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We prove the existence of global L2 weak solutions for a family of generalized inviscid surface quasi-
geostrophic (SQG) equations in bounded domains of R2. In these equations, the active scalar is transported
by a velocity field which is determined by the scalar through a more singular nonlocal operator compared
to the SQG equation. The result is obtained by establishing appropriate commutator representations for
the weak formulation together with good bounds for them in bounded domains.

1. Introduction

Let �� R2 be an open bounded set with smooth boundary. Define

ƒD
p
��; (1-1)

where �� is the Laplacian operator in � with homogeneous Dirichlet boundary condition.
We consider the following family of active scalars

@t� Cu � r� D 0; (1-2)

where � D �.x; t/, uD u.x; t/ with .x; t/ 2�� Œ0;1/ and with the velocity u given by

uDr? ; (1-3)

 Dƒ�˛�; ˛ 2 Œ0; 2�: (1-4)

Here, fractional powers of the Laplacian�� are based on eigenfunction expansions (see the first subsection
of Section 2 below for definitions and notations) and  is called the stream function. By (1-3) the velocity
u is automatically divergence-free. The case ˛ D 2 corresponds to the two-dimensional Euler equation
in the vorticity formulation. When ˛ D 1, (1-2) is the surface quasigeostrophic (SQG) equation of
geophysical significance [Held et al. 1995], which also serves as a two-dimensional model of the three-
dimensional Euler equations in view of many striking physical and mathematical analogies between them
[Constantin et al. 1994]. The global regularity issue is known for the two-dimensional Euler equations
but remains open for any ˛ < 2. Growth of solutions when ˛ D 1; 2 and � D R2;T2 was studied in
[Córdoba and Fefferman 2002]; nonexistence of simple hyperbolic blow-up when ˛ D 1 and �D R2

was confirmed in [Córdoba 1998]. We refer to [Chae et al. 2011] for a regularity criterion when ˛ 2 Œ1; 2�
and �D R2. On the other hand, finite time blow-up for patch solutions of (1-2) in the half plane with
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small ˛ < 2 was recently shown in [Kiselev et al. 2016]. The velocity u becomes more singular when ˛
decreases, and in particular, u is not in L2.�/ if � is in L2.�/ and ˛ < 1. Equations (1-2) with ˛ 2 .0; 1/
were introduced in [Chae et al. 2012] to understand solutions to the SQG-type equations with even more
singular velocity fields. More precisely, that paper established the existence of global L2 weak solutions
on the torus T2, together with local existence and uniqueness of strong solutions in R2. The borderline
case ˛ D 0 is surprisingly easy due to the cancellation of the nonlinear term: (1-2) reduces to the simple
equation @t� D 0, and thus �. � ; t /D �. � ; 0/ for all t > 0. On the other hand, if ˛ < 0 then the stream
function  D ƒ�˛� is not well-defined when � 2 L2.�/, noticing that there is no dissipation in the
equation.

In this paper, we are interested in the issue of global weak solutions for (1-2) with ˛ 2 .0; 1/ in arbitrary
(smooth) bounded domains of R2. Let us recall that the existence of global weak solutions for SQG
.˛ D 1) were first proved in [Resnick 1995] in the periodic case. This highlights a difference between the
nonlinearities of the SQG equation and the three-dimensional Euler equations: SQG has weak continuity
in L2, while the Euler equations do not. The weak continuity of SQG is due to a remarkable commutator
structure which was subsequently revisited in [Chae et al. 2011] and used in the proof of absence of
anomalous dissipation in [Constantin et al. 2014]. In [Constantin and Nguyen 2016], this structure
was adapted to arbitrary bounded domains to take into account the lack of translation invariance of the
fractional Laplacian in domains: a new commutator between the fractional Laplacian and differentiation
appears. In addition to that, with the more singular constitutive laws (1-4), in order to establish the
weak continuity of the nonlinearity u � r� we will need to find appropriate commutator representations
for which good bounds can be derived. Let us emphasize that many known commutator estimates for
fractional Laplacians in the whole space (or on tori) are too expensive for bounded domains due to
possible singularity near the boundary or the lack of powerful tools of Fourier analysis. For further results
on the fractional Laplacian and SQG in bounded domains, we refer to [Cabré and Tan 2010; Caffarelli
and Silvestre 2007; Constantin and Ignatova 2016; 2017].

Our main result is:

Theorem 1.1. Let ˛ 2 .0; 1/ and �0 2L2.�/. There is a weak solution of (1-2), � 2L1.Œ0;1/IL2.�//
with initial data �0. That is, for any T � 0 and � 2 C10 .�� .0; T //, � satisfiesZ T

0

Z
�

�.x; t/ @t�.x; t/ dx dt C

Z T

0

N . ; �/ dt D 0 (1-5)

and the initial data
�. � ; 0/D �0. � / in H�".�/ for all " > 0 (1-6)

is attained. Here,

N . ; �/D 1

2

Z
�

Œƒ˛;r?� � r� dx�
1

2

Z
�

ƒ�1C˛r? �ƒ1�˛Œƒ˛;r�� dx: (1-7)

Moreover, � obeys the energy inequality

k�. � ; t /k2
L2.�/

� k�0k
2
L2.�/

a.e. t � 0: (1-8)
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Additionally, the stream function  is in C.Œ0;1/ID.ƒ˛�"// for any " > 0 and its D.ƒ
˛
2 / norm is

conserved,

k . � ; t /kD.ƒ˛=2/ D k . � ; 0/kD.ƒ˛=2/ for all t > 0: (1-9)

In Theorem 1.1 and what follows,

ŒA; B� WD AB �BA

denotes the commutator of two operators A and B .
When ˛ D 0, we have u D R?� , where R D .@x1ƒ

�1; @x2ƒ
�1/ denotes the Riesz transforms. As

R WL2.�/!L2.�/ is continuous, we have u� 2L1.�/ if � 2L2.�/. In that case, � is a weak solution
of (1-2) ifZ T

0

Z
�

�.x; t/ @t�.x; t/ dx dtC

Z T

0

Z
�

u.x; t/ �.x; t/�r�.x; t/ dx dtD0 for all � 2C10 .��.0; T //:

The global existence of such solutions was proved in [Constantin and Nguyen 2016]. However, when
˛ < 1, we have u is less regular than � and the second integral in the preceding formulation is not
well-defined. Nevertheless, taking into account the nonlinearity structure to explore extra cancellations,
this integral has the commutator representation (1-7), which makes sense provided only � 2 L2.�/, as
will be proved in Lemma 3.4 below using the heat kernel approach. Let us note that the two objects are
equal if  2H 1

0 .�/, or equivalently, � 2D.ƒ1�˛/. This representation is good enough to well define the
nonlinearity but another representation, see (3-5), will be needed for the compactness argument. The point
is that these two representations are equivalent provided only � 2 L2.�/ (see Lemma 3.3 below). Unlike
the proof in [Constantin and Nguyen 2016], which uses only Galerkin approximations, Theorem 1.1 will
be proved by a two-tier approximation procedure: Galerkin approximations for each vanishing viscosity
approximation. This is because the nonlinearity u� is not well-defined in L1.�/ (see Remark 3.6 below).

The paper is organized as follows. In Section 2, we present the functional setup of fractional Laplacian
in domains and necessary commutator estimates, which can be of independent interest. The proof of
Theorem 1.1 is presented in Section 3. Finally, the proofs of the commutator estimates announced in
Section 2 are given Appendices A and B.

