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We prove that bilinear forms associated to the rough homogeneous singular integrals

T�f .x/D p:v:
Z

Rd
f .x�y/�

�
y

jyj

�
dy
jyjd

;

where � 2 Lq.Sd�1/ has vanishing average and 1 < q �1, and to Bochner–Riesz means at the critical
index in Rd are dominated by sparse forms involving .1; p/ averages. This domination is stronger than
the weak-L1 estimates for T� and for Bochner–Riesz means, respectively due to Seeger and Christ.
Furthermore, our domination theorems entail as a corollary new sharp quantitative Ap-weighted estimates
for Bochner–Riesz means and for homogeneous singular integrals with unbounded angular part, extending
previous results of Hytönen, Roncal and Tapiola for T�. Our results follow from a new abstract sparse
domination principle which does not rely on weak endpoint estimates for maximal truncations.

1. Introduction and main results

Singular integral operators of Calderón–Zygmund type, which are a priori signed and nonlocal, can
be dominated in norm [Lerner 2013], pointwise [Conde-Alonso and Rey 2016; Lacey 2017; Lerner
and Nazarov 2015], or dually [Bernicot et al. 2016; Culiuc et al. 2016a; 2016b] by sparse averaging
operators (forms), which are in contrast positive and localized. For 1� p1; p2 <1, we define the sparse
.p1; p2/-averaging form to be the bisublinear form

PSFSIp1;p2.f1; f2/ WD
X
Q2S

jQjhf1ip1;Q hf2ip2;Q; hf ip;Q WD jQj
� 1
p kf 1Qkp;

associated to a (countable) sparse collection S of cubes of Rd. The collection S is �-sparse if there
exist 0 < � � 1 (a number which will not play a relevant role) and measurable, pairwise disjoint sets
fEI W I 2 Sg such that

EI � I; jEI j � �jI j:

In this article, we prove a sparse domination principle of type

jhTf1; f2ij. sup
S

PSFSIp1;p2.f1; f2/ (1-1)

Conde-Alonso was supported in part by ERC Grant 32501 and by MTM-2013-44304-P project. Di Plinio was partially supported
by the National Science Foundation under the grants NSF-DMS-1500449 and NSF-DMS-1650810.
MSC2010: primary 42B20; secondary 42B25.
Keywords: positive sparse operators, rough singular integrals, weighted norm inequalities.

1255

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2017.10-5
http://dx.doi.org/10.2140/apde.2017.10.1255
http://msp.org


1256 JOSÉ M. CONDE-ALONSO, AMALIA CULIUC, FRANCESCO DI PLINIO AND YUMENG OU

for singular integral operators T whose (possible) lack of kernel smoothness forbids the avenue exploited
in [Lacey 2017; Lerner 2016]. Our principle, summarized in Theorem C below, can be employed in
a rather direct fashion to recover the best known, and sharp, sparse domination results for Dini- and
Hörmander-type Calderón–Zygmund operators [Bui et al. 2017; Hytönen et al. 2017; Lacey 2017; Volberg
and Zorin-Kranich 2016].

However, the main purpose of our work is to suitably extend (1-1) to the class of rough singular
integrals introduced in the seminal paper of Calderón and Zygmund [1956], and further studied, notably,
in [Duoandikoetxea and Rubio de Francia 1986; Christ 1988; Christ and Rubio de Francia 1988; Seeger
1996]. Prime examples from this class include the rough homogeneous singular integrals on Rd

T�f .x/D p:v:
Z

Rd
f .x�y/�

�
y

jyj

�
dy
jyjd

; (1-2)

with � 2 Lq.Sd�1/ having zero average, as well as the critical Bochner–Riesz means in dimension d,
defined by the multiplier operator

Bıf D F�1
�
Of . � /.1� j � j2/ıC

�
; ı D

d�1

2
: (1-3)

For the singular integrals (1-2) no sparse domination results were known prior to this article, although
some quantitative weighted estimates were established in the recent works [Hytönen et al. 2017; Pérez
et al. 2016]; see below for details. For the Bochner–Riesz means (1-3), the recent results of [Benea et al.
2017] and [Carro and Domingo-Salazar 2016] are far from being optimal at the critical exponent.

The main difficulty encountered by previous approaches in this setting is the following: first, notice that
an estimate of the type (1-1) is already stronger than the weak-Lp1 bound for T. In particular, if p1 D 1
then (1-1) recovers the weak-L1 endpoint bound. On the other hand, the preexisting techniques for sparse
domination [Benea et al. 2017; Bernicot et al. 2016; Hytönen et al. 2017; Lacey 2017; Lerner 2016]
essentially rely on weak-Lp estimates for a grand maximal truncation of the singular integral operator T ,
but those do not seem attainable in the context, for instance, of [Seeger 1996], as observed in [Lerner
2016]. In fact, the rough singular integrals we consider below are not known to satisfy such an estimate
for pD 1, and therefore a different approach is required in order to obtain the sparse bounds that we want.

As a corollary of our domination results, we obtain quantitativeAp-weighted estimates for homogeneous
singular integrals (1-2) whose angular part belongs to Lq.Sd�1/ for some 1 < q �1. These are novel,
and sharp, when q <1, while in the case q D1 we recover the best known result recently proved in
[Hytönen et al. 2017] by other methods. Although our result for the Bochner–Riesz means (1-3) seemingly
yields the best known quantitative Ap estimates, we do not know whether our results are sharp in this case.

Main results. Our main results consist of estimates for the bilinear forms associated to T� and Bı by
sparse operators involving Lp-averages. The formulation of our first theorem requires the Orlicz–Lorentz
norms

k�kLq;1 logL.Sd�1/ WD q

Z 1
0

t log.eC t /
ˇ̌˚
� 2 Sd�1 W j�.�/j> t

	ˇ̌ 1
q dt
t
; 1� q <1:
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Theorem A. There exists an absolute dimensional constant C > 0 such that the following holds. Let
� 2 L1.Sd�1/ have zero average. Then for all 1 < t <1, f1 2 Lt .Rd /, f2 2 Lt

0

.Rd /, we have

jhT�f1; f2ij �
Cp

p� 1
sup
S

PSFSI1;p.f1; f2/

�
k�kLq;1 logL.Sd�1/; 1 < q <1; p � q0;

k�kL1.Sd�1/; 1 < p <1:

Remark 1.1. To avoid Lorentz norms in the statement, one may recall the continuous embeddings
LqC".Sd�1/ ,! Lq;1 logL.Sd�1/ ,! Lq.Sd�1/ for all 1� q <1 and " > 0.

Theorem B. There exists an absolute dimensional constant C > 0 such that the following holds. For all
1 < t <1, f1 2 Lt .Rd /, f2 2 Lt

0

.Rd /, the critical Bochner–Riesz means (1-3) satisfy

jhBıf1; f2ij �
Cp

p� 1
sup
S

PSFSI1;p.f1; f2/; 1 < p <1:

The weak-L1 estimate for T� is the main result of [Seeger 1996], while the same endpoint estimate
for (1-3) has been established in [Christ 1988]. Theorems A and B recover such results; see Appendix B
for a proof of this implication, which we include for future reference. This is not surprising as the
localized estimates for (1-2), (1-3) which are needed to apply our abstract result are a distillation and
an improvement of the microlocal techniques of [Seeger 1996] and of the previous works [Christ 1988;
Christ and Rubio de Francia 1988], and of the oscillatory integral estimates of [Christ 1988] respectively.

We reiterate that the commonly used techniques for sparse domination, which rely on the weak-L1

estimate for the maximal truncation of the singular integral operator, fail to be applicable in the context of
Theorem A as the maximal truncations of T� in (1-2) are not known to satisfy such an estimate even when
� 2L1.Sd�1/ [Grafakos and Stefanov 1999]. Our abstract result, Theorem C, whose statement is more
technical and is postponed until Section 2, only relies on the uniformL2-boundedness (orLr -boundedness
for any r) of the truncated operators, and thus might be considered stronger than the approaches of the
mentioned references. See Remark 2.5 for additional discussion on this point.

Theorems A and B give as corollaries a family of quantitative weighted estimates.

