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MARÍA DEL MAR GONZÁLEZ AND JIE QING

Based on the relations between scattering operators of asymptotically hyperbolic metrics and Dirichlet-to-
Neumann operators of uniformly degenerate elliptic boundary value problems observed by Chang and
González, we formulate fractional Yamabe problems that include the boundary Yamabe problem studied
by Escobar. We observe an interesting Hopf-type maximum principle together with interplay between
analysis of weighted trace Sobolev inequalities and conformal structure of the underlying manifolds,
which extends the phenomena displayed in the classic Yamabe problem and boundary Yamabe problem.

1. Introduction

In this paper, based on the relations between scattering operators of asymptotically hyperbolic metrics
and Dirichlet-to-Neumann operators of uniformly degenerate elliptic boundary value problems observed
in [Chang and González 2011], we formulate and solve fractional order Yamabe problems that include
the boundary Yamabe problem studied in [Escobar 1992].

Suppose that Xn+1 is a smooth manifold with smooth boundary Mn for n ≥ 3. A function ρ is a
defining function of the boundary Mn in Xn+1 if

ρ > 0 in Xn+1 ρ = 0 on Mn, dρ 6= 0 on Mn.

We say that g+ is conformally compact if, for some defining function ρ, the metric ḡ = ρ2g+ extends to
Xn+1 so that (Xn+1, ḡ) is a compact Riemannian manifold. This induces a conformal class of metrics
ĥ= ḡ|T Mn on Mn when defining functions vary. The conformal manifold (Mn, [ĥ]) is called the conformal
infinity of (Xn+1, g+). A metric g+ is said to be asymptotically hyperbolic if it is conformally compact
and the sectional curvature approaches −1 at infinity.

Graham and Zworski [2003] introduced the meromorphic family of scattering operators S(s), which
is a family of pseudodifferential operators, for a given asymptotically hyperbolic manifold (Xn+1, g+)
and a choice of the representative ĥ of the conformal infinity (Mn, [ĥ]). Instead one often considers the
normalized scattering operators

Pγ [g+, ĥ] = 22γ 0(γ )

0(−γ )
S
(n

2
+ γ

)
.
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The normalized scattering operators Pγ [g+, ĥ] are conformally covariant,

Pγ [g+, w4/(n−2γ )ĥ]φ = w−(n+2γ )/(n−2γ )Pγ [g+, ĥ](wφ),

with principal symbol
σ(Pγ [g+, ĥ])= σ((−1ĥ)

γ ).

Hence they may be considered to be conformal fractional Laplacians for γ ∈ (0, 1) for a given asymptoti-
cally hyperbolic metric g+. As proven in [Graham and Zworski 2003; Fefferman and Graham 2012],
when g+ is Poincaré–Einstein, P1 is the conformal Laplacian, P2 is the Paneitz operator, and, in general,
Pk for k ∈ N are the conformal powers of the Laplacian discovered in [Graham et al. 1992].

When g+ is a fixed asymptotically hyperbolic metric, we may simply denote

P ĥ
γ := Pγ [g+, ĥ].

We will consider the associated “fractional order curvature”

Q ĥ
γ = P ĥ

γ (1)

and the normalized total curvature

Iγ [ĥ] =

∫
Mn Q ĥ

γ dvĥ(∫
Mn dvĥ

)(n−2γ )/n .

When a background metric ĥ is fixed, we may write

Iγ [w, ĥ] = Iγ [w4/(n− 2γ )ĥ] =

∫
Mn wP ĥ

γ w dvĥ(∫
Mn w2n/(n−2γ ) dvĥ

)(n−2γ )/n .

This functional Iγ [ĥ] is clearly an analogue to the Yamabe functional. Hence one may ask if there is a
metric which is the minimizer of Iγ among metrics in the class [ĥ] and whose curvature Qγ is a constant.
We will refer to that problem as a fractional Yamabe problem when γ ∈ (0, 1). For the original Yamabe
problem readers are referred to [Lee and Parker 1987; Schoen and Yau 1994]. A similar question was
studied in [Qing and Raske 2006] for γ > 1 and g+ being a Poincaré–Einstein metric. Because of the
lack of a maximum principle, these generalized Yamabe problems are, in general, difficult to solve. Yet
this new window to the analytic aspects of conformal geometry remains fascinating. For example, it was
proven [Guillarmou and Qing 2010] that the location of the first scattering pole is dictated by the sign of
the Yamabe constant and the Green’s function of P ĥ

γ is positive for γ ∈ (0, 1) when the Yamabe constant
is positive, at least in the case where g+ is conformally compact Einstein.

On the other hand, see [González 2012] for an interpretation of the fractional curvature Qγ in relation
to the first variation of some weighted volume. The singular version of the fractional Yamabe problem
has been considered in [González et al. 2012], but there are still many open questions in this field.

It turns out that one may use the relations of scattering operators and the Dirichlet-to-Neumann
operators to reformulate the above fractional Yamabe problems as degenerate elliptic boundary value
problems. The correspondence between pseudodifferential equations and degenerate elliptic boundary
value problems is inspired by [Caffarelli and Silvestre 2007]. Interestingly, the corresponding degenerate
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elliptic boundary value problem is a natural extension of the boundary Yamabe problem raised and studied
in [Escobar 1992].

Recall from [Chang and González 2011] that, given an asymptotically hyperbolic manifold (Xn+1, g+)
and a representative ĥ of the conformal infinity (Mn, [ĥ]), one can find a geodesic defining function ρ
such that the compactified metric can be written as

ḡ := ρ2g+ = dρ2
+ hρ = dρ2

+ ĥ+ h(1)ρ+ h(2)ρ2
+ o(ρ2)

near infinity. One may consider the degenerate elliptic boundary value problem of ḡ as follows:{
− div(ρa

∇U )+ E(ρ)U = 0 in (Xn+1, ḡ),
U |ρ=0 = f on Mn,

(1-1)

where
E(ρ)= ρ−1−s(−1g+ − s(n− s))ρn−s,

s = n/2+ γ , and a = 1− 2γ .

Lemma 1.1 [Chang and González 2011]. Let (Xn+1, g+) be an asymptotically hyperbolic manifold.
Suppose that U is the solution to the boundary value problem (1-1). Then

(1) for γ ∈ (0, 1/2) and −n2/4+ γ 2 not an L2-eigenvalue for the Laplacian of g+,

Pγ [g+, ĥ] f =−d∗γ lim
ρ→0

ρa∂ρU, (1-2)

where

d∗γ =−
22γ−10(γ )

γ0(−γ )
; (1-3)

(2) for γ = 1/2,

P1/2[g+, ĥ] f =− lim
ρ→0

∂ρU + n−1
2

H f,

where H := (1/(2n))Trĥ(h
(1)) is the mean curvature of M ;

(3) for γ ∈ (1/2, 1), (1-2) still holds if H = 0.

In light of Lemma 1.1, consider, for γ ∈ (0, 1),

I ∗γ [U, ḡ] =
d∗γ
∫

Xn+1(ρ
a
|∇U |2+ E(ρ)U 2) dvḡ∫

Mn U 2n/(n−2γ ) dvĥ
.

It is then a very natural variational problem for I ∗γ . For instance, right away one sees that a minimizer of
I ∗γ is automatically nonnegative, which was a huge issue for the functional Iγ .

One key ingredient in our work here is the following Hopf-type maximum principle. We drew
inspiration from some version of Hopf’s lemma for the Euclidean half space case [Cabré and Sire 2010,
Proposition 4.11].

Proposition 1.2. Let γ ∈ (0, 1). Suppose U is a nonnegative solution to (1-1) in Xn+1. Let p0 ∈ Mn
=

∂Xn+1 and Br be a geodesic ball of radius r centered at p0 in Mn . Then, for sufficiently small r0, if
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U (q0)= 0 for q0 ∈ Br0 \ B1/2r0 and U > 0 on ∂B1/2r0 ,

ya∂yU |q0 > 0. (1-4)

It seems weaker than the original one, but it suffices for our purposes. A nice and immediate consequence
of the above maximum principle is that the first eigenfunction of the fractional conformal Laplacian P ĥ

γ

is always positive, which has been a rather challenging question in general for the pseudodifferential
operators P ĥ

γ ; see [Guillarmou and Qing 2010]. Hence one can produce a metric in the class [ĥ] that has
positive, negative, or zero Qγ curvature when the first eigenvalue is positive, negative, or zero.

Our approach to solving the γ -Yamabe problem is very similar to that taken in [Escobar 1992], where
one of the crucial steps is the understanding of a trace inequality. In our case, the relevant sharp weighted
trace Sobolev inequality appears in [Lieb 1983; Cotsiolis and Tavoularis 2004; Nekvinda 1993].

Proposition 1.3. Let γ ∈ (0, 1) and a = 1− 2γ . Suppose that U ∈W 1,2(Rn+1
+ , ya) with trace T U = w.

Then, for some constant S̄(n, γ ),

‖w‖2L2∗ (Rn)
≤ S(n, γ )

∫
Rn+1
+

ya
|∇U |2 dx dy, (1-5)

where 2∗ = 2n/(n− 2γ ). Moreover the equality holds if and only if

w(x)= c
(

µ

|x − x0|2+µ2

)(n−2γ )/2

, x ∈ Rn,

for c ∈ R, µ > 0 and x0 ∈ Rn fixed, and U is its Poisson extension of w as given in (2-13).

As in the case of the original Yamabe problem, one can define the γ -Yamabe constant

3γ (Mn, [ĥ])= inf
h∈[ĥ]

Iγ [h].

It is then easily seen that

3γ (Sn, [gc])=
d∗γ

S(n, γ )

where [gc] is the canonical conformal class of metrics on the sphere Sn . Analogous to the cases of the
original Yamabe problem, we obtain the following.

Theorem 1.4. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold. Suppose, in addition,
that H = 0 when γ ∈ (1/2, 1). Then, if

−∞<3γ (M, [ĥ]) < 3γ (Sn, [gc]), (1-6)

the γ -Yamabe problem is solvable for γ ∈ (0, 1).

Remark. It is easily seen that 3γ (M, [ĥ]) >−∞ in light of (1.4) in Theorems 1.1 and 1.2 of [Jin and
Xiong 2013] when γ ∈ (0, 1/2] or if some additional assumptions in Theorem 1.2 of [Jin and Xiong
2013] hold.

Based on computations similar to ones in [Escobar 1992], we have the following.
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Theorem 1.5. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold and that

ρ−2(R[g+] −Ric[g+](ρ∂ρ)+ n2)→ 0 as ρ→ 0. (1-7)

If Xn+1 has a nonumbilic point on ∂Xn+1 and

n+a−3
1−a

22γ+1 0(γ )

0(−γ )
+

n−1+a
a+1

< 0, (1-8)

then
3γ (M, [ĥ]) < 3γ (Sn, [gc])

and hence the γ -Yamabe problem is solvable for γ ∈ (0, 1).

We remark now that the 1/2-Yamabe problem introduced here reduces back to the boundary Yamabe
problem considered in [Escobar 1992] in this way. Notice that, in this case, we have

I ∗1/2[U, φ
4/n−1ḡ] = I ∗1/2[Uφ, ḡ] (1-9)

for any positive function φ on Xn+1, and therefore (1-7) is no longer needed. Also notice that the condition
(1-8) becomes n > 5 when γ = 1/2, which agrees with the conclusion in [Escobar 1992].

Suppose we start with a compact Riemannian manifold (Xn+1, ḡ) and its boundary (Mn, ĥ). Then one
can construct an asymptotically hyperbolic manifold (Xn+1, g+) which is conformal to (Xn+1, ḡ). For
example, as observed in [Chang and González 2011], one may, according to [Mazzeo 1991; Andersson
et al. 1992], require that

R[g+] = −n(n+ 1). (1-10)

Then the induced degenerate equation becomes

− div(ρa
∇U )+ n−1+a

4n
R[ḡ]ρaU = 0 in (Xn+1, ḡ), (1-11)

whose associated variational functional becomes

F[U ] =
∫

X
ρa
|∇U |2ḡ dvḡ +

n−1+a
4n

∫
X

R[ḡ]ρa
|U |2 dvḡ. (1-12)

In Section 2 we recall [Chang and González 2011] to make possible the passage from pseudodifferential
equations to second order elliptic boundary value problems as in [Caffarelli and Silvestre 2007]. In
Section 3 we study regularity (L∞ and Schauder estimates) for degenerate elliptic boundary value problems,
and, more importantly, we establish the Hopf-type maximum principle. In Section 4 we formulate the
fractional Yamabe problem and obtain some properties for the fractional case that are analogous to the
original Yamabe problem with the help of the Hopf-type maximum principle. In Section 5 we analyze
sharp weighted Sobolev trace inequalities. We define, on any conformal manifold, the fractional Yamabe
constant associated with an asymptotically hyperbolic metric, and show that one of the standard round
spheres associated to the standard hyperbolic metric is the largest. In Section 6 we take a subcritical
approximation and prove Theorem 1.4. In Section 7 we adopt the calculation from [Escobar 1992] and
prove Theorem 1.5 by choosing a suitable test function.
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We finally mention the two related works [Barrios et al. 2012; Servadei 2013] on nonlinearities with
critical exponents for the fractional Laplacian.