2. Preliminaries

Fractional Laplacian. Let� be an open bounded set of Rd, d �2, with smooth boundary. The Laplacian
�� is defined onD.��/DH 2.�/\H 1

0 .�/. Let fwj g1jD1 be an orthonormal basis of L2.�/ comprised
of L2-normalized eigenfunctions wj of ��; i.e.,

��wj D �jwj ; wj j@� D 0;

Z
�

w2j dx D 1;

with 0 < �1 < �2 � � � � � �j !1.
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The fractional Laplacian is defined using eigenfunction expansions,

ƒsf � .��/
s
2f WD

1X
jD1

�
s
2

j fj ; wj with f D
1X
jD1

fjwj ; fj D

Z
�

f wj dx;

for s � 0 and
f 2D.ƒs/ WD ff 2 L2.�/ Wƒsf 2 L2.�/g:

The norm of f D
P1
jD1 fjwj in D.ƒs/, s � 0, is defined by

kf kD.ƒs/ WD kƒ
sf kL2.�/ D

� 1X
jD1

�sjf
2
j

�1
2

:

It is also well-known that D.ƒ/ and H 1
0 .�/ are isometric. In the language of interpolation theory, see

[Lions and Magenes 1972, Chapter 1],

D.ƒs/D ŒL2.�/;D.��/� s
2

for all s 2 Œ0; 2�:
As mentioned above,

H 1
0 .�/DD.ƒ/D ŒL

2.�/;D.��/� 1
2
I

hence
D.ƒs/D ŒL2.�/;H 1

0 .�/�s for all s 2 Œ0; 1�: (2-1)

Consequently, we can identify D.ƒs/ with usual Sobolev spaces:

D.ƒs/D

8̂̂<̂
:̂
H s
0.�/ if s 2

�
1
2
; 1
�
;

H
1
2

00.�/ WD fu 2H
1
2 .�/ W u=

p
d.x/ 2 L2.�/g if s D 1

2
;

H s.�/ if s 2
�
0; 1
2

�
:

(2-2)

see [Lions and Magenes 1972, Chapter 1]. Here and below d.x/ is the distance to the boundary of the
domain:

d.x/D d.x; @�/: (2-3)

Next, for s > 0 we define

ƒ�sf D

1X
jD1

�
� s
2

j fjwj

if f D
P1
jD1 fjwj 2D.ƒ

�s/ with

D.ƒ�s/ WD

� 1X
jD1

fjwj 2 D 0.�/ W fj 2 R;

1X
jD1

�
� s
2

j fjwj 2 L
2.�/

�
I

moreover,

kf kD.ƒ�s/ WD kƒ
�sf kL2.�/ D

� 1X
jD1

��sj f 2j

�1
2

:

It is easy to check that D.ƒ�s/ is the dual of D.ƒs/ with respect to the pivot space L2.�/.
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We have the following relation between D.ƒs/ and H s.�/ when s � 0.

Lemma 2.1. The continuous embedding

D.ƒs/�H s.�/ (2-4)

holds for any s � 0.

Proof. By interpolation, it suffices to prove (2-4) for s 2 f0; 1; 2; : : : g. The case s D 0 is obvious and the
case s D 1 follows from (2-2). Assume by induction (2-4) for s � m with m � 1. Let � 2 D.ƒmC1/.
Then f WD ��� 2D.ƒm�1/ and thus f 2Hm�1.�/ by the induction hypothesis. On the other hand,
� vanishes on the boundary @� in the trace sense because � 2D.ƒ1/DH 1

0 .�/. Elliptic regularity then
implies that � 2HmC1.�/ and

k�kHmC1 � Ckf kHm�1 � Ck��km�1;D D Ck�kmC1;D;

which is (2-4) for s DmC 1. �

Lemma 2.2. The operator
ƒ�r WD.ƒ
 /!D.ƒ
�1��/ (2-5)

is continuous for any 
 2 Œ0; 1� and �� 
 � 1.

Proof. We first note that the gradient operator r is continuous from H 1
0 .�/ to L2.�/ and from L2.�/

to H�1.�/; hence by interpolation,

r W ŒL2;H 1
0 �
 ! ŒH�1; L2�


for any 
 2 Œ0; 1�. From the interpolation (2-1) we deduce that

ŒL2;H 1
0 �
 DD.ƒ


 /;

ŒH�1; L2�
 D .ŒH
1; L2�
 /

�
D .ŒL2;H 1�1�
 /

�
DD.ƒ1�
 /� DD.ƒ
�1/:

Thus, for any 
 2 Œ0; 1�,
r WD.ƒ
 /!D.ƒ
�1/;

and hence
ƒ�r WD.ƒ
 /!D.ƒ
�1��/

provided �� 
 � 1. �

Remark 2.3. The above fractional Laplacian is the spectral one. In Rd the well-known integral represen-
tation

.��Rd /
sf .x/D cd;s P.V.

Z
Rd

f .x/�f .y/

jx�yjdC2s
dy; s > 0;

holds; here P.V. stands for the principal value integral. For any domain �� Rd, the restricted fractional
Laplacian .��j�/s is defined by

.��j�/
sf D ..��Rd /

s Qf /j�
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for f W�! R and Qf the zero-extension of f outside �. It was proved in [Bonforte et al. 2015] (see
Section 3.1 there) that .��j�/s is an isomorphism from D.ƒs/ onto its dual D.ƒs/� with respect to the
bilinear form

B.f; g/D

Z
�

L
1
2f L

1
2g; LD .��j�/s:

Hence for any scalar � 2D.ƒ
˛
2 /� � L2.�/ the stream function  can be defined alternatively by

 D ..��j�/
˛
2 /�1�: (2-6)

Note that the resulting  is different from the one defined in (1-4). It would be interesting to see if the
results in this paper still hold with this definition. We also refer to [Ros-Oton and Serra 2014] for the
Hölder regularity of the  given by (2-6).

Commutator estimates. Due to the lack of translation invariance, the fractional Laplacian does not
commute with differentiation. The following theorem provides a bound for the commutator.

Theorem 2.4 [Constantin and Nguyen 2016, Theorem 2.2]. Let p; q 2 Œ1;1�, s 2 .0; 2/ and a satisfy

a. � /d. � /�s�1�
d
p 2 Lq.�/:

Then the operator aŒƒs;r� can be uniquely extended from C10 .�/ to Lp.�/ such that there exists a
positive constant C D C.d; s; p;�/ such that

kaŒƒs;r�f kLq.�/ � Cka. � /d. � /
�s�1�d

p kLq.�/kf kLp.�/ (2-7)

holds for all f 2 Lp.�/.

The bound (2-7) is remarkable in that the commutator between an operator of order s > 0 and an
operator of order 1, which happens to vanish when �D Rd, is of order 0. The price is a singularity of
the form d.x/�s�1�

d
p, which counts the order of ƒs and r.

Remark 2.5. Let us explain how Theorem 2.4 follows from [Constantin and Nguyen 2016]. In that paper,
using the heat kernel representation of the fractional Laplacian together with a cancellation of the heat
kernel of Rd, we proved the pointwise estimate for f 2 C10 .�/,

jŒƒs;r�f .x/j � C.d; s; p;�/d.x/�s�1�
d
p kf kLp.�/:

The estimate (2-7) then follows by extension by continuity.

The next commutator estimate for negative powers of Laplacian is needed to handle the situation of
more singular velocity.