Corollary A.1. If � lies in the unit ball of Lq;1 logL.Sd�1/ for some 1 < q <1 and has zero average,
we have the weighted norm inequalities

kT�kLt .w/!Lt .w/ � Ct;qŒw�
max f1; 1

t�q0
g

A t
q0

; q0 < t <1: (1-4)

If furthermore k�kL1.Sd�1/ � 1,

kT�kLt .w/!Lt .w/ � Ct Œw�
1
t�1

maxft;2g
At

; 1 < t <1: (1-5)

Corollary B.1. Referring to (1-3), we have the weighted norm inequalities

kBıkLt .w/!Lt .w/ � Ct Œw�
1
t�1

maxft;2g
At

; 1 < t <1: (1-6)
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Proof of Corollaries A.1, B.1. To prove (1-4), applying Theorem A for p D q0 (strictly speaking, to the
adjoint of T�) yields that the bilinear form associated to T� is dominated by

sup
S

PSFSIq0;1:

The proof of the weighted estimate can then be found, for instance, in [Bernicot et al. 2016, Proposi-
tion 6.4]. We prove (1-5), and (1-6) follows via the same argument: below, C denotes a positive absolute
constant which may vary between occurrences. Combining the inequality [Di Plinio and Lerner 2014,
Proposition 4.1]

hf i1C";Q � hf i1;QCC"hM1C"f i1;Q;

which is valid for all " > 0, with the estimate of Theorem A for p D 1C " we obtain

jhT�f1; f2ij �
C

"
sup
S

PSFSI1;1.f1; f2/CC sup
S

PSFSI1;1.M1C"f1; f2/; " > 0:

The above display leads via standard reasoning [Cruz-Uribe et al. 2011; Hytönen et al. 2012; Moen 2012]
to the chain of inequalities

kT kLt .w/!Lt .w/ � Ct Œw�
max f1; 1

t�1
g

At
inf

0<"<t�1

�
1

"
CkM1C"kLt .w/!Lt .w/

�
� Ct Œw�

max f1; 1
t�1
g

At
inf

0<"<t�1

�
1

"
C Œw�

1C"
t�.1C"/

A t
1C"

�
� Ct Œw�

1
t�1

maxft;2g
At

: �

Corollary A.1 is a quantification of the weighted inequalities due to Watson [1990] and Duoandikoetxea
[1993]: if 1 < q �1 and � 2 Lq.Sd�1/ then

w 2 A t
q0
; q0 � t <1; t ¤ 1;

w
1
1�t 2 At0

q0
; 1 < t � q; t ¤1;

wq
0

2 At ; 1 < t <1

9>>=>>; D) kT�kLt .w/!Lt .w/ <1:

Estimate (1-5) was first established by Hytönen, Roncal and Tapiola [Hytönen et al. 2017] via a different
two-step technique involving sparse domination for Dini-type kernels, a Littlewood–Paley decomposition
along the lines of [Christ and Rubio de Francia 1988] and interpolation with change of measure. In [Pérez
et al. 2016], these ideas were extended to obtain A1 estimates for T� and commutators of T� and BMO
symbols. At this time, we do not know whether the power of the Muckenhoupt constant in (1-5) is sharp.

Qualitative Ap-bounds for critical Bochner–Riesz means are classical [Shi and Sun 1992]; see also
[Vargas 1996]. On the other hand, Corollary B.1 seems to be the first quantitative Ap estimate for Bı .
We do not know whether the power of the Ap constant in (1-6) is sharp; the construction in [Luque et al.
2015, Corollary 3.1] shows that the optimal power p̨ must obey p̨ �maxf1; 1=.p� 1/g. The article
[Benea et al. 2017] contains sparse domination estimates and weighted inequalities for the supercritical
regime 0 < ı0 < ı which are not informative in the critical case. An extension of our methods to the
supercritical cases will appear in forthcoming work.

Finally, we mention that our argument for (1-5) and (1-6) shows that improvements of powers as those in
Corollaries A.1 and B.1 are tied to the blowup rate as p! 1C of the main estimate of Theorems A and B.



A SPARSE DOMINATION PRINCIPLE FOR ROUGH SINGULAR INTEGRALS 1259

A remark on the proof and plan of the article. Theorems A and B fall under the scope of the same
abstract result, Theorem C, which is stated and proved in Section 2. Theorem C is obtained by means of
an iterative scheme reminiscent of the arguments used in [Culiuc et al. 2016a] by three of us to prove a
sparse domination estimate for the bilinear Hilbert transform, and later adapted to dyadic and continuous
Calderón–Zygmund singular integrals in [Culiuc et al. 2016b]. At each iteration, a decomposition of
Calderón–Zygmund type is performed, and the operator itself is decomposed into small scales (scales
falling within the exceptional set) which will be estimated at subsequent steps of the iteration, and large
scales. The action of the large scales on the good parts is controlled by means of the uniform Lr -bound for
the truncations of T. The contribution of the bad, mean zero part under the large scales of the operator is
then controlled by means of suitably localized estimates relying on the cancellation of constant-mean zero
type. We emphasize that the present work shares a perspective based on bilinear forms with other recent
papers: [Krause and Lacey 2016; Lacey and Spencer 2017]. The notable difference is that these references,
dealing with oscillatory and random discrete singular integrals, use (dilation) symmetry breaking and
T T �, rather than constant-mean zero, as the principal cancellation mechanisms, in accordance with the
oscillatory nature of their objects of study.

Section 3 contains localized estimates for kernels of Dini- and Hörmander-type which, besides being
of use in later arguments, allow us to reprove the optimal sparse domination results for these classes; see
its last subsection for the statements. In Sections 4 and 5 we provide the necessary localized estimates
for Theorems A and B respectively. The estimates of Section 4 are a delicate strengthening of the
microlocal arguments of [Seeger 1996]. The proof of Theorem B, a re-elaboration along the same lines
as the arguments of [Christ 1988], is carried out in Section 5. Although we find it hard to believe that
these techniques can be sharpened towards the stronger localized .1; 1/ estimate, we have no explicit
counterexample for this possibility.

Notation. As is customary, q0 D q
q�1

denotes the Lebesgue dual exponent to q 2 .1;1/, with the usual
extension 10D1, 10D 1. We denote the center of a cube Q 2 Rd by cQ and its sidelength by `.Q/.
We will also adopt the shorthand sQ D log2 `.Q/. We write

Mp.f /.x/D sup
Q�Rd

hf ip;Q1Q.x/

for the p-Hardy Littlewood maximal function. The positive constants implied by the almost inequality
sign . may depend (exponentially) on the dimension d only and may vary from line to line without
explicit mention.

2. A sparse domination principle

This section is dedicated to the statement and proof of our sparse domination principle, Theorem C.

The main structural assumptions. Our structural assumptions in Theorem C will be the following. Let
1 < r <1 and ƒ be an Lr.Rd /�Lr

0

.Rd /-bounded bilinear form whose kernel K DK.x; y/ coincides
with a function away from the diagonal f.x; y/2Rd�Rd WxDyg. More precisely, whenever f12Lr.Rd /,
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f2 2 L
r 0.Rd / are compactly and disjointly supported

ƒ.f1; f2/D

Z
Rd

Z
Rd
K.x; y/f1.y/ dy f2.x/ dx

with absolute convergence of the integral. We assume that there exists 1 < q �1 such that the kernel K
of ƒ admits the decomposition

K.x;y/D
X
s2Z

Ks.x;y/; suppKs �f.x;y/2Rd�Rd W x�y 2Asg;

As WDfz2Rd W2s�2<jzj<2sg; ŒK�0;q WDsup
s2Z

2
sd
q0 sup
x2Rd

�
kKs.x;xC�/kqCkKs.xC� ;x/kq

�
<1:

(SS)

Further, we assume that the truncated forms associated to the above decomposition by

ƒ��.h1; h2/ WD

Z X
�<s��

Ks.x; y/h1.y/h2.x/ dy dx �; � 2 Z[f�1;1g (2-1)

satisfy

CT.r/DW sup
�<�

�
kƒ��kLr .Rd /�Lr0 .Rd /!C

�
<1: (T)

Remark 2.1. Under the assumptions (SS) and (T), a standard limiting argument [Stein 1993, Paragraph
I.7.2] yields that

ƒ.f1; f2/D hmf1; Nf2iC lim
�!1

ƒ���.f1; f2/

for some m 2 L1.Rd /, whenever f1 2 Lr.Rd /, f2 2 Lr
0

.Rd /. It is not hard to see [Lacey and Mena
Arias 2017, Lemma 4.7] that

jhmf1; f2ij. kmk1 sup
S

PSFSI1;1.f1; f2/

so that for the purpose of our Theorem C below we may assume that mD 0 in the above equality. For
this reason, when �D�1 or � D1 or both, we are allowed to omit the subscript or superscript in (2-1)
and simply write ƒ� or ƒ� or ƒ. Also, when �� �, the summation in (2-1) is void, so that ƒ�� � 0.

Localized spaces over stopping collections. A further condition in our abstract theorem will involve local
norms associated to stopping collections of (dyadic) cubes. Throughout the article, by dyadic cubes we
refer to the elements of any fixed dyadic lattice D in Rd.

Let Q 2 D be a fixed dyadic cube in Rd. A collection Q� D of dyadic cubes is a stopping collection
with top Q if the elements of Q are pairwise disjoint and contained in 3Q,

L;L0 2Q; L\L0 ¤∅ D) LD L0; L 2Q D) L� 3Q; (2-2)

and enjoy the further separation properties

L;L0 2Q; jsL� sL0 j � 8 D) 7L\ 7L0 D¿;
[

L2QW3L\2Q¤∅

9L�
[
L2Q

LDW shQI (2-3)
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the notation shQ for the union of the cubes in Q will also be used below. For 1� p �1, define Yp.Q/
to be the subspace of Lp.Rd / of functions satisfying

supp h� 3Q; 1> khkYp.Q/ WD

�
max

˚
kh1RdnshQk1; supL2Q inf

x2yL
Mph.x/

	
; p <1;

khk1; p D1;

where yL is the (nondyadic) 25-fold dilate of L. We also denote by Xp.Q/ the subspace of Yp.Q/ of
functions satisfying

b D
X
L2Q

bL; supp bL � L:

Furthermore, we write b 2 PXp.Q/ if

b 2 Xp.Q/;
Z
L

bL D 0 8L 2Q:

We will use the notation kbkXp.Q/ for kbkYp.Q/ when b 2 Xp.Q/, and similar notation for b 2 PXp.Q/.
When the stopping collection Q is clear from the context or during proofs we may omit .Q/ from the
subscript and simply write k � kYp or k � kXp .