2. Conformal fractional Laplacians

In this section we introduce [Chang and González 2011] to relate two equivalent definitions of conformal
fractional Laplacians. Conformal fractional Laplacians are defined via scattering theory on asymptotically
hyperbolic manifolds [Graham and Zworski 2003; Fefferman and Graham 2012]. We have also seen
fractional Laplacians defined as Dirichlet-to-Neumann operators for degenerate equations on compact
manifolds with boundary [Caffarelli and Silvestre 2007]. It turns out that, in some way, these two
fractional Laplacians are the same.

Let Xn+1 be a smooth manifold of dimension n+ 1 with compact boundary ∂X = Mn . A function ρ
is a defining function of ∂X in X if

ρ > 0 in X, ρ = 0 on ∂X, dρ 6= 0 on ∂X.

We say that g+ is conformally compact if the metric ḡ=ρ2g+ extends to Xn+1 for a defining function ρ so
that (Xn+1, ḡ) is a compact Riemannian manifold. This induces a conformal class of metrics ĥ= ḡ|T Mn on
Mn when the defining function varies, which is called the conformal infinity of (Xn+1, g+). A metric g+

is said to be asymptotically hyperbolic if it is conformally compact and the sectional curvature approaches
−1 at infinity.

Given an asymptotically hyperbolic manifold (Xn+1, g+) and a representative ĥ of the conformal
infinity (Mn, [ĥ]), there exists a uniquely geodesic defining function ρ such that, on a neighborhood
M × (0, δ) in X , g+ has the normal form

g+ = ρ−2(dρ2
+ hρ) (2-1)

where hρ is a one parameter family of metrics on M such that

hρ = ĥ+ h(1)ρ+ O(ρ2). (2-2)

From [Mazzeo and Melrose 1987; Graham and Zworski 2003] it follows that, given f ∈ C∞(M),
Re(s) > n/2 and s(n− s) is not an L2-eigenvalue for −1g+ , the generalized eigenvalue problem

−1g+u− s(n− s)u = 0 in X (2-3)

has a solution of the form

u = Fρn−s
+Gρs, F,G ∈ C∞(X), F |ρ=0 = f. (2-4)

The scattering operator on M is then defined as

S(s) f = G|M .

It is shown in [Graham and Zworski 2003] that, by a meromorphic continuation, S(s) is a meromorphic
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family of pseudodifferential operators in the whole complex plane. Instead, it is often useful to consider
the normalized scattering operators Pγ [g+, ĥ] defined as

Pγ [g+, ĥ] := dγ S
(n

2
+ γ

)
, dγ = 22γ 0(γ )

0(−γ )
. (2-5)

Note that s = n/2+ γ . With this regularization the principal symbol of Pγ [g∗, ĥ] is exactly the principal
symbol of the fractional Laplacian (−1ĥ)

γ . Hence we will call (assuming implicitly the dependence on
the extension metric g+)

P ĥ
γ := Pγ [g+, ĥ]

a conformal fractional Laplacian for each γ ∈ (0, 1) which is not a pole of the scattering operator, that is,
n2/4− γ 2 is not an L2-eigenvalue for −1g+ . It is a conformally covariant operator, in the sense that it
behaves like

P ĥw
γ ϕ = w−(n+2γ )/(n−2γ )P ĥ

γ (wϕ) (2-6)

for a conformal change of metric ĥw = w4/(n−2γ )ĥ. We will call

Q ĥ
γ = P ĥ

γ (1)

the fractional scalar curvature associated to the conformal fractional Laplacian P ĥ
γ . From (2-6) we have

P ĥ
γ (w)= Q ĥw

γ w
(n+2γ )/(n−2γ ). (2-7)

The familiar case is γ = 1, where

P ĥ
1 =−1ĥ +

n−2
4(n−1)

R[ĥ]

becomes the conformal Laplacian and the associated curvature is the scalar curvature

Q ĥ
1 = (n− 2)/(4(n− 1))R[ĥ]

of the metric ĥ which undergoes the change

P ĥ
1 w =

n−2
4(n−1)

R[ĥw]w(n+2)/(n−2)

when taking conformal change of metrics, provided that (Xn+1, g+) is a Poincaré–Einstein as established
in [Graham and Zworski 2003; Fefferman and Graham 2012]. The conformal fractional Laplacians and
fractional scalar curvatures should also be compared to the higher order generalization of the conformal
Laplacian and scalar curvature, the Paneitz operator P ĥ

2 and its associated Q-curvature; see [Paneitz 2008;
Branson 1995; Qing and Raske 2006].

It was observed in [Chang and González 2011] that the generalized eigenvalue problem (2-3) on a
noncompact manifold (Xn+1, g+) is equivalent to a linear degenerate elliptic problem on the compact
manifold (Xn+1, ḡ), for ḡ = ρ2g+. Hence Chang and González reconciled the definition of the fractional
Laplacians given above as normalized scattering operators and the one given in the spirit of the Dirichlet-
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to-Neumann operators by Caffarelli and Silvestre [2007]. This observation plays a fundamental role in
this paper and provides an alternative way to study the fractional partial differential equation (2-7). First,
we know by the conformal covariance that

Pg+

1 u = ρ(n+3)/2 P ḡ
1 (ρ
−(n−1)/2u).

Let a = 1− 2γ ∈ (−1, 1), s = n/2+ γ , and U = ρs−nu. Then we may write (2-3) as

− div(ρa
∇ḡU )+ E(ρ)U = 0 in (Xn+1, ḡ),

where
E(ρ) := ρa/2 P ḡ

1 ρ
a/2
− (s(n− s)+ n−1

4n
R[g+] )ρa−2, (2-8)

or, writing everything back in the metric g+,

E(ρ)= ρ−1−s(−1g+ − s(n− s))ρn−s . (2-9)

Notice that, in a neighborhood M × (0, δ) where the metric g+ is in the normal form

E(ρ)= n−1+a
4n

(
R[ḡ] − (n(n+ 1)+ R[g+])ρ−2)ρa in M × (0, δ). (2-10)

Proposition 2.1 [Chang and González 2011]. Let (Xn+1, g+) be an asymptotically hyperbolic manifold.
Then, given f ∈ C∞(M), the generalized eigenvalue problem (2-3) and (2-4) is equivalent to{

− div(ρa
∇U )+ E(ρ)U = 0 in (X, ḡ),

U |ρ=0 = f on M,
(2-11)

where U = ρn−su and U is the unique minimizer of the energy

F[V ] =
∫

X
ρa
|∇V |2ḡ dvḡ +

∫
X

E(ρ)|V |2 dvḡ

among all the functions V ∈W 1,2(X, ρa) with fixed trace V |ρ=0 = f . Moreover,

(1) for γ ∈ (0, 1/2),
P ĥ
γ f =−d∗γ lim

ρ→0
ρa∂ρU, (2-12)

where the constant d∗γ is given in (1-3);

(2) for γ = 1/2, we have an extra term

P ĥ
1/2 f =− lim

ρ→0
∂ρU + n−1

2
H f,

where H := (1/(2n))Trĥ(h
(1)) is the mean curvature of M ;

(3) for γ ∈ (1/2, 1), (2-12) still holds if and only if H = 0.

Remark. It should be noted here that there are many asymptotically hyperbolic manifolds (Xn+1, g+)
whose conformal infinity is prescribed as (Mn, [ĥ]). If one insists on (Xn+1, g+) being Poincaré–Einstein,
then the normalized scattering operators P ĥ

γ are a bit more intrinsic, at least at positive integers as
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observed in [Graham and Zworski 2003; Fefferman and Graham 2012]. It should also be noted that one
can simply start with a compact Riemannian manifold (Xn+1, ḡ) with boundary (Mn, ĥ) and easily build
an asymptotically hyperbolic manifold whose conformal infinity is given by (Mn, [ĥ]). Please see the
details of this observation in [Chang and González 2011].

The simplest example of a conformally compact Einstein manifold is the hyperbolic space (Hn+1, gH).
It can be characterized as the upper half-space (with coordinates x ∈ Rn , y ∈ R+), endowed with the
metric

g+ =
dy2
+ |dx |2

y2 .

Then (2-11) with Dirichlet condition w reduces to{
− div(ya

∇U )= 0 in Rn+1
+ ,

U |y=0 = w on Rn,

and the fractional Laplacian at the boundary Rn is just

P |dx |2
γ w = (−1|dx |2)

γw =−d∗γ lim
y→0

(ya∂yU ).

This is precisely the Caffarelli–Silvestre extension [2007]. Note that this extension U can be written in
terms of the Poisson kernel Kγ as follows:

U (x, y)= Kγ ∗x w = Cn,γ

∫
Rn

y1−a

(|x − ξ |2+ |y|2)(n+1−a)/2w(ξ) dξ, (2-13)

for some constant Cn,γ . Moreover, given w ∈ Hγ (Rn), U is the minimizer of the functional

F[V ] =
∫

Rn+1
+

ya
|∇V |2 dx dy

among all the possible extensions in the set{
V : Rn+1

+
→ R :

∫
Rn+1
+

ya
|∇V |2 dx dy <∞, V ( · , 0)= w

}
.

Based on (2-9), it is observed in [Chang and González 2011] that one may use

ρ∗ = v1/(n−s)

as a defining function, where v solves

−1g+v− s(n− s)v = 0

and ρs−nv = 1 on M , to eliminate E(ρ∗) from (2-11). It suffices to show that v is strictly positive in the
interior. But this is true because, away from the boundary, it is the solution of a uniformly elliptic equation
in divergence form. Thus it cannot have a nonpositive minimum. Hence we arrive at an improvement of
Proposition 2.1 as follows.
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Proposition 2.2. The function ρ∗ is a defining function of M in X such that E(ρ∗) ≡ 0. Hence U =
(ρ∗)s−nu solves {

− div((ρ∗)a∇U )= 0 in (X, ḡ∗),
U = w on M,

(2-14)

with respect to the metric ḡ∗ = (ρ∗)2g+ and U is the unique minimizer of the energy

F[V ] =
∫

X
(ρ∗)a|∇V |2ḡ∗ dvḡ∗ (2-15)

among all the extensions V ∈W 1,2(X, (ρ∗)a) satisfying V |M = w. Moreover,

ρ∗(ρ)= ρ

[
1+

Q ĥ
γ

(n− s)(−d∗γ /(2γ ))
ρ2γ
+ O(ρ2)

]
near infinity and

P ĥ
γ w =−d∗γ lim

ρ∗→0
(ρ∗)a∂ρ∗U +wQ ĥ

γ , (2-16)

provided that H = 0 when γ ∈ (1/2, 1).

We will sometimes use the defining function ρ∗, denoted by y unless explicitly stated otherwise,
because it allows us to work with a pure divergence equation with no lower order terms.

We end this section by discussing the assumption that H = 0 for an asymptotically hyperbolic metric
g+. It turns out that this indeed is an intrinsic condition.

Lemma 2.3. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold and that ρ and ρ̃ are the
geodesic defining functions of M in X associated with representatives ĥ and h̃ of the conformal infinity
(Mn, [ĥ]), respectively. Hence

g+ = ρ−2(dρ2
+ hρ)= ρ̃−2(dρ̃2

+ h̃ρ̃)

where
hρ = ĥ+ ρh(1)+ O(ρ2) and h̃ρ̃ = h̃+ ρ̃h̃(1)+ O(ρ̃2)

near infinity. Then h̃(1) = h(1) on M. In particular

H =
ρ̃

ρ

∣∣∣
ρ=0

H̃ on M .

Proof. This simply follows from the equations that define the geodesic defining functions. Let

ρ̃ = ewρ

near infinity. Then

1= |d(ewρ)|2e2wρ2g+ = |dρ|
2
ρ2g+ + 2ρ〈dw, dρ〉ρ2g+ + ρ

2
|dw|2

ρ2g+,

which implies

2∂w
∂ρ
+ ρ

[(
∂w

∂ρ

)2
+ |∇w|2hρ

]
= 0.
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Hence it is rather obvious that ∂w/∂ρ = 0 at ρ = 0. Therefore the proof is complete, since

g̃ = ρ̃2g+ = e2wρ2g+ = e2w ḡ. �

3. Uniformly degenerate elliptic equations

Considering the fractional powers of the Laplacian as Dirichlet-to-Neumann operators in Proposition 2.2
allows us to relate the properties of nonlocal operators to those of uniformly degenerate elliptic equations
in one more dimension. The same strategy has been used, for instance, in [Cabré and Sire 2010].