Theorem 2.6. Let s 2 .0; d/ and a 2W 1;1.�/. Let p; r 2 .1;1/ satisfy

1

p
C
d�s
d
D 1C

1

r
:
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Then the operator Œƒ�s; a� can be uniquely extended from C10 .�/ to Lp.�/ with values in W 1;r
0 .�/

such that there exists C D C.s; d; p; r;�/ > 0 such that

kŒƒ�s; a�f k
W
1;r
0 .�/

� CkakW 1;1.�/kf kLp.�/

for all f 2 Lp.�/.
In particular, for any p 2 .1;1/, s 2

�
0; d
p

�
, there exists C D C.s; d; p;�/ > 0 such that

kŒƒ�s; a�f k
W
1;p
0 .�/

� CkakW 1;1.�/kf kLp.�/ (2-8)

for all f 2 Lp.�/.

With the same method of proof, we obtain:

Theorem 2.7. Let s 2 .0; 1/ and a 2 C 
 .�/ with 
 2 .0; 1� and s < 
 . Let p; r 2 .1;1/ satisfy

1

p
C
dCs�


d
D 1C

1

r
:

Then the operator Œƒs; a� can be uniquely extended from C10 .�/ to Lp.�/ with values in Lr.�/ such
that there exists C D C.s; 
; p; r; d;�/ > 0 such that

kŒƒs; a�f kLr .�/ � CkakC
 .�/kf kLp.�/ (2-9)

for all f 2 Lp.�/.
In particular, for any p 2 .1;1/, if

s 2
�

max
n

 �

d

p
; 0
o
;max

n

 �

d

p
C d; 


o�
then there exists C D C.s; 
; p; d;�/ > 0 such that

kŒƒs; a�f kLp.�/ � CkakC
 .�/kf kLp.�/: (2-10)

Remark 2.8. In view of the identity

ƒ�sŒƒs; a�f D Œa;ƒ�s�ƒsf;

it follows from (2-8) that

kŒƒs; a�f kD.ƒ1�s/ � CkakW 1;1.�/kf kD.ƒs/; s 2
�
0; d
2

�
: (2-11)

This exhibits a gain of 1� s derivatives of Œƒs; a� when acting on D.ƒs/. On the other hand, the estimate
(2-10) shows a gain of s derivatives when acting on L2. Both (2-8) and (2-10) make use of the fact that
� is bounded.

The proofs of Theorems 2.6, 2.7 are given in Appendices A and B.
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3. Proof of Theorem 1.1

Commutator representations. First, we adapt the well-known commutator representation of the nonlin-
earity in SQG [Resnick 1995], see also [Chae et al. 2012; Constantin et al. 2001; Constantin and Nguyen
2016], to take into account the lack of translation invariance of the fractional Laplacian and the more
singular constitutive law (1-4):

Lemma 3.1. Let  2H 1
0 .�/, uDr

? , and � Dƒ˛ . Let � 2 C10 .�/ be a test function. ThenZ
�

�u � r� dx D
1

2

Z
�

Œƒ˛;r?� � r� dx�
1

2

Z
�

r
? � Œƒ˛;r�� dx (3-1)

holds.

Proof. We have Z
�

�u � r� dx D

Z
�

ƒ˛ r? � r� dx D�

Z
�

 r?ƒ˛ � r� dx;

where we integrated by parts and used the fact that r? � r� D 0. The first and middle terms are well
defined because �uD �r? 2 L1.�/, noticing that  2H 1

0 .�/ and � Dƒ˛ 2D.ƒ1�˛/� L2.�/.
The last term is defined because r� � r?ƒ˛ 2H�1.�/ and  2H 1

0 .�/. Commuting r? with ƒ˛

and then with r� leads toZ
�

�u � r� dx D�

Z
�

 Œr?; ƒ˛� � r� dx�

Z
�

 ƒ˛r? � r� dx

D�

Z
�

 Œr?; ƒ˛� � r� dx�

Z
�

r
? �ƒ˛. r�/ dx

D�

Z
�

Œr?; ƒ˛� � r� dx�

Z
�

r
? � Œƒ˛;r�� dx�

Z
�

r
? � r�ƒ˛ dx

D�

Z
�

Œr?; ƒ˛� � r� dx�

Z
�

r
? � Œƒ˛;r�� dx�

Z
�

�u � r� dx:

The above calculations are justified by means of Theorems 2.4 and 2.7. Noticing that the last term on the
right-hand side is exactly the negative of the left-hand side, we proved (3-1). �

Remark 3.2. The representation (3-1) was derived in [Constantin and Nguyen 2016] for the SQG equation
(˛ D 1). When �D R2 or T2, (3-1) reduces toZ

�

�u � r� dx D�
1

2

Z
�

r
? � Œƒ˛;r�� dx:

Integrating by parts yields

�
1

2

Z
�

r
? � Œƒ˛;r�� dx D

1

2

Z
�

 r? � Œƒ˛;r�� dx D
1

2

Z
�

 Œƒ˛r?;r�� dx;

where we used in the second equality the fact that r? �r� D 0. This representation was invoked in [Chae
et al. 2012] to prove the existence of global L2 weak solutions of (1-2) in the periodic setting. More
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precisely, the authors proved the commutator estimate

kŒƒs
r; g�hkL2.T2/ � CkhkL2.T2/kgkH sC2C".T2/CCkƒ

shkL2.T2/kgkH2C".T2/

for any s; " > 0. In arbitrary bounded domains, we were not able to establish such a commutator estimate.

We observe that by virtue of Theorem 2.4, the first integral on the right-hand side of (3-1) is well-defined
provided only  2 L2.�/; moreover,ˇ̌̌̌Z

�

Œƒ˛;r?� � r� dx

ˇ̌̌̌
� Ckr�d. � /�˛�2kL2.�/k k

2
L2.�/

;

where by applying the Hardy inequality three times, together with the fact that ˛ 2 .0; 1/, we get

kr�d. � /�˛�2kL2.�/ � Ckr�d. � /
�3
kL2 � Ckr

4�kL2.�/ � Ck�kH4.�/:

Consequently, ˇ̌̌̌Z
�

Œƒ˛;r?� � r� dx

ˇ̌̌̌
� Ck�kH4.�/k k

2
L2.�/

: (3-2)

Regarding the second integral, we prove:

Lemma 3.3. Assume  2D.ƒ˛/. Then

N2. ; �/ WD
Z
�

ƒ�1C˛r? �ƒ1�˛Œƒ˛;r�� dx (3-3)

satisfies

jN2. ; �/j � Ckr�kW 1;1k k2D.ƒ˛/: (3-4)

For any ı 2 .0;min.˛; 1�˛// we have

N2. ;�/D
Z
�

ƒ�1C˛�ır? �ƒŒr�;ƒ�˛Cı �ƒ˛ dxC

Z
�

ƒ�1C˛r? �ƒŒr�;ƒ�ı �ƒı dx: (3-5)

Moreover,

jN2. ; �/j � Ckr�kW 1;1k kD.ƒ˛�ı/k kD.ƒ˛/CCkr�kW 1;1k kD.ƒ˛/k kD.ƒı/: (3-6)

Proof. (1) By Lemma 2.2,
kƒ�1C˛r? kL2 � k kD.ƒ˛/:

On the other hand, a direct calculation gives

ƒ�˛Œƒ˛;r�� D Œr�;ƒ�˛�ƒ˛ ;

which, by virtue of Theorem 2.6, belongs to D.ƒ/ and satisfies

kƒŒr�;ƒ�˛�ƒ˛ kL2 � Ckr�kW 1;1kƒ˛ kL2 D Ckr�kW 1;1k kD.ƒ˛/:

Therefore, the integral defining N2. ; �/ in (3-3) makes sense and obeys the bound (3-4).
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(2) Let ı 2 Œ0;min.˛; 1�˛//. According to (3-3),

N2. ; �/D
˝
ƒ�1C˛r? ;ƒ1�˛Œƒ˛;r�� 

˛
L2;L2

D
˝
ƒ�1C˛�ır? ;ƒ1�˛Cı Œƒ˛;r�� 

˛
D.ƒı/;D.ƒ�ı/

:

Now we write

ƒ1�˛Cı Œƒ˛;r�� Dƒƒ�˛Cı Œƒ˛;r�� 

Dƒ
˚
ƒı.r� /�ƒ�˛Cı.r�ƒ˛ /

	
Dƒ

˚
Œƒı;r�� Cr�ƒı �ƒ�˛Cı.r�ƒ˛ /

	
Dƒ

˚
Œƒı;r�� Cr�ƒ�˛Cıƒ˛ �ƒ�˛Cı.r�ƒ˛ /

	
DƒŒƒı;r�� CƒŒr�;ƒ�˛Cı �ƒ˛ ;

where, according to (2-11),
Œƒı;r�� 2D.ƒ1�ı/;

so
ƒŒƒı;r�� 2D.ƒ�ı/I

on the other hand, according to Theorem 2.6,

ƒŒr�;ƒ�˛Cı �ƒ˛ 2 L2.�/�D.ƒ�ı/:

Thus, we can write

I D
˝
ƒ�1C˛�ır? ;ƒŒr�;ƒ�˛Cı �ƒ˛ 

˛
D.ƒı/;D.ƒ�ı/

C
˝
ƒ�1C˛�ır? ;ƒŒƒı;r�� 

˛
D.ƒı/;D.ƒ�ı/

D

Z
�

ƒ�1C˛�ır? �ƒŒr�;ƒ�˛Cı �ƒ˛ dxC

Z
�

ƒ�1C˛r? �ƒ1�ı Œƒı;r�� dx

D

Z
�

ƒ�1C˛�ır? �ƒŒr�;ƒ�˛Cı �ƒ˛ dxC

Z
�

ƒ�1C˛r? �ƒŒr�;ƒ�ı �ƒı dx:

As in (1), an application of Theorems 2.4, 2.6, and (2-5), with .
 D ˛ � ı; � D �1 � ˛ � ı/ and
.
 D ˛;�D�1C˛/, leads to the bound (3-6). �

Let us define

N1. ; �/D
Z
�

Œƒ˛;r?� � r� dx;

N . ; �/D 1
2
N1. ; �/� 1

2
N2. ; �/:

(3-7)

Putting together the above considerations, we have proved:

Lemma 3.4. If  2H 1
0 .�/ then Z

�

u� � r� DN . ; �/:

If � 2 L2.�/ then
jN . ; �/j � Ck�kH4k k2L2 CCkr�kW 1;1k k2D.ƒ˛/
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and for any ı 2 .0;min.˛; 1�˛//,

jN . ; �/j�Ck�kH4k k2L2CCkr�kW 1;1k kD.ƒ˛�ı/k kD.ƒ˛/CCkr�kW 1;1k kD.ƒ˛/k kD.ƒı/:

Viscosity approximations. Let us fix �0 2L2.�/ and a positive time T . For each fixed " > 0 we consider
the viscosity approximation of (1-2)�

@t�
"Cu" � r�"� "��" D 0; t > 0;

�" D �0; t D 0;
(3-8)

with u" Dr? ",  " Dƒ�˛�".
Equation (3-8) can be solved using the Galerkin approximation method as follows. Denote by Pm the

projection in L2.�/ onto the linear span L2m.�/ of eigenfunctions fw1; : : : ; wmg; i.e.,

Pmf D

mX
jD1

fjwj for f D
1X
jD1

fjwj :

We recall the following lemma which shows that Pm� are good approximations of � in any Sobolev
space for � 2 C10 .�/.

Lemma 3.5 [Constantin and Nguyen 2016, Lemma 3.1]. Let � 2 C10 .�/. For all k 2 N we have

lim
m!1

k.I�Pm/�kHk.�/ D 0: (3-9)

The m-th Galerkin approximation of (3-8) is the following ODE system in the finite-dimensional space
PmL

2.�/D L2m: �
P�"mCPm.u

"
m � r�

"
m/� "��

"
m D 0; t > 0;

�"m D Pm�0; t D 0;
(3-10)

with �m.x; t/D
Pm
jD1 �

.m/
j .t/wj .x/ and um D r?ƒ�˛�m automatically satisfying divum D 0. Note

that in general um … L2m. The existence of solutions of (3-10) at fixed m follows from the fact that this is
an ODE:

d�
.m/

l

dt
C

mX
j;kD1



.m/

jkl
�
.m/
j �

.m/

k
C "�l�

.m/

l
D 0;

with



.m/

jkl
D �
�˛
2

j

Z
�

.r?wj � rwk/wl dx:

Since Pm is self-adjoint in L2, um is divergence-free and wj vanishes at the boundary @�, integration
by parts with �m gives Z

�

�mPm.um � r�m/ dx D

Z
�

�mum � r�m dx D 0

and

�

Z
�

��"m�
"
m dx D

Z
�

jr�"mj
2 dx:
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It follows that
1

2

d

dt
k�m. � ; t /k

2
L2.�/

C "kr�"mk
2
L2.�/

D 0;

and thus for t 2 Œ0; T �,

1
2
k�"m. � ; t /k

2
L2.�/

C "

Z t

0

kr�"m. � ; s/k
2
L2.�/

d s D 1
2
k�"m. � ; 0/k

2
L2.�/

�
1
2
k�0k

2
L2.�/

: (3-11)

This can be seen directly on the ODE because 
 .m/
jkl

is antisymmetric in k; l . Therefore, the smooth
solution �"m of (3-10) exists globally and obeys the L2 bound (3-11). The sequence .�"m/m is thus
uniformly in m bounded in L1.Œ0; T �IL2.�//\L2.Œ0; T �IH 1

0 .�//. Consequently, for any p 2 Œ1;1/
and any q 2 Œ1; 2=.1�˛/�, we have

�"m 2 L
2.Œ0; T �IH 1

0 .�//� L
2.Œ0; T �ILp.�//;

u"m Dr
?ƒ�˛�m 2 L

2.Œ0; T �IH˛.�//� L2.Œ0; T �ILq.�//;

with bounds uniform with respect to m, where we have used Lemma 2.1 to have

ƒ�˛�m 2 L
2.Œ0; T �ID.ƒ1C˛//� L2.Œ0; T �IH 1C˛.�//:

In particular,

ku"m � r�
"
mkL1.Œ0;T �IH�1.�// D k div.u"m � �

"
m/kL1.Œ0;T �IH�1.�//

� Ck�"mk
2
L2.Œ0;T �IH1.�//

�
C

"
k�0k

2
H1.�/

; (3-12)

where (3-11) was invoked in the last inequality. Therefore, using (3-10) we obtain that .@t�"m/m is
uniformly in m bounded in L1.Œ0; T �IH�1.�//. Then according to the Aubin–Lions lemma [Lions
1969], there exist a �",

�" 2 L1.Œ0; T �IL2.�//\L2.Œ0; T �IH 1
0 .�//; (3-13)

and a subsequence of .�"m/m such that

�"m! �" strongly in Lp.Œ0; T �IH��.�//\L2.Œ0; T �IH 1��
0 .�// (3-14)

for any p <1 and � 2 .0; 1/.
Integrating by parts the first equation of (3-10) against any test function � 2 C10 .�� .0; T // givesZ T