Remark 2.2 (Calderón–Zygmund decomposition). There is a natural Calderón–Zygmund decomposition
associated to stopping collections. Observe that if Q is a stopping collection, then

sup
L2Q
hhip;L � 2

5d
khkYp.Q/:

Therefore, we may decompose h 2 Yp.Q/ as

hD gC b; b D
X
L2Q

bL 2 PXp.Q/; bL D

�
h�

1

jLj

Z
L

h.x/ dx
�

1L

such that
kgkY1.Q/ � 2

5d
khkYp.Q/; kbk PXp.Q/ � 2

5dC1
khkYp.Q/:

These are nothing but the usual properties of the Calderón-Zygmund decomposition rewritten in our
context.

The statement. Before stating our result, we introduce the notation

ƒQ;�;�.h1; h2/ WDƒ
minfsQ;�g
� .h11Q; h2/Dƒ

minfsQ;�g
� .h11Q; h213Q/ (2-4)

for all dyadic cubes Q; the last equality in (2-4) is a consequence of the assumptions on the support of
Ks in (SS). Furthermore, given a stopping collection Q with top Q, we define the truncated forms

ƒQ;�;�.h1; h2/ WDƒQ;�;�.h1; h2/�
X
L2Q
L�Q

ƒL;�;�.h1; h2/DƒQ;�;�.h11Q; h213Q/: (2-5)

Again, the last equality is due to the support of Ks in (SS). A further consequence of assumptions (SS)
and (T) is that the forms ƒQ;�;� satisfy uniform bounds on Yr.Q/�Yr 0.Q/.
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Lemma 2.3. There exists a positive absolute constant # such thatˇ̌
ƒQ;�;�.h1; h2/

ˇ̌
� 2#dCT.r/jQjkh1kYr .Q/kh2kYr0 .Q/

uniformly over all �, �, all dyadic cubes Q and stopping collections Q with top Q.

Proof. We may estimate the first term in the definition (2-5) as follows:

jƒQ;�;�.h1; h2/j � CT.r/kh11Qkr kh213Qkr 0 . CT.r/jQjkh1kYrkh2kYr0 : (2-6)

Further, using the support condition in (2-4) with L in place of Q and the disjointness property (2-2) in
the last step, we obtainX
L2QWL�Q

jƒL;�;�.h1; h2/j D
X

L2QWL�Q

jƒL;�;�.h11L; h213L/j � CT.r/
X

L2QWL�Q

kh11Lkr kh213Lkr 0

. CT.r/kh1kYrkh2kYr0
X
L2Q

jLj. CT.r/jQjkh1kYrkh2kYr0 :

The proof of the lemma is thus completed by combining (2-6) with the last display. �

Our main theorem hinges upon estimates which are modified versions of the one occurring in Lemma 2.3,
when one of the two arguments of ƒQ;�;� belongs to X -type localized spaces.

Theorem C. There exists a positive absolute constant‚ such that the following holds. Letƒ be a bilinear
form satisfying (SS) and (T) above. Assume that there exist 1� p1; p2 <1 and a positive constant CL

such that the estimates ˇ̌
ƒQ;�;�.b; h/

ˇ̌
� CLjQjkbk PXp1 .Q/

khkYp2 .Q/
;ˇ̌

ƒQ;�;�.h; b/
ˇ̌
� CLjQjkhkY1.Q/kbk PXp2 .Q/

(L)

hold uniformly over all �; � 2 Z, all dyadic lattices D, all Q 2D and all stopping collections Q�D with
top Q. Then the estimate

sup
�;�2Z

ˇ̌
ƒ��.f1; f2/

ˇ̌
� 2‚d ŒCT.r/CCL� sup

S
PSFSIp1;p2.f1; f2/ (2-7)

holds for all fj 2 Lpj .Rd / with compact support, j D 1; 2.

Remark 2.4. By the limiting argument of Remark 2.1, the conclusion (2-7) gives thatˇ̌
ƒ.f1; f2/

ˇ̌
� 2‚d ŒCT.r/CCL� sup

S
PSFSIp1;p2.f1; f2/ (2-8)

when f1; f2 2L1.Rd / with compact support. If we know thatƒ extends boundedly toLt .Rd /�Lt
0

.Rd /

for some 1 < t <1, another simple limiting argument using the dominated convergence theorem extends
(2-8) to all f1 2 Lt .Rd /, f2 2 Lt

0

.Rd /. It is in this last form that Theorem C will be applied to deduce
Theorems A and B.
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Remark 2.5 (a comparison between sparse domination principles). Theorem C identifies rather clearly the
conditions needed for sparse domination of a kernel operator T , namely the adjoint of the bilinear form ƒ.
Condition (L) is a localized reformulation of the constant-mean zero cancellation around which Lp, p¤ 2,
Calderón–Zygmund theory revolves, and it is essentially a strengthening of the weak-Lpj estimate for T
(j D 1) and its adjoint (j D 2). Further, our assumption of uniform Lr -boundedness of the truncations in
(T) is much tamer than requiring Lr -boundedness of the maximal truncations of T. In fact, our theorem
can be applied even when no estimates for maximal truncations of T are known.

Of course the exponents pj enter the sparse domination estimate (2-7), while the exponent r occurring
in (T) does not. This is in contrast with the other sparse domination principles occurring in the literature.
For instance, in [Lerner 2016, Theorem 4.2], a sparse domination of type (1-1) with exponents .r; 1/ is
obtained for operators T whose grand maximal function

MT f .x/ WD sup
Q3x

sup
y2Q

ˇ̌
T .f 1Rdn3Q/.y/

ˇ̌
has the weak-Lr -bound for some r � 1. Notice that MT may be as large as the maximal truncation of T .

A further comparison can be drawn with the abstract result of [Bernicot et al. 2016], which is a
sparse domination principle for nonintegral singular operators. The off-diagonal estimate assumption
Theorem 1.1(b) of the work above is a clear counterpart of (SS), while the maximal truncation assumption
of Theorem 1.1(c) in the same work is the nonkernel analogue of the grand maximal function from [Lerner
2016]. It would be interesting to investigate whether, in the nonkernel setting of [Bernicot et al. 2016], an
assumption in the vein of (L) can be used instead.

Remark 2.6 (the essence of (L)). Let Q be a stopping collection with top Q. When b belongs to an
X˛.Q/-type space, the forms

.b; h/ 7!ƒQ;�;�.b; h/; .b; h/ 7!ƒQ;�;�.h; b/

have a much more familiar representation, which is what allows verification of assumption (L) in practice.
By rephrasing the definition, when b 2X1.Q/ is supported onQ (which we can assume with no restriction)
we have the equality

ƒQ;�;�.b; h/D
X
j�1

Z X
�<s�minfsQ;�g

Ks.x; y/bs�j .y/h.x/ dy dx; where bs WD
X
L2Q
sLDs

bL: (2-9)

This notation will be used throughout the paper; see for instance (2-10) below. Furthermore, if q is the
exponent occurring in (SS), h 2 Yq0.Q/, and b 2 Xq0.Q/, then ƒQ;�;�.h; b/ is essentially self-adjoint up
to a tolerable error term. Namely, if h is supported on Q (which we can also always assume),

ƒQ;�;�.h; b/D

�X
j�1

Z X
�<s�minfsQ;�g

Ks.y; x/b
in
s�j .y/h.x/ dy dx

�
CVQ.h; b/; (2-10)

where

bin D
X
L2Q

3L\2Q¤∅

bL
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is a truncation of b and thus also belongs to Xq0.Q/ with kbinkXq0 .Q/ � kbkXq0 .Q/, and the remainder
VQ.h; b/ satisfies

jVQ.h; b/j � 2
#d ŒK�0;qjQjkhkYq0 .Q/kbkXq0 .Q/ (2-11)

for a suitable positive absolute constant # . The representation (2-10)–(2-11) is a simple consequence of
the structure of b 2 Xq0.Q/ and of the separation properties (2-2), (2-3). We provide the necessary details
for (2-10)–(2-11) in Appendix A at the end.

Proof of Theorem C. Given a form ƒ satisfying the assumptions of Theorem C, � < � 2 Z and
fj 2 L

pj .Rd /, j D 1; 2, with compact support, we will construct a sparse collection S of cubes of Rd

such that ˇ̌
ƒ��.f1; f2/

ˇ̌
� 2‚dC

X
Q2S

jQjhf1ip1;Qhf2ip2;Q; (2-12)

where C is the expression within the square brackets in the conclusion of Theorem C. Here and below, we
denote by‚ a suitably large positive absolute constant which will be chosen during the course of the proof.
Within this proof, we will also denote by # positive absolute constants which belong to Œ2�8‚; 2�7‚� and
may differ at each occurrence. As the assumptions of Theorem C are stable if we replaceƒwithƒ��, we can
work under the assumption thatKs D 0 for all s … .�; �� and thus drop �; � from the notations (2-4), (2-5).

The proof of (2-12) is iterative and is carried out in the next subsection. Here, we give the main
estimate for the form ƒsQ from (2-4) in terms of stopping collection norms.