Fix γ ∈ (0, 1). Let y = ρ∗ be the special defining function given in Proposition 2.2 and set ḡ∗ = y2g+.
We are concerned with the uniformly degenerate elliptic equation{

− div(ya
∇U )= 0 in (X, ḡ∗),

U = w on M.
(3-1)

For our purpose we concentrate on the local behaviors of the solutions to (3-1) near the boundary. First,
we write our equation in local coordinates near a fixed boundary point (p0, 0). More precisely, for some
R > 0, we set

B+R = {(x, y) ∈ Rn+1
: y > 0, |(x, y)|< R},

00
R = {(x, 0) ∈ ∂Rn+1

+
: |x |< R},

0+R = {(x, y) ∈ Rn+1
: y ≥ 0, |(x, y)| = R}.

In local coordinates on 00
R the metric ĥ is of the form |dx |2(1+O(|x |2)), where x(p0)= 0. Consider the

matrix

A(x, y)=
√
|det ḡ∗|ya(ḡ∗)−1.

Then (3-1) is equivalent to
n+1∑

i, j=1

∂i (Ai j∂ jU )= 0. (3-2)

Moreover, we know that
1
c

ya I ≤ A ≤ cya I. (3-3)

This shows that (3-2) is a uniformly degenerate elliptic equation. For instance, the weight ψ(y)= ya is
an A2 weight in the sense of [Muckenhoupt 1972]. Equation (3-2) has been well understood in a series
of papers by Fabes, Jerison, Kenig, and Serapioni [Fabes et al. 1982b; Fabes et al. 1982a]. Let us state a
regularity result that is relevant to us. We will concentrate on problems of the form{

Div(A(DU ))= 0 in B+R ,
−ya∂yU = F, on 00

R,
(3-4)

where, for the rest of the section, A satisfies the ellipticity condition (3-3) for a ∈ (−1, 1), the derivatives
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are Euclidean, that is, D := (∂x1, . . . , ∂xn , y), and

Div(A(DU )) :=
n+1∑

i, j=1

∂i (Ai j∂ jU ).

Definition 3.1. Given R > 0 and a function F ∈ L1(00
R), we call U a weak solution of (3-4) if U satisfies

(DU )t A(DU ) ∈ L1(B+R )
and ∫

B+R

(Dφ)t A(DU ) dx dy−
∫
00

R

Fφ dx = 0

for all φ ∈ C1(B+R ) such that φ ≡ 0 on 0+R and (Dξ)t A(Dφ) ∈ L1(B+R ).

Hölder regularity for weak solutions was shown in [Fabes et al. 1982b, Lemma 2.3.12] for any A
satisfying (3-3). Using this main result, regularity of weak solutions up to the boundary was carefully
shown in [Cabré and Sire 2010, Lemma 4.3], at least when A = ya I . However, their proof only depends
on the divergence structure of the equation and the behavior of the weight. Hence we have the following.

Proposition 3.2. Let γ ∈ (0, 1), γ = (1− a)/2 and β ∈ (0,min{1, 1− a}). Let R > 0 and

U ∈ L∞(B2R+)∩W 1,2(B+2R, ya)

be a weak solution of {
Div(A(DU ))= 0 in B+2R,

−ya∂yU = F(U ) on 00
2R,

(3-5)

for A satisfying (3-3). If F ∈C1,β , U ∈C0,β̃(B+R ) and ∂xi U ∈C0,β̃(B+R ), i = 1, . . . , n, for some β̃ ∈ (0, 1).

Particularly, when F(x, t) = α(x)t + β(x)t (n+2γ )/(n−2γ ), to get smoothness it is necessary to know
the local boundedness of weak solutions U on B+R . To get this local boundedness for weak solutions,
we employ the usual Moser iteration scheme adapted to boundary valued problems (see Theorem 3.4).
However, a new idea is required: we will perform two coupled iterations, one in the interior and one at
the boundary, that need to be handled simultaneously. Note that in the linear case when F ≡ 0, local
boundedness was shown in [Fabes et al. 1982b, Corollary 2.3.4], using the weighted Sobolev embeddings
in the interior described in Proposition 3.3. However, when a nonlinearity F(U ) is present at the boundary
term, instead we need to use weighted trace Sobolev embeddings. (For the half-Laplacian with some
particular nonlinearlities, L∞ estimates were shown in [González and Monneau 2012].)

First, we recall a weighted Sobolev embedding theorem in the interior (compare [Fabes et al. 1982b,
Theorem 1.3]; see also [Chiarenza and Frasca 1985]).

Proposition 3.3. Let � be an open bounded set in Rn+1. Take 1< p <∞. There exist positive constants
C� and δ such that for all u ∈ C∞0 (�) and all k satisfying 1≤ k ≤ (n+ 1)/n+ δ,

‖u‖Lkp(�,ya) ≤ C�‖∇u‖L p(�,ya).

C� may be taken to depend only on n, p, a, and the diameter of �.
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Now we can state the theorem. Note that we actually prove it in the flat case but it is straightforward
to generalize it to the manifold setting.

Theorem 3.4. Let U be a weak solution of the problem{
div(ya

∇U )= 0 in B+2R,

−ya∂yU = F(U ) on 00
2R,

(3-6)

where F(z) satisfies

F(z)= O(|z|β−1),

when |z| →∞ for some 2< β < 2∗. Assume, in addition, that
∫
00

2r0
|U |2

∗

dx =: V <∞. Then, for each
p̄ > 1, there exists a constant C p̄ = C( p̄, V ) > 0 such that

sup
B+R

|U | + sup
00

R

|U | ≤ C p̄

[( 1
Rn+1+a

)1/ p̄
‖U‖L p̄(B2R,ya)+

( 1
Rn

)1/ p̄
‖U‖L p̄(00

2R)

]
.

Proof. Let p ∈ ∂X . Note that we can work with normal coordinates x1, . . . , xn ∈ Rn , y > 0 near p.
Without loss of generality, assume that R = 1. Then the general case is obtained by rescaling. Let
η= η(r), r = (|x |2+ y2)1/2, be a smooth cutoff function such that η= 1 if r < 1, η= 0 if r ≥ 2, 0≤ η≤ 1
if r ∈ (1, 2). Next, by working with U+ :=max{U, 0}, U− :=max{−U, 0} separately, we can assume
that U is positive.

A good reference for Moser iteration arguments in divergence structure equations is [Gilbarg and
Trudinger 1983, Chapter 8]. We generalize this method, considering a double iteration: one at the
boundary, using Sobolev trace inequalities to handle the nonlinear term F(U ), the other in the interior
domain.

The first step is to use that U is a weak solution of (3-6) by finding a good test function. Formally we
can write the following: multiply (3-6) by η2Uα and integrate by parts:

0= 2
∫

B+2

yaηUα
∇η∇U dx dy+α

∫
B+2

yaη2Uα−1
|∇U |2 dx dy+

∫
00

2

η2UαF(U ) dx . (3-7)

This implies, using Hölder estimates to handle the crossed term,∫
B+2

yaη2Uα−1
|∇U |2 dx dy ≤ 2

α

∫
00

2

η2UαF(U ) dx + 4
α2

∫
B+2

ya
|∇η|2Uα+1 dx dy. (3-8)

On the other hand, again using Hölder’s inequality, we have∫
B+2

ya
|∇(ηU δ)|2 dx dy ≤ 2δ2

∫
B+2

yaη2U 2(δ−1)
|∇U |2 dx dy+ 2

∫
B+2

yaU 2δ
|∇η|2 dx dy.
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If we insert formula (3-8) into the inequality above, for the choice α = 2δ− 1, we obtain

J :=
∫

B+2

ya
|∇(ηU δ)|2 dx dy

≤ 2
(

1+
(
α+1
α

)2) ∫
B+2

ya
|∇η|2U 2δ dx dy+ (α+1)2

α

∫
00

2

η2UαF(U ) dx

=: I1+ I2.

(3-9)

For the left hand side above, recall the trace Sobolev embedding (Corollary 5.3)

J =
∫

B+2

ya
|∇(ηU δ)|2 dx dy &

(∫
00

2

(ηU δ)2
∗

dx
)2/2∗

, (3-10)

and the standard weighted Sobolev embedding from Proposition 3.3.

J =
∫

B+2

ya
|∇(ηU δ)|2 dx dy &

(∫
B+2

ya(ηU δ)k
)2/k

(3-11)

for some 1< k < 2(n+ 1)/n.
Next, we estimate from above the terms I1, I2 in (3-9). I1 can be easily handled since |∇η| ≤ C :

I1 =

∫
B+2

ya
|∇η|2U 2δ dx dy .

∫
B+2

yaU 2δ dx dy. (3-12)

Now we consider the second term. To estimate I2, if we write U 2δ−2+β
=Uβ−2U 2δ , then, using Hölder’s

inequality with p = 2∗/(β − 2), 1/p+ 1/q = 1, we obtain∫
00

2

η2U 2δ−1 F(U ) dx ≤
[∫

00
2

U 2∗ dx
]1/p[∫

00
2

η2qU 2δq dx
]1/q

≤ V 1/p
[∫

00
2

η2qU 2δq dx
]1/q

. (3-13)

This last integral can be handled as follows. Call χ = 2∗/2, for simplicity. Because our hypothesis on β,
we know that q ∈ (1, χ). Then there exists λ ∈ (0, 1) such that q = λ+ (1− λ)χ , and an interpolation
inequality gives[∫

f q
]1/q

≤

[∫
f
]λ/q[∫

f χ
](1−λ)/q

=

[∫
f χ
]1/χ([∫

f
][∫

f χ
]−1/χ)λ/q

. (3-14)

Since λ/q < 1, Young’s inequality reads

zλ/q ≤ Cεz+ ε,

for ε small. If we substitute z = [
∫

f ][
∫

f χ ]−1/χ above, together with (3-14), we arrive at[∫
f q
]1/q

≤ ε

[∫
f χ
]1/χ

+Cε

∫
f.
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Then from (3-13) it follows that

I2 ≤ V 1/p
{
ε

(∫
00

2

(ηU δ)2
∗

dx
)2/2∗

+Cε

∫
00

2

η2U 2δ dx
}
, (3-15)

where ε will be chosen later and will depend on the value of α, δ.
We go back now to the main iteration formula (3-9). It is clear from (3-10) that the first integral of the

right hand side of the formula for I2 (3-15) can be absorbed into the left hand side of (3-9), and, using
(3-11) and (3-10), we get that(∫

00
1

U δ2∗ dx
)2/2∗

+

(∫
B+1

U 2kδ dx dy
)1/k

≤ C(δ)
[∫

00
2

U 2δ dx +
∫

B+2

U 2δ dx dy
]
,

for some suitable choice of ε. Or, switching notation from 2δ to δ,(∫
00

1

U δχ dx
)1/χ

+

(∫
B0

1

U kδ dx dy
)1/k

≤ C(δ)
[∫

00
2

U δ dx +
∫

B0
2

U δ dx dy
]
. (3-16)

Next, because we will always have δ > 1, we can use that

C1(a1/δ
+ b1/δ)≤ (a+ b)1/δ ≤ C2(a1/δ

+ b1/δ),

so from (3-16) we get that

‖U‖Lχδ(00
1)
+‖U‖Lkδ(B+1 ,y

a) ≤ ‖U‖Lδ(00
2)
+‖U‖Lδ(B+2 ,y

a).

For simplicity, we set
θ :=min{χ, k}> 1,

and
8(δ, R) :=

( 1
Rn

)1/δ
‖U‖Lδ(00

1)
+

( 1
Rn+1+a

)1/δ
‖U‖Lδ(B+1 ,y

a).

Then, after explicitly writing all the constants involved, formula (3-16) simply reduces to

8(θδ, 1)≤ [C(1+ δ)σ ]2/δ8(δ, 2),

for some positive number σ . It is clear that the same proof works if we replace B1, B2 by BR1 , BR2 . The
only difference is in (3-12), where we need to estimate |∇η| ≤ C(R2− R1)

−1. Thus we would obtain

8(θδ, R1)≤
[C(1+δ)σ

R2−R1

]2/δ
8(δ, R2). (3-17)

Now we iterate (3-17): set Rm = 1+ 1/2m and θm = θ
m p̄. Then

8(θm, 1)≤8(θm, Rm)≤ (c1θ)
c2
∑m−1

i=0 i/θ i
8( p̄, 2)≤ C8( p̄, 2), (3-18)

for some constant C , because the series
∑
∞

i=0 i/θ i is convergent.
Finally, note that

sup
00

1

U = lim
δ→∞
‖U‖Lδ(00

1)
, sup

B+1

U = lim
δ→∞
‖U‖Lδ(B+1 ,y

a),
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so that (3-18) is telling us that

sup
B+1

U + sup
00

1

U ≤ C[‖U‖L p̄(B2,ya)+‖U‖L p̄(00
2)
].

Rescaling to a ball of radius R concludes the proof of the theorem. �

The next main ingredient is the proof of the positivity of a solution to (3-5). We observed that a
Hopf lemma, some version of which was known for the Euclidean half space case [Cabré and Sire 2010,
Proposition 4.10], can be obtained for the uniformly degenerate elliptic equation (3-1). This nice Hopf
lemma turns out to be one of the keys for us in this paper. It is interesting to observe a different behavior
between the cases γ ∈ (0, 1/2) and γ ∈ [1/2, 1) in our proof — this dichotomy does not seem to appear
in the flat case in [Cabré and Sire 2010].

