
ANALYSIS & PDE

msp

Volume 11 No. 3 2018
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DIMENSION-FREE L p ESTIMATES FOR VECTORS OF RIESZ TRANSFORMS
ASSOCIATED WITH ORTHOGONAL EXPANSIONS

BŁAŻEJ WRÓBEL

An explicit Bellman function is used to prove a bilinear embedding theorem for operators associated
with general multidimensional orthogonal expansions on product spaces. This is then applied to obtain
L p boundedness, 1< p <∞, of appropriate vectorial Riesz transforms, in particular in the case of Jacobi
polynomials. Our estimates for the L p norms of these Riesz transforms are both dimension-free and linear
in max(p, p/(p− 1)). The approach we present allows us to avoid the use of both differential forms and
general spectral multipliers.

1. Introduction

The classical Riesz transforms on Rd are the operators

Ri f (x)= ∂xi (−1Rd )−1/2 f (x), i = 1, . . . , d.

E. M. Stein [1983] proved that the vector of Riesz transforms

R f = (R1 f, . . . , Rd f )

has L p bounds which are independent of the dimension. More precisely

‖R f ‖L p(Rd ) 6 C p ‖ f ‖L p(Rd ), 1< p <∞, (1-1)

where C p is independent of the dimension d . Note that (1-1) is formally the same as the a priori bound∥∥|∇ f |
∥∥

L p(Rd )
6 C p ‖(−1)

1/2 f ‖L p(Rd ).

Later it was realized that, for 1< p < 2, one may take C p 6 C(p− 1)−1 in (1-1); see [Bañuelos 1986;
Duoandikoetxea and Rubio de Francia 1985]. It is worth mentioning that the best constant in (1-1)
remains unknown when d ≥ 2; the best results to date are given in [Bañuelos and Wang 1995] (see also
[Dragičević and Volberg 2006] for an analytic proof) and [Iwaniec and Martin 1996].

The main goal of this paper is to generalize (1-1) to product settings different from Rd
= R× · · ·×R

with the product Lebesgue measure. Our starting point is the observation that the classical Riesz transform
can be written as Ri = δi

(∑d
i=1 L i

)−1/2, where δi = ∂xi , and L i = δ
∗

i δi . The generalized Riesz transforms
we pursue are of the same form,

Ri = δi L−1/2, i = 1, . . . , d, (1-2)
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with δi being an operator on L2(X i , µi ),

L i = δ
∗

i δi + ai and L =
d∑

i=1

L i .

Here ai is a nonnegative constant. The adjoint δ∗i is taken with respect to the inner product on L2(X i , µi ),
where µi is a nonnegative Borel measure on X i such that dµi (xi ) = wi (xi ) dxi for some positive and
smooth function wi on X i . To be precise, if 0 is an L2 eigenvalue of L , then the definition of Ri needs
to be slightly modified; this is properly explained in the next section. Throughout the paper we assume
that each X i , i = 1, . . . , d, is an open interval in R, an open half-line in R, or the real line; we also set
X = X1× · · ·× Xd and µ= µ1⊗ · · ·⊗µd . We consider δi given by

δi f (x)= pi (xi ) ∂xi + qi (xi ), xi ∈ X i ,

for some real-valued functions pi ∈ C∞(X i ) and qi ∈ C∞(X i ). We remark that a significant difference
between the classical Riesz transforms and the general Riesz transforms (1-2) lies in the fact that the
operators δi and δ∗i do not need to commute.

There are two assumptions which are critical to our results. Firstly, a computation, see [Nowak and
Stempak 2006, p. 683], shows that the commutator [δi , δ

∗

i ] is a function which we call vi . We assume
that vi is nonnegative; see (A1). Secondly, it is not hard to see that L =

∑d
i=1 L i may be written as

L = L̃ + r , where L̃ is a purely differential operator (without a zero-order potential term) and r is the
potential term. We impose that

∑d
i=1 q2

i is controlled pointwise from above by a constant times r , namely∑d
i=1 q2

i ≤ K · r for some K > 0; see (A2). In several cases we will consider, we can take K = 1 or
K = 0. In particular if q1 = · · · = qd = 0 then the bound (A2) holds with K = 0. When 0 is not an
L2 eigenvalue of L , our main result can be summarized as follows.

Main result (informal). Set p∗ = max(p, p/(p − 1)). Then the vectorial Riesz transform R f =
(R1 f, . . . , Rd f ) with Ri given by (1-2) satisfies the bounds

‖R f ‖L p(X,µ) 6 24(1+
√

K )(p∗− 1)‖ f ‖L p(X,µ), 1< p <∞.

In other words, introducing δ f = (δ1 f, . . . , δd f ), we have∥∥|δ f |
∥∥

L p(X,µ) 6 24(1+
√

K )(p∗− 1)‖L1/2 f ‖L p(X,µ), 1< p <∞.

The rigorous statement of our main result is contained in Theorem 1. In order to prove it we need some
extra technical assumptions. For the sake of clarity of the presentation we decided to concentrate on the
case of orthogonal expansions, when each of the operators L i = δ

∗

i δi + ai has a decomposition in terms
of an orthonormal basis. Our precise setting is described in detail in Section 2. We follow the approach
of [Nowak and Stempak 2006]; in fact the present paper may be thought of as an L p counterpart for a
large part of the L2 results from that paper. Adding the technical assumptions (T1), (T2), and (T3) to the
crucial assumptions (A1) and (A2), we state our main result, Theorem 1, in Section 3. In all the cases
we will consider, the projection 5 appearing in Theorem 1 is the identity operator or has its L p norm
bounded by 2 for all 1≤ p ≤∞. Moreover, we have 5= I if and only if 0 is not an L2 eigenvalue of L .
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From Theorem 1 we obtain several new dimension-free bounds on L p, 1 < p <∞, for vectors of
Riesz transforms connected with classical multidimensional orthogonal expansions. For more details we
refer to the examples in Section 5. For instance, in Section 5.3 we obtain the dimension-free boundedness
for the vector of Riesz transforms in the case of Jacobi polynomial expansions. This answers a question
left open in [Nowak and Sjögren 2008]. Moreover, the approach we present gives a unified way to treat
dimension-free estimates for vectors of Riesz transforms. In most of the previous cases, separate papers
were written for each of the classical orthogonal expansions. More unified approaches were recently
presented by Forzani, Sasso, and Scotto in [Forzani et al. 2015] and by the author in [Wróbel 2014].
However, these papers treat only dimension-free estimates for scalar Riesz transforms and not for the
vector of Riesz transforms.

Let us remark that Theorem 1 formally cannot be applied to some cases where the crucial assumptions
on vi and r continue to hold. This is true when L has a purely continuous spectrum, for instance for
the classical Riesz transforms on Rd (when vi = 0 and r = 0). However, it is not difficult to modify the
proof of Theorem 1 so that it remains valid for the classical Riesz transforms. We believe that a similar
procedure can be applied to other cases outside the scope of Theorem 1, as long as the crucial assumptions
(A1) and (A2) are satisfied.

We deduce Theorem 1 from a bilinear embedding theorem (see Theorem 3) together with a bilinear
formula (see Proposition 2). The main tool that is used to prove Theorem 3 is the Bellman function
technique. This method was introduced to harmonic analysis by Nazarov, Treil, and Volberg [Nazarov
et al. 1999]. Before that paper, Bellman functions appeared implicitly in [Burkholder 1984; 1988; 1991].
The proof of Theorem 3 is presented in Section 4 and is based on subtle properties of a particular Bellman
function. This approach was devised by Dragičević and Volberg [2006; 2011; 2012]. Carbonaro and
Dragičević [2013; 2016a; 2016b; 2017] developed the method further. The approach from [Carbonaro
and Dragičević 2013] was recently adapted by Mauceri and Spinelli [2015] to the case of the Laguerre
operator. Our paper generalizes simultaneously [Dragičević and Volberg 2012] (as we admit a nonnegative
potential r ) and [Dragičević and Volberg 2006; Mauceri and Spinelli 2015] (as we consider general pi in
δi = pi ∂xi + qi ).

In some applications of the Bellman function method, the authors needed to prove dimension-free
bounds on L p for certain spectral multipliers related to the considered operators; see [Dragičević and
Volberg 2006; 2012] for such a situation. In other papers mentioned in the previous paragraph they needed
to consider operators acting on differential forms; see [Carbonaro and Dragičević 2013; Mauceri and
Spinelli 2015]. One of the merits of our approach is that we avoid using both general spectral multipliers
and differential forms. This is achieved by means of the bilinear formula from Proposition 2. This formula
relates the Riesz transform Ri with an integral where only δi and two kinds of semigroups (one for L and
one for L + vi ) are present; see (3-1).

For the sake of simplicity we use a Bellman function with real entries in Section 4. Thus our main results,
Theorems 1 and 3, apply to real-valued functions. Of course they can be easily extended to complex-valued
functions with the constants being twice as large. One may improve the estimates further by using a
Bellman function with complex arguments, as was done in [Dragičević and Volberg 2006; 2011; 2012].
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Notation. We finish this section by introducing the general notation used in the paper. By N we denote
the set of nonnegative integers. For N ∈ N and Y being an open subset of RN, the symbol Cn(Y ), n ∈ N,
denotes the space of real-valued functions which have continuous partial derivatives in Y up to the order n.
In particular C0(Y )=C(Y ) denotes the space of continuous functions on Y equipped with the supremum
norm. By C∞(Y ) we mean the space of infinitely differentiable functions on Y. Whenever we say that
ν is a measure on Y we mean that ν is a Borel measure on Y. The symbols ∇ f and Hess f stand for
the gradient and the Hessian of a function f : RN

→ R. For a, b ∈ RN, we denote by 〈a, b〉 the inner
product on RN and set |a|2 = 〈a, a〉. The actual N should be clear from the context (in fact we always
have N ∈ {1, d, d + 1}). For p ∈ (1,∞) we set

p∗ =max
(

p,
p

p− 1

)
.

2. Preliminaries

All the functions we consider are real-valued. Our notations will closely follow that of [Nowak and
Stempak 2006].

For i = 1, . . . , d , let X i be the real line R, an open half-line in R or an open interval in R of the form

X i = (σi , 6i ), where −∞6 σi <6i 6∞.

Consider the measure spaces (X i ,Bi , µi ), where Bi denotes the σ -algebra of Borel subsets of X i and
µi is a Borel measure on X i . We impose that dµi (xi )= wi (xi ) dxi , where wi is a positive C∞ function
on X i . Note that in [Nowak and Stempak 2006] the authors assumed that X1 = · · · = Xd ; this is, however,
not needed in our paper. Throughout the article we let

X = X1× · · ·× Xd , µ= µ1⊗ · · ·⊗µd ,

and abbreviate

L p
:= L p(X, µ), ‖ · ‖p = ‖ · ‖L p , and ‖ · ‖p→p = ‖ · ‖L p→L p .