Lemma 2.7. Let Q be a fixed dyadic cube in Rd and Q be a stopping collection with top Q. Thenˇ̌
ƒsQ.h11Q; h213Q/

ˇ̌
� 2#dC jQjkh1kYp1 .Q/

kh2kYp2 .Q/
C

X
L2Q
L�Q

ˇ̌
ƒsL.h11L; h213L/

ˇ̌
: (2-13)

Proof. We are free to assume that supp h1 �Q and supp h2 � 3Q for simplicity of notation. For j D 1; 2,
construct the Calderón–Zygmund decomposition of hj with respect to the family Q as described in
Remark 2.2, that is,

hj D gj C bj ; bj D
X
L2Q

bjL; bjL WD

�
hj �

1

jLj

Z
L

hj .x/ dx
�

1L:

The Calderón–Zygmund properties in this context are, for j D 1; 2,

kgj kY1 . khj kYpj ; kbj k PXpj . khj kYpj :

Using the definition (2-5), we decompose on our way to (2-13):

ƒsQ.h1;h2/DƒQ.h1;h2/C
X
L2Q
L�Q

ƒsL.h11L;h2/

DƒQ.g1;g2/CƒQ.b1;g2/CƒQ.g1;b2/CƒQ.b1;b2/C
X
L2Q
L�Q

ƒsL.h11L;h213L/: (2-14)
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The last sum on the last right-hand side is estimated by the sum appearing on the right-hand side of (2-13).
We are left with estimating the first four terms in the last line of (2-14). The leftmost is controlled by the
estimate of Lemma 2.3:

jƒQ.g1; g2/j. CT.r/jQjkg1kYrkg2kYr0 . C jQjkh1kYp1kh2kYp2 :

The second term is handled by appealing to assumption (L), which yields

jƒQ.b1; g2/j � CL jQjkb1k PXp1
kg2kYp2 . C jQjkh1kYp1kh2kYp2 ;

where the second estimate follows from the Calderón–Zygmund properties above. The third is also
estimated by appealing to (L), as

jƒQ.g1; b2/j � CL jQjkg1kY1kb2k PXp2
. C jQjkh1kYp1kh2kYp2 :

Finally, again by assumption (L),

jƒQ.b1; b2/j � CL jQ0jkb1k PXp1
kb2kYp2 . C jQjkh1kYp1kh2kYp2 ;

where the final inequality follows again from the Calderón–Zygmund estimates. �

Proof of (2-12). The proof is obtained by means of the iterative procedure described below.

Preliminaries: We will produce stopping collections iteratively, by suitable Whitney decompositions of
unions of sets

EQ D

�
x 2 3Q W max

jD1;2

Mpj .fj 13Q/.x/
hfj ipj ;3Q

> 2
‚d
4

�
(2-15)

associated to a cube Q and a pair of functions f1; f2. We notice that

EQ � 3Q; jEQj � 2
�#d
jQjI (2-16)

the measure estimate is a consequence of the maximal theorem, and holds provided‚ is chosen sufficiently
large. In this proof, we say that two dyadic cubes L;L0 are neighbors, and write L� L0, if

7L\ 7L0 ¤∅; jsL� sL0 j< 8:

The separation condition (2-3) tells us that if the 7-fold dilates of two cubes L;L0 belonging to the same
stopping collection intersect nontrivially, then L;L0 must be neighbors. We also recall the notation yL for
the 25-fold dilate of L.

Initialize: Let fj 2 Lpj .Rd /, j D 1; 2, with compact support be fixed. By suitably choosing the dyadic
lattice D, we may find Q0 2D such that suppf1 �Q0, suppf2 � 3Q0 and sQ0 is larger than the largest
nonzero scale occurring in the kernel. Then set S0 D fQ0g, E0 D 3Q0, and define referring to (2-15)

E1 WDEQ0 ; S1 WDmaximal cubes L 2 D such that 9L�E1:
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Notice that the following properties are satisfied:

L 2 S1 are a pairwise disjoint collection; (2-17)

E1 D
[
L2S1

LD
[
L2S1

9L�E0; jQ0 nE1j � .1� 2
�d#/jQ0j; (2-18)

L;L0 2 S1; 7L\ 7L0 ¤∅ D) L� L0: (2-19)

Property (2-17) and the first part of (2-18) are by construction, while the second part of (2-18) follows
from the estimate of (2-16). For (2-19) suppose instead that 7L\ 7L0 is not empty when sL � sL0 � 8.
By the relation between the sidelengths it follows that yL � 9L0, which implies that the 9-fold dilate
of the dyadic parent of L is contained in 9L0 as well, contradicting the maximality of L. By virtue of
(2-17)–(2-19), Q1.Q0/ WD S1 is a stopping collection with top Q0; compare with (2-2), (2-3). The first
property in (2-18) guarantees that

sup
x 62shQ1.Q0/

jfj .x/j � 2
‚d
4 hfj ipj ;3Q0 :

Further, by the maximality condition on L 2 S1, it follows that

sup
L2Q1.Q0/

inf
yL

Mpj .fj 13Q0/� 2
‚d
4 hfj ipj ;3Q0

for j D 1; 2. The last two inequalities tell us that

kfj kYpj .Q1.Q0//
� 2

‚d
4 hfj ipj ;3Q0 ; j D 1; 2:

Applying (2-13) to the stopping collection Q1.Q0/, and h1Df1, h2Df2 we obtainˇ̌
ƒ.f1; f2/

ˇ̌
D
ˇ̌
ƒsQ0 .f11Q0 ; f213Q0/

ˇ̌
� 2‚dC jQ0jhf1ip1;3Q0hf2ip2;3Q0 C

X
L2Q1.Q0/
L�Q0

ˇ̌
ƒsL.f11L; f213L/

ˇ̌
: (2-20)

The obtained properties (2-17)–(2-19) and estimate (2-20) are the `D 1 case of the induction assumption
in the inductive step below.

Inductive step: Suppose inductively collections S`, 0 � ` � k, and sets E`, 1 � ` � k, have been
constructed, with the properties that for all 1� `� k

L 2 S` are a pairwise disjoint collection; (2-21)

E` D
[
L2S`

LD
[
L2S`

9L�E`�1; jQ nE`j � .1� 2
�#d /jQj 8Q 2 S`�1; (2-22)

L;L0 2 S`; 7L\ 7L0 ¤∅ D) L� L0: (2-23)

Suppose also that if Tk�1 D S0[ � � � [Sk�1, the estimateˇ̌
ƒ.f1; f2/

ˇ̌
� 2‚dC

X
R2Tk�1

jRjhf1ip1;3Rhf2ip2;3RC
X
Q2Sk

ˇ̌
ƒsQ.f11Q; f213Q/

ˇ̌
(2-24)
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has been shown to hold. At this point define

EkC1 WD
[
Q2Sk

EQ; SkC1 WDmaximal cubes L 2 D such that 9L�EkC1;

QkC1.Q/D fL 2 SkC1 W L� 3Qg; Q 2 Sk :

Property (2-21), together with the first property in (2-22), as EQ � 3Q �Ek , and (2-23), via the same
reasoning we used for (2-19), now hold for `D kC 1 as well. Let now Q 2 Sk . Property (2-23) with
`D k implies that

3Q\EkC1 �
[

Q02Sk WQ0�Q

EQ0 :

Therefore, we learn that

jQ\EkC1j � j3Q\EkC1j �
X

Q02Sk WQ0�Q

jEQ0 j � 2
�#d
jQj (2-25)

by applying for each Q0 2 Sk with Q0 �Q the estimate of (2-16), and observing that the cardinality of
fQ0 2D WQ0 �Qg is bounded by an absolute dimensional constant, and jQj; jQ0j are comparable, again
up to an absolute dimensional constant. From the above display we obtain the second part of (2-22) for
`D kC1. Moreover, one observes that if L 2 SkC1 with L\3Q¤∅, then by virtue of property (2-25),
L must be significantly shorter thanQ and thus contained in one of the 3d translates of the dyadic cubeQ
whose union covers 3Q. Namely, we have the equality

QkC1.Q/D fL 2 SkC1 W L\ 3Q¤∅g;

which also gives the last equality in[
L2QkC1.Q/W3L\2Q¤∅

9L�
[

L2SkC1WL\3Q¤∅

LD
[

L2QkC1.Q/

LD shQkC1.Q/;

as the set in the left-hand side of the last display is contained in 3Q and (2-22) holds for ` D k C 1.
Comparing with (2-2), (2-3), the discussion above gives that QkC1.Q/ is a stopping collection with
top Q such that EQ � shQkC1.Q/, so that

sup
x 62shQkC1.Q/

jfj 13Q.x/j � 2
‚d
4 hfj ipj ;3Q:

Furthermore, for j D 1; 2

sup
L2QkC1.Q/

inf
yL

Mpj .fj 13Q/� 2
‚d
4 hfj ipj ;3QI

otherwise the 9-fold dilate of the dyadic parent of some L 2QkC1.Q/ would be contained in EQ and
thus in EkC1, contradicting the maximality of such an L. Therefore

kfj 13QkYpj .QkC1.Q// � 2
‚d
4 hfj ipj ;3Q; j D 1; 2;
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and we may apply (2-13) to each Q 2 Sk summand in (2-24), with h1Df1, h2Df2 and obtainˇ̌
ƒsQ.f11Q; f213Q/

ˇ̌
� 2‚dC jQjhf1ip1;3Qhf2ip2;3QC

X
L2QkC1.Q/WL�Q

ˇ̌
ƒsL.f11L; f213L/

ˇ̌
D 2‚dC jQjhf1ip1;3Qhf2ip2;3QC

X
L2SkC1WL�Q

ˇ̌
ƒsL.f11L; f213L/

ˇ̌
:

As Q 2 Sk are pairwise disjoint, see (2-21), summing over Q 2 Sk , writing Tk D S0 [ � � � [ Sk and
combining the resulting estimate with (2-24), we arrive atˇ̌

ƒ.f1; f2/
ˇ̌
� 2‚dC

X
Q2Tk

jQjhf1ip1;3Qhf2ip2;3QC
X

L2SkC1

ˇ̌
ƒsL.f11L; f213L/

ˇ̌
;

that is, (2-24) with k replaced by kC 1. This, together with the previously obtained (2-21)–(2-23) for
`D kC 1, completes the current iteration.