We continue to use the setting as in Proposition 2.2. Let p0 ∈ ∂X and (x, y) be the local coordinate
at p0 for X with x(p0)= 0, where x is the normal coordinate at p0 with respect to the metric ĥ on the
boundary Mn .

Theorem 3.5. Suppose that U is a nonnegative solution to (3-1) in Xn+1. Then, for sufficiently small r0,
if U (q0)= 0 for q0 ∈ 0

0
r0
\00

1/2r0
and U > 0 on ∂00

1/2r0
on the boundary Mn , then

ya∂yU |q0 > 0. (3-19)

Proof. First we assume that γ ∈ [1/2, 1), that is, a ∈ (−1, 0]. We consider a positive function

W = y−a(y+ Ay2)(e−B|x |
− e−Br0). (3-20)

To calculate div(ya
∇W ) in the metric ḡ∗, we first calculate from Proposition 2.2 that

ḡ∗ = (1+α1 y)dy2
+ (1+α2 y)ĥ+ o(y)

for some constants α1, α2 and
det ḡ∗ = det ĥ(1+α3 y)+ o(y),

for some constant α3. Then
div(ya

∇W )= I1+ I2+ I3+ I4,

where
I1 =

1
√

det ḡ∗
∂y
(√

det ḡ∗(ḡ∗)yy((1− a)+ (2− a)y A)(e−B|x |
− e−Br0)

)
= (α4+ (2− a)A+ o(1))(e−B|x |

− e−Br0),

I2 =
1

√
det ḡ∗

∂xk
(√

det ḡ∗(ḡ∗)ky((1− a)+ (2− a)y A)(e−B|x |
− e−Br0)

)
= o(1)(e−B|x |

− e−Br0)+ o(y)Be−Br ,

for some constant α4,

I3 =
1

√
det ḡ∗

∂y
(√

det ḡ∗(ḡ∗)yk(y+ y2 A)∂xk (e−B|x |
− e−Br0)

)
= o(y)Be−Br ,
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and

I4 =
y+ y2 A
√

det ḡ∗
∂xk
(√

det ḡ∗(ḡ∗)k j∂x j (e−B|x |
− e−Br0)

)
=

y+ y2 A
√

det ḡ∗
∂xk
(√

det ḡ∗(ḡ∗)k j (−
x j

r
Be−Br )

)
= y B2e−Br

+ o(y)B2e−Br
+ y B2o(r2)e−Br

+ o(y)Be−Br .

Thus
div(ya

∇W )= (α4+ (2− a)A+ o(1))(e−B|x |
− e−Br0)+ (B2

+ o(1)B)ye−Br .

We remark here that all α’s can be explicit, but it would not be any more use. Take r0 sufficiently small
and A and B sufficiently large so that

div(ya
∇W )≥ 0

provided that a ≤ 0. Now we know

div(ya
∇(U − εW ))≤ 0

in (00
r0
\00

1/2r0
)× (0, r0) for all ε > 0, and, moreover,

U − εW ≥ 0

on ∂{(00
r0
\00

1/2r0
)× (0, r0)}, provided we choose ε appropriately small. Therefore, due to the maximum

principle, we know that
U − εW > 0

in (00
r0
\00

1/2r0
)× (0, r0). Thus, when U (x(q0), 0)= 0, we have

ya∂y(U − εW )|(x(q0),0) ≥ 0,

which implies

ya∂yU |(x(q0),0) ≥ εya∂y W |(x(q0),0) = ε(1− a)(e−B|x(q0)|− e−Br0) > 0,

as desired.
When a ∈ (0, 1), or equivalently, γ ∈ (0, 1/2), we instead use the function

W = y−a(y+ Ay2−a)(e−B|x |
− e−Br0).

Then a similar calculation will prove that the conclusion still holds. �

Positivity of solutions for (3-1) is now clear:

Corollary 3.6. Suppose that U ∈ C2(X)∩C(X) is a nonnegative solution to the equation{
div(ya

∇U )= 0 in (X, ḡ∗),
ya∂yU = F(U ) on M,

where F(0)= 0. Then U > 0 on X unless U ≡ 0.
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Proof. First, U > 0 in X , and U is not identically zero on the boundary if it is not identically zero on
X . Then, on the boundary, the set where U is positive is nonempty and open. Hence, if the set where U
vanishes is not empty, then, for any small number r0, there always exist points p0 and q0 as given in the
assumptions of Theorem 3.5. Thus we would arrive at the contradiction from Theorem 3.5. �

4. The γ -Yamabe problem

Now we are ready to set up the fractional Yamabe problem for γ ∈ (0, 1). On the conformal infinity
(Mn, [ĥ]) of an asymptotically hyperbolic manifold (Xn+1, g+), we consider a scale-free functional on
metrics in the class [ĥ] given by

Iγ [ĥ] =

∫
M Q ĥ

γ dvĥ

(
∫

M dvĥ)
(n−2γ )/n . (4-1)

Or, if we set a base metric ĥ and write a conformal metric

ĥw = w4/(n−2γ )ĥ,

then

Iγ [w, ĥ] =

∫
M wP ĥ

γ (w) dvĥ

(
∫

M w
2∗ dvĥ)

2/2∗ (4-2)

where 2∗ = 2n/(n− 2γ ). We call Iγ the γ -Yamabe functional.
The γ -Yamabe problem is to find a metric in the conformal class [ĥ] that minimizes the γ -Yamabe

functional Iγ . It is clear that a metric ĥw, where w is a minimizer of Iγ [w, ĥ], has a constant fractional
scalar curvature Q ĥw

γ , that is,
P ĥ
γ (w)= cw(n+2γ )/(n−2γ ), w > 0, (4-3)

for some constant c on M .
This suggests that we define the γ -Yamabe constant

3γ (M, [ĥ])= inf{Iγ [h] : h ∈ [ĥ]}. (4-4)

It is then apparent that 3γ (M, [ĥ]) is an invariant on the conformal class [ĥ] when g+ is fixed.
In the mean time, based on Proposition 2.1, we set

I ∗γ [U, ḡ] =
d∗γ
∫

X ρ
a
|∇U |2ḡ dvḡ +

∫
X E(ρ)|U |2 dvḡ

(
∫

M |U |
2∗ dvĥ)

2/2∗ , (4-5)

or similarly, using Proposition 2.2, we may set

I ∗γ [U, ḡ∗] =
d∗γ
∫

X ya
|∇U |2ḡ∗ dvḡ∗ +

∫
M Q ĥ

γ |U |
2 dvĥ

(
∫

M |U |
2∗ dvĥ)

2/2∗ . (4-6)

It is obvious that it is equivalent to solve the minimizing problems for Iγ and I ∗γ . But a very pleasant
surprise is that this immediately tells us that

3γ (X, [ĥ])= inf{I ∗γ [U, ḡ] :U ∈W 1,2(X, ya)}. (4-7)
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(Please see the definitions and discussions of the weighted Sobolev spaces in Section 5.) Note that one
has that I ∗γ [|U |] ≤ I ∗γ [U ] to handle positivity issues. Therefore we have the following.

Lemma 4.1. Suppose that U is a minimizer of the functional I ∗γ [ · , ḡ] in the weighted Sobolev space
W 1,2(X, ya) with

∫
M |T U |2

∗

dvĥ = 1. Then its trace w = T U ∈ Hγ (M) solves the equation

P ĥ
γ (w)=3γ (X, [ĥ])w

(n+2γ )/(n−2γ ).

To resolve the γ -Yamabe problem is to verify Iγ has a minimizer w, which is positive and smooth.
But before launching our resolution to the γ -Yamabe problem we are first due to discuss the sign of the
γ -Yamabe constant. These statements are familiar and easy ones for the Yamabe problem but not so easy
at all for the γ -Yamabe problem, where the conformal fractional Laplacians are just pseudodifferential
operators. One knows that eigenvalues and eigenfunctions of the conformal fractional Laplacians are
even more difficult to study than the differential operators. There are some affirmative results analogous
to the conformal Laplacian proven in [Guillarmou and Qing 2010] when the Yamabe constant of the
conformal infinity is assumed to be positive. Here we will take advantage of our Hopf lemma and the
interpretation of conformal fractional Laplacians through extensions provided in Proposition 2.2.

For each γ ∈ (0, 1) we know that each conformal fractional Laplacian is selfadjoint; see [Graham
and Zworski 2003; Fefferman and Graham 2002]. Hence we may look for the first eigenvalue λ1 by
minimizing the quotient ∫

M wP ĥ
γ w dvĥ∫

M w
2 dvĥ

. (4-8)

Moreover, again in light of Proposition 2.2, it is equivalent to minimizing

d∗γ
∫

X ya
|∇U |2ḡ∗ dvḡ∗ +

∫
M Q ĥ

γ |U |
2 dvĥ∫

M |U |
2 dvĥ

. (4-9)

We arrive at the eigenvalue equation

P ĥ
γ w = λ1w on M.

Or, equivalently, {
div(ya

∇U )= 0 in (X, ḡ∗),
−d∗γ limy→0 ya∂yU + Q ĥ

γU = λ1U on M,
(4-10)

As a consequence of Proposition 2.2 and Theorem 3.5 we have the following.

Theorem 4.2. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold. For each γ ∈ (0, 1)
there is a smooth, positive first eigenfunction for P ĥ

γ and the first eigenspace is of dimension one, provided
H = 0 when γ ∈ (1/2, 1).

Proof. We use the variational characterization (4-9) of the first eigenvalue. We first observe that one may
always assume there is a nonnegative minimizer for (4-9). Then regularity and the maximum principle in
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Section 3 insure that such a first eigenfunction is smooth and positive. To show that the first eigenspace is
of dimension one, we suppose that φ and ψ are positive first eigenfunctions for P ĥ

γ . Then

P ĥφ
γ

ψ

φ
= φ−(n+2γ )/(n−2γ )P ĥ

γ ψ = λ1φ
−(n+2γ )/(n−2γ )ψ

= (φ−(n+2γ )/(n−2γ )P ĥ
γ φ)

ψ

φ

= Q ĥφ
γ

ψ

φ
,

where ĥφ = φ4/(n−2γ )ĥ. That is, there is a function U satisfying
div(ya

φ∇U )= 0 in (X, ḡ∗φ),

lim
yφ→0

ya
φ

∂U
∂yφ

U = 0 on M,

and U = ψ/φ on M , where yφ and ḡ∗φ are associated with ĥφ as y and ḡ∗ are associated with ĥ in
Proposition 2.2, respectively. Replace U by U −Um for Um = minX U and apply Theorem 3.5 and
Corollary 3.6 to conclude that U has to be a constant. �

Consequently, we get the following.

Corollary 4.3. Suppose (Xn+1, g+) is an asymptotically hyperbolic manifold. Assume that γ ∈ (0, 1)
and that H = 0 when γ ∈ (1/2, 1). Then there are three mutually exclusive possibilities for the conformal
infinity (Mn, [ĥ]).

(1) The first eigenvalue of P ĥ
γ is positive, the γ -Yamabe constant is positive, and M admits a metric in

[ĥ] that has pointwise positive fractional scalar curvature.

(2) The first eigenvalue of P ĥ
γ is negative, the γ -Yamabe constant is negative, and M admits a metric in

[ĥ] that has pointwise negative fractional scalar curvature.

(3) The first eigenvalue of P ĥ
γ is zero, the γ -Yamabe constant is zero, and M admits a metric in [ĥ] that

has vanishing fractional scalar curvature.

Proof. First, it is obvious that the sign of the first eigenvalue of the conformal fractional Laplacian P ĥ
γ

does not change within the conformal class due to the conformal covariance property of the conformal
fractional Laplacian. The three possibilities are distinguished by the sign of the first eigenvalue λ1 of the
conformal fractional Laplacian P ĥ

γ . Because, if φ is the positive first eigenfunction of P ĥ
γ , we have

Q ĥφ
γ = λ

ĥ
1φ
−4γ /(n−2γ ),

where ĥφ = φ4/(n−2γ )ĥ. �
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5. Weighted Sobolev trace inequalities

Let us continue in the setting provided by Proposition 2.2. On the compact manifold Mn , for γ ∈ (0, 1),
we recall the fractional order Sobolev space Hγ (M), with its usual norm

‖w‖2Hγ (M) := ‖w‖
2
L2(M)+

∫
M
w(−1ĥ)

γw dvĥ .

An equivalent norm on this space is

‖w‖2Hγ (M) := A‖w‖2L2(M)+

∫
M
wP ĥ

γ w dvĥ,

for some appropriately large number A, since P ĥ
γ is an elliptic pseudodifferential operator of order 2γ

with its principal symbol being the same as that of (−1ĥ)
γ .