This notation is also used for vector-valued functions. Namely, if g = (g1, . . . , gN ) : X→ RN for some
N ∈ N, then

‖g‖p =

(∫
X
|g(x)|p dµ(x)

)1/p

, with |g(x)| =
( N∑

i=1

|gi (x)|2
)1/2

.

We shall also write 〈 f, g〉L2 for 〈 f, g〉L2(X,µ).
Let δi , i = 1, . . . , d , be the operators acting on C∞c (X i ) functions via

δi = pi ∂xi + qi .

Here pi and qi are real-valued functions on X i , with pi , qi ∈ C∞(X i ). We assume that pi (xi ) 6= 0 for
xi ∈ X i . We shall also denote by p and q the exponents of L p and Lq spaces. This will not lead to any
confusion as the functions pi and qi will always appear with the index i = 1, . . . , d .
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Let δ∗i be the formal adjoint of δi with respect to the inner product on L2(X i , µi ); i.e.,

δ∗i f =− 1
wi
∂xi (piwi f )+ qi f, f ∈ C∞c (X i ).

A simple calculation, see [Nowak and Stempak 2006, p. 683], shows that the commutator

[δi , δ
∗

i ] = δiδ
∗

i − δ
∗

i δi = pi

(
2q ′i −

(
pi
w′i

wi

)′
− p′′i

)
=: vi (2-1)

is a locally integrable function (0-order operator). Most of the assumptions made in this section are of a
technical nature. The first of the two assumptions that are crucial to our results is

the functions vi , i = 1, . . . , d, are nonnegative. (A1)

The property (A1) has been (explicitly or implicitly) instrumental for establishing the main results in
[Harboure et al. 2004; Mauceri and Spinelli 2015; Nowak and Sjögren 2008; Stempak and Wróbel 2013].
It is also explicitly stated by Forzani, Sasso, and Scotto as Assumption H1(c) in [Forzani et al. 2015].

For a scalar ai ≥ 0 we let L i and L be given on C∞c (X) by

L i := δ
∗

i δi + ai , L =
d∑

i=1

L i .

Here each L i can be considered to act either on C∞c (X i ) or on C∞c (X); thus the definition of L makes
sense. Note that both L i and L are symmetric on C∞c (X) with respect to the inner product on L2. We
assume that for each i = 1, . . . , d, there is an orthonormal basis {ϕi

ki
}ki∈N which consists of L2(X i , µi )

eigenvectors of L i that correspond to nonnegative eigenvalues {λi
ki
}ki∈N; i.e.,

L iϕ
i
ki
= λi

ki
ϕi

ki
.

Then, it must be that λki ≥ ai for ki ∈ N and i = 1, . . . , d. We require that the sequence {λi
ki
}ki∈N is

strictly increasing and that limki→∞ λ
i
ki
=∞. Note that our assumptions on pi , qi , and wi imply that L i

is hypoelliptic. Therefore we have ϕi
ki
∈ C∞(X i ). Setting, for k = (k1, . . . , kd) ∈ Nd,

ϕk = ϕ
1
k1
⊗ · · ·⊗ϕd

kd
, (2-2)

we obtain an orthonormal basis of eigenvectors on L2 for the operator L = L1+· · ·+ Ld . The eigenvalue
corresponding to ϕk is

λk := λ
1
k1
+ · · ·+ λd

kd
,

so that Lϕk = λkϕk . We consider the self-adjoint extension of L (still denoted by the same symbol)
given by

L f =
∑
k∈Nd

λk 〈 f, ϕk〉L2ϕk

on the domain

Dom(L)=
{

f ∈ L2
:

∑
k∈Nd

|λk |
2
|〈 f, ϕk〉L2 |

2 <∞

}
.
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We assume that the eigenfunctions ϕi
ki

, i = 1, . . . , d, are such that

〈δiϕ
i
ki
, δiϕ

i
mi
〉L2(X i ,µi ) = 〈δ

∗

i δi ϕ
i
ki
, ϕi

mi
〉L2(X i ,µi ) (T1)

for i = 1, . . . , d , and ki ,mi ∈N; see [Nowak and Stempak 2006, (2.8)]. The condition (T1) implies that
the functions

δiϕk = ϕ
1
k1
⊗ · · ·⊗ δiϕ

i
ki
⊗ · · ·⊗ϕd

kd
(2-3)

are pairwise orthogonal on L2 and

〈δiϕk, δiϕk〉L2 = λi
ki
− ai ;

see [Nowak and Stempak 2006, Lemmas 5 and 6]. Moreover, since ϕk ∈ C∞(X), we also see that
δiϕk ∈ C∞(X).

We remark that our assumptions differ slightly from those in [Nowak and Stempak 2006]. Namely,
we assume that the coefficients pi , qi , and the weight wi are C∞ functions, whereas they considered
pi , qi , wi that possessed only a finite order of smoothness. The smoothness of these functions is in
fact needed to easily conclude that L i is hypoelliptic and that ϕk ∈ C∞(X), which is an issue that was
overlooked† in [Nowak and Stempak 2006].

We also impose a boundary condition on the functions ϕi
ki

and δiϕ
i
ki

. Namely, we require that for each
i = 1, . . . , d , if zi ∈ {σi , 6i }, then

lim
xi→zi

[
(1+ |ϕi

ki
|
s1 + |δiϕ

i
ki
|
s2)(p2

i wi ∂xiϕ
i
ki
)
]
(xi )= 0,

lim
xi→zi

[
(1+ |ϕi

ki
|
s1 + |δiϕ

i
ki
|
s2)(p2

i wi ∂xi δiϕ
i
ki
)
]
(xi )= 0

(T2)

for all ki ∈ N and s1, s2 > 0. Condition (T2) is close to Assumption H1(a) from [Forzani et al. 2015].
Observe that the term |ϕi

ki
|
s1 + |δiϕ

i
ki
|
s2 in (T2) is significant only when the functions ϕi

ki
and δiϕ

i
ki

are
unbounded on X i .

Let
A = a1+ · · ·+ ad , 30 = λ

1
0+ · · ·+ λ

d
0 .

Then 30 is the smallest eigenvalue of L . We set

Nd
3 =

{
Nd , 30 > 0,
Nd
\ {(0, . . . , 0)}, 30 = 0

and define
5 f =

∑
k∈Nd

3

〈 f, ϕk〉L2ϕk .

Then in the case 30 > 0 we have 5= I, while in the case 30 = 0 the operator 5 is the projection onto
the orthogonal complement of the vector ϕ(0,...,0). The Riesz transforms studied in this paper are formally

†The hypoellipticity of L i is not necessary for the theory from [Nowak and Stempak 2006] to work (Nowak, personal
communication, 2017). When not having this property, one has to add instead some extra assumptions (much weaker than
smoothness) on the regularity of the eigenfunctions ϕk .
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of the form
Ri := δi L−1/25,

while the rigorous definition of Ri is

Ri f =
∑

k∈Nd
3

λ
−1/2
k 〈 f, ϕk〉L2 δiϕk .

In many of the considered cases, 5≡ I so that Ri = δi L−1/2.
It was proved in [Nowak and Stempak 2006, Proposition 1] that the vector of Riesz transforms

R f = (R1 f, . . . , Rd f )

satisfies
‖R f ‖2→2 6 ‖ f ‖2.

The main goal of this paper is to prove similar estimates for p in place of 2. We aim for these estimates
to be dimension-free and linear in p∗. More precisely, we shall prove that for 1< p <∞ it holds that

‖R f ‖p→p 6 C(p∗− 1)‖ f ‖p.

Here C is a constant that is independent of both p and the dimension d .
To state and prove our main results we need several auxiliary objects. Firstly, we let

di = pi ∂xi . (2-4)

That is, di is the “differential” part of δi . In many (though not all) of our applications we will have qi ≡ 0
and thus δi ≡ di . The formal adjoint of di on L2(X i , µi ) is

d∗i f =− 1
wi
∂xi (piwi f ), f ∈ C∞c (X i ). (2-5)

A computation shows that L i = d∗i di + ri , with

ri = ai +

(
q2

i − pi q ′i − p′i qi − pi qi
w′i

wi

)
. (2-6)

We shall also need

L̃ :=
d∑

i=1

d∗i di = L − r, where r :=
d∑

i=1

ri .

Then L̃ is the potential-free component of L and the potential r is a locally integrable function on X. We
assume that

there is a constant K > 0 such that
d∑

i=1

q2
i (xi )≤ K · r(x) (A2)

for all x ∈ X. This is our second (and last) crucial assumption. In many of our examples we shall have
q1 = · · · = qd = 0 and thus r = A and (A2) holding with K = 0.
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Next we define

Mi :=
∑
j 6=i

δ∗j δj + δiδ
∗

i = L + [δi , δ
∗

i ] = L + vi ,

see [Nowak and Stempak 2006, (5.1)], and set

ci
k = ‖δiϕk‖

−1
2

if δiϕk 6= 0 and ci
k = 0 in the other case. Then {ci

kδiϕk}k∈Nd (excluding those ci
kδiϕk which vanish) is an

orthonormal system of eigenvectors of Mi such that Mi (ci
kδiϕk) equals λkci

kδiϕk .
We define

D = lin{ϕk : k ∈ Nd
}, Di = δi [D] = lin{δiϕk : k ∈ Nd

},

and make the technical assumption that

both D and Di , i = 1, . . . , d, are dense subspaces of L p, 1≤ p <∞. (T3)

In most of our applications the condition (T3) will follow from [Forzani et al. 2015, Lemma 7.5], which
is itself a consequence of [Berg and Christensen 1981, Theorem 5].

Lemma 1 [Forzani et al. 2015, Lemma 7.5]. Assume that ν is a measure on X such that, for some ε > 0,
we have ∫

X
exp

(
ε

d∑
i=1

|yi |

)
dν(y) <∞.

Then, for each 16 p <∞, multivariable polynomials on X are dense in L p(X, ν).

In what follows we consider the self-adjoint extension of Mi given by

Mi f =
∑
k∈Nd

λk〈 f, ci
k δiϕk〉L2ci

k δiϕk,

on the domain

Dom(Mi )=

{
f ∈ L2

:

∑
k∈Nd

|λk |
2
|〈 f, ci

kδiϕk〉L2 |
2 <∞

}
.

Keeping the symbol Mi for this self-adjoint extension is a slight abuse of notation, which however will
not lead to any confusion. Finally, we shall need the semigroups

Pt := e−t L1/2
and Qi

t := e−t M1/2
i .

These are formally defined on L2 as

Pt f =
∑
k∈Nd

e−tλ1/2
k 〈 f, ϕk〉L2 ϕk, Qi

t f =
∑
k∈Nd

e−tλ1/2
k 〈 f, ci

k δiϕk〉L2 ci
k δiϕk .