Termination: A consequence of our construction is that �k WD maxfsQ W Q 2 Skg � sQ0 � #k. The
algorithm terminates when k D K, where K is such that �K is strictly less than the minimal nonzero
scale in the kernel. For k DK in (2-24) the second sum on the right-hand side vanishes identically and
we have obtained the estimate (2-12) by setting T WD TK�1 and S WD f3Q WQ 2 T g. We see that the
collection T , and thus the collection of the dilates S, are sparse by simply observing that the sets

FQ WDQ nEkC1; Q 2 Sk;

are pairwise disjoint for Q 2 T and have measure larger than .1� 2�d#/jQj, as can be seen from (2-22).

3. Localized estimates for Dini- and Hörmander-type kernels

In the first part of this section, we state and prove a family of localized estimates, of the type occurring
in condition (L) of Theorem C, for kernels falling within the scope of (SS) and possessing additional
smoothness properties, of Dini or Hörmander type. These estimates and their proof are a reformulation of
the classical inequalities intervening in the proof of the weak-L1-bound for Calderón–Zygmund operators
(see, for example, [Stein 1993, Chapter I]). We choose to provide details as we believe the arguments to
be rather explanatory of the driving philosophy behind Theorem C.

As we mentioned in the Introduction, our abstract Theorem C, coupled with the localized estimates
that follow, can be employed to reprove the optimal sparse domination estimates for Calderón–Zygmund
kernels of Dini and Hörmander type, thus recovering the results (among others) of [Bui et al. 2017;
Hytönen et al. 2017; Lacey 2017; Lerner 2016; Volberg and Zorin-Kranich 2016]. We provide a summary
of the statements of such domination theorems in the second part of this section.

Localized estimates and kernel norms. Throughout these estimates, we assume that a stopping collection
Q with top Q as in Section 2 has been fixed, and the notations ƒQ;�;� refer to (2-5). It is understood that
the constants implied by the almost inequality signs depend on dimension only and are in particular are
uniform over the choice of Q. We begin with the single-scale localized estimate where no cancellation is
exploited.
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Lemma 3.1 (trivial estimate). Let 1 < ˇ �1 and ˛ D ˇ0. Then for all j � 1,X
s

Z
jKs.x; y/jjbs�j .y/jjh.x/j dy dx . ŒK�0;ˇ jQjkbkX1khkY˛ :

Proof. As kbLk1 . jLj kbkX1 for L 2Q, it suffices to prove that for each L 2Q and s D sLC j ,Z
jKs.x; y/jjbL.y/jjh.x/j dy dx . ŒK�0;ˇ kbLk1khkY˛ : (3-1)

In turn, it then suffices to prove that

s � sL D) sup
y2L

Z
jKs.yCu; y/jjh.yCu/j du. ŒK�0;ˇ khkY˛ ;

which readily follows fromZ
jKs.yCu; y/jjh.yCu/j du� kKs.yC � ; y/kˇ

�Z
B.y;2sC10/

jh.z/j˛ dz
�1
˛

. ŒK�0;ˇ
�
inf
yL

M˛h
�
� ŒK�0;ˇkhkY˛

when y 2 L. Above, we used the support condition (SS) and Hölder’s inequality for the first step, and
subsequently that the ball B.y; 2sC10/D fz 2 Rd W jz�yj< 2sC10g contains the dilate yL. �

We introduce a further family of kernel norms in addition to the one of (SS), to which we refer for
notation. For 1 < ˇ �1 set

ŒK�1;ˇ WD

1X
jD1

$j;ˇ .K/; (3-2)

where

$j;ˇ .K/ WDsup
s2Z

2
sd
ˇ0 sup
x2Rd

sup
h2Rd

khk1<2
s�j�1

�

Ks.x;xC�/�Ks.xCh;xC�/

̌ C

Ks.xC� ;x/�Ks.xC� ;xCh/

̌ �
:

The second localized estimate we consider uses the finiteness of ŒK�1;ˇ to incorporate the constant-mean
zero cancellation effect.

Lemma 3.2 (cancellation estimate). Let 1 < ˇ �1 and ˛ D ˇ0. Then for all �; � 2 Z,ˇ̌
ƒQ;�;�.b; h/

ˇ̌
C
ˇ̌
ƒQ;�;�.h; b/

ˇ̌
.
�
ŒK�0;1C ŒK�1;ˇ

�
jQjkbk PX1khkY˛ : (3-3)

Proof. It will suffice to prove the estimateX
L2Q

1X
jD1

ˇ̌̌̌Z
KsLCj .x; y/

QbL.y/ Qh.x/ dy dx
ˇ̌̌̌
. ŒK�1;ˇ jQjk Qbk PX1k

QhkY˛ : (3-4)

In fact, by using the representations in (2-9), (2-10) we see that for all �; � 2 Z and each pair b 2 PX1,
h 2 Y˛, the forms jƒQ;�;�.b; h/j, jƒQ;�;�.h; b/j are both bounded above by the left-hand side of (3-4)
for suitable Qb 2 PX1, Qh 2 Y˛ whose norms are dominated by kbk PX1 , khkY˛ respectively, up to possibly
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replacing Ks with its transpose and controlling the remainder term VQ.h; b/ in the case of ƒQ;�;�.h; b/.
This remainder is estimated in (2-11) for q D1, which is acceptable for the right-hand side of (3-3).

We will obtain estimate (3-4) from the bound
1X
jD1

ˇ̌̌̌Z
KsLCj .x; y/bL.y/

Qh.x/ dy dx
ˇ̌̌̌
. ŒK�1;ˇ jLjk Qbk PX1k

QhkY˛ ; L 2Q (3-5)

by summing over L 2Q in and using their disjointness, given in (2-2). Fix L 2Q and j � 1. Using the
cancellation of QbL and then arguing as in the proof of (3-1) above we obtainˇ̌̌̌Z

KsLCj .x;y/bL.y/
Qh.x/dy dx

ˇ̌̌̌
�k QbLk1 sup

y2L

Z
jKsLCj .yCu;y/�KsLCj .yCu;cL/jj

Qh.yCu/jdu

. k QbLk1!j;ˇ .K/
�
inf
yL

M˛
Qh
�
.!j;ˇ .K/jLjk Qbk PX1k

QhkY˛ ;

and (3-5) follows by summing over j � 1. �

Sparse domination of Calderón–Zygmund kernels. We now briefly mention how our abstract result,
Theorem C, can be employed to recover sparse domination, and thus weighted bounds, for Calderón–
Zygmund kernels with minimal smoothness assumptions. Let T be an L2.Rd /-bounded operator whose
kernel K satisfies the usual size normalization

sup
x¤y

jx�yjd jK.x; y/j � 1:

Let  be a fixed Schwartz function supported in A1 D fx 2 Rd W 2�2 < jxj< 1g such thatX
s2Z

 .2�sx/D 1; x ¤ 0:

It is immediate to see that (SS) holds, and in particular ŒK�0;1 � C , for the decomposition

Ks.x; y/ WDK.x; y/ 

�
x�y

2s

�
; s 2 Z:

We further assume that ŒK�1;ˇ <1 for some 1 < ˇ �1, where the kernel norm has been defined in
(3-2). When ˇ D1, this is exactly the Dini condition [Hytönen et al. 2017; Lacey 2017; Lerner 2016].
For ˇ <1, the above condition is equivalent to the assumptions of [Volberg and Zorin-Kranich 2016],
where in fact a multilinear version is presented.

The assumptions of Theorem C then hold for the dual form

ƒ.f1; f2/D hTf1; Nf2i:

We have already observed that (SS) is verified with q D1. It is well known that the L2-boundedness
of ƒ together with ŒK�1;ˇ <1 yields that the truncation forms ƒ��, see (2-1), are uniformly bounded on
Lt .Rd /�Lt

0

.Rd / [Stein 1993, Chapter I.7] for all 1<t <1; thus we have condition (T) with, for instance,
r D 2. Furthermore, Lemma 3.2 is exactly (L) for the corresponding ƒQ;�;� , with p1 D 1, p2 D ˛ D ˇ0.
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Applying Theorem C in the form given in Remark 2.4, we obtain the following sparse domination result,
which recovers (the dual form of) the domination theorems from the above-mentioned references. We
cite the same references for the sharp weighted norm inequalities that descend from this result.

Theorem D (Calderón–Zygmund theory). Let T be as above and 1� ˇ <1. For all 1 < t <1 and all
pairs f1 2 Lt .Rd /, f2 2 Lt

0

.Rd /,

jhTf1; f2ij � Cˇ ŒK�1;ˇ sup
S

PSFSI1;ˇ 0.f1; f2/;

where Cˇ is a positive constant depending on ˇ and on the dimension d only.