Note that in Rn , this Sobolev norm can be easily written in terms of the Fourier transform as

‖w‖2Hγ (Rn) =

∫
Rn
(1+ |ξ |2)γ ŵ2(ξ) dξ. (5-1)

We would also like to recall the definition of the weighted Sobolev spaces. For γ ∈ (0, 1) and a=1−2γ ,
consider the norm

‖U‖2W 1,2(X,ya)
=

∫
X

ya
|∇U |2ḡ∗ dvḡ∗ +

∫
X

yaU 2 dvḡ∗ .

The following is then known.

Lemma 5.1. There exists a unique linear bounded operator

T :W 1,2(X, ya)→ Hγ (M)

such that T U =U |M for all U ∈ C∞(X), which is called the trace operator.

Lemma 5.1 was explored by Nekvinda [1993] in the case when X is a subset of Rn+1 and Mn a piece
of its boundary; see also [Maz’ja 1985]. It then takes some standard argument to derive Lemma 5.1 from,
for instance, [Nekvinda 1993].

The classical Sobolev trace inequality on Euclidean space is well known (see, for instance, [Escobar
1988]) and reads (∫

Rn
|T u|2n/(n−1) dx

)(n−1)/(2n)

≤ C(n)
(∫

Rn+1
+

|∇u|2 dx dy
)1/2

(5-2)

where the constant C(n) is sharp and the equality case is completely characterized. This corresponds
to a = 0 for our cases. The same result is true for any other real a ∈ (−1, 1). Indeed there are general
weighted Sobolev trace inequalities. Let us first recall the well known fractional Sobolev inequalities.
They were first considered in a remarkable paper by Lieb [1983]; see also [Frank and Lieb 2012; Cotsiolis
and Tavoularis 2004] or the survey [Di Nezza et al. 2012].

Lemma 5.2. Let 0< γ < n/2, 2∗ = 2n/(n− 2γ ). Then, for all w ∈ Hγ (Rn), we have

‖w‖2L2∗ (Rn)
≤ S(n, γ )‖(−1)γ /2w‖2Hγ (Rn) = S(n, γ )

∫
Rn
w(−1)γw dx, (5-3)
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where

S(n, γ )= 2−2γπ−γ
0((n− 2γ )/2)
0((n+ 2γ )/2)

(
0(n)
0(n/2)

)2γ /n

=
0((n− 2γ )/2)
0((n+ 2γ )/2)

|vol(Sn)|−2γ /n.

We have equality in (5-3) if and only if

w(x)= c
(

µ

|x−x0|2+µ2

)(n−2γ )/2

, x ∈ Rn,

for c ∈ R, µ > 0 and x0 ∈ Rn fixed.

Note that we may interpret the above inequality as a calculation of the best γ -Yamabe constant on the
standard sphere as the conformal infinity of the Hyperbolic space. Namely, if gc is the standard round
metric on the unit sphere,

‖w‖2L2∗ (Sn)
≤ S(n, γ )

∫
Sn
wPgc

γ w dvgc . (5-4)

Such an inequality for the sphere case was also considered independently by Beckner [1993], Branson
[1995], and Morpurgo [2002], in the setting of intertwining operators. Indeed, we have the following
explicit expression for P Sn

γ :

P Sn

γ =
0(B+ γ + 1/2)
0(B− γ + 1/2)

, where B :=

√
−1Sn +

(n−1
2
)2
.

It is clear from (5-4) that

3γ (Sn, [gc])=
1

S(n, γ )
. (5-5)

Sobolev trace inequalities can be obtained by the composition of the trace theorem and the Sobolev
embedding theorem above. There have been some related works that deal with these types of energy
inequalities, for instance, Nekvinda [1993], González [2009], and Cabré and Cinti [2012]. In particular,
in light of the work of Caffarelli and Silvestre [2007] and Lemma 5.2, we easily see the more general
form of (5-2) as follows.

Corollary 5.3. Let w ∈ Hγ (Rn), γ ∈ (0, 1), a = 1− 2γ , and U ∈ W 1,2(Rn+1
+ , ya) with trace T U = w.

Then

‖w‖2L2∗ (Rn)
≤ S̄(n, γ )

∫
Rn+1
+

ya
|∇U |2 dx dy, (5-6)

where

S(n, γ ) := d∗γ S(n, γ ). (5-7)

Equality holds if and only if

w(x)= c
(

µ

|x−x0|2+µ2

)(n−2γ )/2

, x ∈ Rn,

for c ∈ R, µ > 0 and x0 ∈ Rn fixed, and U is its Poisson extension of w as given in (2-13).
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In the following lines we take a closer look at the extremal functions that attain the best constant in the
inequality above. On Rn we fix

wµ(x) :=
(

µ

|x |2+µ2

)
(n−2γ )/2. (5-8)

These correspond to the conformal diffeomorphisms of the sphere. We set

Uµ = Kγ ∗x wµ (5-9)

as given in (2-13). Then we have the equality

‖wµ‖
2
L2∗ (Rn)

= S(n, γ )
∫

Rn+1
+

ya
|∇Uµ|

2 dx dy.

It is clear that

wµ(x)=
1

µ(n−2γ )/2w1

( x
µ

)
and Uµ(x, y)= 1

µ(n−2γ )/2 U1

( x
µ
,

y
µ

)
. (5-10)

Moreover, Uµ is the (unique) solution of the problem{
div(ya

∇Uµ)= 0 in Rn+1
+ ,

−limy→0 ya∂yUµ = cn,γ (wµ)
(n+2γ )/(n−2γ ) on Rn.

(5-11)

On the other hand, if we multiply (5-11) by Uµ and integrate by parts,∫
Rn+1
+

ya
|∇Uµ|

2 dx dy = cn,γ

∫
Rn
(wµ)

2∗ dx . (5-12)

Now we compare (5-12) with (5-6). Using (5-5), we arrive at

3(Sn, [gc])= cn,γ d∗γ

[∫
Rn
(wµ)

2∗dx
]2γ /n

. (5-13)

Before the end of this section we calculate the general upper bound of the γ -Yamabe constants. Indeed
there is a complete analogue to the case of the usual Yamabe problem (compare [Aubin 1982; Lee and
Parker 1987]). Namely:

Proposition 5.4. Let γ ∈ (0, 1). Then

3γ (M, [ĥ])≤3γ (Sn, [gc]).

Proof. First, we instead use the functional (4-6) to estimate the γ -Yamabe constant for a good reason. The
approach is rather the standard method of gluing a “bubble” (5-8) to the manifold M ; see, for instance,
Lemma 3.4 of [Lee and Parker 1987].

For any fixed ε > 0, let Bε be the ball of radius ε centered at the origin in Rn+1 and B+ε be the half
ball of radius ε in Rn+1

+ . Choose a smooth radial cutoff function η, 0 ≤ η ≤ 1 supported on B2ε , and
satisfying η ≡ 1 on Bε . Then consider the function V = ηUµ with its trace v = ηwµ on Rn . We have∫

Rn+1
+

ya
|∇V |2 dx dy ≤ (1+ ε)

∫
Rn+1
+

ya
|∇Uµ|

2 dx dy+C(ε)
∫

B+2ε\B
+
ε

U 2
µ dx dy. (5-14)



1558 MARÍA DEL MAR GONZÁLEZ AND JIE QING

Note that wµ = O(µ(n−2γ )/2
|x |2γ−n) in the annulus ε ≤ |x | ≤ 2ε and Uµ is O(µ(n−2γ )/2) in the annulus

B+2ε\B
+
ε . This allows us to estimate the second term in the right hand side of (5-14) by O(µn−2γ ) as

µ→ 0, for ε fixed. For the first term in the right hand side of (5-14) we first use the fact that wµ attains
the best constant in the Sobolev inequality, so

S(n, γ )
∫

Rn+1
+

ya
|∇Uµ|

2 dx dy =
(∫

Rn
w2∗
µ dx

)2/2∗

≤

(∫
Rn
v2∗dx

)2/2∗

+ O(µn). (5-15)

Now we need to transplant the function V to the manifold (X̄ , ḡ∗). Fix a point on the boundary M and
use normal coordinates {x1, . . . , xn, y} around it, in a half ball B+2ε where V is supported. Two things
must be modified: when ε→ 0,

|∇V |2ḡ∗ = |∇V |2(1+ O(ε)),

and
dvḡ∗ = (1+ O(ε)) dx dy,

so that
Iε,µ := d∗γ

∫
B+2ε

ya
|∇V |2ḡ∗ dvḡ∗ +

∫
|x |≤2ε

Q ĥ
γ v

2 dvĥ

≤ (1+ O(ε))
(∫

B+2ε

ya
|∇V |2 dx dy+C

∫
|x |<2ε

v2 dx
)
.

It is easily seen that ∫
|x |<2ε

w2
µ dx = o(1).

This is a small computation that can be found in Lemma 3.5 of [Lee and Parker 1987]. Then, from (5-15),
fixing ε small and then µ small, we can get that

Iε,µ ≤ (1+Cε)
( 1

S(n, γ )
‖v‖2L2∗ (M)+Cµ

)
,

which implies

3γ (M, [ĥ])≤
1

S(n, γ )
=3γ (Sn, [gc]). �

We end this section by remarking that, although most of the results mentioned here were already
known in different contexts, it is certainly very interesting to put all the analysis and geometry together in
the context of conformal fractional Laplacians and the associated γ -Yamabe problems in a way that is
analogous to what has been done on the subject of the Yamabe problem, which becomes fundamental to
the development of geometric analysis.

6. Subcritical approximations

In this section we take a well-known subcritical approximation method to solve the γ -Yamabe problem
and prove Theorem 1.4. There does not seem to be any more difficulty than usual after our discussions in
previous sections. But, for the convenience of the readers, we present a brief sketch of the proof. Similar
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to the case of the usual Yamabe problem we consider the following subcritical approximations to the
functionals Iγ and I ∗γ , respectively. Set

Iβ[w] =

∫
M wP ĥ

γ w dvĥ

(
∫

M w
β dvĥ)

2/β

and

I ∗β [U ] =
d∗γ
∫

X ya
|∇U |2ḡ∗ dvḡ +

∫
M Q ĥ

γU 2 dvĥ

(
∫

M Uβ dvĥ)
2/β

for β ∈ [2, 2∗), where 2∗ = 2n/(n−2γ ) and γ ∈ (0, 1). These are subcritical problems and can be solved
through standard variational methods. For clarity we state the following.

Proposition 6.1. For each 2 ≤ β < 2∗, there exists a smooth positive minimizer Uβ for I ∗β [U ] in
W 1,2(X, ya), which satisfies the equations{

div(ya
∇Uβ)= 0 in (X, ḡ∗),

−d∗γ limy→0 yaUβ + Q ĥ
γUβ = cβUβ−1

β on M,

where the derivatives are taken with respect to the metric ḡ∗ in X and cβ = I ∗β [Uβ] = min I ∗β . And the
boundary value wβ of Uβ , which is a positive smooth minimizer for Iβ[w] in Hγ (M), satisfies

P ĥ
γ wβ = cβw

β−1
β .

Using a similar argument as in the proof of Lemma 4.3 in [Lee and Parker 1987] (see also [Aubin
1982]), we have the following.

Lemma 6.2. If vol(M, ĥ)= 1, |cβ | is nonincreasing as a function of β ∈ [2, 2∗]; and if 3γ (M, [ĥ])≥ 0,
cβ is continuous from the left at β = 2∗.

Readers are referred to [Escobar 1992; Lee and Parker 1987; Schoen and Yau 1994] for more details.

Proof of Theorem 1.4. Instead of applying the standard Sobolev embedding in the Yamabe problem, we
apply the weighted trace ones discussed in the previous section. To ensure that Uβ as β→ 2∗ produces a
minimizer for the γ -Yamabe problem, we want to establish the a priori estimates for Uβ . In light of the
discussions in Section 3, we only need to have a uniform L∞ bound for wβ . We establish the L∞ bound
for wβ by the so-called blow-up method.

Otherwise, assume there exist sequences βk → 2∗, wk := wβk and Uk := Uβk , xk ∈ M such that
wk(xk)=maxM{wk} =mk→∞ and xk→ x0 ∈M as k→∞. Take a normal coordinate system centered
at x0 and rescale

Vk(x, y)= m−1
k Uk(δk x + xk, δk y),

with the boundary value

vk(x)= m−1
k wk(δk x + xk),
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where δk =m(1−βk)/2γ
k . Then Vk is defined in a half ball of radius Rk = (1−|xk |)/δk and is a solution of{

div(ρa
∇Vk)= 0 in B+Rk

,

−d∗γ limy→0 ya∂y Vk + (Q ĥ
γ )kvk = ckv

β−1
k on BRk ,

(6-1)

with respect to the metric ḡ∗(δk x + xk, δk y), where

(Q ĥ
γ )k = δ

1−a
k Q ĥ

γ (δk x + xk)→ 0.

Due to, for example, C2,α a priori estimates for the rescaled solutions Vk , to extract a subsequence, if
necessary, we have Vk→ V0 in C2,α

loc . Moreover the metrics ḡ∗(δk x + xk, δk y) converge to the Euclidean
metric. Hence V0 is a nontrivial, nonnegative solution of{

− div(ya
∇V0)= 0 in Rn+1

+ ,

−d∗γ limy→0 ya∂y V0 = c0V (n+2γ )/(n−2γ )
0 on Rn.