Note that for t > 0 we have Pt [D] ⊆ D and Qi
t [Di ] ⊆ Di , i = 1, . . . , d .
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3. General results for Riesz transforms

Recall that we are in the setting of the previous section. In particular the assumptions (A1), (A2), and the
technical assumptions (T1), (T2), (T3), are in force. The following is the main result of our paper.

Theorem 1. For each 1< p <∞ we have

‖R f ‖p 6 24(1+
√

K )(p∗− 1)‖5 f ‖L p , f ∈ L p.

Remark. In all the examples we consider in Section 5 the projection5 satisfies ‖5‖p→p6 2, 16 p6∞.
In fact in many of the examples 5 equals the identity operator.

In order to prove Theorem 1 we need two ingredients. The first of these ingredients is a bilinear
formula that relates the Riesz transform with an integral in which both Pt and Qi

t are present.

Proposition 2. Let i = 1, . . . , d. Then the formula

〈Ri f, g〉L2 =−4
∫
∞

0
〈δi Pt5 f, ∂t Qi

t g〉L2 t dt (3-1)

holds for f ∈ D and g ∈ Di .

Before proving the proposition let us make two remarks.

Remark 1. Formulas similar to (3-1) were proved before, though, depending on the context, they may have
involved spectral multipliers of the operator L . However, treating these spectral multipliers appropriately
was achieved with variable success. A way of avoiding multipliers was first devised in [Carbonaro and
Dragičević 2013] for Riesz transforms on manifolds. In such a setting, the above formula is a special case
of the identity (3) there. The approach in [Carbonaro and Dragičević 2013] was adapted in [Mauceri and
Spinelli 2015] to the case of Hodge–Laguerre operators. In the case of Laguerre polynomial expansions
(see Section 5.2) the formula (3-1) is a special case of [Mauceri and Spinelli 2015, (5.1)]. We note that
both in [Carbonaro and Dragičević 2013] and [Mauceri and Spinelli 2015] the authors needed to consider
the Riesz transform as well as the formula (3-1) for differential forms; this is not needed in our approach.

Remark 2. Note that if the operators δi and δ∗i commute, then Qi
t = Pt and the formula (3-1) can be

formally obtained via the spectral theorem. The problem is that often these operators do not commute.
A way to overcome this noncommutativity problem was devised by Nowak and Stempak [2013]. They
introduced a symmetrization Ti of δi that does commute with its adjoint; in fact T ∗i = −Ti . This
symmetrization is defined on L2(X̃), where

X̃ = (X1 ∪ (−X1))× · · ·× (Xd ∪ (−Xd)).

Set T =−
∑d

i=1 T 2
i and let St = e−tT 1/2

. The formula (3-1) for Ti is then formally

〈Ti T−1/2 f, g〉L2(X̃) =−4
∫
∞

0
〈Ti St f, ∂t St g〉L2(X̃) t dt. (3-2)

This leads to a proof of (3-1) different from the one presented in our paper. Namely, a computation shows
that applying (3-2) to functions f : X̃→ R and g : X̃→ R, which are both even in all the variables, we
arrive at (3-1).
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Proof of Proposition 2. We start with proving (3-1) for f = ϕk and g= δiϕn , with some k, n ∈Nd. If k = 0
and 30 = 0 then both sides of (3-1) vanish. Thus we can assume that λk > 0. A computation shows that

〈δi L−1/2 f, g〉L2 = λ
−1/2
k 〈δi f, g〉L2

and

−4
∫
∞

0
〈δi Pt f, ∂t Qi

t g〉L2 t dt =−4
∫
∞

0

〈
e−tλ1/2

k δi f,−λ1/2
n e−tλ1/2

n g
〉
L2 t dt

= 4λ1/2
n

∫
∞

0
e−t (λ1/2

k +λ
1/2
n ) t dt · 〈δi f, g〉L2 =

4λ1/2
n

(λ
1/2
k + λ

1/2
n )2
· 〈δi f, g〉L2;

hence

〈δi L−1/2 f, g〉+ 4
∫
∞

0
〈δi Pt f, ∂t Qi

t g〉L2 t dt =
(
λ
−1/2
k −

4λ1/2
n

(λ
1/2
k + λ

1/2
n )2

)
· 〈δi f, g〉L2 . (3-3)

Now δi f is also an L2 eigenvector for Mi corresponding to the eigenvalue λk . Consequently, since
eigenspaces for Mi corresponding to different eigenvalues are orthogonal, 〈δi f, g〉 is nonzero only if
λn = λk . Coming back to (3-3) we obtain (3-1) for f = ϕk and g = δiϕn .

Finally, by linearity (3-1) holds also for f ∈ D and g ∈ Di . �

The second ingredient we need to prove Theorem 1 is a bilinear embedding, as was the case in
[Carbonaro and Dragičević 2013; Dragičević and Volberg 2006; 2012; Mauceri and Spinelli 2014; 2015].
For N ∈N (the cases interesting to us being N=1 and N=d) we take F= ( f1, . . . , fN ) : X×(0,∞)→RN

and set

|F |2
∗
:= r |F |2+ |∂t F |2+

d∑
i=1

|di F |2. (3-4)

The absolute values | · | in (3-4) denote the Euclidean norms on RN of the vectors F(x, t), ∂t F(x, t)=
(∂t f1(x, t), . . . , ∂t fN (x, t)), and di F(x, t) = (di f1(x, t), . . . , di fN (x, t)), where (x, t) ∈ X × (0,∞).
Below we only state our bilinear embedding. The proof of it is presented in the next section.

Theorem 3. Let f : X → R and g = (g1, . . . , gd) : Xd
→ Rd and assume that f ∈ D and gi ∈ Di for

i = 1, . . . , d. Define

F(x, t)= Pt 5 f (x) and G(x, t)= Qt g = (Q1
t g1, . . . , Qd

t gd).

Then ∫
∞

0

∫
X
|F(x, t)|∗ |G(x, t)|∗ dµ(x) t dt 6 6(p∗− 1)‖5 f ‖p ‖g‖q . (3-5)

Remark. The theorem can be slightly generalized, at least at a formal level. Namely in Theorem 3, we
do not need that vi = [δi , δ

∗

i ]. It is enough to have any vi ≥ 0 and take Qt = e−t Mi with Mi = L + vi .

Our main theorem is an immediate corollary of Proposition 2 and Theorem 3.
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Proof of Theorem 1. It is enough to prove that for each f ∈ L p and gi ∈ Lq, i = 1, . . . , d, the absolute
value of

∑d
i=1〈Ri f, gi 〉 does not exceed

24(1+
√

K )(p∗− 1)‖5 f ‖p

∥∥∥∥( d∑
i=1

|gi |
2
)1/2∥∥∥∥

q
.

A density argument based on the assumption (T3) allows us to take f ∈ D and gi ∈ Di , i = 1, . . . , d.
From Proposition 2 we have

−
1
4〈Ri f, gi 〉L2 =

∫
∞

0
〈di Pt5 f, ∂t Qi

t gi 〉L2 t dt +
∫
∞

0
〈qi Pt5 f, ∂t Qi

t gi 〉L2 t dt

and thus, assumption (A2) gives∣∣∣∣ d∑
i=1

〈Ri f, gi 〉L2

∣∣∣∣6 4
∫
∞

0

∫
X

(( d∑
i=1

|di Pt5 f (x)|2
)1/2

+
√

K
√

r(x)|Pt5 f (x)|
)
|G(x, t)|∗ dµ(x) t dt

≤ 4(1+
√

K )
∫
∞

0

∫
X
|F(x, t)|∗ |G(x, t)|∗ dµ(x) t dt.

Now, Theorem 3 completes the proof. �

4. Bilinear embedding theorem

This section is devoted to the proof of our embedding theorem, Theorem 3. We shall follow closely the
reasoning from [Carbonaro and Dragičević 2013; Mauceri and Spinelli 2015].

4.1. The Bellman function. Before proceeding to the proof of Theorem 3 we need to introduce its most
important ingredient: the Bellman function.

Choose p > 2. Let q = p/(p− 1),

γ = γ (p)= 1
8q(q − 1),

and define βp : [0,∞)2→ [0,∞] by

βp(s1, s2)= s p
1 + sq

2 + γ

{
s2

1 s2−q
2 , s p

1 6 sq
2,

(2/p) s p
1 +

(
2/q − 1

)
sq

2 , s p
1 > sq

2 .

For m = (m1,m2) ∈ N2, the Nazarov–Treil Bellman function corresponding to p,m is the function

B = Bp,m : Rm1 ×Rm2 → [0,∞)

given, for any ζ ∈ Rm1 and η ∈ Rm2, by

Bp,m(ζ, η)=
1
2βp(|ζ |, |η|).

The function B originated in an article by F. Nazarov and S. Treil [1996]. It was employed (and simplified)
in [Carbonaro and Dragičević 2013; 2017; Dragičević and Volberg 2006; 2011; 2012]. Note that B is
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C1(Rm1+m2) and is C2 everywhere except on the set

{(ζ, η) ∈ Rm1 ×Rm2 : η = 0 or |ζ |p = |η|q}.

To remedy the nonsmoothness of B we consider the regularization

Bκ,p,m = Bκ := B ∗Rm1+m2 ψκ ,

where

ψ(x)= cme−1/(1−|x |2)χBm1+m2 (x) and ψκ(x)=
1

κm1+m2
ψ(x/κ),

with cm such that
∫

Rm1+m2 ψκ(x) dx = 1. Here χBm1+m2 stands for the characteristic function of the
(m1+m2)-dimensional Euclidean ball centered at the origin and of radius 1. Since both B and ψκ are
biradial also Bκ is biradial. Hence, there is βκ = βκ,p acting from [0,∞)2 to R such that

Bκ(ζ, η)= 1
2βκ(|ζ |, |η|), ζ ∈ Rm1, η ∈ Rm2.

We shall need some properties of βκ and Bκ that were essentially proved in [Carbonaro and Dragičević
2013; Dragičević and Volberg 2012; Mauceri and Spinelli 2014; 2015].

Proposition 4. Let κ ∈ (0, 1). Then, for si > 0, i = 1, 2, we have

(i) 06 βκ(s1, s2)6 (1+ γ (p))((s1+ κ)
p
+ (s2+ κ)

q),

(ii) 06 ∂s1βκ(s)6 C p max((s1+ κ)
p−1, s2+ κ) and 06 ∂s2βκ(s)6 C p(s2+ κ)

q−1, with C p a positive
constant.

The function Bκ belongs to C∞(Rm1+m2), and for any ξ = (ζ, η) ∈ Rm1+m2 there exists a positive
τκ = τκ(|ζ |, |η|) such that for ω = (ω1, ω2) ∈ Rm1+m2 we have

(iii) 〈Hess(Bκ)(ξ)ω, ω〉> 1
2γ (p)(τκ |ω1|

2
+ τ−1

κ |ω2|
2).