0

Z
�

�"m @t� dx dt C

Z T

0

Z
�

�"mu
"
m � rPm�.x; t/ dx dt C "

Z T

0

Z
�

�"m�� dx dt D 0: (3-15)

In the limit m!1, the first term and the third term converge respectively toZ T

0

Z
�

�" @t� dx dt; "

Z T

0

Z
�

�"�� dx dt:
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It remains to study the nonlinear term:

N WD

Z T

0

Z
�

�"mu
"
m�rPm� dx dt�

Z T

0

Z
�

�"u"�r� dx dt

D

Z T

0

Z
�

�"mu
"
m�r.Pm���/ dx dtC

Z T

0

Z
�

.�"m��
"/u"m�r� dx dtC

Z T

0

Z
�

�".u"m�u
"/�r� dx dt

DWN1CN2CN3:

Lemma 3.5 ensures that limm!1N1 D 0. On the other hand, the strong convergence (3-14) with
sufficiently small � implies limm!1N2 D limm!1N3 D 0. Thus, we have proved that �" satisfiesZ T

0

Z
�

�" @t� dx dt C

Z T

0

Z
�

�"u" � r� dx dt C "

Z T

0

Z
�

�"�� dx dt D 0

for all � 2 C10 .�� .0; T //. Here, �" has the regularity (3-13), and in view of (3-11),

k�"k2
L1.Œ0;T �IL2.�//

C 2"k�"k2
L2.Œ0;T �IH1

0 .�//
� k�0k

2
L2.�/

: (3-16)

Since  ". � ; t / 2 D.ƒ1C˛/ � H 1
0 .�/ for a.e. t > 0, using Lemma 3.4 for the representation of the

nonlinearity, we obtain for all � 2 C10 .�� .0; T //,Z T

0

Z
�

�" @t� dx dt C

Z T

0

N . "; �/ dt C "
Z T

0

Z
�

�"�� dx dt D 0: (3-17)

Moreover, integrating by parts (3-10) with  "m leads to

1

2

d

dt
k "m. � ; t /k

2
D.ƒ˛=2/

C "k "m. � ; t /k
2
D.ƒ1C˛=2/

D 0;

where we used the fact that the nonlinear term vanishes:Z
�

 "mPm.u
"
m � r�

"
m/ dx D

Z
�

 "m div.r? "m�m/ dx D�
Z
�

r "m � r
? "m�m dx D 0:

Consequently, integrating in time and letting m!1 results in

k ". � ; t /k2
D.ƒ˛=2/

C 2"

Z t

0

k ". � ; s/k2
D.ƒ1C˛=2/

d s D k ". � ; 0/k2
D.ƒ˛=2/

for all t > 0: (3-18)

Vanishing viscosity. In order to extract a convergent subsequence of �" we need, in addition to (3-16),
a uniform bound for @t�" in a lower norm. Let us note that the bound (3-12) is not uniform in ". By
(3-13), �". � ; t / 2D.ƒ/ for a.e. t > 0, which implies  ". � ; t /Dƒ�˛�". � ; t / 2D.ƒ1C˛/�D.ƒ/ for
a.e. t > 0. Lemma 3.4 then givesˇ̌̌̌Z

�

�"u" � r� dx

ˇ̌̌̌
� Ck�kH4.�/k 

"
k
2
D.ƒ˛/ � Ck�kH4.�/k�0k

2
L2.�/

;

and hence, in view of (3-17),ˇ̌̌̌Z T

0

Z
�

�" @t� dx dt

ˇ̌̌̌
� Ck�kL1.Œ0;T �IH4.�//

�
k�0kL2.�/Ck�0k

2
L2.�/

�
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for all � 2 C10 .�� .0; T //. Consequently,

k@t�
"
kL1.Œ0;T �IH�4.�// � C

�
k�0kL2.�/Ck�0k

2
L2.�/

�
: (3-19)

In view of the uniform bounds (3-16) and (3-19), the Aubin–Lions lemma ensures the existence of a � ,

� 2 L1.Œ0; T �IL2.�//\C.Œ0; T �IH��.�// for all � > 0;

and a subsequence �" such that

�"*� weakly in L2.Œ0; T �IL2.�//; (3-20)

�"! � strongly in C.Œ0; T �IH��.�// for all � > 0: (3-21)

Consequently, with  WDƒ�˛� ,

 2 L1.Œ0; T �ID.ƒ˛//\C.Œ0; T �ID.ƒ˛��/ for all � > 0;
we have

 "* weakly in L2.Œ0; T �ID.ƒ˛//; (3-22)

 "!  strongly in C.Œ0; T �ID.ƒ˛��// for all � > 0: (3-23)

Let � 2 C10 .�� .0; T // a be fixed test function, we send " to 0 in the weak formulation (3-17). The first
term converges to

R T
0

R
� � @t� dx dt and the last term converges to 0. Regarding the nonlinear term, we

shall prove that

R" WD

Z T

0

N . "; �/�N . ; �/ dt

converges to 0. In view of (3-1), (3-5), we have 2R" D
P6
jD1 I

"
j with

I "1 D

Z
�

Œƒ˛;r?�. "� / � r� " dx;

I "2 D

Z
�

Œƒ˛;r?� � r�. "� / dx;

I "3 D�

Z T

0

Z
�

ƒ�1C˛�ır?. "� / �ƒŒr�;ƒ�˛Cı �ƒ˛ " dx dt;

I "4 D�

Z T

0

Z
�

ƒ�1C˛�ır? �ƒŒr�;ƒ�˛Cı �ƒ˛. "� / dx dt;

I "5 D�

Z
�

ƒ�1C˛r?. "� / �ƒŒr�;ƒ
�ı �ƒı dx;

I "6 D�

Z
�

ƒ�1C˛r? " �ƒŒr�;ƒ
�ı �ƒı. "� / dx;

where ı 2 .0;min.˛; 1�˛//.
By virtue of Theorem 2.4 and the fact that � 2 C10 .�/,

jI "1 j � C.�/k "� kL2.�/k "kL2.�/; jI
"
2 j � C.�/k "� kL2.�/k kL2.�/:

Hence lim"!0 I "1 D lim"!0 I "2 D 0 in view of the convergence (3-23) with � < ˛.
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As for (3-6),

jI "3 j � Ckr�kL1.Œ0;T �IW 1;1/k 
"
� kL1.Œ0;T �ID.ƒ˛�ı//k 

"
kL1.Œ0;T �ID.ƒ˛//;

which combined with (3-23) leads to lim"!0 I "3 D 0. Because ƒŒr�;ƒ�˛Cı �ƒ˛ is norm continuous
from L2.Œ0; T �ID.ƒ˛// to L2.Œ0; T �IL2.�// (according to Theorem 2.6), it is weak-weak continuous,
and thus lim"!0 I "4 D 0 noticing that by (2-5),

ƒ�1C˛�ır? 2 L1.Œ0; T �ID.ƒı//� L2.Œ0; T �IL2.�//:

Similarly, lim"!0 I "5 D 0 since ƒ�1C˛r?. " �  / * 0 in L2.Œ0; T �ID.ƒ˛// by (3-22), and since
ƒŒr�;ƒ�ı �ƒı 2 L2.Œ0; T �IL2.�// by Theorem 2.6. Finally, by (2-5) and Theorem 2.6,

jI "6 j � kƒ
�1C˛

r
? "kL2.�/kƒŒr�;ƒ

�ı �ƒı. "� /kL2.�/ � k "kD.ƒ˛/k "� kD.ƒı/! 0;

noticing that ı < ˛. We conclude thatZ T

0

Z
�

� @t� dx dt C

Z T

0

N . ; �/ dt D 0 for all � 2 C10 .�� .0; T //:

Moreover, because of the strong convergence (3-21) the initial data is attained:

�. � ; 0/D lim
"!0

�". � ; 0/D lim
"!0

�0. � /D �0. � / in H��.�/ for all � > 0:

Let us now show the conservation (1-9). In view of (3-16) and the fact that �" Dƒ˛ " we have

kƒ˛ "k2
L1.Œ0;T �IL2.�//

C 2"kƒ1C˛ "k2
L2.Œ0;T �IL2.�//

� k�0k
2
L2.�/

:

By interpolation,

kƒ1C
˛
2 "kL2.�/ � Ckƒ

1C˛ "ka
L2.�/

kƒ˛ "k1�a
L2.�/

; aD 1� ˛
2
:

Hölder’s inequality then yields

kƒ1C
˛
2 "k2

L2.Œ0;T �IL2.�//
� Ckƒ˛ "k

2.1�a/

L1.Œ0;T �IL2.�//
kƒ1C˛ "k2a

L2.Œ0;T �IL2.�//
T
˛
2

� CT
˛
2 k�0k

2
L2.�/

"�1C
˛
2 for all T > 0:

In particular,
lim
"!0

"kƒ1C
˛
2 "k2

L2.Œ0;T �IL2.�//
D 0 for all T > 0:

Letting "! 0 in (3-18) we obtain (1-9).
Finally, the energy inequality (1-8) follows from (3-16) and lower semicontinuity.

Remark 3.6. If we implement directly the Galerkin approximations for (1-2) then in view of (3-1), we
need to bound ˇ̌̌̌Z

�

Œƒ˛;r?� m � rPm� m dx

ˇ̌̌̌
:

However, the commutator Œƒ˛;r?� then cannot be bounded by means of Theorem 2.4 because rPm�

does not vanish on the boundary even though � has compact support. In [Constantin and Nguyen 2016],
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we overcame this by first using Lemma 3.5 and the fact that um�m is uniformly bounded in L1.�/ to
approximate

R
� um�mrPm� by

R
� um�mr�. When ˛ < 1, this argument breaks down since um�m is

not anymore uniformly bounded in L1.�/. This explains why we proceeded in the proof of Theorem 1.1
using vanishing viscosity approximations.

Appendix A: Proof of Theorem 2.6

In view of the identity

D�r D cr

Z 1
0

t�1Cre�tD dt

with D; r > 0 we have the representation of negative powers of Laplacian via heat kernel:

ƒ�sf .x/D cs

Z 1
0

t�1C
s
2 et�f .x/ dt; s > 0: (A-1)

Let H.x; y; t/ denote the heat kernel of �; i.e.,

et�f .x/D

Z
�

H.x; y; t/f .y/ dy for all x 2�:

We have from [Li and Yau 1986] the following bounds on H and its gradient:

H.x; y; t/� Ct�
d
2 e�

jx�yj2

Kt ; (A-2)

jrxH.x; y; t/j � Ct
� 1
2
�d
2 e�

jx�yj2

Kt (A-3)

for all .x; y/ 2��� and t > 0.
We will also use the elementary estimateZ 1

0

t�1�
m
2 e�

p2

Kt dt � CK;mp
�m; m; p;K > 0: (A-4)

Let f 2 C10 .�/. Using (A-1) we have

Œƒ�s; a�f .x/D cs

Z 1
0

t�1C
s
2

Z
�

H.x; y; t/a.y/f .y/ dt � cs a.x/

Z 1
0

t�1C
s
2

Z
�

H.x; y; t/f .y/ dt

D cs

Z 1
0

t�1C
s
2

Z
�

H.x; y; t/Œa.y/� a.x/�f .y/ dt:

(A-5)
In view of (A-2), (A-4), and the assumption that s < d , we deduce that

jŒƒ�s; a�f .x/j � CkakL1

Z
�

Z 1
0

t�1C
s
2
�d
2 e�

jx�yj2

Kt dt jf .y/j dy

� CkakL1

Z
�

jf .y/j

jx�yjd�s
dy: (A-6)
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Let us recall the Hardy–Littlewood–Sobolev inequality. Let ˛ 2 .0; d/ and .p; r/ 2 .1;1/ satisfy

1

p
C
˛

d
D 1C

1

r
: (A-7)

A constant C then exists such that

kf � j � j�˛kLr .Rd / � Ckf kLp.Rd /: (A-8)

Applying (A-8) with ˛ D d � s leads to

kŒƒ�s; a�f kLr .�/ � CkakL1kf kLp.�/: (A-9)

Let 
0 denote the trace operator for �. It is readily seen that 
0.ƒ�sf /D 0 because ƒ�sf 2D.ƒm/
for all m � 0; hence 
0.aƒ�sf / D 
0.a/
0.ƒ�sf / D 0. In addition, af 2 H 1

0 .�/ D D.ƒ/; hence
ƒ�s.af / 2D.ƒ1Cs/�H 1

0 .�/ and 
0.ƒ�s.af //D 0. We deduce that


0.Œƒ
�s; a�f /D 0: (A-10)

Next, for gradient bound we differentiate (A-5) and obtain

rŒƒ�s; a�f .x/D cs

Z 1
0

t�1C
s
2

Z
�

rxH.x; y; t/Œa.y/� a.x/�f .y/ dt

� cs

Z 1
0

t�1C
s
2

Z
�

H.x; y; t/ra.x/f .y/ dt

DW I C II:

The term II can be treated as above and we have

kIIkLr .�/ � CkrakL1kf kLp.�/: (A-11)

For I, we use the gradient estimate (A-3) for the heat kernel and the fact that

ja.x/� a.y/j � krakL1 jx�yj

to arrive at

jI.x/j � CkrakL1

Z
�

Z 1
0

t�1C
s
2
� 1
2
�d
2 e�

jx�yj2

Kt dt jx�yjjf .y/j dy

� CkrakL1

Z
�

jf .y/j

jx�yjd�s
dy:

Appealing to (A-8) as before gives

kIkLr .�/ � CkrakL1kf kLp.�/;

which, combined with (A-9), (A-11), (A-10), leads to

kŒƒ�s; a�f k
W
1;r
0 .�/

� CkakW 1;1.�/kf kLp.�/; (A-12)

where p; r satisfy (A-8) with ˛ D d � s. Using the density of C10 .�/ in Lp.�/ for p 2 .1;1/, and
extension by continuity, we conclude that the estimate (A-12) holds for any f 2 Lp.�/.
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Now, for any p 2 .0;1/, if s < d
p

then r 2 .1;1/ given by

1

r
D
1

p
�

s

d

satisfies (A-8). Because r > p and � is bounded, the continuous embedding W 1;r
0 .�/�W

1;p
0 .�/ yields

kŒƒ�s; a�f k
W
1;p
0 .�/

� CkakW 1;1.�/kf kLp.�/: (A-13)

Appendix B: Proof of Theorem 2.7

In view of the identity

�
s
2 D cs

Z 1
0

t�1�
s
2 .1� e�t�/ dt

with 0 < s < 2 and

1D cs

Z 1
0

t�1�
s
2 .1� e�t / dt;

we have the representation of the fractional Laplacian via heat kernel

ƒsf .x/D cs

Z 1
0

t�1�
s
2 .1� et�/f .x/ dt; 0 < s < 2: (B-1)

Appealing to this representation, we have for f 2 C10 .�/

Œƒs; a�f .x/D cs

Z 1
0

t�1�
s
2

Z
�

H.x; y; t/ dt Œa.x/� a.y/�f .y/ dy:

In view of (A-2), the fact that
ja.x/� a.y/j � kakC
 jx�yj


;

and (A-4), we deduce that

jŒƒs; a�f .x/j � cskakC


Z
�

Z 1
0

t�1�
s
2
�d
2 e�

jx�yj2

Kt dt jx�yj
 jf .y/j dy

� cskakC


Z
�

jf .y/j

jx�yjdCs�

dy:

Then as in the proof of Theorem 2.6, if s < 
 (note that d C s � 
 > 0), an application of the Hardy–
Littlewood–Sobolev inequality leads to the bound (2-9). Finally, (2-10) follows from (2-9) and the fact
that � is bounded.