(6-2)

Let v0 = T V0. It is easily seen that ∫
Rn
v2∗

0 (x) dx ≤ 1. (6-3)

Theorem 3.5 and Corollary 3.6 then assure that V0 > 0 on Rn+1
+ . Therefore we can obtain∫

Rn+1
+

ya
|∇V0|

2 dx dy = c0d∗γ

∫
Rn
v2∗

0 (x) dx . (6-4)

It is then obvious that c0 > 0, that is, c0 = 3γ (M, [ĥ]) in light of Lemma 6.2. Moreover, by the trace
inequalities from Corollary 5.3, we have(∫

Rn
v2∗

0 (x) dx
)2/2∗

≤ S̄(n, γ )
∫

Rn+1
+

ya
|∇V0|

2 dx dy. (6-5)

Then (6-3), (6-4), and (6-5), together with the definition of 3γ (Sn, [gc]) in (5-5), contradict the initial
hypothesis (1-6).

Once we have a uniform L∞ estimate, by the regularity theorems in Section 3 we may extract a
subsequence if necessary and pass to a limit U0, whose boundary value w0 satisfies

P ĥ
γ w0 =3w

2∗−1
0 , Iγ [w0] =3, 3= lim cβ . (6-6)

Theorem 3.5 and Corollary 3.6 also ensure that w0 > 0 on M . It remains to check that 3=3γ (M, [ĥ]).
However, this is a direct consequence of Lemma 6.2 when 3γ (M, [ĥ])≥ 0. Meanwhile it is easily seen
that by the definition of the γ -Yamabe constants and (6-6) that 3 can not be less than 3γ (M, [ĥ]). Hence
it is also implied that 3=3γ (M, [ĥ]) by Lemma 6.2 when 3γ (M, [ĥ]) < 0. Thus, in any case, w0 is a
minimizer of Iγ , as desired. �
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7. A sufficient condition

In this section we give the proof of Theorem 1.5, which provides a sufficient condition for the resolution
of the γ -Yamabe problem. Here the precise structure of the metric plays a crucial role, since a careful
computation of the asymptotics is required, following the calculation in [Escobar 1992]. The section
is divided into two parts: the first contains the necessary estimates on the Euclidean case, while in the
second we go back to the geometry setting and finish the proof of the theorem.

Some preliminary results on Rn+1
+ . Here we consider the divergence equation (2-11) on Rn+1

+ , as un-
derstood in [Caffarelli and Silvestre 2007; González 2009]. The main point is that by using the Fourier
transform, a solution to this problem can be written in terms on its trace value on Rn and the well-known
Bessel functions. Indeed, let U be a solution of{

div(ya
∇U )= 0 in Rn+1

+ ,

U (x, 0)= w on Rn
×{0},

(7-1)

or equivalently, U = Kγ ∗x w, where Kγ is the Poisson kernel as given in (2-13).
The main idea is to reduce (7-1) to an ODE by taking the Fourier transform in x . We obtain{

−|ξ |2û(ξ, y)+ a
y

û y(ξ, y)+ û yy(ξ, y)= 0,

Û (ξ, 0)= ŵ(ξ),

that is, an ODE for each fixed value of ξ .
On the other hand, consider the solution ϕ : [0,+∞)→ R of the problem

−ϕ(y)+ a
y
ϕy(y)+ϕyy(y)= 0, (7-2)

subject to the conditions ϕ(0)= 1 and limt→+∞ ϕ(t)= 0. This is a Bessel function and its properties are
summarized in Lemma 7.1. Then we have that

Û (ξ, y)= ŵ(ξ)ϕ(|ξ |y). (7-3)

For a review of Bessel functions, see, for instance, Lemma 5.1 of [González 2009] or Section 9.6.1 of
[Abramowitz and Stegun 1964].

Lemma 7.1. Consider the following ODE in the variable y > 0:

−ϕ(y)+ a
y
ϕy(y)+ϕyy(y)= 0,

with boundary conditions ϕ(0)= 1, ϕ(∞)= 0. Its solution can be written in terms of Bessel functions:

ϕ(y)= c1 yγKγ (y),
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where Kγ is the modified Bessel function of the second kind that has asymptotic behavior

Kγ (y)∼
0(γ )

2

(2
y

)γ
when y→ 0+,

Kγ (y)∼
√
π

2y
e−y when y→+∞,

for a constant

c1 =
21−γ

0(γ )
.

Now we are ready to prove the main technical lemmas in the proof of Theorem 1.5. More precisely,
we will explicitly compute several energy terms through Fourier transforms, thanks to expression (7-3).
Such precise computation is needed in order to obtain the exact value of the constant (1-8). For the rest
of the section, we set

|∇U |2 = (∂x1U )2+ · · ·+ (∂xn U )2+ (∂yU )2, |∇xU |2 = (∂x1U )2+ · · ·+ (∂xn U )2.

Lemma 7.2. Given w ∈ Hγ (Rn), let U = Kγ ∗w defined on Rn+1
+ . Then

A1(w) :=

∫
Rn+1
+

ya+2
|∇U |2 dx dy = d1

∫
Rn
|ŵ(ξ)|2|ξ |2(γ−1) dξ, (7-4)

A2(w) :=

∫
Rn+1
+

ya+2
|∇xU |2 dx dy = d2

∫
Rn
|ŵ(ξ)|2|ξ |2(γ−1) dξ, (7-5)

A3(w) :=

∫
Rn+1
+

yaU 2 dx dy = d3

∫
Rn
|ŵ(ξ)|2|ξ |2(γ−1) dξ, (7-6)

where

d2 =
−a+3

6
d1, d3 =

1
a+1

d1.

Proof. We write Ai :=Ai (w), i = 1, 2, 3, for simplicity. Note that the integrals in the right hand side
of (7-4), (7-5), (7-6) are finite because w ∈ Hγ (Rn) ↪→ Hγ−1(Rn) and because of the definition of the
Sobolev norm (5-1).

Thanks to (7-3), we can easily compute, using the properties of the Fourier transform,

A1 : =

∫
Rn
+

ya+2
|∇U |2 dx dy =

∫
Rn
+

ya+2(|∇xU |2+ |∂yU |2) dx dy

=

∫
Rn

∫
∞

0
ya+2(|ξ |2|Û |2+ |∂yÛ |2) dy dξ

=

∫
Rn

∫
∞

0
ya+2
|ŵ(ξ)|2|ξ |2(|ϕ(|ξ |y)|2+ |ϕ′(|ξ |y)|2) dy dξ

=

∫
Rn
|ŵ(ξ)|2|ξ |−1−a

∫
∞

0
ta+2(|ϕ(t)|2+ |ϕ′(t)|2) dt dξ

= d1

∫
Rn
|ŵ(ξ)|2|ξ |−1−adξ (7-7)



FRACTIONAL CONFORMAL LAPLACIANS AND FRACTIONAL YAMABE PROBLEMS 1563

for a constant

d1 :=

∫
∞

0
ta+2(|ϕ(t)|2+ |ϕ′(t)|2) dt. (7-8)

Similarly,

A2 : =

∫
Rn
+

ya+2
|∇xU |2 dx dy =

∫
Rn

∫
∞

0
ya+2
|ξ |2|Û |2 dy dξ

=

∫
Rn

∫
∞

0
ya+2
|ŵ(ξ)|2|ξ |2|ϕ(|ξ |y)|2 dy dξ

=

∫
Rn
|ŵ(ξ)|2|ξ |−1−a

∫
∞

0
ta+2
|ϕ(t)|2 dt dξ

= d2

∫
Rn
|ŵ(ξ)|2|ξ |−1−adξ

for

d2 :=

∫
∞

0
ta+2
|ϕ(t)|2 dt. (7-9)

And finally,

A3 : =

∫
Rn+1
+

yaU 2 dx dy =
∫

Rn

∫
∞

0
ya
|Û |2 dy dξ =

∫
Rn

∫
∞

0
ya
|ŵ(ξ)|2|ϕ(|ξ |y)|2 dy dξ

=

∫
Rn
|ŵ(ξ)|2|ξ |−1−a

∫
∞

0
ta
|ϕ(t)|2 dt dξ = d3

∫
Rn
|ŵ(ξ)|2|ξ |−1−a dξ,

(7-10)

for

d3 =

∫
∞

0
ta
|ϕ(t)|2 dt.

In the next step, we find the relation between the constants d1, d2, d3. All the integrals are evaluated
between zero and infinity in the following. Multiply (7-2) by ϕt ta+3 and integrate by parts:

−

∫
ϕϕt ta+3

+ a
∫
ϕ2

t ta+2
+

∫
ϕt tϕt ta+3

= 0. (7-11)

In the above formula, we estimate the first term by∫
ta+3ϕϕt =

1
2

∫
ta+3∂t(ϕ

2)=−
a+3

2

∫
ta+2ϕ2,

and the last one by ∫
ta+3ϕt tϕt =

1
2

∫
ta+3∂t(ϕ

2
t )=−

a+3
2

∫
ta+2ϕ2

t ,

so from (7-11) we obtain

(a+ 3)
∫

ta+2ϕ2
= (−a+ 3)

∫
ta+2ϕ2

t .

Together with (7-8) and (7-9) this gives

d1 =
6

−a+3
d2,
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as desired.
Now, multiply (7-2) by ϕta+2 and integrate:

−

∫
ta+2ϕϕt + a

∫
ta+1ϕ2

t +

∫
ta+2ϕt tϕ = 0. (7-12)

The third term above is computed as∫
ta+2ϕt tϕ =−

∫
ta+2ϕ2

t − (a+ 2)
∫

ta+1ϕtϕ,

so (7-12) becomes

d1 =−2
∫

ta+1ϕtϕ = (a+ 1)
∫

taϕ2
= (a+ 1)d3. (7-13)

This completes the proof of the lemma. �

In the following, we continue the estimates of the different error terms, although now we only need the
asymptotic behavior and not the precise constant.

Lemma 7.3. Let w be defined on Rn and U = Kγ ∗x w. Then

(1) for each k ∈ N, if w ∈ Hγ−k/2(Rn),

Ek :=

∫
Rn+1
+

ya+k
|∇U |2 dx dy <∞; (7-14)

(2) if w ∈ Hγ−3/2(Rn) and (|x |w) ∈ H−1/2+γ (Rn),

Ẽ3 :=

∫
Rn+1
+

ya
|(x, y)|3|∇U |2 dx dy <∞. (7-15)

Proof. Taking into account (7-3), we can proceed as in the calculation for A1 in (7-7), easily arriving at

Ek = ck

∫
Rn
|ŵ(ξ)|2|ξ |1−k−a dξ,

where

ck :=

∫
∞

0
ta+k(ϕ2(t)+ϕ2

t (t)) dt <∞,

and this last integral is finite for all k ∈ N because of the asymptotics of the Bessel functions from
Lemma 7.1. The second conclusion of the lemma is a little more involved. To show that the integral
(7-15) is finite, first note that (7-14) with k = 3 gives∫

Rn+1
+

ya+3
|∇U |2 dx dy <∞.

It is clear that it only remains to prove∫
Rn+1
+

ya
|x |3|∇U |2 dx dy <∞.
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Since the computation of the previous integral can be made component by component, it is clear that it is
enough to restrict to the case n = 1. Then we just need to show that

J :=
∫
∞

0

∫
R

ya
|x |3(∂xU )2 dx dy <∞. (7-16)

This is an easy but tedious calculation using the Fourier transform. Without loss of generality, we drop all
the constants 2π appearing in the Fourier transform. First notice that∫

R

|x |3(∂xU )2 dx = ‖{|x |3/2∂xU }‖2L2(R)
= ‖D3/2

ξ ∂̂xU‖2L2(R)
= ‖D3/2(|ξ |Û )‖2L2(R)

=

∫
R

|ξ |Û D3
ξ (|ξ |Û ) dξ.

(7-17)

At this point we go back to (7-3) to substitute the explicit expression for Û . We need to compute

D3
ξ (|ξ |ŵ(ξ)ϕ(|ξ |y))

= ŵ′′′[|ξ |ϕ] + ŵ′′[3ϕ+ 3|ξ |ϕ′y] + ŵ′[6ϕ′y+ 3|ξ |ϕ′′y2
] + ŵ[|ξ |ϕ′′′y3

+ 3ϕ′′y2
]

= ŵ′′′[|ξ |ϕ] + ŵ′′[3ϕ+ 3tϕ′] + ŵ′[6|ξ |−1tϕ′+ 3|ξ |−1t2ϕ′′] + ŵ[|ξ |−2ϕ′′′t3
+ 3|ξ |−2t2ϕ′′],

after the change |ξ |y = t . When we substitute the above expression into (7-17) and then back into (7-16),
taking into account the change of variables, we obtain

J =
∫
∞

0
taϕ2 dt

∫
R

ŵ′′′ŵ|ξ |1−a dξ +
∫
∞

0
ta
[ϕ2
+ 3tϕϕ′] dt

∫
R

ŵ′′ŵ|ξ |−a dξ

+

∫
∞

0
ta
[6tϕ′ϕ+ 3t2ϕ′′ϕ] dt

∫
R

ŵ′ŵ|ξ |−a−1 dξ +
∫
∞

0
ta
[t3ϕ′′′ϕ+ 3t2ϕ′′ϕ]dt

∫
R

ŵ2
|ξ |−a−2 dξ

=: c1 J1+ c2 J2+ c3 J3+ c4 J4.