Moreover, there is a continuous function Eκ : Rm1+m2 → R for which

(iv) 〈(∇Bκ)(ξ), ξ〉> 1
2γ (p)(τκ |ζ |

2
+ τ−1

κ |η|
2)− κEκ(ξ),

(v) |Eκ(ξ)| ≤ Cm,p(|ζ |
p−1
+ |η| + |η|q−1

+ κq−1).

Proof (sketch). Let τ = τ(|ζ |, |η|) be the function from [Carbonaro and Dragičević 2013, Theorem 3]
and define τκ = τ ∗Rd+1 ψκ . With exactly this τκ , items (i), (ii), and (iii) were proved in [Mauceri and
Spinelli 2014, Proposition 6.3].

Let

Eκ(ξ)=−
∫

Rm1+m2
〈∇B(ξ − κs), s〉ψκ(s) ds, ξ ∈ Rm1+m2;

see [Dragičević and Volberg 2012, (2.10)]. Item (iv) (with these τκ and Eκ ) follows from [Dragičević
and Volberg 2012, Theorem 4(iii′)], together with the observation from [Carbonaro and Dragičević 2013;
Dragičević and Volberg 2012] that

(τ ∗ψκ)(ξ)(τ
−1
∗ψκ)(ξ)≥

(∫
Rd+1

(τ (y)ψκ(x − y))1/2(τ−1(y)ψκ(x − y))1/2 dy
)1/2

= 1.
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Item (v) is proved in [Dragičević and Volberg 2012, p. 207]. Note that, our Bellman function Bκ coincides
with − 1

2 Qκ from that paper (when Qκ is restricted to real arguments).
We remark that in [Dragičević and Volberg 2012, Theorem 4 (iii′)] a stronger statement is proved with

an additional negative term −Bκ(ξ) on the left-hand side of (iv). �

4.2. Proof of Theorem 3. Define u : X × (0,∞)→ R×Rd by

u = u(x, t)= (Pt 5 f (x), Qt g(x))=
(
Pt 5 f (x), Q1

t g1(x), . . . , Qd
t gd(x)

)
.

Assume first that p ≥ 2 and set

bκ = Bκ ◦ u : X × (0,∞)→ [0,∞).

Here Bκ = Bκ,d,p is the Bellman function from Proposition 4 with m1 = 1 and m2 = d. For each
i = 1, . . . , d , we fix a sequence {σ n

i }n∈N which converges to σi , and a sequence {6n
i }n∈N which converges

to 6i . We also impose that σi < σ
n
i <6

n
i <6i for i = 1, . . . , d, n ∈ N. Defining

Xn
i = [σ

n
i , 6

n
i ] and Xn = Xn

1 × · · ·× Xn
d ,

where n ∈N, we see that {Xn}n∈N is an increasing family of compact subsets of X such that X =
⋃

n Xn .
We shall estimate the integral

I (n, ε) :=
∫
∞

0

∫
Xn

(∂2
t − L̃)(bκ(n))(x, t) dµ(x) te−εt dt (4-1)

from below and above and then, first let n→∞ and then ε→ 0+. Here κ(n) is a small quantity depending
on n which will be determined in the proof. Since Xn is compact, f ∈ D and gi ∈ Di , i = 1, . . . , d,
the integral (4-1) is in fact absolutely convergent. In what follows we will often briefly write κ instead
of κ(n).

The lower estimate of (4-1) for p ≥ 2 . The key result here is Proposition 5 below. Its proof hinges on
the assumption (A1).

Proposition 5. For x ∈ X and t > 0 it holds that

((∂2
t − L̃)bκ)(x, t)> γ |F(x, t)|∗ |G(x, t)|∗− κ r(x)Eκ(u(x, t)). (4-2)

Proof. Set d0 := ∂t . To justify (4-2) we shall need the pointwise equality

(∂2
t − L̃)bκ = r 〈∇Bκ(u), u〉+

d∑
i=1

vi · (∂ηi Bκ(u) · Qi
t gi )+

d∑
i=0

〈
Hess(Bκ)(di u), di u

〉
. (4-3)

We first we focus on proving (4-3).
From the chain rule we have di bκ = pi 〈∇Bκ(u), ∂xi u〉. Moreover, a computation shows that, for

i = 1, . . . , d ,

d∗i =−pi∂xi − pi
w′i

wi
− p′i and d∗i di =−p2

i ∂
2
xi
−

(
pi
w′i

wi
+ 2p′i

)
pi∂xi .
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Consequently, applying once again the chain rule we obtain for i = 0, . . . , d,

d∗i di bκ =−pi∂xi (pi 〈∇Bκ(u), ∂xi u〉)−
(

pi
w′i

wi
+ p′i

)
pi 〈∇Bκ(u), ∂xi u〉

= −p2
i ∂xi (〈∇Bκ(u), ∂xi u〉)− pi p′i 〈∇Bκ(u), ∂xi u〉−

(
pi
w′i

wi
+ p′i

)
pi 〈∇Bκ(u), ∂xi u〉

=

〈
∇Bκ(u),−p2

i ∂
2
xi

u−
(

pi
w′i

wi
+ 2p′i

)
pi∂xi u

〉
− p2

i
〈
Hess(Bκ)(∂xi u), ∂xi u

〉
=
〈
∇Bκ(u), d∗i di u

〉
−
〈
Hess(Bκ)(di u), di u

〉
.

Now, summing the above formula in i = 0, . . . , d, we obtain

(d2
0− L̃)bκ =

〈
∇Bκ(u), (d2

0− L̃)u
〉
+

d∑
i=0

〈
Hess(Bκ)(u)(di u), di u

〉
. (4-4)

The formula (4-4) implies (4-3). Indeed we have

(∂2
t − L)u =

(
(∂2

t − L)Pt f, (∂2
t − L)Qt g

)
,

where
(∂2

t − L)Pt f = 0

and
(∂2

t − L)Qt g =
(
(∂2

t − L)Q1
t g1, . . . , (∂

2
t − L)Qd

t gd
)
.

Moreover,
(∂2

t − L)Qi
t gi = (∂

2
t −Mi )Qi

t gi + vi · Qi
t gi = vi · Qi

t gi ,

and using (4-4) the equation (4-3) follows.
Having demonstrated (4-3) we pass to the proof of (4-2). Proposition 4(ii) implies (∂ηi Bκ(u)·Qi

t gi )≥ 0.
Thus (4-3) together with the assumption (A1) produce

(∂2
t − L̃)bκ > r 〈∇Bκ(u), u〉+

d∑
i=0

〈
Hess(Bκ)(di u), di u

〉
. (4-5)

Finally, (4-2) is a consequence of (4-5), items (iii) and (iv) from Proposition 4, and the inequality between
the arithmetic and geometric mean. �

Coming back to the proof of the lower estimate in (4-1) we now take {κ(n)}n∈N such that |κ(n)|6 1,
limn κ(n)= 0 and

|κ(n)|1/2
∫

Xn

|r(x)Eκ(n)(u(x, t))| dµ(x)6 1. (4-6)

To see that such a sequence exists we use Proposition 4(v) and the fact that Pt f ∈ D and Qi
t gi ∈ Di

(hence also Pt f ∈ C∞(X) and Qi
t gi ∈ C∞(X)). Next, (4-2), together with (4-6), leads to

lim inf
n→∞

I (n, ε)≥ γ
∫
∞

0

∫
X
|F(x, t)|∗ |G(x, t)|∗ dµ(x) te−εt dt,
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and, consequently, by the monotone convergence theorem

lim inf
ε→0+

lim inf
n→∞

I (n, ε)≥ γ (p)
∫
∞

0

∫
X
|F(x, t)|∗ |G(x, t)|∗ dµ(x) t dt. (4-7)

This is our lower estimate of (4-1).

The upper estimate of (4-1) for p ≥ 2 . The main ingredients here are the technical assumptions (T2)
and (T3). We split the integral in (4-1) as

I (n, ε)= I1(n, ε)− I2(n, ε)

:=

∫
∞

0

∫
Xn

∂2
t (bκ(n))(x, t) dµ(x) te−εt dt −

∫
∞

0

∫
Xn

L̃(bκ(n))(x, t) dµ(x) te−εt dt.

First we prove that

lim
n→∞

I2(n, ε)= 0. (4-8)

To see this we recall that L̃ =
∑d

i=1 d
∗

i di with di given by (2-4) and d∗i being the formal adjoint of di

on L2. Then,

I2(n, ε)=
d∑

i=1

I i
2(n, ε) :=

d∑
i=1

∫
∞

0

∫
Xn

(d∗i di )(bκ(n))(x, t) dµ(x) te−εt dt,

and it is enough to prove that each of the integrals I i
2(n, ε) goes to 0 as n→∞. As the reasoning is

symmetric in i = 1, . . . , d , we present it only for I 1
2 (n, ε). Define

X (1)
= X2× · · ·× Xd , x (1) = (x2, . . . , xd), and µ(1) = µ2⊗ · · ·⊗µd .

Formula (2-5) together with integration by parts in the x1-variable produces

I 1
2 (n, ε)=

∫
∞

0

∫
X (1)

(
(p2

1w1 ∂x1bκ)(6n
1 , x (1))− (p2

1w1 ∂x1bκ)(σ n
1 , x (1))

)
dµ(1)(x1) te−εt dt.

Call zn
1 either of the quantities σ n

1 or 6n
1 . Then the chain rule gives

(p2
1w1 ∂x1bκ)(zn

1, x (1))= p2
1(z

n
1)w1(zn

1)∂x1 Pt f (zn
1, x (1)) ∂ζ Bκ

(
Pt f (zn

1, x (1)), Qt g(zn
1, x (1))

)
+ p2

1(z
n
1)w1(zn

1)
〈
∂x1 Qt g(zn

1, x (1)),∇ηBκ
(
Pt f (zn

1, x (1)), Qt g(zn
1, x (1))

)〉
. (4-9)

Since f ∈ D and gi ∈ Di we have that Pt f ∈ D and Qt g ∈ D1⊗ · · ·⊗Dd . Recall that ϕk is defined by
(2-2), while δiϕk , i = 1, . . . , d , are given by (2-3). Now, Proposition 4(ii) implies

|∇ζ,ηBκ(ζ, η)|6 C p,q(|ζ |
p−1
+ |η|q−1

+ |η| + κq−1). (4-10)

Therefore, since |κ(n)|6 1, a calculation based on (4-9) together with the assumptions (T2), (T3), and
Hölder’s inequality produces limn I 1

2 (n, ε)= 0.
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Now we focus on I1(n, ε). Since f ∈ D, gi ∈ Di , i = 1, . . . , d, Bκ ∈ C∞(Rd+1) and we integrate
over x ∈ Xn , the double integral is absolutely convergent. Thus Fubini’s theorem gives

I1(n, ε)=
∫

Xn

∫
∞

0
∂2

t (bκ(n))(x, t) te−εt dt dµ(x).

