We next claim I2 ≤ 0.
Indeed, since

ρε|uε|2 =

(∫
Rd v f ε dv

)2∫
Rd f ε dv

≤

∫
Rd
|v|2 f ε dv, (5-2)

we have∫
T2d×R2d

ψ(x − y) f ε(t, x, v) f ε(t, y, w)|v|2 dv dw dx dy

≥

∫
T2d
ψ(x − y)ρε(t, y)ρε(t, x)|uε(t, x)|2 dx dy.

Then, since∫
T2d×R2d

ψ(x − y) f ε(t, x, v) f ε(t, y, w)uε(t, x) ·w dv dw dx dy

=

∫
T2d
ψ(x − y)ρε(t, x)ρε(t, y)uε(t, x) · uε(t, y) dx dy,∫

T2d×R2d
ψ(x − y) f ε(t, x, v) f ε(t, y, w)uε(t, x) · v dv dw dx dy

=

∫
T2d
ψ(x − y)ρε(t, x)ρε(t, y)|uε(t, x)|2 dx dy,∫

T2d×R2d
ψ(x − y) f ε(t, x, v) f ε(t, y, w)v ·w dv dw dx dy

=

∫
T2d
ψ(x − y)ρε(t, x)ρε(t, y)uε(t, x) · uε(t, y) dx dy,

we conclude that I2 ≤ 0, as desired. �
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Verification of (H2). We show that the assumptions (A1)–(A3) for initial data imply (H2). Using (3-6)
and assumption (A3), we have∫

Td
η(U ε

0 |U0) dx = 1
2

∫
Td
ρε0 |u

ε
0− u0|

2 dx ≤ Cε2
∫

Td
ρε0 dx ≤ Cε2.

Since it follows from (A1)–(A3) that∫
Td
(F( f ε0 )− η(U0)) dx =O(ε),

and ∫
Td
(η(U0)− η(U ε

0 )) dx = 1
2

∫
Rd
(ρ0|u0|

2
− ρε0 |u

ε
0|

2)

≤
1
2

∫
Td
|ρ0− ρ

ε
0 ||u0|

2
+

1
2

∫
Td
ρε0

∣∣|uε0|2− |u0|
2∣∣=O(ε),

we have ∫
Td
(F( f ε0 )− η(U

ε
0 )) dx =O(ε).

It is obvious that (A1) implies ∫
Td

F( f ε0 ) dx ≤ C.

Verification of (H3). It follows from (5-2) that

η(U ε)= ρε 1
2 |u

ε
|
2
≤

∫
Rd

1
2 |v|

2 f ε dv = F( f ε). (5-3)

Verification of (H4). Since

A(U )=
(

PT

(P ⊗ P)/ρ

)
,

we have

D A(U ) · (U ε
−U )= Dρ A(U )(ρε − ρ)+ DPi A(U )(Pεi − Pi )

=

(
(Pε − P)T

−((ρε − ρ)/ρ2)P ⊗ P + (1/ρ)P ⊗ (Pε − P)+ (1/ρ)(Pε − P)⊗ P

)
,

which yields

A(U ε
|U )

=

(
0

(1/ρε)Pε⊗ Pε−(1/ρ)P⊗ P+((ρε−ρ)/ρ2)P⊗ P−(1/ρ)P⊗(Pε− P)−(1/ρ)(Pε− P)⊗ P

)
=

(
0

ρε(uε−u)⊗(uε−u)

)
.

Therefore, using (3-5) and (3-6), we have∣∣∣∣∫ ∇x(Dη(U )) : A(U ε
|U ) dx

∣∣∣∣= ∣∣∣∣∫ t

0

∫
Td
ρε(uε − u)⊗ (uε − u) : ∇x u dx ds

∣∣∣∣
≤ C‖∇x u‖L∞((0,T∗)×Td )

∫ t

0

∫
Td
η(U ε

|U ) dx ds.
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Verification of (H5). For a weak solution f ε to (1-2), it follows from (2-13) that U ε
=
(
ρε

Pε
)

solves the
system

∂tU ε
+ divx A(U ε)− F(U ε)= divx

(
0

−
∫

Rd (v− uε)⊗ (v− uε) f ε dv

)
, (5-4)

where the equality holds in the sense of distributions; see (2-8). Therefore, we have∣∣∣∣∫ Dη(U ) · [∂tU ε
+ divx A(U ε)− F(U ε)] dx

∣∣∣∣
=

∣∣∣∣∫
Td
∇x u :

(∫
Rd
(v− uε)⊗ (v− uε) f ε dv

)
dx
∣∣∣∣

≤ C‖∇x u‖L∞((0,T∗)×Td )

∫
Td×Rd

|v− uε|2 f ε dv dx = C‖∇x u‖L∞((0,T∗)×Td )D1( f ε).