4. Proof of Theorem A

Let 1 < q �1 and suppose that � 2 Lq.Sd�1/ has unit norm and vanishing integral. Set x0 D x=jxj.
We decompose for x ¤ 0 the kernel of T� in (1-2) as

�.x0/

jxjd
D

X
s

Ks.x/; Ks.x/D�.x
0/2�sd�.2�sx/;

where � is a suitable smooth radial function supported in A1 D f2�2 � jxj � 1g. The main result of this
section is the following proposition: again, we assume that a stopping collection Q with top the dyadic
cube Q as in Section 2 has been fixed and the notations Yt and similar refer to that fixed setting.

Proposition 4.1. Let � 2 Lq.Sd�1/ be of unit norm and vanishing integral. Let f"sg 2 f�1; 0; 1gZ be a
choice of signs, b 2 PX1 and define

K.b; h/ WD
X
j�1

X
s

"shKs � bs�j ; Nhi

where
bs D

X
L2Q
sLDs

bL:

There exists an absolute constant C, in particular uniform over all f"sg 2 f�1; 0; 1gZ, such that

jK.b; h/j �
Cp

p� 1
jQjkbk PX1khkYp

�
k�kLq;1 logL.Sd�1/; q <1; p � q0;

k�kL1.Sd�1/; q D1; p > 1:
(4-1)

With the above proposition in hand, we may now give the proof of Theorem A. The structural
assumptions (SS), (T) of the abstract result Theorem C applied to the above decomposition of (the dual
form of) T� are respectively verified with q D q and with r D 2 (this is the classical L2-boundedness of
the truncations of T� [Calderón and Zygmund 1956; Grafakos and Stefanov 1999]).

We still need to verify (L) for the values p1 D 1 and p2 D p for each p in the claimed range
(depending on whether q D1 or not). It is immediate from the representations (2-9) that in this setting
ƒQ;�;�.b; h/DK.b1Q; h/ for a suitable choice of signs f"sg depending on �; �. So Proposition 4.1 yields
the first condition in (L) with p1 D 1, p2 D p. On the other hand, we get from (2-10) that ƒQ;�;�.h; b/

is equal to K.bin; h1Q/, again for a suitable choice of signs f"sg depending on �; �, up to replacing Ks
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by Ks.� � /, and up to subtracting the remainder term from (2-11), which is estimated in this case by an
absolute constant times

jQjkhkY1kbkYq0 � jQjkhkY1kbkYp ;

which is acceptable for the right-hand side of the second condition in (L) when p2 D p. These considera-
tions and another application of Proposition 4.1 finally yield Theorem A, via our abstract result in the
form described in Remark 2.4.

Proof of Proposition 4.1. Throughout this proof, C is a positive absolute dimensional constant which
may vary at each occurrence without explicit mention. We assume f"sg 2 f�1; 0; 1gZ is given. For the
sake of simplicity, we redefine Ks WD "sKs; it will be clear from the proof below that the signs of Ks
play no role. Fix a positive integer j. For ı > 0 to be fixed at the end of the argument define

Oj D f� 2 S
d�1
W j�.�/j> 2ıj g; �j D� 1Sd�1nOj ; �j D� 1Oj : (4-2)

We now have the decomposition

Ks DH
j
s CV

j
s ; H j

s DKs 1supp�j ; V js DKs 1Oj : (4-3)

The first localized form we treat, namely the contribution of the unbounded part of �, is dealt with by
means of a trivial estimate.

Lemma 4.2. Vj .b; h/ WD
X
s

jhV js � bs�j ;
Nhij � Ck�j kq jQjkbkX1khkYp ; p � q0.

Proof. It suffices of course to prove the estimate above with q0 in place of p. This is actually a particular
case of Lemma 3.1 applied with K D fV js g and ˇ D q, as it is immediate to see that for this kernel one
has ŒK�0;q � Ck�j kq: �

The contribution of the bounded part of Ks in (4-3) is more delicate, and we postpone the proof of the
following lemma to the next subsection.

Lemma 4.3. There exist absolute constants C; c > 0 such that for all 1 < p �1

Hj .b; h/ WD

ˇ̌̌̌X
s

hH j
s � bs�j ;

Nhi

ˇ̌̌̌
� C2�cj

p�1
p k�j k1 jQjkbk PX1khkYp :

We may now complete the proof of Proposition 4.1. We assume q <1. The remaining case is actually
simpler as Vj is identically zero. Our decomposition (4-3) yields that

jK.b; h/j �
X
j�1

jHj .b; h/jC
X
j�1

jVj .b; h/j:

Choosing ı D c.p� 1/=.2p/ in (4-2) and using Lemma 4.3, we estimateX
j�1

jHj .b; h/j � C jQjkbk PX1khkYp

X
j�1

2�cj
p�1
p k�j k1

� C jQjkbk PX1khkYp

X
j�1

2�cj
p�1
2p �

Cp

p� 1
jQjkbk PX1khkYp ;
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which is smaller than the right-hand side of (4-1). Using Lemma 4.2, the latter sum involving Vj is then
estimated by �X

j�1

k�j kq

�
jQjkbkX1khkYp �

Cp

p� 1
k�kLq;1 logL.Sd�1/jQjkbkX1khkYp ;

which also complies with the right-hand side of (4-1); here we have used thatX
j�1

k�j kq �
X
j�1

X
k�j

2ıkjOk nOkC1j
1
q �

X
k�1

k2ıkjOk nOkC1j
1
q �

C

ı
k�kLq;1 logL.Sd�1/:

The proposition is thus proved up to establishing Lemma 4.3.

Proof of Lemma 4.3. Our first observation is actually another trivial estimate.

Lemma 4.4. There exists C > 0 such that jHj .b; h/j � Ck�j k1 jQjkbkX1khkY1 :

Proof. This is an application of Lemma 3.1 to K D fH j
s g with ˇ D1, as it is immediate to see that for

this kernel one has ŒK�0;1 � Ck�j k1: �

The second step is an estimate with decay, but involving Y1 norms.

Lemma 4.5. There exist C; c > 0 such that jHj .b; h/j � C2�cj k�j k1 jQjkbk PX1khkY1 :

Before the proof of Lemma 4.5, which is given in the next subsection, we observe that the estimate of
Lemma 4.3 is obtained by Riesz–Thorin (for instance) interpolation in h of the last two lemmata.

Proof of Lemma 4.5. The techniques of this subsection are an elaboration of the arguments of [Seeger
1996]. In particular Lemma 4.6 below is a stronger version of Lemma 2.1 of that work, while Lemma 4.7
is essentially the dual form of its Lemma 2.2.

We perform a further decomposition of H j
s . Let „ D fe�g be a maximal 2�j�10d -separated set

contained in supp�j . We may partition supp�j into #„. 2j.d�1/ subsets E� each containing e� and
such that diamjE� j. 2�j. Set

H j
s�.x/DH

j
s .x/1E� .x

0/:

Also, let  be a smooth function on R with 1Œ�2;2� � � 1Œ�4;4�. Let � 2 Œ0; 1/ and define the multiplier
operator

yP j� .�/D  .2
j.1��/� 0 � e�/:

We now have the decomposition

H j
s WD �

j
s C‡

j
s ; �js WD

X
�

P j� �H
j
s� ; ‡js WDH

j
s ��

j
s

so that Hj is the sum of the single-scale bilinear forms

Gj .b; h/D

�X
s

�js � bs�j ;
Nh

�
; Uj .b; h/D

�X
s

‡js � bs�j ;
Nh

�
satisfying the estimates below.
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Lemma 4.6. Let � > 1. Then

jGj .b; h/j � C�2
�j .1��/

2 k�j k1 jQjkbkX1khkY� ; C� D
C�

� � 1
:

Lemma 4.7. Let b 2 PX1. For all " > 0 there exists a constant C�;" depending on �; " only such that

jUj .b; h/j � C�;"2
�"j
k�j k1 jQjkbk PX1khkY1 :

Notice that the combination of Lemma 4.6 with � D 2 and � D 1
2

and Lemma 4.7 with "D 1
4

yields
the required estimate for Lemma 4.5, with c D 1

4
. Lemma 4.5 is thus proved up to the arguments for

Lemmata 4.6 and 4.7.