Integrating by parts in the inner integral twice we obtain

I1(n,ε)=−
∫

Xn

∫
∞

0
∂t(bκ(n))(x, t)(1−εt)e−εt dt dµ(x)

=

∫
Xn

bκ(n)(x,0)dµ(x)+ε2
∫

Xn

∫
∞

0
bκ(n)(x, t) te−εt dt dµ(x)−2ε

∫
Xn

∫
∞

0
bκ(n)(x, t)e−εt dt dµ(x)

6
∫

Xn

bκ(n)(x,0)dµ(x)+ε2
∫

Xn

∫
∞

0
bκ(n)(x, t) te−εt dt dµ(x)

:= I 1
1 (n)+I 2

1 (n,ε).

In the first two equalities above we neglected the boundary terms by using the chain rule together with
(4-10).

First we treat I 2
1 (n, ε). Proposition 4(i) gives

I 2
1 (n, ε)6 ε

2C p

∫
Xn

∫
∞

0

(
|Pt5 f (x)|p + |Qt g(x)|q +max(κ(n)p, κ(n)q)

)
te−εt dt dµ(x).

Take κ(n) which satisfies (4-6) and

max(κ(n)p−1/2, κ(n)q−1/2) µ(Xn)6 1. (4-11)

Then, since f ∈ D and gi ∈ Di , i = 1, . . . , d , we have

lim sup
n→∞

I 2
1 (n, ε)6 ε

2C p

∫
X

∫
∞

0
|Pt5 f (x)|p + |Qt g(x)|q t dt dµ(x)6 C(p, f, g) ε2,

and, consequently,

lim sup
ε→0+

lim sup
n→∞

I 2
1 (n, ε)= 0. (4-12)

Coming back to I 1
1 (n) we use Proposition 4(i) to estimate

I 1
1 (n)6

1
2(1+ γ )

∫
Xn

(
|5 f (x)| + κ(n)

)p dµ(x)+ 1
2(1+ γ )

∫
Xn

(
|g(x)| + κ(n)

)q dµ(x).

Now for each ε > 0 we split the first integral onto
∫
|κ(n)|6ε|5 f (x)| and

∫
|κ(n)|>ε|5 f (x)| and the second

integral onto
∫
|κ(n)|6ε|g(x)| and

∫
|κ(n)|>ε|g(x)|. Then we obtain

I 1
1 (n)6

1
2(1+ γ )

(
(1+ ε)p

‖5 f ‖p
p + (1+ ε)

q
‖g‖qq

)
+

1
2(1+ γ )

(
(1+ ε−1)pκ(n)pµ(Xn)+ (1+ ε−1)qκ(n)qµ(Xn)

)
.
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Since κ(n) satisfies (4-6) and (4-11) we arrive at

lim sup
ε→0+

lim sup
n→∞

I 1
1 (n)6

1
2(1+ γ )

(
‖5 f ‖p

p +‖g‖
q
q
)
.

Recalling (4-8) and (4-12) we thus proved

lim sup
ε→0+

lim sup
n→∞

I (n, ε)6 1
2(1+ γ (p))

(
‖5 f ‖p

p +‖g‖
q
q
)
, (4-13)

which is the upper estimate of (4-1) we need.

Completion of the proof of the bilinear embedding. Consider first p≥ 2. Combining the lower estimate
(4-7) and the upper estimate (4-13) we obtain∫

∞

0

∫
X
|F(x, t)|∗ |G(x, t)|∗ dµ(x) t dt 6

1+ γ (p)
2γ (p)

(
‖5 f ‖p

p +‖g‖
q
q
)
. (4-14)

Finally, a polarization argument finishes the proof. More precisely, for s > 0 we replace f with s f and g
with s−1 g on both sides of (4-14). Then, the left-hand side is unchanged, while minimizing the right-hand
side over s > 0 we obtain∫

∞

0

∫
X
|F(x, t)|∗ |G(x, t)|∗ dµ(x) t dt 6

1+ γ (p)
2γ (p)

((
p
q

)1/p

+

(
q
p

)1/q)
‖5 f ‖p ‖g‖q . (4-15)

Using the above inequality, a calculation leads to (3-5). We sketch the argument below.
Note that for p ≥ 2 we have p∗ = p and recall that γ (p)= 1

8q(q− 1). Thus, for 1< q ≤ 2 we obtain

1+ γ (p)
2γ (p)

((
p
q

)1/p

+

(
q
p

)1/q)
=

1
2(8+ q(q − 1))(q − 1)1/q−1(p− 1)

≤ (q + 3)(q − 1)1/q−1(p∗− 1). (4-16)

Setting s = q − 1 we need to maximize the function H(s) := (s+ 4)s−s/(s+1) for s ∈ (0, 1]. Let

h(s)= log(s+ 4)−
s log s
s+ 1

,

so that H(s)= eh(s). Then we have

h′(s)=
1

s+ 4
−

log s
(s+ 1)2

−
1

s+ 1
and h′′(s)=−

1
(s+ 4)2

+
2 log s
(s+ 1)3

+
s− 1

s(s+ 1)2
;

consequently, h′′(s) < 0 for s ∈ (0, 1). Observe that h′
( 7

20

)
> 0 and h′

( 2
5

)
< 0. Therefore h′ has a unique

zero inside the interval
( 7

20 ,
2
5

)
and h attains a global maximum there. Obviously, the same is true for

H = eh. Now it is easy to see that

max
7/20≤s≤2/5

H(s) < 22
5 ·
( 7

20

)−2/7
< 6,

and thus also sup0<s≤1 H(s) < 6. Hence, coming back to (4-16) we obtain

1+ γ (p)
2γ (p)

((
p
q

)1/p

+

(
q
p

)1/q)
≤ 6 (p∗− 1).

In view of (4-15) this implies (3-5) and completes the proof of Theorem 3 for p ≥ 2.
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The proof of Theorem 3 for p ≤ 2 proceeds analogously once we switch p with q and Pt f with Qt g
in the definition of bκ . Namely, we consider b̃κ(x, t)= B̃κ(Qt g, Pt f ), where B̃κ(ζ, η)= Bκ,q,(d,1)(ζ, η),
ζ ∈Rd, η ∈R. Here Bκ,q,(d,1) is the function from Proposition 4 with m1= d and m2= 1. Then we repeat
the argument used for p≥ 2. The function B̃κ satisfies items (iii)–(v) of Proposition 4 with p replaced by q .
Therefore both the lower estimate (4-7) and the upper estimate (4-13) hold with γ (p) replaced by γ (q).

5. Examples

Throughout this section we apply Theorem 1 to the examples of orthogonal systems considered in [Nowak
and Stempak 2006, Section 7]. This is possible for all of these systems except for the Fourier–Bessel
expansions [Nowak and Stempak 2006, Section 7.8]. In this case the condition (T2) fails. Despite this
failure we think that it might be possible to treat also the Fourier–Bessel expansions by the methods of the
present paper. It might be also interesting to try to apply the methods of our paper to the Riesz transforms
considered in [Nowak and Sjögren 2012] (in the case of Jacobi trigonometric polynomial expansions).

In all of the examples we present, for more details the reader is kindly referred to [Nowak and Stempak
2006, Sections 7.1–7.7]. The formulas for vi and r =

∑d
i=1 ri in the examples below follow directly from

(2-1) and (2-6). Recall that

µ= µ1⊗ · · ·⊗µd , X = X1× · · ·× Xd , L p
= L p(X, µ), ‖ · ‖p = ‖ · ‖L p ,

and

p∗ =max
(

p,
p

p− 1

)
.

5.1. Ornstein–Uhlenbeck operator: Hermite polynomial expansions. Here we consider

pi = 1, qi = 0, ai = 0, wi (xi )= π
−1/2e−x2

i, dµi (xi )= wi (xi ) dxi

on X i = R. Then

δi = di = ∂xi , δ∗i =−∂xi + 2xi , vi = [δi , δ
∗

i ] = 2, r = 0, (5-1)

and

L =
d∑

i=1

L i =−1+ 2〈x,∇〉

is the Ornstein–Uhlenbeck operator on X = Rd. The operator L is essentially self-adjoint on C∞c (R
d)

with the self-adjoint extension given by

L f =
∑
k∈Nd

|k|〈 f, H̃k〉L2 H̃k .

In the formula above |k| = k1+ · · · + kd , the symbol L2 stands for L2
= L2(Rd, µ), while {H̃k}k∈Nd is

the system of L2 normalized Hermite polynomials; see [Nowak and Stempak 2006, Section 7.1; Lebedev
1972, p. 60]. In this section we take

ϕk = H̃k, k ∈ Nd.
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Note that µ is a probability measure in this setting. The projection 5 becomes

5 f =
∑

k∈Nd, k 6=0

〈 f, H̃k〉L2 H̃k, f ∈ L2.

Then
(I −5) f = 〈 f, H̃0〉L2 H̃0,

and, since H̃0 = 1, the operator I −5 is the projection onto the constants given by

(I −5) f (x)=
∫

X
f (y) dµ(y), x ∈ X.

Hence, by Holder’s inequality ‖(I −5) f ‖p 6 ‖ f ‖p, and, consequently,

‖5 f ‖p 6 2‖ f ‖p, 16 p 6∞. (5-2)

Next
δi H̃k =

√
2kj H̃k−ej , (5-3)

where, by convention H̃k−ej = 0 if kj = 0. This convention is also used for the examples presented in the
next sections. The Riesz transform is defined by

Ri f =
∑

k∈Nd, k 6=0

(
kj

|k|

)1/2

〈 f, H̃k〉L2 H̃k−ei , f ∈ L2.

Dimension-free estimates for the vector R f = (R1 f, . . . , Rd f ) were proved by Meyer [1984]; see
also [Gundy 1986; Gutiérrez 1994; Pisier 1988] for different proofs. Later Dragičević and Volberg [2006,
Corollary 0.4] found a proof which uses the Bellman function method. The best result in terms of the
size of the constants is due to Arcozzi [1998, Corollary 2.4] who proved that ‖R f ‖p 6 2(p∗− 1)‖ f ‖p,
1< p <∞. An application of Theorem 1 produces similar, though weaker, bounds.

Theorem 6. Fix 1< p <∞. Then, for f ∈ L p such that
∫

X f (y) dµ(y)= 0, we have

‖R f ‖p 6 24(p∗− 1)‖ f ‖p. (5-4)

Remark. Using (5-2) we may extend the bound (5-4) to all f ∈ L p with 24 being replaced by 48.

Proof. We apply Theorem 1. In order to do so we need to check that its assumptions are satisfied.
By (5-1) we see that (A1) and (A2) (with K = 0) hold. Condition (T1) is proved by an easy calculation

based on integration by parts. The assumption (T2) is also straightforward. Finally, (T3) follows from
Lemma 1 and (5-3).