Verification of (H6). From the proof of Proposition 4.2 in [Karper et al. 2015], we see

−

∫
Td
[D2η(U )F(U )(U ε

−U )+ Dη(U )F(U ε)] dx = K1+ K2+ K3,

where

K1 := −
1
2

∫
T2d
ψ(x − y)ρε(x)ρε(t, y)

∣∣(uε(x)− u(x))− (uε(y)− u(y))
∣∣2 dx dy,

K2 :=
1
2

∫
T2d
ψ(x − y)ρε(x)ρε(y) |uε(x)− uε(y)|2 dx dy,

K3 :=

∫
T2d
ψ(x − y)ρε(x)(ρε(y)− ρ(y))(u(y)− u(x))(uε(x)− u(x)) dx dy.

Notice that K1 ≤ 0, and K2 = D̃2( f ε) where D̃2( f ε) is in Lemma 5.1.
To estimate K3, we separate it into two parts:

K3 =

∫
Td

(∫
Td
ψ(x − y)u(y)(ρε(y)− ρ(y)) dy

)
ρε(x)(uε(x)− u(x)) dx

−

∫
Td

(∫
Td
ψ(x − y)(ρε(y)− ρ(y)) dy

)
u(x)ρε(x)(uε(x)− u(x)) dx .

Sinceψ and u are Lipschitz, we use the Kantorovich–Rubinstein theorem, see [Villani 2009, Theorem 5.10
and Particular Case 5.16], to estimate

K3 ≤W1(ρ
ε, ρ)

(
sup
x∈Td
‖ψ(x − · )u‖L∞(0,T∗;W 1,∞(Td ))+‖ψ‖L∞(0,T∗;W 1,∞(Td ))‖u‖L∞((0,T∗)×Td )

)
×

∫
Td
ρε(x)|uε(x)− u(x)| dx .

Therefore, since W1(ρ
ε, ρ)≤W2(ρ

ε, ρ), we obtain

K3 ≤ C
(

W 2
2 (ρ

ε, ρ)+

∫
Td
ρε(x)|uε(x)− u(x)|2 dx

)
.

Hence we have verified (H6).
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Verification of (H7). This will be shown by Lemma 5.2 below. We first derive some estimates for the
characteristics generated by the velocity fields uε and u.

For the velocity u in the limit system (1-4), let X be a characteristic generated by it, that is,

Ẋ(t, x)= u(t, X (t, x)), X (0, x)= x . (5-5)

Then, thanks to the smoothness of u, it follows from (3-8) that

X (t)#ρ0(x) dx = ρ(t, x) dx .

On the other hand, since uε is not Lipschitz with respect to x , we use a probabilistic representation
for ρε as a solution of the continuity equation in (3-3). More precisely, (5-3) and (2-9) imply∫

Td
|uε(t)|2ρε(t) dx ≤

∫
Td

F( f ε)(t) dx ≤
∫

Td
F( f ε0 ) dx <∞,

so it follows from Proposition 3.3 that there exists a probability measure ηε in 0T∗×Td that is concentrated
on the set of pairs (γ, x) such that γ is a solution of the ODE

γ̇ (t)= uε(γ (t)), γ (0)= x, (5-6)

and ∫
Td
ϕ(x)ρε(t, x) dx =

∫
0T∗×Td

ϕ(γ (t)) dηε(γ, x) for all ϕ ∈ C0(Td), t ∈ [0, T∗]. (5-7)

