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A MODEL FOR STUDYING DOUBLE EXPONENTIAL GROWTH
IN THE TWO-DIMENSIONAL EULER EQUATIONS

NETS KATZ AND ANDREW TAPAY

We introduce a model for the two-dimensional Euler equations which is designed to study whether or not
double exponential growth can be achieved for a short time at an interior point of the flow.

1. Background

The two-dimensional Euler equations for incompressible fluid flow are given by

@u

@t
Cu � ruD�rp;

together with

r �uD 0:

Here, u W R2 � Œ0;1/ ! R2 is a time-varying vector field on R2 representing the velocity and
p W R2 � Œ0;1/! R is a scalar representing the pressure.

The equation is solved with a given initial divergence-free velocity field u0:

u.x; 0/D u0.x/:

When u0 is chosen to be, for instance, smooth with compact support, a smooth solution to the Euler
equation exists for all time. Moreover, a result of Beale, Kato, and Majda [Beale et al. 1984] shows that
Sobolev norms grow at most double-exponentially in time.

Considerable work has been done recently to establish that such growth actually occurs. Denisov [2015]
demonstrates growth similar to double exponential in an example that consists of a slightly smoothed,
singular steady state solution together with a bump. For some time, the singular solution stretches the
bump at a double exponential rate. Kiselev and Šverák [2014] do Denisov one better by creating a
sustained double exponential growth near a boundary. This is a very similar idea to Denisov’s. We may
imagine that something quite similar to Denisov’s singular steady state lives right at the boundary and is
drawing bumps towards it. Another recent result on rapid growth in the Euler equations is [Zlatoš 2015].
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2. New results

Summary. The purpose of this paper is to create a tool for studying the question of whether double
exponential growth can begin spontaneously at an interior point. We borrow from Pavlović’s [2002] thesis
the idea that the allowed fast growth in Euler is coming from low frequency to high frequency interactions.
We model the impact of each scale on the vicinity of a given particle as a linear area-preserving map.

In a double exponential growth, energy has to cascade from low frequencies to high frequencies. We
try to model this phenomenon. We start at a point in time where, heuristically, N dyadic scales are
active. More precisely, we use the parameter N as a bound for short time on the sum of the L1 norms of
Littlewood–Paley projections of ru, the gradient of the velocity field. When double exponential growth
is taking place, this Besov norm should be growing exponentially, so its size stays stable (to within a
constant) for time O.1/. This is assumption (1).

As each scale evolves, it alters the effects of the smaller scales. We can model this as a system of
differential equations with one SL.2/-valued unknown for each scale. The main result in the paper is
Theorem 3, below. It says that, during a time period of order .log N /=N , this autonomous system of
differential equations closely approximates the actual behavior of the Euler equation. This is a time
period during which growth by a factor of a power of N can occur in the Sobolev norms of the velocity
and during which our hypothesis stays stable. Indeed, such growth must occur during some such time
period if double exponential growth is to take place. Thus, our simplified model can be used to study
the possibility and likelihood of growth occurring spontaneously at an interior point. This is especially
noteworthy because the previous examples of rapid growth in the two-dimensional Euler equations (such
as [Denisov 2015; Kiselev and Šverák 2014]) do not occur spontaneously from energy cascading from
low to high frequencies. Thus, we believe this phenomenon is definitely worthy of more study.

We comment briefly on some of the properties of the model. Clearly, the system is simpler than
studying the Euler equations. This is because many of the parameters of the Euler equations lie in the
initial condition !0 of the SL.2/ system. Indeed, once a point in R2 is chosen (to study the accumulation
of vorticity at that point as it moves through the flow) and the parameter N (the number of active scales)
is fixed, the system has only 3N parameters. If the initial condition !0 can be designed so that the SL.2/
system grows exponentially with rate N , this would indicate double exponential growth in the Euler
equations. However, it is critical that such growth be sustained for a time period of order .log N /=N , as
the proof below makes it reasonably obvious that it is possible to do so for a time period of order 1=N

(see Lemma 5). Currently, we do not have a strategy for designing such initial data. The purpose of this
work is to establish a rigorous connection between the Euler equations and the model.