Now, if
∫

X f (y) dµ(y)= 0 then 5 f = f . Thus, an application of Theorem 1 completes the proof. �

5.2. Laguerre operator: Laguerre polynomial expansions. Here, for a parameter α ∈ (−1,∞)d, we
consider

pi =
√

xi , qi = 0, ai = 0, wi (xi )=
1

0(αi + 1)
xαi

i e−xi dxi , dµi (xi )= wi (xi ) dxi
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on X i = (0,∞). Then δi = di =
√

xi ∂xi , and thus

δ∗i =−
√

xi ∂xi −
αi +

1
2

√
xi
+
√

xi , vi = [δi , δ
∗

i ] =
αi +

1
2 + xi

2xi
, r = 0. (5-5)

In this case

L =
d∑

i=1

L i =

d∑
i=1

−xi ∂
2
xi
− (αi + 1− xi ) ∂xi

is the Laguerre operator on X = (0,∞)d. It is symmetric on C∞c ((0,∞)
d) and has a self-adjoint extension

L f =
∑
k∈Nd

|k|〈 f, L̃αk 〉L2 L̃αk .

Here L2
= L2((0,∞)d , µ), while {L̃αk }k∈Nd is the system of L2 normalized Laguerre polynomials; see

[Nowak and Stempak 2006, Section 7.2; Lebedev 1972, p. 76]. These Laguerre polynomials are our
functions ϕk in this section; namely

ϕk = L̃αk , k ∈ Nd.

Next we have
δi L̃αk =

√
kj
√

xi L̃α+ei
k−ei

, (5-6)

while the projection 5 becomes

5 f =
∑

k∈Nd, k 6=0

〈 f, L̃αk 〉L2 L̃αk , f ∈ L2.

A repetition of the argument from the previous section shows that5 f = f if and only if
∫

X f (y) dµ(y)=0
and

‖5 f ‖p 6 2‖ f ‖p, 16 p 6∞. (5-7)

The Riesz transform is then given by

Ri f =
∑

k∈Nd ,k 6=0

(
kj

|k|

)1/2

〈 f, L̃αk 〉L2
√

xi L̃α+ei
k−ei

, f ∈ L2.

Dimension-free bounds for single Riesz transforms Ri were first studied by Gutiérrez, Incognito and
Torrea [Gutiérrez et al. 2001] for half-integer multi-indices, and generalized† by Nowak [2004] to multi-
indices α ∈

[
−

1
2 ,∞

)d. Moreover in [Graczyk et al. 2005], Graczyk, Loeb, López, Nowak, and Urbina
proved dimension-free estimates on L p for the vector of Riesz-Laguerre transforms and half-integer
multi-indices α. Recently, the author [Wróbel 2014, Theorem 4.1(b)] obtained dimension-free bounds on
L p for scalar Riesz transforms and general parameters α ∈ (−1,∞)d, while Mauceri and Spinelli [2015,
Theorem 5.2] proved a dimension-free bound for the vectorial Riesz transforms R f = (R1 f, . . . , Rd f ),
and α ∈

[
−

1
2 ,∞

)d. All the bounds mentioned in this paragraph are also independent of the parameter α

†In [Nowak 2004, Theorem 13] the author also states an estimate on L p for the vector of Riesz-Laguerre transforms that is
dimension-free for certain values of α. Unfortunately this result is not properly proved there (Nowak, personal communication,
2017). This is due to a problem in the proof of the vectorial g-function bound from [Nowak 2004, Theorem 7(b)].
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(appropriately restricted). Moreover, the estimate from [Mauceri and Spinelli 2015, Theorem 5.2] is also
linear in p∗.

By using Theorem 1 we obtain a result which coincides with [Mauceri and Spinelli 2015, Theorem 5.2]
in the case of Riesz transforms acting on functions.

Theorem 7. Fix α ∈
[
−

1
2 ,∞

)d and 1< p <∞. Then, for f ∈ L p which satisfy
∫

X f (y) dµ(y)= 0, we
have

‖R f ‖p 6 24(p∗− 1)‖ f ‖p.

Remark. By (5-7) we have the same bound for general f ∈ L p with the constant being twice as large.

Proof. We are going to apply Theorem 1, so we need to verify its assumptions.
By (5-5) we see that if α ∈

[
−

1
2 ,∞

)d, then (A1) and (A2) (with K = 0) are satisfied. Moreover, the
assumptions (T1) and (T2) follow from a direct calculation. Next, for such α the condition (T3) can be
deduced from Lemma 1 together with (5-6).

Now, if
∫

X f (y) dµ(y) = 0 then 5 f = f . Therefore, using Theorem 1 we complete the proof of
Theorem 7. �

5.3. Jacobi operator: Jacobi polynomial expansions. In this section for parameters α, β ∈ (−1,∞)d

we consider

pi =
√

1− x2
i , qi = 0, ai = 0,

wi (xi )=
1

C(αi , βi )
(1− xi )

αi (1+ xi )
βi dxi , dµi (xi )= wi (xi ) dxi , X i = (−1, 1),

where C(αi , βi ) is such that µi (X i )= 1. Then δi = di =
√

1− x2
i ∂xi , and

δ∗i =−
√

1− x2
i ∂xi +

(
αi +

1
2

)√1+ xi

1− xi
−
(
βi +

1
2

)√1− xi

1+ xi
,

vi = [δi , δ
∗

i ] =
αi +

1
2

1− xi
+
βi +

1
2

1+ xi
, r = 0.

(5-8)

Here

L =
d∑

i=1

L i =

d∑
i=1

−(1− x2
i )∂

2
xi
−
(
βi −αi − (αi +βi + 2)xi

)
∂xi

is the Jacobi operator on X = (−1, 1)d. Let L2
= L2((−1, 1)d, µ), and denote by {P̃α,βk }k∈Nd the system of

L2 normalized Jacobi polynomials; see [Nowak and Stempak 2006, Section 7.1; Szegő 1975, Chapter 4].
These Jacobi polynomials are our functions ϕk in this section; namely

ϕk = P̃α,βk , k ∈ N.

The Jacobi operator is symmetric on C∞c ((−1, 1)d) and has a self-adjoint extension

L f =
∑
k∈Nd

λk〈 f, P̃α,βk 〉L2 P̃α,βk ,
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where λk =
∑d

i=1 λ
i
ki

with λi
ki
= ki (ki +αi +βi +1), i = 1, . . . , d . Similarly to the previous two sections

the projection 5 is

5 f =
∑

k∈Nd, k 6=0

〈 f, P̃α,βk 〉L2 P̃α,βk , f ∈ L2.

Moreover, 5 f = f precisely when
∫

X f (y) dµ(y)= 0 and we have

‖5 f ‖p 6 2‖ f ‖p, 16 p 6∞. (5-9)

The action of δi on Jacobi polynomials is given by

δi P̃α,βk =

√
ki (ki +αi +βi + 1)

√
1− x2

i P̃α+ei ,β+ei
k−ei

, (5-10)

and the Riesz transform becomes

Ri f =
∑

k∈Nd, k 6=0

(
λi

ki

λk

)1/2

〈 f, P̃α,βk 〉L2

√
1− x2

i P̃α+ei ,β+ei
k−ei

, f ∈ L2.

Dimension- and parameter-free estimates for single Riesz transforms Ri are due to Nowak and Sjögren
[2008], who proved them for α, β ∈

[
−

1
2 ,∞

)d.
An application of Theorem 1 generalizes [Nowak and Sjögren 2008, Theorem 5.1] to the vectorial

Riesz transforms R f = (R1 f, . . . , Rd f ). This result is new according to our knowledge. Moreover, we
obtain an explicit estimate which is linear in p∗.

Theorem 8. Fix α, β ∈
[
−

1
2 ,∞

)d and 1< p <∞. Then, for f ∈ L p which satisfy
∫

X f (y) dµ(y)= 0,
we have

‖R f ‖p 6 24 (p∗− 1)‖ f ‖p, f ∈ L p. (5-11)

Remark. As in the previous two sections (5-11) holds for all f ∈ L p with 48 (p∗ − 1) in place of
24 (p∗− 1). This follows from (5-9).

Proof. We are going to apply Theorem 1, so we need to verify its assumptions for parameters α, β ∈[
−

1
2 ,∞

)d.
By (5-8) we see that if α, β ∈

[
−

1
2 ,∞

)d, then (A1) and (A2) (with K = 0) are satisfied. Similarly,
using (5-10) one can see that, for such α and β, the conditions (T1) and (T2) also hold. The assumption
(T3) follows from Lemma 1 together with (5-10).

Now, since
∫

X f (y) dµ(y)= 0 implies 5 f = f , an application of Theorem 1 completes the proof of
Theorem 8. �

5.4. Harmonic oscillator: Hermite function expansions. Here we take

pi = 1, qi = xi , ai = 1, wi (xi )= 1, dµi (xi )= dxi , X i = R,

so that

δi = ∂xi + xi , di = ∂xi , δ∗i =−∂xi + xi , vi = [δi , δ
∗

i ] = 2, r(x)= |x |2, (5-12)
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and L is the harmonic oscillator

L =
d∑

i=1

L i =−1+ |x |2.

It is well known that L is essentially self-adjoint on C∞c (R
d) with the self-adjoint extension given by

L f =
∑
k∈Nd

(2|k| + d)〈 f, hk〉L2hk .

Here L2
= L2(Rd, dx), while {hk}k∈Nd is the system of L2 normalized Hermite functions; see [Nowak

and Stempak 2006, Section 7.4]. The functions hk are our ϕk in this section. They are of the form
hk = hk1 ⊗ · · ·⊗ hkd , where

hki (xi )= H̃ki (xi )e−x2
i /2, xi ∈ R, (5-13)

with H̃ki being the Hermite polynomial from Section 5.1. Note that as 0 is not an L2 eigenvalue of L , the
projection 5 equals the identity operator.

Next
δi hk =

√
2kj hk−ej , (5-14)

and thus the Riesz transform is

Ri f =
∑

k∈Nd, k 6=0

(
2kj

2|k| + d

)1/2

〈 f, hk〉L2hk−ei , f ∈ L2.

Here dimension-free bounds for the vector of Riesz transforms can be deduced, by means of transference,
from the paper of Coulhon, Müller, and Zienkiewicz [Coulhon et al. 1996]; see also [Harboure et al.
2004; Lust-Piquard 2006] for different proofs. Moreover, a dimension-free bound for the vector of Riesz
transforms which is additionally linear in p∗ was proved in [Dragičević and Volberg 2012, Proposition 4].

Using Theorem 1 we are able to obtain a more explicit estimate for the vector R f than in [Dragičević
and Volberg 2012]. However, contrary to that paper, our method says nothing about the vector of “adjoint”
transforms R∗ f = (δ∗1 L−1/2 f, . . . , δ∗d L−1/2 f ).

Theorem 9. For 1< p <∞ we have

‖R f ‖p 6 48(p∗− 1)‖ f ‖p, f ∈ L p.