In particular, this says that the time marginal of the measure ηε at time 0 is given by ρε(0)= ρε0 . Hence,
by the disintegration theorem of measures, see for instance [Ambrosio et al. 2005, Theorem 5.3.1] and
the comments at the end of Section 8.2 in [Ambrosio et al. 2005], we can write

dηε(γ, x)= ηεx(dγ )⊗ ρ
ε
0(x) dx,

where {ηεx}x∈Td is a family of probability measures on 0T ∗ concentrated on solutions of (5-6).
For the flow X in (5-5), we also consider the densities ρ̃ε(t) defined as

ρ̃ε(t, x) dx = X (t)#ρε0(x) dx . (5-8)

Note that, since

‖ρ(t)− ρ̃ε(t)‖L1(Td ) = sup
‖ϕ‖∞≤1

∫
Td
ϕ(x)[ρ(t, x)− ρ̃ε(t, x)] dx

= sup
‖ϕ‖∞≤1

∫
Td
ϕ(X (t, x))[ρ0(x)− ρε0(x)] dx ≤ ‖ρε0 − ρ0‖L1(Td ),

we have
‖ρ(t)− ρ̃ε(t)‖L1(Td ) ≤ ‖ρ

ε
0 − ρ0‖L1(Td ). (5-9)

We now consider the measure νε on 0T∗ ×0T∗ ×Td defined as

dνε(γ, σ, x)= ηεx(dγ )⊗ δX ( · ,x)(dσ)⊗ ρε0(x) dx .
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If we consider the evaluation map

Et : 0T∗ ×0T∗ ×Td
→ Td

×Td , Et(γ, σ, x)= (γ (t), σ (t)),

it follows that the measure π εt := (Et)#ν
ε on Td

×Td has marginals ρε(t, x) dx and ρ̃ε(t, y) dy for all
t ≥ 0. Therefore, we have∫

0T∗×Td
|γ (t)− X (t, x)|2ηεx(dγ )⊗ ρ

ε
0(x) dx =

∫
0T∗×0T∗×Td

|γ (t)− σ(t)|2 dνε(γ, σ, x)

=

∫
T2d
|x − y|2 dπ εt (x, y)

≥W 2
2 (ρ

ε(t), ρ̃ε(t)). (5-10)

We now use the above results to prove the following lemma.

Lemma 5.2. Under the same assumptions as in Theorem 3.1, we have

W 2
2 (ρ

ε(t), ρ(t))≤ CeT∗
∫ t

0

∫
Td
|uε(s, x)− u(s, x)|2ρε(s, x) dx ds+O(ε), t ≤ T∗. (5-11)

Proof. Let ρ̃ε be defined as in (5-8). We begin by observing that, thanks to Lemma 3.4, (5-9), and
assumption (A2), it follows that

W 2
2 (ρ̃

ε(t), ρ(t))≤O(ε).

Hence, to prove (5-11), it is enough to bound W 2
2 (ρ

ε(t), ρ̃ε(t)).
To this aim, we try to get a Gronwall-type inequality on∫

0T∗×Td
|γ (t)− X (t, x)|2ηεx(dγ )⊗ ρ

ε
0(x) dx .

Since

γ̇ (t)− Ẋ(t, x)= (uε(γ (t))− u(γ (t)))+ (u(γ (t))− u(X (t, x)))

by (5-5) and (5-6), we have

1
2

d
dt

∫
0T∗×Td

|γ (t)−X (t, x)|2 dηεx(γ )⊗ρ
ε
0(x) dx ≤

∫
0T∗×Td

|uε(γ (t))−u(γ (t))|2 dηεx(γ )⊗ρ
ε
0(x) dx

+

∫
0T∗×Td

|u(γ (t))−u(X (t, x))|2 dηεx(γ )⊗ρ
ε
0(x) dx

+ 2
∫
0T∗×Td

|γ (t)−X (t, x)|2 dηεx(γ )⊗ρ
ε
0(x) dx .