Proof of Lemma 4.6. We may factor out k�j k1 and assume that the angular part in the definition of �j
is bounded by 1. We can also assume that H j

s� and b are positive as cancellation plays no role in this
argument; this is just a matter of saving space in the notation. Using interpolation and duality with t
below being the dual exponent of � , the estimate of the lemma follows if we show that for each integer
r � 1 and t D 2r

1

jQj
1
t





X
s

�js � bs�j






t

. t2�
j.1��/
2 kbkX1 (4-4)

with an implicit constant that does not depend on r . Setting

M� D

X
s

P j� �H
j
s� � bj�s; D� D

X
s

H j
s� � bs�j ;

we rewrite the left-hand side of (4-4) raised to t -th power and subsequently estimate



 X
�1;:::;�r

rY
kD1

M�k





2
2

D





 X
�1;:::;�r

yM�1 � � � � �
yM�r





2
2

. 2rj.d�2C�/
X

�1;:::;�r





 rY
kD1

D�k





2
2

. 2tj.d�1/2�rj.1��/ sup
�
kD�k

t
t :

(4-5)

We have used Plancherel for the first equality, followed by the observation that yP j�k .�/ is uniformly
bounded and nonzero only if j� 0�e�k j<2

�j.1��/. Thus there are at most C2rj.d�2C�/ r-tuples such that
the r-fold convolution is nonzero, whence the first bound. Another usage of Plancherel, the observation
that there are at most 2rj.d�1/ tuples in the summation, and finally Hölder’s inequality yield the second
bound. We are thus done if we estimate for each fixed �X

s1�����st

Z � tY
kD1

H j
sk�
.x�yk/bsk�j .yk/

�
dy1 � � � dyt dx . C t2�tj.d�1/jQjkbktX1 (4-6)

as kD�ktt is at most t t times the above integral. Notice that if � � s then suppH j
�� is contained in a

box Rs centered at zero and having one long side of length . 2s and d � 1 short sides of length 2s�j. If
z 2Rd, Rs.z/D zCRs and

Qs.z/D
˚
L 2Q W sL � s� j; L� 100Rs.z/

	
; bRs.z/ WD

X
L2Qs.z/

bL;
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we have, by the disjointness of L 2Q,

2�sdkbRs.z/k1 . 2
�sd
jRs.z/jkbkX1 � C2

�j.d�1/
kbkX1 WD ˛: (4-7)

Also notice that for all fixed y1; : : : ; yt and for all s1 � � � � � st ,

Is1;:::;st .y1; : : : ; yt / WD

Z � tY
kD1

H j
sk�
.x�yk/

�
dx � kH j

st�
k1

t�1Y
kD1

kH j
sk�
k1 . 2�j.d�1/2�d st�1;

where, here and in what follows, we set

sn D

nX
kD1

sk; nD 1; : : : ; t:

Furthermore, Is1;:::;st .y1; : : : ; yt / is nonzero only if yk 2 2Rsk�1.yk�1/ for k D t; t � 1; : : : ; 2. Now,
writing bsk in place of bsk�j for reasons of space as j is kept fixed throughout and using (4-7) repeatedly,
the sum in (4-6) is equal to

X
s1�����st

Z
Is1;:::;st .y1; : : : ;yt /

� tY
kD1

bsk .yk/

�
dy1 � � � dyt

. 2�j.d�1/
X

s1�����st�1

2�d st�2
Z

bs1.y1/

� t�1Y
kD2

bsk .yk/12Rsk�1 .yk�1/.yk/
�
kbRst�1 .yt�1/k1

2dst�1
dy1 � � � dyt�1

.˛2�j.d�1/
X

s1�����st�2

2�d st�3
Z

bs1.y1/

� t�2Y
kD2

bsk .yk/12Rsk�1 .yk�1/.yk/
�
kbRst�2 .yt�2/k1

2dst�2
dy1 � � � dyt�2

. � � �.˛t�12�j.d�1/jQjkbkX1 �C
t2�tj.d�1/jQjkbktX1

as claimed, and this completes the proof. �

Proof of Lemma 4.7. Again we factor out k�j k1 and work under the assumption that the angular part
is bounded by 1. In this proof, M is a large integer whose value may differ at each occurrence and the
constants implied by the almost inequality sign are allowed to depend on M only. Let ˇ be a smooth
function supported in A1 D f2�1 � j�j � 2g and satisfyingX

k2Z

ˇ2.2k�/D 1; � ¤ 0:

Set Bk D F�1fˇ.2k � /g: Defining

yRjks� .�/D ˇ.2
k�/.1� yP j� .�//

yH j
s�.�/;

we recall from [Seeger 1996, equations (2.6), (2.7)] the estimate

kRjks� k1 .M 2�j.d�1/ minf1; 2�M�j 2�M.s�j�k/g:
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Now, fix s and L 2 Q with `.L/D 2s�j for the moment. Recalling the definition of ‡js , we have the
decomposition

jh‡js � bL;
Nhij �

X
�

X
k

jhRjks� �Bk � bL;
Nhij;

and the cancellation estimate (cf. [Seeger 1996, equation (2.5)], a simpler version of Lemma 3.2)

jhRjks� �Bk � bL;
Nhij.minf1; 2.s�j /�kgkRjks� k1kbLk1khk1

. 2�j.d�1/ min
˚
2.s�j /�k; 2�M�j�M.s�j�k/

	
jLj kbk PX1khkY1 : (4-8)

Note that #„. 2j.d�1/. So for each " > 0 we can use the left estimate in (4-8) for k � s� j.1� "/ and
the right estimate otherwise, and obtain

jh‡js � bL;
Nhij �

X
�

X
k

jhRjks� �Bk � bL;
Nhij. 2�"j jLj kbk PX1khkY1 (4-9)

provided that M is chosen large enough to have 2" < M�. The proof is thus completed by summing
(4-9) over L 2Q with `.L/D 2s�j and later over s. �

5. Proof of Theorem B

Throughout this proof, C is a positive absolute dimensional constant which may vary at each occurrence
without explicit mention. Most of the arguments in this section are contained in [Christ 1988, Section 3];
we reproduce the details for clarity.

Let  .x/D cos.2�.jxj � ı=4//: From the asymptotic expansion of the inverse Fourier transform of
the multiplier of Bı [Christ 1988, Section 3], which is C1 and radial, we obtain the kernel representation

Bı.x/D
X
s�1

X
�

Ks;�.x/CL.x/:

Here

Ks;�.x/D��.x
0/ .x/2�sd�.2�sx/;

with �� a finite smooth partition of unity on the unit sphere Sd�1 with sufficiently small support which is
introduced for technical reasons, and � a suitable smooth radial function supported inA1Df2�2�jxj�1g,
while L.x/ is an integrable kernel with L.x/� C.1Cjxj/�.dC1/, so that

Lf .x/� CM1f .x/;

which can be ignored for our purposes. We can also think of � as fixed and omit it from the notation,
and consider the kernel K D fKsg as above. We are going to verify that conditions in Theorem C are
satisfied by (the dual form to) Bı . First of all, condition (SS) is obvious from the above discussion as
ŒK�0;1 <1. Second, the (T) condition follows from the well-known estimate

sup
�;�
kƒ��kL2.Rd /�L2.Rd / � C I
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see for instance [Duoandikoetxea and Rubio de Francia 1986, Theorem E]. In order to verify condition (L),
let Q be a stopping collection with top Q. Let b 2 X1.Q/; we change a bit the notation for bs in this
context by redefining

bs WD
X
sLDs

bL; s � 1; b0 WD
X
sL�0

bL:

It is easy to see that in this context if b 2 X1 supported on Q and h 2 Y1, one has

ƒQ;�;�.b; h/D

�X
j�1

X
s�j

"sKs � bs�j ; Nh

�

for a suitable choice of signs f"sg 2 f�1; 0; 1gZ, and the same for ƒQ;�;�.h; b/ up to replacing b by bin,
restricting h to be supported on Q, transposing Ks , and subtracting the remainder terms, which are
estimated by

jQjkbkX1khkY1 :

Theorem B is thus obtained from the next proposition via an application of Theorem C.

Proposition 5.1. Let f"sg 2 f�1; 0; 1gZ be a choice of signs, b 2 X1 and define

K.b; h/ WD

�X
j�1

X
s�j

"sKs � bs�j ; Nh

�
:

There exists an absolute constant C , in particular uniform over f"sg 2 f�1; 0; 1gZ, such that

jK.b; h/j �
Cp

p� 1
jQjkbkX1khkYp :

Notice that here we do not need to require b 2 PX1 as per the oscillatory nature of the problem.

Proof of Proposition 5.1. Given our choice of f"sg 2 f�1; 0; 1gZ, we relabel Ks WD "sKs . It will be clear
from the proof that the signs "s play no role. We split

K.b; h/D
X
j�1

Kj .b; h/; Kj .b; h/ WD
X
s�j

hKs � bs�j ; Nhi:

The first estimate is a trivial one.

Lemma 5.2. There exists C > 0 such that jKj .b; h/j � C jQjkbkX1khkY1 .

Proof. This follows from applying Lemma 3.1 with ˇ D1 to K D fKsg, as it is immediate to see that
for this kernel one has ŒK�0;1 � C as already remarked. �

The second estimate, which is essentially contained in [Christ 1988, Section 3], is the one providing
decay.

Lemma 5.3. There exists C; c > 0 such that jKj .b; h/j � C2�cj jQjkbkX1khkY2 .
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It is easy to see that interpolating the above estimates yields

jKj .b; h/j � C2�j
c.p�1/
p jQjkbkX1khkYp ;

the summation of which yields Proposition 5.1.