It is clear, looking at the asymptotic behavior of ϕ from Lemma 7.1 that the constants ci , i = 1, 2, 3, 4,
are finite. On the other hand, by a straightforward integration by parts argument, we can write each of the
terms Ji , i = 1, 2, 3, 4, as a linear combination of just∫

R

ŵ2(ξ)|ξ |−a−2 dξ and
∫

R

ŵ′(ξ)2|ξ |−a dξ. (7-18)

Finally, the proof is completed because the initial hypotheses show that both integrals in (7-18) are finite.
In particular, these hypotheses show that all the derivations are rigorous. �

Lemma 7.4. Let w be defined on Rn and U = Kγ ∗x w.

(1) For each k ∈ N, if w ∈ Hγ−k/2−1(Rn),

Fk :=

∫
Rn+1
+

ya+kU 2 dx dy <∞. (7-19)

(2) If w ∈ Hγ−5/2(Rn) and (|x |w) ∈ Hγ−3/2(Rn),

F̃3 :=

∫
Rn+1
+

ya
|x |3U 2 dx dy <∞. (7-20)
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Proof. The first assertion (7-19) follows as in (7-10):

Fk : =

∫
Rn+1
+

ya+kU 2 dx dy =
∫

Rn

∫
∞

0
ya+k
|Û |2 dy dξ =

∫
Rn

∫
∞

0
ya+k
|ŵ(ξ)|2|ϕ(|ξ |y)|2 dy dξ

=

∫
Rn
|ŵ(ξ)|2|ξ |−1−a−k

∫
∞

0
|ϕ(t)|2ta+k dt dξ = ck

∫
Rn
|ŵ(ξ)|2|ξ |−1−a−k dξ,

for

ck :=

∫
∞

0
|ϕ(t)|2ta+k dt <∞.

For the second assertion, in light of our previous discussions, it is enough to show that, in the one-
dimensional case,∫

R

|x |3U 2 dx = ‖{|x |3/2U }‖2L2(R)
= ‖D3/2Û‖2L2(R)

=

∫
R

Û D3
ξ (Û ) dξ.

Substitute the expression for Û from (7-3). Then∫
R

|x |3U 2 dx =
∫
ŵ′′′ŵϕ2 dξ + 3

∫
ŵ′′ŵϕ′ϕy dξ + 3

∫
ŵ′ŵϕ′ϕy2 dξ +

∫
ŵ2ϕ′′′ϕy3 dξ,

so when we change variables t = |ξ |y,∫
∞

0

∫
R

ya
|x |3U 2 dx dy =

∫
∞

0
taϕ2 dt

∫
R

ŵ′′′ŵ|ξ |−1−a dξ + 3
∫
∞

0
t1+aϕ′ϕ dt

∫
R

ŵ′′ŵ|ξ |−2−a dξ

+ 3
∫
∞

0
t2+aϕ′′ϕ dt

∫
R

ŵ′ŵ|ξ |−3−a dξ +
∫
∞

0
t3+aϕ′′′ϕdt

∫
R

ŵ2
|ξ |−4−a dξ

= c̃1 J̃1+ c̃2 J̃2+ c̃3 J̃3+ c̃4 J̃4.

Clearly, from the asymptotics of the Bessel functions from Lemma 7.1, the constants c̃i , i = 1, 2, 3, 4, are
finite. At the same time, each of the integrals J̃i , i = 1, 2, 3, 4, can be written as a linear combination of∫

(ŵ′)2|ξ |−2−a dξ and
∫
(ŵ)2|ξ |−4−a dξ,

which are finite because of the hypothesis on w. �

Next, we check what happens with the previous two lemmas under rescaling. Here f = o(1) means

lim
ε/µ→0

f = 0.

Given any function w defined on Rn , we consider its extension to Rn+1
+ as U = Kγ ∗xw, and the rescaling,

for each µ > 0,

Uµ(x, y) := 1
µ(n−2γ )/2 U

( x
µ
,

y
µ

)
. (7-21)

Corollary 7.5. Fix ε, µ > 0 and let the hypotheses be the as in Lemma 7.3 (in each of the two cases).
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(1) For each k ∈ N,∫
B+ε

ya+k
|∇Uµ|

2dx dy = µk
∫

B+ε/µ

ya+k
|∇U |2dx dy = µk

[Ek + o(1)]. (7-22)

(2) Moreover,∫
B+ε

ya
|(x, y)|3|∇Uµ|

2 dx dy = µ3
∫

B+ε/µ

ya+k
|∇U |2 dx dy = µ3

[Ẽ3+ o(1)], (7-23)

where Uµ is the rescaling (7-21), and Ek, Ẽ3 <∞ are defined as in Lemma 7.3.

Corollary 7.6. Fix ε, µ > 0 and let the hypotheses be as in Lemma 7.4 (in each of the two cases).

(1) For each k ∈ N,∫
B+ε

ya+k(Uµ)
2 dx dy = µk+2

∫
B+ε/µ

ya+kU 2 dx dy = µk+2
[Fk + o(1)]. (7-24)

(2) Moreover,∫
B+ε

ya
|(x, y)|3(Uµ)

2 dx dy = µ5
∫

B+ε/µ

ya
|x |3U 2 dx dy = µ5

[F̃3+ o(1)], (7-25)

where Uµ is the rescaling (7-21), and Fk, F̃3 <∞ are defined as in Lemma 7.4.

Proof of Theorem 1.5. We first need to choose a very particular background metric for X near a nonum-
bilic point on M . We follow the same steps as in Lemmas 3.1–3.3 of [Escobar 1992]. But our situation is
a little different. Our freedom of choice of metrics is restricted to the boundary. Hence we make some
assumptions on the behavior of the asymptotically hyperbolic manifolds in order to allow us to see clearly
what we can get for a good choice of representative from the conformal infinity.

Lemma 7.7. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold and ρ is a geodesic
defining function associated with a representative ĥ of the conformal infinity (Mn, [ĥ]). Assume that

ρ−2(R[g+] −Ric[g+](ρ∂ρ)+ n2)→ 0 as ρ→ 0. (7-26)

Then, at ρ = 0,

H := Trĥ h(1) = 0 (7-27)

and

Trĥ h(2) = 1
2

(
‖h(1)‖2

ĥ
+

1
2(n−1)

R[ĥ]
)
, (7-28)

where

g+ =
dρ2
+ hρ
ρ2 , hρ = ĥ+ h(1)ρ+ h(2)ρ2

+ o(ρ2).

Proof. This simply follows from the calculations in [Graham 2000]. Recall (2.5) from [Graham 2000]:

ρh′′i j + (1− n)h′i j − hklh′klhi j − ρhklh′ikh′jl +
1
2ρhklh′klh

′

i j − 2ρRi j [ĥ] = ρ(Ri j [g+] + ng+i j ), (7-29)
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where we use h to stand for hρ for simplicity. Taking its trace with respect to the metrics h, we have

ρ Trh h′′+(1−2n)Trh h′−ρ‖h′‖2h+
1
2ρ(Trh h′)2−2ρR[ĥ] = ρ−1(R[g+]−Ric[g+](x∂x)+n2). (7-30)

Immediately from (7-26) we see that

Trh h′ = 0 at ρ = 0.

Then, dividing ρ in both sides of (7-30) and taking ρ→ 0, we have (7-28), under the assumption (7-26),
because

(Trh h′)′ = Trĥ h′′−‖h′‖2
ĥ

at ρ = 0. �

Notice that (7-26) is an intrinsic curvature condition of an asymptotically hyperbolic manifold, which
is independent of the choice of geodesic defining functions. Consequently we have the following.

Lemma 7.8. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold and (7-26) holds. Then,
given a point p on the boundary M , there exists a representative ĥ of the conformal infinity such that

(i) H =: Trĥ h(1) = 0 on M ,

(ii) Ric[ĥ](p)= 0 on M ,

(iii) Ric[ḡ](∂ρ)(p)= 0 on M ,

(iv) R[ḡ](p)= ‖h(1)‖2
ĥ

on M.

Proof. The proof, like that of Lemma 3.3 in [Escobar 1992], uses Theorem 5.2 of [Lee and Parker 1987].
Therefore we may choose a representative of the conformal infinity whose Ricci curvature vanishes at
any given point p ∈ M . In light of Lemma 7.7 we get i. and ii. right away. We then calculate

Ric[ḡ](∂x)=−
1
2 Trĥ h(2)+ 1

4‖h
(1)
‖

2
ĥ
= 0

at p ∈ M from (7-28). Finally we recall that

R[ḡ] = 2 Ric[ḡ](∂ρ)+ R[ĥ] + ‖h(1)‖2
ĥ
− (Trĥ h(1))2 = ‖h(1)‖2

ĥ
.

The proof is complete. �

Assume that 0 ∈ M = ∂X is a nonumbilic point. Choose normal coordinates x1, . . . , xn around 0 on
M and let (x1, . . . , xn, ρ) be the Fermi coordinates on X around 0. In particular, we can write

g+ = ρ−2(dρ2
+ hi j (x, ρ) dxi dx j ), ḡ = dρ2

+ hi j (x, ρ) dxi dx j .

In order to simplify the later notation, we denote the coordinate ρ by y. The only risk of confusion comes
from the fact that we have previously used y for the special defining function ρ∗ from Proposition 2.2,
but we will not need it any longer. In the new notation we have

ḡ = dy2
+ hi j (x, y) dxi dx j

for some functions hi j (x, y), i, j = 1, . . . , n. From what we have in the above two lemmas, we get from
Lemmas 3.1 and 3.2 of [Escobar 1992] the following.



FRACTIONAL CONFORMAL LAPLACIANS AND FRACTIONAL YAMABE PROBLEMS 1569

Lemma 7.9. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold satisfying (7-26). Given
a nonumbilic point p on the boundary M , that is, one such ‖h(1)‖ĥ(p) 6= 0 for p ∈ M , where ĥ is chosen
as in Lemma 7.8, we have

(1)
√
|ḡ| = 1− 1

2‖π‖
2 y2
+ O(|(x, y)|3) and

(2) ḡi j
= δi j + 2π i j y− 1

3 Ri j
kl [ĥ] xk xl + ḡi j

,ym yxm + (3π imπm
j
+ Ri

y
j
y[ḡ])y2

+ O(|(x, y)|3),

where, for simplicity, we set π = h(1).

As in Proposition 5.4, we try to find a good test function for the Sobolev quotient given by

I ∗γ [U, ḡ] =
d∗γ
∫

X ya
|∇U |2ḡ dvḡ +

∫
X E(y)U 2 dvḡ

(
∫

M |U |
2∗ dvĥ)

2/2∗ ,

where E(y) is given by (2-10), with respect to the metric ḡ:

E(y)= n−1+a
4n

(
R[ḡ] − (n(n+ 1)+ R[g+])y−2)ya. (7-31)

We need to perform a careful computation of the lower order terms in order to find an estimate for
3γ (M, [ĥ]). For simplicity, we introduce the following notation: for a subset �⊂ Rn+1

+ , we consider the
energy functional restricted to � given by

K(U, �) := d∗γ

∫
�

ya
|∇U |2ḡ dvḡ +

∫
�

E(y)U 2 dvḡ.

Given any ε > 0, let Bε be the ball of radius ε centered at the origin in Rn+1 and B+ε be the half ball of
radius ε in Rn+1

+ . Choose a smooth radial cutoff function η, 0≤ η ≤ 1, supported on B2ε , and satisfying
η = 1 on Bε . We recall here the conformal diffeomorphisms of the sphere wµ given in (5-8) and their
extension Uµ as in (5-9). Our test function is simply

Vµ := ηUµ.

Step 1: Computation of the energy in B+ε . It is clear that in the half ball B+ε , Vµ = Uµ, so that
K(Vµ, B+ε )= K(Uµ, B+ε ). We compute the first term in the energy K(Uµ, B+ε ). Using the asymptotics
for ḡ from Lemma 7.9, we have (here the indexes i, j run from 1 to n)∫

B+ε
ya
|∇Uµ|

2
ḡ dvḡ =

∫
B+ε

ya
[ḡi j (∂iUµ)(∂ jUµ)+ (∂yUµ)

2
] dvḡ

= J1+ J2+ J3+ J4+ J5+ J6, (7-32)

where

J1 :=

∫
B+ε

ya
|∇Uµ|

2 dvḡ,

J2 := 2π i j
∫

B+ε
ya+1(∂iUµ)(∂ jUµ) dvḡ,

J3 :=

∫
B+ε

ya+2(3π imπm
j
+ Ri

y
j
y[ḡ])(∂iUµ)(∂ jUµ) dvḡ,
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J4 :=

∫
B+ε

ya+1ḡi j
,tk xk(∂iUµ)(∂ jUµ) dvḡ

J5 := −
1
3

∫
B+ε

ya Ri
kl

j
[ḡ]xk xl(∂iUµ)(∂ jUµ) dvḡ

J6 := c
∫

B+ε
ya
|(x, y)|3|∇Uµ|

2 dvḡ.