Notice that, thanks to (5-7),∫
0T∗×Td

|uε(γ (t))− u(γ (t))|2 dηεx(γ )⊗ ρ
ε
0(x) dx =

∫
Td
|uε(t, x)− u(t, x)|2ρε(t, x) dx .
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Moreover, since∫
0T∗×Td

|u(γ (t))− u(X (t, x))|2 dηεx(γ )⊗ ρ
ε
0(x) dx

≤ ‖u‖L∞(0,T∗;W 1,∞(Td ))

∫
0T∗×Td

|γ (t)− X (t, x)|2 dηεx(γ )⊗ ρ
ε
0(x) dx,

we have

d
dt

∫
0T∗×Td

|γ (t)− X (t, x)|2 dηεx(γ )⊗ ρ
ε
0(x) dx

≤ C
∫
0T∗×Td

|γ (t)− X (t, x)|2 dηεx(γ )⊗ ρ
ε
0(x) dx +

∫
Td
|uε(t, x)− u(t, x)|2ρε(t, x) dx .

Therefore, using Gronwall’s inequality together with γ (0)= X (0, x)= x for ηεx -a.e. γ , we obtain∫
0T∗×Td

|γ (t)− X (t, x)|2 dηεx(γ )⊗ρ
ε
0(x) dx ≤CeT∗

∫ t

0

∫
Td
|uε(s, x)−u(s, x)|2ρε(s, x) dx ds, t ≤ T∗.

Hence, using (5-10) we get the desired control on W 2
2 (ρ

ε(t), ρ̃ε(t)), which concludes the proof. �

Proof of (3-2). Here we use the estimate (3-1) to show the convergence (3-2).
First, since (5-1) and (A1) imply ∫ t

0
D1( f ε)(s) ds ≤ Cε,

using (3-1), we have∫ T∗

0

∫
Td×Rd

f ε|v−u|2 dx dv ds ≤ 2
∫ T∗

0

∫
Td×Rd

f ε(|v−uε|2+|uε−u|2) dx dv ds ≤ C(1+T∗)ε. (5-12)

Then, for any ϕ ∈ C1
c ((0, T∗)×Td

×Rd),∫ T∗

0

∫
Td×Rd

ϕ(s, x, v) f ε dx dv ds−
∫ T∗

0

∫
Td×Rd

ϕ(s, x, v)ρ δu(dv) dx ds

=

∫ T∗

0

∫
Td×Rd

ϕ(s, x, v) f ε dx dv ds−
∫ T∗

0

∫
Td
ϕ(s, x, u)ρ dx ds

=

∫ T∗

0

∫
Td×Rd

f ε(ϕ(s, x, v)−ϕ(s, x, u)) dx dv ds︸ ︷︷ ︸
=:I ε1

+

∫ T∗

0

∫
Td
ϕ(s, x, u)(ρε − ρ) dx ds︸ ︷︷ ︸

=:I ε2

.

Using (5-12), we have

I ε1 ≤ ‖∇vϕ‖∞

∫ T∗

0

∫
Td×Rd

f ε|v− u| dx dv ds

= ‖∇vϕ‖∞

(∫ T∗

0

∫
|v−u|≤

√
ε

f ε|v− u| dx dv ds+
∫ T∗

0

∫
|v−u|>

√
ε

f ε|v− u| dx dv ds
)
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≤ ‖∇vϕ‖∞

(
√
εT∗+

1
√
ε

∫ T∗

0

∫
|v−u|>

√
ε

f ε|v− u|2 dv dx ds
)

≤ C(1+ T∗)
√
ε.

Since W1(ρ
ε, ρ)≤W2(ρ

ε, ρ)→ 0 by (3-1), we also have I ε2 → 0 as ε→ 0.
Hence, this completes the proof of (3-2).

Appendix: Proof of Theorem 2.2

We first estimate (d/dt)E1 as follows:

d
dt

E1 = 2
∫

Td×Rd
f (u− v) ∂t u dv dx +

∫
Td×Rd

∂t f |u− v|2 dv dx := I1+ I2.

First of all, by the definition of u, we have
∫

f (u− v) dv = 0; hence I1 = 0.
Concerning I2, it follows from (1-1) that

I2 =

∫
Td×Rd

|u− v|2
(
−∇x · (v f )−∇v · (L[ f ] f )−∇v · ((u− v) f )

)
dv dx

= 2
∫

Td×Rd
∇x u(u− v) · v f dv dx︸ ︷︷ ︸

=:I21

−2
∫

Td×Rd
(u− v) · L[ f ] f dv dx︸ ︷︷ ︸
=:I22

−2
∫

Td×Rd
|u− v|2 f dv dx︸ ︷︷ ︸
=−2E1

.