Proof. We apply Theorem 1. In order to do so we need to check that its assumptions are satisfied.
The equation (5-12) gives (A1) and (A2) with K =1. Condition (T1) is straightforward. The assumption

(T2) holds since, by (5-13), Hermite functions hki vanish rapidly at ±∞. Finally, (T3) follows from
(5-14) and the (well-known) density of Hermite functions in L p, 16 p <∞.

Thus, an application of Theorem 1 is justified and the proof of Theorem 9 is completed. �

5.5. Laguerre operator: Laguerre function expansions of Hermite type. For a parameter α∈ (−1,∞)d

we consider

pi = 1, qi = xi −
αi +

1
2

xi
, ai = 1, wi (xi )= 1, dµi (xi )= dxi , X i = (0,∞),



768 BŁAŻEJ WRÓBEL

so that

δi = ∂xi + xi −
αi +

1
2

xi
, di = ∂xi , δ∗i =−∂xi + xi −

αi +
1
2

xi
,

vi = [δi , δ
∗

i ] = 2, r(x)= |x |2+
d∑

i=1

α2
i −

1
4

x2
i

.

(5-15)

Here L is the Laguerre operator

L =
d∑

i=1

L i =−1+ |x |2+
d∑

i=1

α2
i −

1
4

x2
i

.

Then L is symmetric on C∞c (R
d) and has a self-adjoint extension given by

L f =
∑
k∈Nd

(4|k| + 2d + 2|α|)〈 f, ϕαk 〉L2ϕαk .

In the above formula we set |k| = k1+· · ·+kd and |α| = α1+· · ·+αd ; note that |α| may be negative. By
L2 we mean L2((0,∞)d, dx), while {ϕαk }k∈Nd stands for the system of L2 normalized Laguerre functions
of Hermite type; see [Nowak and Stempak 2006, Section 7.5]. The functions ϕαk are the tensor products
ϕαk = ϕ

α1
k1
⊗ · · ·⊗ϕ

αd
kd

with

ϕ
αi
ki
(xi )=

√
2 L̃αi

ki
(x2

i ) xαi+1/2
i e−x2

i /2, xi > 0, (5-16)

and L̃αi
ki

the Laguerre polynomials from Section 5.2. In this section we take

ϕk = ϕ
α
k .

As 0 is not an L2 eigenvalue of L , the projection 5 equals the identity operator.
Next

δiϕ
α
k =−2

√
kj ϕ

α+ej
k−ej

, (5-17)

and thus the Riesz transform is

Ri f =−
∑

k∈Nd, k 6=0

(
4ki

4|k| + 2|α| + 2d

)1/2

〈 f, ϕαk 〉L2ϕ
α+ej
k−ej

, f ∈ L2.

Dimension-free bounds for single Riesz transforms Ri were obtained by Stempak and the author [Stempak
and Wróbel 2013, Theorem 5.1] for a certain restricted range of the parameter α.

In this section, for α ∈
( 1

2 ,∞
)d we define

C(α)= max
i=1,...,d

αi +
1
2

αi −
1
2

.

By using Theorem 1 we obtain the following strengthening of [Stempak and Wróbel 2013, Theorem 5.1]
in the case α ∈

( 1
2 ,∞

)d.
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Theorem 10. Let α ∈
( 1

2 ,∞
)d. Then, for 1< p <∞, we have

‖R f ‖p 6 24(1+
√

C(α))(p∗− 1)‖ f ‖p, f ∈ L p.

Proof. We apply Theorem 1. In order to do so we need to check that its assumptions are satisfied.
The formula (5-15) gives (A1) and (A2) for α ∈

(1
2 ,∞

)d with K = C(α). Conditions (T1) and (T2)
follow from (5-16) and (5-17). Finally, (T3) follows from [Nowak 2003, Lemma 5.2] and (5-17).

Thus, an application of Theorem 1 is justified and the proof of Theorem 10 is completed. �

5.6. Laguerre operator: Laguerre function expansions of convolution type. For a parameter α ∈
(−1,∞)d we consider

pi = 1, qi = xi , ai = 2αi + 2,

wi (xi )= x2αi+1
i , dµi (xi )= wi (xi ) dxi , X i = (0,∞),

so that

δi = ∂xi + xi , di = ∂xi , δ∗i =−∂xi + xi −
2αi + 1

xi
,

vi = [δi , δ
∗

i ] = 2+
2α+ 1

x2
i

, r(x)= |x |2.
(5-18)

Here L is the Laguerre operator

L =
d∑

i=1

L i =−1+ |x |2−
d∑

i=1

2αi + 1
xi

∂xi .

Then L is symmetric on C∞c ((0,∞)
d) and has a self-adjoint extension given by

L f =
∑
k∈Nd

(4|k| + 2d + 2|α|)〈 f, `αk 〉L2`αk .

Here L2
= L2((0,∞)d, w(x)dx), while {`αk }k∈Nd is the system of L2 normalized Laguerre functions

of convolution type; see [Nowak and Stempak 2006, Section 7.6]. The functions `αk are of the form
`αk = `

α1
k1
⊗ · · ·⊗ `

αd
kd

with

`
αi
ki
(xi )=

√
2 L̃αi

ki
(x2

i ) e−x2
i /2, xi > 0, (5-19)

and L̃αi
ki

the Laguerre polynomials from Section 5.2. In this section we take

ϕk = `
α
k .

Also here, as 0 is not an L2 eigenvalue of L , the projection 5 equals the identity operator.
Next

δi`
α
k =−2

√
ki xi `

α+ei
k−ei

, (5-20)

and thus the Riesz transform is

Ri f =−
∑

k∈Nd, k 6=0

(
4ki

4|k| + 2|α| + 2d

)1/2

〈 f, `αk 〉L2`
α+ei
k−ei

, f ∈ L2.
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The boundedness of these Riesz transforms on L p was proved by Nowak and Stempak [2007, Theorem 3.4].
Later Nowak and Szarek [2012, Theorem 4.1] enlarged the range of admitted parameters α. In both of these
papers Calderón–Zygmund theory was used; thus the L p bounds depended on the dimension d . Applying
Theorem 1 we obtain a dimension-free bound for the vectorial Riesz transform R f = (R1 f, . . . , Rd f ).

Theorem 11. Let α ∈
[
−

1
2 ,∞

)d. Then, for 1< p <∞, we have

‖R f ‖p 6 48(p∗− 1)‖ f ‖p, f ∈ L p. (5-21)

Proof. A continuity argument based on (5-19) and (5-20) shows that it suffices to prove (5-21) for
α ∈

(
−

1
2 ,∞

)d. We are going to apply Theorem 1. In order to do so we need to check that its assumptions
are satisfied.

The formula (5-18) gives (A1) and (A2) with K = 1. Conditions (T1) and (T2) follow from (5-19) and
(5-20). It remains to prove (T3). For the space D this condition follows from [Nowak 2003, Lemma 4.3].
In the case of Di , i = 1, . . . , d , the assumption (T3) can be deduced from (T3) for D together with (5-20).

Thus, an application of Theorem 1 is justified and the proof of Theorem 11 is completed. �

5.7. Jacobi operator: Jacobi function expansions. For parameters α, β ∈ (−1,∞)d we consider

pi = 1, qi =−
1
4(2αi + 1) cot

( 1
2 xi
)
+

1
4(2βi + 1) tan

(1
2 xi
)
, ai =

1
4(αi +β1+ 1)2,

wi (xi )= 1, dµi (xi )= dxi , X i = (0, π),

so that

δi = ∂xi−
1
4(2αi+1)cot

( 1
2 xi
)
+

1
4(2βi+1) tan

( 1
2 xi
)
, di = ∂xi ,

δ∗i =−∂xi−
1
4(2αi+1)cot

(1
2 xi
)
+

1
4(2βi+1) tan

( 1
2 xi
)
, vi =[δi ,δ

∗

i ]=
2αi+1

8cos2
( 1

2 xi
)+ 2βi+1

8sin2(1
2 xi
) ,

r(x)=
d∑

i=1

1
16(2αi+1)2 cot2

( 1
2 xi
)
+

1
16(2βi+1)2 tan2( 1

2 xi
)
+

1
16

(
(αi+βi+1)2−(2αi+1)(2βi+1)

)
.

(5-22)

Here L is the Jacobi operator

L =
d∑

i=1

L i =−1+

d∑
i=1

(
4α2

i − 1

16 sin2( 1
2 xi
) + 4β2

i − 1

16 cos2
( 1

2 xi
)).

Then L is symmetric on C∞c ((0, π)
d) and has a self-adjoint extension given by

L f =
∑
k∈Nd

λk〈 f, φ
α,β

k 〉L2φ
α,β

k .

Here λk =
∑d

i=1 λ
i
ki

with λi
ki
=
(
ki +

1
2(αi + βi + 1)

)2, L2
= L2((0, π)d , dx), while {φα,βk }k∈Nd is the

system of L2 normalized Jacobi functions; see [Nowak and Stempak 2006, Section 7.7]. These Jacobi
functions have the tensor product form φ

α,β

k = φ
α1,β1
k1
⊗ · · ·⊗φ

αd ,βd
kd

with

φ
αi ,βi
ki

(xi )= 2(αi+βi+1)/2 P̃αi ,βi
ki

(cos xi )
(
sin
( 1

2 xi
))αi+1/2(cos

( 1
2 xi
))βi+1/2 (5-23)
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for xi ∈ (0, π), and P̃αi ,βi
ki

being the Jacobi polynomials from Section 5.3. In this section we take

ϕk = φ
α,β

k .

In the case when α, β ∈
[ 1

2 ,∞
)d, the L2 kernel of L is trivial, and thus the projection5 equals the identity

operator.
Next

δiφ
α,β

k =−
√

ki (ki +αi +βi + 1)φα+ei ,β+ei
k−ei

, (5-24)

and thus the Riesz transform is

Ri f =−
∑

k∈Nd, ki 6=0

(
ki (ki +αi +βi + 1)

λk

)1/2

〈 f, φα,βk 〉L2φ
α+ei ,β+ei
k−ei

, f ∈ L2.

In the case d = 1 the L p boundedness of these Riesz transforms was proved by Stempak [2007]. Using
Theorem 1 we obtain the following multidimensional bounds.

Theorem 12. Let α, β ∈
[ 1

2 ,∞
)d. Then, for 1< p <∞, we have

‖R f ‖p 6 48 (p∗− 1)‖ f ‖p, f ∈ L p.

Proof. A continuity argument based on (5-23) and (5-24) allows us to focus on α, β ∈
( 1

2 ,∞
)d. We

are going to apply Theorem 1 for such parameters α and β. In order to do so we need to check that its
assumptions are satisfied.

The formula (5-22) gives (A1) and (A2) (with K = 1). Conditions (T1) and (T2) follow from (5-23)
and (5-24), while (T3) can be deduced from the density of polynomials in C((−1, 1)) together with (5-23)
and (5-24).