Acknowledgments

The author was partially supported by NSF grant DMS-1209394. The author would like to thank Professor
Peter Constantin for helpful remarks on result. He thanks the anonymous reviewer for careful reading of
the manuscript and many valuable comments.



GLOBAL WEAK SOLUTIONS FOR GENERALIZED SQG IN BOUNDED DOMAINS 1047

References

[Bonforte et al. 2015] M. Bonforte, Y. Sire, and J. L. Vázquez, “Existence, uniqueness and asymptotic behaviour for fractional
porous medium equations on bounded domains”, Discrete Contin. Dyn. Syst. 35:12 (2015), 5725–5767. MR Zbl

[Cabré and Tan 2010] X. Cabré and J. Tan, “Positive solutions of nonlinear problems involving the square root of the Laplacian”,
Adv. Math. 224:5 (2010), 2052–2093. MR Zbl

[Caffarelli and Silvestre 2007] L. Caffarelli and L. Silvestre, “An extension problem related to the fractional Laplacian”, Comm.
Partial Differential Equations 32:7-9 (2007), 1245–1260. MR Zbl

[Chae et al. 2011] D. Chae, P. Constantin, and J. Wu, “Inviscid models generalizing the two-dimensional Euler and the surface
quasi-geostrophic equations”, Arch. Ration. Mech. Anal. 202:1 (2011), 35–62. MR Zbl

[Chae et al. 2012] D. Chae, P. Constantin, D. Córdoba, F. Gancedo, and J. Wu, “Generalized surface quasi-geostrophic equations
with singular velocities”, Comm. Pure Appl. Math. 65:8 (2012), 1037–1066. MR Zbl

[Constantin and Ignatova 2016] P. Constantin and M. Ignatova, “Critical SQG in bounded domains”, Ann. PDE 2:2 (2016),
art. id. 8. MR

[Constantin and Ignatova 2017] P. Constantin and M. Ignatova, “Remarks on the fractional Laplacian with Dirichlet boundary
conditions and applications”, Int. Math. Res. Not. 2017:6 (2017), 1653–1673. MR

[Constantin and Nguyen 2016] P. Constantin and H. Q. Nguyen, “Global weak solutions for SQG in bounded domains”, preprint,
2016. To appear in Comm. Pure Appl. Math. arXiv

[Constantin et al. 1994] P. Constantin, A. J. Majda, and E. Tabak, “Formation of strong fronts in the 2-D quasigeostrophic
thermal active scalar”, Nonlinearity 7:6 (1994), 1495–1533. MR Zbl

[Constantin et al. 2001] P. Constantin, D. Córdoba, and J. Wu, “On the critical dissipative quasi-geostrophic equation”, Indiana
Univ. Math. J. 50:Special Issue (2001), 97–107. MR Zbl

[Constantin et al. 2014] P. Constantin, A. Tarfulea, and V. Vicol, “Absence of anomalous dissipation of energy in forced two
dimensional fluid equations”, Arch. Ration. Mech. Anal. 212:3 (2014), 875–903. MR Zbl

[Córdoba 1998] D. Córdoba, “Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation”, Ann. of Math. .2/
148:3 (1998), 1135–1152. MR Zbl

[Córdoba and Fefferman 2002] D. Córdoba and C. Fefferman, “Growth of solutions for QG and 2D Euler equations”, J. Amer.
Math. Soc. 15:3 (2002), 665–670. MR Zbl

[Held et al. 1995] I. M. Held, R. T. Pierrehumbert, S. T. Garner, and K. L. Swanson, “Surface quasi-geostrophic dynamics”,
J. Fluid Mech. 282 (1995), 1–20. MR Zbl

[Kiselev et al. 2016] A. Kiselev, L. Ryzhik, Y. Yao, and A. Zlatoš, “Finite time singularity for the modified SQG patch equation”,
Ann. of Math. .2/ 184:3 (2016), 909–948. MR Zbl

[Li and Yau 1986] P. Li and S.-T. Yau, “On the parabolic kernel of the Schrödinger operator”, Acta Math. 156:3-4 (1986),
153–201. MR Zbl

[Lions 1969] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969. MR
Zbl

[Lions and Magenes 1972] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, I, Die
Grundlehren der mathematischen Wissenschaften 181, Springer, 1972. MR Zbl

[Resnick 1995] S. G. Resnick, Dynamical problems in non-linear advective partial differential equations, Ph.D. thesis, The
University of Chicago, 1995, available at https://search.proquest.com/docview/304242616. MR

[Ros-Oton and Serra 2014] X. Ros-Oton and J. Serra, “The Dirichlet problem for the fractional Laplacian: regularity up to the
boundary”, J. Math. Pures Appl. .9/ 101:3 (2014), 275–302. MR Zbl

Received 7 Apr 2017. Revised 28 Jul 2017. Accepted 16 Oct 2017.

HUY QUANG NGUYEN: qn@math.princeton.edu
Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, United States