Then, we use the stress tensor P =
∫

Rd (v− u)⊗ (v− u) f dv to rewrite I21 as

I21 = 2
∫

Td×Rd
∇x u(u− v) · (v− u) f dv dx = 2

∫
Td
(∇x · P) · u dx .

Thanks to the estimate on I2 in the proof of Lemma 5.1, we see that

I22 =−2
∫

T2d×R2d
ψ(x − y) f (t, x, v) f (t, y, w)(u(t, x)− v) · (w− v) dv dw dx dy ≤ 0.

Therefore, we have
d
dt

E1 ≤ 2
∫

Td
(∇x · P) · u dx − 2E1. (A-1)

We next estimate (d/dt)E2 as follows:

d
dt

E2 = 2
∫

T2d
∂tρ(t, x)ρ(t, y)|u(t, x)− u(t, y)|2 dx dy

+ 2
∫

T2d
ρ(t, x)ρ(t, y)(u(t, x)− u(t, y))∂t(u(t, x)− u(t, y)) dx dy

:=J1+ J2.

Since it follows from (2-13) with ε = 1 that

∂tρ+∇x · (ρu)= 0,

ρ ∂t u+ ρu · ∇x u+∇x · P =
∫

Rd
L[ f ] f dv,
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we obtain (recall that ‖ρ‖L1(Td ) = 1)

J1 =−2
∫

T2d
∇x · (ρu)(t, x)ρ(t, y)|u(t, x)− u(t, y)|2 dx dy

= 4
∫

Td
ρu · ∇x u · u dx − 4

∫
Td
ρu · ∇x u dx ·

∫
Td
ρu dx,

and

J2= 4
∫

T2d
ρ(t, y)u(t, x)ρ(t, x)∂t u(t, x) dx dy− 4

∫
T2d
ρ(t, y)u(t, y)ρ(t, x)∂t u(t, x) dx dy

=−4
∫

Td
ρu·∇x u·u dx− 4

∫
Td
∇x ·P·u dx+ 4

∫
Td×Rd

u·L[ f ] f dx dv︸ ︷︷ ︸
:=J21

+ 4
∫

Td
ρu·∇x u dx ·

∫
Td
ρu dx

+ 4
∫

Td
∇x ·P dx︸ ︷︷ ︸
=0

·

∫
Td
ρu dx− 4

∫
Td×Rd

L[ f ] f dx dv︸ ︷︷ ︸
:=J22

·

∫
Td
ρu dx .

Now, we compute the above terms J21 and J22 as follows:

J21 =

∫
T2d×R2d

ψ(x − y) f (t, x, v) f (t, y, w)(w− v) · u(t, x) dv dw dx dy

=

∫
T2d
ψ(x − y)ρ(t, x)ρ(t, y)(u(t, y)− u(t, x)) · u(t, x) dx dy

=−
1
2

∫
T2d
ψ(x − y)ρ(t, x)ρ(t, y)|u(t, x)− u(t, y)|2 dx dy,

J22 =

∫
T2d×R2d

ψ(x − y) f (t, x, v) f (t, y, w)(w− v) dv dw dx dy = 0.

Therefore, we have

d
dt

E2 =−4
∫

Td
∇x · P · u dx − 2

∫
T2d
ψ(x − y)ρ(t, x)ρ(t, y)|u(t, x)− u(t, y)|2 dx dy.

Recalling (A-1), proves that

d
dt

E ≤−2E1−

∫
T2d
ψ(x − y)ρ(t, x)ρ(t, y)|u(t, x)− u(t, y)|2 dx dy

≤−2E1−ψmE2 ≤−2 min{1, ψm}E,

which completes the proof of (2-11).
To show the second bound (2-12), note that if `T := supt∈[0,T ] ‖∇x u‖L∞(Td ) <∞ then (A-1) yields

d
dt

E1(t)≤−2
∫

Td
∇x u : P dx − 2E1 ≤ 2`T

∫
Td×Rd

|u− v|2 f dv dx − 2E1(t)= 2(`T − 1)E1(t),

which proves (2-12). �
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