Thus, an application of Theorem 1 is permitted and the proof of Theorem 12 is completed. �
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Ljubljana in November 2014. The author is greatly indebted to Oliver Dragičević for these discussions
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[Dragičević and Volberg 2012] O. Dragičević and A. Volberg, “Linear dimension-free estimates in the embedding theorem for
Schrödinger operators”, J. Lond. Math. Soc. (2) 85:1 (2012), 191–222. MR Zbl

[Duoandikoetxea and Rubio de Francia 1985] J. Duoandikoetxea and J. L. Rubio de Francia, “Estimations indépendantes de la
dimension pour les transformées de Riesz”, C. R. Acad. Sci. Paris Sér. I Math. 300:7 (1985), 193–196. MR Zbl

[Forzani et al. 2015] L. Forzani, E. Sasso, and R. Scotto, “L p boundedness of Riesz transforms for orthogonal polynomials in a
general context”, Studia Math. 231:1 (2015), 45–71. MR Zbl

[Graczyk et al. 2005] P. Graczyk, J.-J. Loeb, I. A. López P., A. Nowak, and W. O. Urbina R., “Higher order Riesz transforms,
fractional derivatives, and Sobolev spaces for Laguerre expansions”, J. Math. Pures Appl. (9) 84:3 (2005), 375–405. MR Zbl

[Gundy 1986] R. F. Gundy, “Sur les transformations de Riesz pour le semi-groupe d’Ornstein–Uhlenbeck”, C. R. Acad. Sci.
Paris Sér. I Math. 303:19 (1986), 967–970. MR Zbl

[Gutiérrez 1994] C. E. Gutiérrez, “On the Riesz transforms for Gaussian measures”, J. Funct. Anal. 120:1 (1994), 107–134.
MR Zbl

[Gutiérrez et al. 2001] C. E. Gutiérrez, A. Incognito, and J. L. Torrea, “Riesz transforms, g-functions, and multipliers for the
Laguerre semigroup”, Houston J. Math. 27:3 (2001), 579–592. MR Zbl

[Harboure et al. 2004] E. Harboure, L. de Rosa, C. Segovia, and J. L. Torrea, “L p-dimension free boundedness for Riesz
transforms associated to Hermite functions”, Math. Ann. 328:4 (2004), 653–682. MR Zbl

[Iwaniec and Martin 1996] T. Iwaniec and G. Martin, “Riesz transforms and related singular integrals”, J. Reine Angew. Math.
473 (1996), 25–57. MR Zbl

[Lebedev 1972] N. N. Lebedev, Special functions and their applications, Dover, New York, 1972. MR Zbl

[Lust-Piquard 2006] F. Lust-Piquard, “Dimension free estimates for Riesz transforms associated to the harmonic oscillator
on Rn”, Potential Anal. 24:1 (2006), 47–62. MR Zbl

http://dx.doi.org/10.2307/2000021
http://msp.org/idx/mr/816309
http://msp.org/idx/zbl/0591.60045
http://dx.doi.org/10.1215/S0012-7094-95-08020-X
http://dx.doi.org/10.1215/S0012-7094-95-08020-X
http://msp.org/idx/mr/1370109
http://msp.org/idx/zbl/0853.60040
http://www.numdam.org/item?id=AIF_1981__31_3_99_0
http://msp.org/idx/mr/638619
http://msp.org/idx/zbl/0437.42007
http://dx.doi.org/10.1214/aop/1176993220
http://msp.org/idx/mr/744226
http://msp.org/idx/zbl/0556.60021
http://dx.doi.org/10.4064/sm-91-1-79-83
http://msp.org/idx/mr/957287
http://msp.org/idx/zbl/0652.42012
http://dx.doi.org/10.1007/BFb0085167
http://msp.org/idx/mr/1108183
http://msp.org/idx/zbl/0771.60033
http://dx.doi.org/10.1016/j.jfa.2013.05.031
http://dx.doi.org/10.1016/j.jfa.2013.05.031
http://msp.org/idx/mr/3073250
http://msp.org/idx/zbl/1284.53038
http://dx.doi.org/10.1215/00127094-3774526
http://dx.doi.org/10.1215/00127094-3774526
http://msp.org/idx/mr/3626567
http://msp.org/idx/zbl/06707166
http://msp.org/idx/arx/1609.03226
http://msp.org/idx/arx/1611.00653
http://dx.doi.org/10.1007/BF01444227
http://msp.org/idx/mr/1391221
http://msp.org/idx/zbl/0859.22006
https://www.theta.ro/jot/archive/2006-056-001/2006-056-001-008.html
https://www.theta.ro/jot/archive/2006-056-001/2006-056-001-008.html
http://msp.org/idx/mr/2261616
http://msp.org/idx/zbl/1114.42006
http://dx.doi.org/10.1016/j.jfa.2011.07.013
http://dx.doi.org/10.1016/j.jfa.2011.07.013
http://msp.org/idx/mr/2832582
http://msp.org/idx/zbl/1232.42022
http://dx.doi.org/10.1112/jlms/jdr036
http://dx.doi.org/10.1112/jlms/jdr036
http://msp.org/idx/mr/2876316
http://msp.org/idx/zbl/1239.35042
http://msp.org/idx/mr/780616
http://msp.org/idx/zbl/0577.42015
http://dx.doi.org/10.4064/sm8221-1-2016
http://dx.doi.org/10.4064/sm8221-1-2016
http://msp.org/idx/mr/3460626
http://msp.org/idx/zbl/1342.42024
http://dx.doi.org/10.1016/j.matpur.2004.09.003
http://dx.doi.org/10.1016/j.matpur.2004.09.003
http://msp.org/idx/mr/2121578
http://msp.org/idx/zbl/1129.42015
http://msp.org/idx/mr/877182
http://msp.org/idx/zbl/0606.60063
http://dx.doi.org/10.1006/jfan.1994.1026
http://msp.org/idx/mr/1262249
http://msp.org/idx/zbl/0807.46030
https://www.math.uh.edu/~hjm/restricted/pdf27(3+)/06gutierrez.pdf
https://www.math.uh.edu/~hjm/restricted/pdf27(3+)/06gutierrez.pdf
http://msp.org/idx/mr/1864799
http://msp.org/idx/zbl/1004.42017
http://dx.doi.org/10.1007/s00208-003-0501-2
http://dx.doi.org/10.1007/s00208-003-0501-2
http://msp.org/idx/mr/2047645
http://msp.org/idx/zbl/1061.42008
http://dx.doi.org/10.1515/crll.1995.473.25
http://msp.org/idx/mr/1390681
http://msp.org/idx/zbl/0847.42015
http://msp.org/idx/mr/0350075
http://msp.org/idx/zbl/0271.33001
http://dx.doi.org/10.1007/s11118-005-4389-1
http://dx.doi.org/10.1007/s11118-005-4389-1
http://msp.org/idx/mr/2218202
http://msp.org/idx/zbl/1089.42008


DIMENSION-FREE L p ESTIMATES FOR VECTORS OF RIESZ TRANSFORMS 773

[Mauceri and Spinelli 2014] G. Mauceri and M. Spinelli, “Riesz transforms and spectral multipliers of the Hodge–Laguerre
operator”, preprint, 2014. arXiv

[Mauceri and Spinelli 2015] G. Mauceri and M. Spinelli, “Riesz transforms and spectral multipliers of the Hodge–Laguerre
operator”, J. Funct. Anal. 269:11 (2015), 3402–3457. MR Zbl

[Meyer 1984] P.-A. Meyer, “Transformations de Riesz pour les lois gaussiennes”, pp. 179–193 in Seminar on probability, XVIII,
edited by J. Azéma and M. Yor, Lecture Notes in Math. 1059, Springer, 1984. MR Zbl

[Nazarov and Treil 1996] F. L. Nazarov and S. R. Treil, “The hunt for a Bellman function: applications to estimates for singular
integral operators and to other classical problems of harmonic analysis”, Algebra i Analiz 8:5 (1996), 32–162. In Russian;
translated in St. Petersburg Math. J. 8:5 (1997), 721–824. MR Zbl

[Nazarov et al. 1999] F. Nazarov, S. Treil, and A. Volberg, “The Bellman functions and two-weight inequalities for Haar
multipliers”, J. Amer. Math. Soc. 12:4 (1999), 909–928. MR Zbl

[Nowak 2003] A. Nowak, “Heat-diffusion and Poisson integrals for Laguerre and special Hermite expansions on weighted L p

spaces”, Studia Math. 158:3 (2003), 239–268. MR Zbl

[Nowak 2004] A. Nowak, “On Riesz transforms for Laguerre expansions”, J. Funct. Anal. 215:1 (2004), 217–240. MR Zbl

[Nowak and Sjögren 2008] A. Nowak and P. Sjögren, “Riesz transforms for Jacobi expansions”, J. Anal. Math. 104 (2008),
341–369. MR Zbl

[Nowak and Sjögren 2012] A. Nowak and P. Sjögren, “Calderón–Zygmund operators related to Jacobi expansions”, J. Fourier
Anal. Appl. 18:4 (2012), 717–749. MR Zbl

[Nowak and Stempak 2006] A. Nowak and K. Stempak, “L2-theory of Riesz transforms for orthogonal expansions”, J. Fourier
Anal. Appl. 12:6 (2006), 675–711. MR Zbl

[Nowak and Stempak 2007] A. Nowak and K. Stempak, “Riesz transforms for multi-dimensional Laguerre function expansions”,
Adv. Math. 215:2 (2007), 642–678. MR Zbl

[Nowak and Stempak 2013] A. Nowak and K. Stempak, “A symmetrized conjugacy scheme for orthogonal expansions”, Proc.
Roy. Soc. Edinburgh Sect. A 143:2 (2013), 427–443. MR Zbl

[Nowak and Szarek 2012] A. Nowak and T. Z. Szarek, “Calderón–Zygmund operators related to Laguerre function expansions
of convolution type”, J. Math. Anal. Appl. 388:2 (2012), 801–816. MR Zbl

[Pisier 1988] G. Pisier, “Riesz transforms: a simpler analytic proof of P.-A. Meyer’s inequality”, pp. 485–501 in Séminaire de
Probabilités, XXII, edited by J. Azéma et al., Lecture Notes in Math. 1321, Springer, 1988. MR Zbl

[Stein 1983] E. M. Stein, “Some results in harmonic analysis in Rn, for n→∞”, Bull. Amer. Math. Soc. (N.S.) 9:1 (1983),
71–73. MR Zbl

[Stempak 2007] K. Stempak, “Jacobi conjugate expansions”, Studia Sci. Math. Hungar. 44:1 (2007), 117–130. MR Zbl

[Stempak and Wróbel 2013] K. Stempak and B. Wróbel, “Dimension free L P estimates for Riesz transforms associated with
Laguerre function expansions of Hermite type”, Taiwanese J. Math. 17:1 (2013), 63–81. MR Zbl
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