We estimate J1 using the estimate for the volume element
√
|ḡ| from Lemma 7.9:

J1 =

∫
B+ε

ya
|∇Uµ|

2 dvḡ

≤

∫
B+ε

ya
|∇Uµ|

2 dx dy− 1
2‖π‖

2
∫

B+ε
y2+a
|∇Uµ|

2 dx dy+ c
∫

B+ε
ya
|∇Uµ|

2
|(x, y)|3 dx dy

≤

∫
B+ε

ya
|∇Uµ|

2 dx dy− 1
2‖π‖

2µ2A1+µ
2o(1)+ cµ3

[Ẽ3+ o(1)], (7-33)

if we take into account the notation from (7-4) and Corollary 7.5.
Now we look closely at the equation for Uµ. Multiply expression (5-11) by Uµ and integrate by parts:∫

B+ε
ya
|∇Uµ|

2 dx dy = cn,γ

∫
00
ε

w2∗
µ dx +

∫
0+ε

Uµ(∂νUµ) dσ ≤ cn,γ

∫
00
ε

w2∗
µ dx, (7-34)

where ν is the exterior normal to B+ε . Here we have used the properties of the convolution with a radially
symmetric, nonincreasing kernel Kγ . More precisely, since wµ is radially symmetric and nonincreasing,
Uµ = Kγ ∗x wµ also satisfies ∂νUµ ≤ 0 on 0+ε ; see [Cabré and Roquejoffre 2013, Lemma 2.3], for
instance.

From (7-34), using (5-13), we arrive at∫
B+ε

ya
|∇Uµ|

2 dx dy ≤3(Sm, [gc])(d∗γ )
−1
[∫

00
ε

(wµ)
2∗ dx

](n−2γ )/n

. (7-35)

For simplicity, we set 31 :=3(Sm, [gc])(d∗γ )
−1. Equations (7-33) and (7-35) tell us that

J1 =

∫
B+ε

ya
|∇Uµ|

2 dvḡ ≤31

[∫
00
ε

(wµ)
2∗ dx

]2/2∗

−
1
2‖π‖

2µ2A1+µ
2o(1)+ cµ3. (7-36)

On the other hand, the asymptotics for the metric ĥ = ḡ|y=0 near the origin are explicit. Indeed, from
Lemma 7.8 we know that √

|ĥ| = 1+ O(|x |3). (7-37)

Moreover, we can compute from (5-10)∫
00
ε

(wµ)
2∗
|x |3 dx = µ3

∫
00
ε/µ

(w1)
2∗
|x |3 dx ≤ cµ3.
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Consequently, from (7-37) we are able to relate the integrals in dvĥ and dx :∫
00
ε

(wµ)
2∗ dx ≤

∫
00
ε

(wµ)
2∗ dvĥ + cµ3.

And substituting the above expression into (7-36) we get

J1 =

∫
B+ε

ya
|∇Uµ|

2 dvḡ ≤31

[∫
00
ε

(wµ)
2∗ dvĥ

]2/2∗

−
1
2‖π‖

2µ2A1+µ
2o(1)+ cµ3.

Now we go back to (7-32) and try to estimate the second term J2 in the right hand side. If we again
use the asymptotics of the metric ḡ given in Lemma 7.9,∫

B+ε
ya+1(∂iUµ)(∂ jUµ) dvḡ ≤

∫
B+ε

ya+1(∂iUµ)(∂ jUµ) dx dy+B, (7-38)

for

B≤ c
∫

B+ε
ya+3
|∇Uµ|

2dx dy+ c
∫

B+ε
ya+1
|∇Uµ|

2
|(x, y)|3 dx dy.

We notice here that B can be easily estimated from Corollary 7.5:

B≤ cµ3(E3+ o(1))+ cµ3ε(Ẽ3+ o(1))≤ cµ3
+µ3o(1). (7-39)

Let us look at the cross terms (∂iUµ)(∂ jUµ), 1≤ i, j ≤ n in (7-38). We note that ∂iUµ= Kγ ∗x (∂iwµ),
just by taking the derivatives in the convolution. This last derivative can be explicitly written, and in
particular, ∂iwµ is an odd function in the variable xi . By the properties of the convolution, we know that
∂iUµ is also an odd function in the variable xi . Then, using the symmetries of the half ball, the integral∫

B+ε
ya+1(∂iUµ)(∂ jUµ) dx dy

is zero if i 6= j . If i = j , we use that the mean curvature at the point vanishes, that is, π i
i = 0 by Lemma 7.8.

Then, when we substitute formula (7-38) in the expression for J2, only the error term remains, and by
(7-39) we conclude that

J2 = 2π i j
∫

B+ε
ya+1(∂iUµ)(∂ jUµ) dvḡ ≤B≤ µ3(c+ o(1)). (7-40)

Now we estimate the next term in (7-32), J3. Again using the asymptotics for the volume element dvḡ

from Lemma 7.9, we have that∫
B+ε

ya+2(∂iUµ)(∂ jUµ) dvḡ ≤

∫
B+ε

ya+2(∂iUµ)(∂ jUµ) dx dy+B′, (7-41)

for

B′ ≤ c
∫

B+ε
ya+4
|∇Uµ|

2dx dy+ c
∫

B+ε
ya+2
|(x, y)|3|∇Uµ|

2dx dy

≤ µ4(E4+ o(1))+µ3ε2(Ẽ3+ o(1))≤ cµ3,

where the last estimate follows again thanks to Corollary 7.5.
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Notice that, again for i 6= j„ the first integral in the right hand side of (7-41) vanishes — thanks to the
symmetries of the half ball and the discussion above on the oddness of the derivatives of Uµ. Then we
recall the definition of A2 from (7-5) and the estimate (7-22). When we put all these ingredients together,
we get

J3 = (3π imπm
j
+ Ri

y
j
y[ḡ])

∫
B+ε

ya+2(∂iUµ)(∂ jUµ) dvḡ

=
1
n
[3‖π‖2+Ric(ν)]µ2A2+ cµ3

=
3
n
‖π‖2µ2A2+µ

2o(1)+ cµ3,

if we take into account that Ric(ν)(0)[ĥ] = 0 because of Lemma 7.8.
Next, the calculation for J4 is very similar to the previous one. Indeed,∫

B+ε
ya+1xk(∂iUµ)(∂ jUµ) dvḡ ≤

∫
B+ε

ya+1xk(∂iUµ)(∂ jUµ) dx dy+B′′,

and because of symmetries on the unit ball, the first integral in the right hand side above vanishes for all
i , j , k, while B′′ ≤ cµ3. Thus

J4 = ḡi j
,tk

∫
B+ε

ya+1xk(∂i Vµ)(∂ j Vµ) dvḡ ≤ cµ3.

And finally J5, J6 can be estimated in a similar manner.
Putting all the estimates together for the J j , j = 1, . . . , 6, we have shown that (7-32) reduces to∫

B+ε
ya
|∇Uµ|

2
ḡ dvḡ ≤31

[∫
00
ε

(wµ)
2∗ dvĥ

]2/2∗

+

[
−

1
2 A1+

3
n

A2

]
‖π‖2µ2

+µ2o(1)+ cµ3. (7-42)

Finally, we are able to complete the computation of the energy K(Uµ, B+ε ). Note that in the half ball
B+ε , we have a very precise behavior for the lower order term (7-31). In particular, Lemma 7.8 gives that
R[ḡ](p)= ‖π‖2, so

E(y)= n−1+a
4n

‖π‖2 ya
+ O(y1+a). (7-43)

Then, again using the asymptotics for the volume element dvḡ,∫
B+ε

E(y)(Uµ)
2 dvḡ =

n−1+a
4n

‖π‖2
∫

B+ε
ya(Uµ)

2 dx dy+B′′′, (7-44)

where

B′′′ ≤ c
∫

B+ε
ya+1(Uµ)

2 dx dy+ c
∫

B+ε
ya
|x |3(Uµ)

3 dx dy

can be estimated from Corollary 7.6 as

B′′′ ≤ cµ3
+ o(1). (7-45)



FRACTIONAL CONFORMAL LAPLACIANS AND FRACTIONAL YAMABE PROBLEMS 1573

Summarizing, from (7-44) and (7-45), and using the scaling properties of Uµ as given in (5-10), we have∫
B+ε

E(y)(Uµ)
2 dvḡ ≤

n−1+a
4n

‖π‖2µ2
∫

B+ε/µ

ya(U1)
2 dx dy+ cµ3

=
n−1+a

4n
‖π‖2µ2A3+ cµ2o(1)+ cµ3,

(7-46)

where for the last inequality we have used Corollary 7.6 and the definition of A3 from (7-6).
The energy of Vµ in the half ball B+ε is computed from (7-42) and (7-46), noting the relation between

A1, A2, A3 from Lemma 7.2 and that 31 =3(Sn, [gc])d∗γ :

K(Vµ, B+ε )

= d∗γ

∫
B+ε

ya
|∇Uµ|

2dvḡ +

∫
B+ε

E(y)(Uµ)
2 dvḡ

≤3(Sn, [gc])

[∫
00
ε

(wµ)
2∗dvĥ

]2/2∗

+

[
d∗γ (−

1
2 A1+

3
n

A2)+
n−1+a

4n
A3

]
‖π‖2µ2

+µ2o(1)+ cµ3

≤3(Sn, [gc])

[∫
00
ε

(wµ)
2∗ dvĥ

]2/2∗

+ θn,γ ‖π‖
2µ2

∫
Rn
|ξ |2(γ−1)

|ŵ1(ξ)|
2 dξ +µ2o(1)+ cµ3

for

θn,γ =
1

4n

[
n+a−3

1−a
22γ+1 0(γ )

0(−γ )
+

n−1+a
a+1

]
d1. (7-47)

Finally, we note that w1 ∈ Hγ (Rn) and (|x |w) ∈ Hγ (Rn), so that all our computations are well justified.

Step 2: Computation of the energy in the half-annulus B+2ε\B
+
ε . To compute K(Vµ, B+2ε\B

+
ε ), note that

|∇Vµ|2ḡ ≤ c|∇Vµ|2 ≤ c(η2
|∇Uµ|

2
+ (Uµ)

2
|∇η|2)

so that, because of the structure of the cutoff function η,

|∇Vµ|2ḡ ≤ c|∇Uµ|
2
+

c
ε
(Uµ)

2. (7-48)

Moreover, ∫
B+2ε\B

+
ε

ya(Uµ)
2 dx dy ≤ µ2

∫
B+2ε/µ\B

+

ε/µ

ya(U1)
2 dx dy = µ2o(1), (7-49)

because the integral
∫

Rn ya(U1)
2 dx dy is finite and ε/µ→∞. On the other hand, we know that(

ε

µ

)3
∫

B+2ε/µ\B
+

ε/µ

ya
|∇U1|

2 dx dy ≤
∫

B+2ε/µ\B
+

ε/µ

ya
|(x, y)|3|∇U1|

2 dx dy ≤ Ẽ3 <∞

because of Lemma 7.4. As a consequence,∫
B+2ε\B

+
ε

ya
|∇Uµ|

2 dx dy =
∫

B+2ε/µ\B
+

ε/µ

ya
|∇U1|

2 dx dy ≤
(
µ

ε

)3
Ẽ3. (7-50)
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If we put together formulas (7-48), (7-49), and (7-50), we arrive at

K(Vµ, B+2ε\B
+

ε )=

∫
B+2ε\B

+
ε

ya
|∇Uµ|

2 dx dy+
∫

B+2ε\B
+
ε

E(y)(Uµ)
2 dx dy ≤ µ2o(1)

when µ/ε→ 0.

Step 3: Completion of the proof. We have very carefully computed

K(Vµ, X)= d∗γ

∫
X

ya
|∇Vµ|2 dvolḡ +

∫
X

E(y)(Vµ)2 dvolḡ

≤3(Sn, [gc])

[∫
00
ε

(wµ)
2∗ dvĥ

]2/2∗

+ θn,γ ‖π‖
2µ2

∫
Rn
|ŵ1(ξ)|

2
|ξ |2(γ−1) dξ +µ2o(1)+ cµ3,

where θn,γ is given in (7-47).
If there is a nonumbilic point, ‖π‖2 6= 0 at that point. In the case that θn,γ < 0, we are done, because

fixing ε small and then choosing µ much smaller,

K(Vµ, X) < 3(Sn, [gc])

[∫
M
(wµ)

2∗ dvĥ

]2/2∗

,

as desired. �
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