mathematical sciences publishers msp

http://dx.doi.org/10.3934/dcds.2015.35.5725
http://dx.doi.org/10.3934/dcds.2015.35.5725
http://msp.org/idx/mr/3393253
http://msp.org/idx/zbl/1347.35129
http://dx.doi.org/10.1016/j.aim.2010.01.025
http://msp.org/idx/mr/2646117
http://msp.org/idx/zbl/1198.35286
http://dx.doi.org/10.1080/03605300600987306
http://msp.org/idx/mr/2354493
http://msp.org/idx/zbl/1143.26002
http://dx.doi.org/10.1007/s00205-011-0411-5
http://dx.doi.org/10.1007/s00205-011-0411-5
http://msp.org/idx/mr/2835862
http://msp.org/idx/zbl/1266.76010
http://dx.doi.org/10.1002/cpa.21390
http://dx.doi.org/10.1002/cpa.21390
http://msp.org/idx/mr/2928091
http://msp.org/idx/zbl/1244.35108
https://doi.org/10.1007/s40818-016-0017-1
http://msp.org/idx/mr/3595454
https://doi.org/10.1093/imrn/rnw098
https://doi.org/10.1093/imrn/rnw098
http://msp.org/idx/mr/3658179
http://msp.org/idx/arx/1612.02489
http://dx.doi.org/10.1088/0951-7715/7/6/001
http://dx.doi.org/10.1088/0951-7715/7/6/001
http://msp.org/idx/mr/1304437
http://msp.org/idx/zbl/0809.35057
http://dx.doi.org/10.1512/iumj.2001.50.2153
http://msp.org/idx/mr/1855665
http://msp.org/idx/zbl/0989.86004
http://dx.doi.org/10.1007/s00205-013-0708-7
http://dx.doi.org/10.1007/s00205-013-0708-7
http://msp.org/idx/mr/3187680
http://msp.org/idx/zbl/1296.35117
http://dx.doi.org/10.2307/121037
http://msp.org/idx/mr/1670077
http://msp.org/idx/zbl/0920.35109
http://dx.doi.org/10.1090/S0894-0347-02-00394-6
http://msp.org/idx/mr/1896236
http://msp.org/idx/zbl/1013.76011
http://dx.doi.org/10.1017/S0022112095000012
http://msp.org/idx/mr/1312238
http://msp.org/idx/zbl/0832.76012
http://dx.doi.org/10.4007/annals.2016.184.3.7
http://msp.org/idx/mr/3549626
http://msp.org/idx/zbl/1360.35159
http://dx.doi.org/10.1007/BF02399203
http://msp.org/idx/mr/834612
http://msp.org/idx/zbl/0611.58045
http://msp.org/idx/mr/0259693
http://msp.org/idx/zbl/0189.40603
http://msp.org/idx/mr/0350177
http://msp.org/idx/zbl/0223.35039
https://search.proquest.com/docview/304242616
http://msp.org/idx/mr/2716577
http://dx.doi.org/10.1016/j.matpur.2013.06.003
http://dx.doi.org/10.1016/j.matpur.2013.06.003
http://msp.org/idx/mr/3168912
http://msp.org/idx/zbl/1285.35020
mailto:qn@math.princeton.edu
http://msp.org


Analysis & PDE
msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Patrick Gérard
patrick.gerard@math.u-psud.fr

Université Paris Sud XI
Orsay, France

BOARD OF EDITORS

Nicolas Burq Université Paris-Sud 11, France
nicolas.burq@math.u-psud.fr

Massimiliano Berti Scuola Intern. Sup. di Studi Avanzati, Italy
berti@sissa.it

Sun-Yung Alice Chang Princeton University, USA
chang@math.princeton.edu

Michael Christ University of California, Berkeley, USA
mchrist@math.berkeley.edu

Alessio Figalli ETH Zurich, Switzerland
alessio.figalli@math.ethz.ch

Charles Fefferman Princeton University, USA
cf@math.princeton.edu

Ursula Hamenstaedt Universität Bonn, Germany
ursula@math.uni-bonn.de

Vaughan Jones U.C. Berkeley & Vanderbilt University
vaughan.f.jones@vanderbilt.edu

Vadim Kaloshin University of Maryland, USA
vadim.kaloshin@gmail.com

Herbert Koch Universität Bonn, Germany
koch@math.uni-bonn.de

Izabella Laba University of British Columbia, Canada
ilaba@math.ubc.ca

Gilles Lebeau Université de Nice Sophia Antipolis, France
lebeau@unice.fr

Richard B. Melrose Massachussets Inst. of Tech., USA
rbm@math.mit.edu

Frank Merle Université de Cergy-Pontoise, France
Frank.Merle@u-cergy.fr

William Minicozzi II Johns Hopkins University, USA
minicozz@math.jhu.edu

Clément Mouhot Cambridge University, UK
c.mouhot@dpmms.cam.ac.uk

Werner Müller Universität Bonn, Germany
mueller@math.uni-bonn.de

Gilles Pisier Texas A&M University, and Paris 6
pisier@math.tamu.edu

Tristan Rivière ETH, Switzerland
riviere@math.ethz.ch

Igor Rodnianski Princeton University, USA
irod@math.princeton.edu

Wilhelm Schlag University of Chicago, USA
schlag@math.uchicago.edu

Sylvia Serfaty New York University, USA
serfaty@cims.nyu.edu

Yum-Tong Siu Harvard University, USA
siu@math.harvard.edu

Terence Tao University of California, Los Angeles, USA
tao@math.ucla.edu

Michael E. Taylor Univ. of North Carolina, Chapel Hill, USA
met@math.unc.edu

Gunther Uhlmann University of Washington, USA
gunther@math.washington.edu

András Vasy Stanford University, USA
andras@math.stanford.edu

Dan Virgil Voiculescu University of California, Berkeley, USA
dvv@math.berkeley.edu

Steven Zelditch Northwestern University, USA
zelditch@math.northwestern.edu

Maciej Zworski University of California, Berkeley, USA
zworski@math.berkeley.edu

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2018 is US $275/year for the electronic version, and $480/year (+$55, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and
additional mailing offices.

APDE peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2018 Mathematical Sciences Publishers

http://msp.org/apde
mailto:patrick.gerard@math.u-psud.fr
mailto:nicolas.burq@math.u-psud.fr
mailto:berti@sissa.it
mailto:chang@math.princeton.edu
mailto:mchrist@math.berkeley.edu
mailto:alessio.figalli@math.ethz.ch
mailto:cf@math.princeton.edu
mailto:ursula@math.uni-bonn.de
mailto:vaughan.f.jones@vanderbilt.edu
mailto:vadim.kaloshin@gmail.com
mailto:koch@math.uni-bonn.de
mailto:ilaba@math.ubc.ca
mailto:lebeau@unice.fr
mailto:rbm@math.mit.edu
mailto:Frank.Merle@u-cergy.fr
mailto:minicozz@math.jhu.edu
mailto:c.mouhot@dpmms.cam.ac.uk
mailto:mueller@math.uni-bonn.de
mailto:pisier@math.tamu.edu
mailto:riviere@math.ethz.ch
mailto:irod@math.princeton.edu
mailto:schlag@math.uchicago.edu
mailto:serfaty@cims.nyu.edu
mailto:siu@math.harvard.edu
mailto:tao@math.ucla.edu
mailto:met@math.unc.edu
mailto:gunther@math.washington.edu
mailto:andras@math.stanford.edu
mailto:dvv@math.berkeley.edu
mailto:zelditch@math.northwestern.edu
mailto:zworski@math.berkeley.edu
mailto:production@msp.org
http://msp.org/apde
http://msp.org/
http://msp.org/


ANALYSIS & PDE
Volume 11 No. 4 2018

813C1 regularity of orthotropic p-harmonic functions in the plane
PIERRE BOUSQUET and LORENZO BRASCO

855Applications of small-scale quantum ergodicity in nodal sets
HAMID HEZARI

873On rank-2 Toda systems with arbitrary singularities: local mass and new estimates
CHANG-SHOU LIN, JUN-CHENG WEI, WEN YANG and LEI ZHANG

899Beyond the BKM criterion for the 2D resistive magnetohydrodynamic equations
LÉO AGÉLAS

919On a bilinear Strichartz estimate on irrational tori
CHENJIE FAN, GIGLIOLA STAFFILANI, HONG WANG and BOBBY WILSON

945Sharp global estimates for local and nonlocal porous medium-type equations in bounded do-
mains

MATTEO BONFORTE, ALESSIO FIGALLI and JUAN LUIS VÁZQUEZ

983Blow-up of a critical Sobolev norm for energy-subcritical and energy-supercritical wave equa-
tions

THOMAS DUYCKAERTS and JIANWEI YANG

1029Global weak solutions for generalized SQG in bounded domains
HUY QUANG NGUYEN

1049Scale-free unique continuation principle for spectral projectors, eigenvalue-lifting and Wegner
estimates for random Schrödinger operators
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