Proof of Lemma 5.3. Let zKs. � /DKs.� � /. We recall from [Christ 1988, Lemma 3.1] the estimates

jKs � zKs.x/j � C2
�ds.1Cjxj/�ı ;

kKs � zKtk1 � C2
�dt2�ıs; 8s < t � 1:

(5-1)

By duality, it suffices to prove that

kKj � b0k
2
2C





X
s>j

Ks � bs�j





2
2

� C2�cj jQjkbk2X1 : (5-2)

For the first term we use the first estimate in (5-1):

kKj � b0k
2
2 D jhb0; Kj �

zKj � b0ij � kb0k1kKj � zKj � b0k1 � C2
�min.ı;d/j

jQjkbk2X1 :

The last inequality above follows from

kKj � zKj � b0k1 � 2
�jd

jX
mD0

2�mı sup
x2Rd

kb0kL1.B.x;C2m// � C2
�min.ı;d/j

kbkX1 ;

where B.x; C2m/ denotes a ball centered at x with radius C2m. For the second term, we begin by quoting
from [Christ 1988, inequality (3.2)] that

kKs � bs�j k
2
2 � C2

�ıj
kbkX1kbs�j k1: (5-3)

Observe that



X
s>j

Ks�bs�j





2
2

�

X
s>j

kKs�bs�j k
2
2C2

X
s

jhKs�bs�j ;Ks�1�bs�1�j ijC2
X
t

X
j<s<t�1

jh zKt�Ks�bs�j ;bt�j ij: (5-4)

The first two terms are bounded by

C2�ıj kbkX1

X
s

kbs�j k1 � C2
�ıj
jQjkbk2X1 ;

according to (5-3) for the first one and Cauchy–Schwarz followed by (5-3) for the second. For the third
term, from the second estimate of (5-1) and support considerations one has

k zKt �Ks � bs�j k1 � C
�

sup
x2Rd

kbs�j kL1.B.x;C2t //
�
k zKt �Ksk1 � C2

�ıs
kbkX1 :

Therefore, the third summand in (5-4) is dominated by

CkbkX1

X
t>j

kbt�j k1
X

j<s<t�1

2�ıs � C2�ıj jQjkbk2X1 ;

and collecting all the above estimates (5-2) follows. �
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Appendix A: Verification of (2-10)–(2-11)

Let Q be a stopping collection with top Q, h2Yq0 , b 2Xq0 . Clearly we can assume supp h �Q. By
possibly replacing Ks by zero when s 62 .�; �� we can ignore the truncations �; � in what follows and
omit them from the notation. Recall the definitions (2-4), (2-5)

ƒQ.h; b/DƒQ.h; b/�
X
R2Q
R�Q

ƒR.h; b/Dƒ
sQ.h; b/�

X
R2Q
R�Q

ƒsR.h 1R; b/

and the decomposition

b D binC bout; bin D
X
L2Q

3L\2Q¤∅

bL; bout D
X
L2Q

3L\2QD∅

bL:

We first estimate
jƒQ.h; b

out/j. ŒK�0;q jQjkhkY1kbkXq0 ; (A-1)

which is a single-scale estimate. In fact, since dist.R; supp bout/ � `.R/=2 for all R �Q, by virtue of
the support restriction in (SS),

s < sR D)

Z
Ks.x; y/h.y/1R.y/bout.x/ dy dx D 0:

Therefore, by the same argument used in (3-1),

jƒsQ.h; bout/j �

Z
jKsQ.x; y/jjh.y/jjb

out.x/j dy dx . ŒK�0;q jQjkhkY1kbkXq0 : (A-2)

Proceeding similarly, if R2Q, R�Q

jƒsR.h 1R; bout/j �
Z
jKsR.x; y/jjh 1R.y/jjbout.x/j dy dx . ŒK�0;q jRjkhkY1kbkXq0 :

and the claimed (A-1) follows by summing the last display over R 2 Q; R � Q, which are pairwise
disjoint, and combining the result with (A-2). The representation (2-10) will then be a simple consequence
of the equality

ƒQ.h; b
in/D

�
ƒsQ.h; bin/�

X
L2QW3L\2Q¤∅

ƒsL.h; bL/

�
CVQ.h; b/; (A-3)

where the remainder VQ satisfies

jVQ.h; b/j. ŒK�0;q jQjkhkYq0kbkXq0 : (A-4)

We turn to the proof of (A-3). We will use below without explicit mention that whenever L;R 2Q with
3R\ 3L¤ ∅, we have jsL � sRj < 8, a consequence of the separation property (2-3). First of all, the
restriction on the support (SS) gives thatX

R2Q

ƒsR.h 1R; bin/D
X
R2Q

X
L2Q

3L\3R¤∅
3L\2Q¤∅

ƒsR.h 1R; bL/; (A-5)
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as ƒsR.h 1R; bL/D 0 unless 3L\ 3R is nonempty. As there are at most 16 s-scales in each difference
ƒsL �ƒsR, using the trivial estimate (3-1) with ˇ D q for each such scale yieldsX

R2Q

X
L2Q

3L\3R¤∅
3L\2Q¤∅

ˇ̌
ƒsL.h 1R; bL/�ƒsR.h 1R; bL/

ˇ̌
. ŒK�0;qkhkYq0

X
R2Q

X
L2Q

3L\3R¤∅
3L\2Q¤∅

kbLk1

. ŒK�0;q khkYq0kbkX1
X
R2Q

jRj. ŒK�0;q jQjkhkYq0kbkX1 : (A-6)

Recalling the second property of stopping collections in (2-3), we have the decomposition

hD hinC hout; hin WD h 1S
R2QR

; supp hout\
� [

L2Q
3L\2Q¤∅

9L

�
D∅:

Therefore, up to including the error term of (A-6) in (A-4), (A-5) can be rewritten asX
R2Q

X
L2Q

3L\3R¤∅
3L\2Q¤∅

ƒsL.h 1R; bL/D
X
L2Q

3L\2Q¤∅

ƒsL.hin; bL/�
X
L2Q

3L\2Q¤∅

ƒsL. QhL; bL/;

QhL D
X
R2Q

3L\3RD∅

h 1R; supp QhL � Rd n 3L:

(A-7)

We note that all the terms in the second sum on the right-hand side of the first line of (A-7) vanish due to
the support restriction on Ks , as all the scales appearing are less than or equal to sL and supp bL � L.
The reasoning beginning with decomposition (A-5) leads thus to the equality, up to tolerable error terms,X

R2Q

ƒsR.h 1R; bin/D
X
L2Q

3L\2Q¤∅

ƒsL.h; bL/�
X
L2Q

3L\2Q¤∅

ƒsL.hout; bL/: (A-8)

Finally the second term on the right-hand side of (A-8) also vanishes, by virtue of the restriction on the
support of hout, which does not intersect 9L for any L in the sum. Therefore, (A-8) is actually the equalityX

R2Q
R�Q

ƒsR.h 1R; bin/D
X
R2Q

ƒsR.h 1R; bin/D
X
L2Q

3L\2Q¤∅

ƒsL.h; bL/CVQ.h; b/;

where VQ.h; b/ satisfies (A-4); the first equality in the above display is due to supp h�Q. This equality
clearly implies the sought after (A-3).

Appendix B: Sparse domination implies weak L1 estimate

We show that if a sublinear operator T satisfies the sparse estimate (1-1) for p1 D 1, p2 D r for some
1� r <1 then T is of weak type .1; 1/. In particular, as mentioned in the Introduction, together with
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Theorem A, this yields the weak L1 estimate of T�, which is the main result of [Seeger 1996]. The proof
that follows is a simplified version of the arguments in [Culiuc et al. 2016a, Appendix A]; we are sure
these arguments are well known but were unable to locate a precise reference.

Theorem E. Suppose that the sublinear operator T has the following property: there exists C > 0 and
1 � r <1 such that for every f1, f2 bounded with compact support there exists a sparse collection S
such that

jhTf1; f2ij � C
X
Q2S

jQjhf1i1;Qhf2ir;Q: (B-1)

Then T W L1.Rd /! L1;1.Rd / boundedly.

Proof. By standard arguments it suffices to verify that

sup
kf1k1D1

sup
G�Rd

inf
G0�G
jGj�2jG0j

sup
jf2j�1G0

jhTf1; f2ij � C;

where f1, f2 are bounded and compactly supported and G has finite measure. Given such f1 with
kf1k1 D 1 and G of finite measure, define the sets

H WDfx2Rd WM1f1.x/>C jGj
�1
g; zH WD

[
Q2Q

3Q; QD
˚
max. dyad. cube Q W jQ\H j�2�5jQj

	
:

It is easy to see that j zH j � 2�10jGj for suitable choice of C . Therefore the set G0 W Gn zH satisfies
jGj � 2jG0j. We make the preliminary observation that

sup
x2Hc

M1f1.x/� C jGj
�1;

so that by interpolation

kM1f1kLp0 .Hc/ �
�

sup
x2Hc

M1f1.x/
�1� 1

p0 kM1f1k
1
p0

1;1 � C jGj
�.1� 1

p0
/
; (B-2)

where p0 > 1 is chosen such that p > r . Fixing now any f2 restricted to G0, we apply the domination
estimate, yielding the existence of a sparse collection S for which we have the estimate

jhTf1; f2ij � C
X
Q2S

jQjhf1i1;Qhf2ir;Q:

We claim that

jQ\H j � 2�5jQj 8Q 2 S: (B-3)

This is because if (B-3) fails for Q, we know Q must be contained in 3Q0 for some Q0 2 Q. But the
support of f2 is contained in zH c , which does not intersect 3Q0, whence hf2ir;Q D 0. Relation (B-3)
has the consequence that if fEQ WQ 2 Sg denote the distinguished pairwise disjoint subsets of Q 2 S
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with jEQj � 2�2jQj, the sets zEQ WDEQ\H c are also pairwise disjoint and j zEQj � 2�3jQj. Therefore,
since the union of zEQ is contained in H c , by standard arguments we arrive at

jhTf1;f2ij � C
X
Q2S

jQjhf1i1;Qhf2ir;Q � C
X
Q2S

j zEQjhf1i1;Qhf2ir;Q � C

Z
Hc

M1f .x/Mrf2.x/dx

� CkM1f1kLp0 .Hc/kMrf2kLp.Rd / � C jGj
�.1� 1

p0
/
jGj

1
p � C;

using (B-2) in the last step. �
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