Admittedly, our model works for only a very short period of time. We cannot use the model to follow
the equation for a longer period of time, because nonlinearities are breaking down its connection to the
equation. The fact that it runs long enough to give some insight into the double exponential growth
question is a consequence of the criticality of the equation for this problem. In supercritical problems like
blow-up for surface quasigeostrophic equations or blow-up for the three-dimensional Euler equations, the
same kind of model cannot work.
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Notation and Prerequisites. By a. b we mean that a� kb for some constant k that does not depend
on anything important. The notation a� b means a. b and b . a simultaneously. The norm j � j is the
usual Euclidean norm when applied to vectors in R2 and can be thought of as the maximum norm when
applied to a matrix.

Let  W R2! R be a smooth function such that

 .�/D

�
1 for 0< j�j< 1;

0 for j�j> 2;

and define the operator P0 to be the Fourier multiplier with symbol  . Let  1.�/D  
�

1
2
�
�
� .�/ and,

for j > 1, define Pj to be the Fourier multiplier with symbol  j .�/ WD  1.2
1�j�/. For convenience of

notation, define Pj D 0 for j < 0. Thus, Pj acts like a projection onto the frequency annulus f� W j�j � 2j g

for j > 1, and
P

j Pj is the identity because the sum telescopes. These Pj are commonly known as the
Littlewood–Paley operators. Further, let zPj D

P2
˛D�2 PjC˛ and Ej D

P
k<j Pk . Note that

Ejf .x/D f � .2
2k y .2k

� //.x/D

Z
f .xC 2�j s/ y .s/ ds

and y is a radial Schwartz function such that
R
y D  .0/D 1. Hence, Ej acts like, and will be referred

to as, an averaging operator on scale � 2�j . All Littlewood–Paley operators in this work take their
arguments in the spatial variable x 2 R2 (and not in time).

Let u W R2 � Œ0;1/! R2 be the velocity field of a two-dimensional, inviscid, incompressible fluid
flow and ! D @u2=@x1� @u1=@x2 the associated vorticity. We make some assumptions about u over the
time period we will be considering, which is of order .log N /=N . We will assume that

1X
jD0

kPjrukL1 .N (1)

and kPjrukL1 . 1 for all j � 0: (2)

Note that (2) is automatic in the case that !0 2L1. Above, and throughout this work, Lp DLp.R2/,
that is, all Lp norms are taken in the spatial variable x 2 R2. Also as above, explicit mention of the
dependence on time (t ) will often be omitted for brevity. We define the flow maps �.x; t/ to be solutions
of the differential equations

@

@t
�.x; t/D u.�.x; t/; t/;

�.x; 0/D x;

(3)

so the point �.x; t/ is the image of the point x under the flow with velocity field u at time t . Thus, the
Jacobian matrix of �, which we denote by D�, satisfies the differential equation

@

@t
D�.x; t/D ..ru/ ı�/.x; t/ �D�.x; t/;

D�.x; 0/D I;

(4)
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for each x 2 R2. By both D and r we mean the Jacobian derivative in the spatial variable x and not
in the coordinates of the particle trajectories �.x; t/. Indeed, it should be noted that the equations (3)
and (4) invite a change of coordinates via the map x 7! �.x; t/. This change of coordinates is especially
convenient because incompressibility, rx � u D 0, gives det.Dx�.x; t// � 1. This will make it useful
for our purposes to use the Lagrangian reference frame; that is, spatial variables will be evaluated along
the particle trajectories �.x; t/. A thorough discussion of particle trajectory maps and the Lagrangian
reference frame can be found in [Majda and Bertozzi 2002]. Other recent results use the Lagrangian
reference frame; see [Bourgain and Li 2015a; 2015b].

Proceeding formally, if we define Ri WD�
� 1

2 @=@xi , we have the so-called Biot–Savart law,

ruD

�
�R1R2! �R2

2
!

R2
1
! R1R2!

�
:

Using the Green’s function for the Laplace operator, we can calculate the nonlocal parts of the composed
Riesz operators by giving the nonsingular part of their kernels. (The local part, of course, lives in the
singular part of the kernel located on the diagonal.) These are

R1R2! DK12 �!. � ; t/; R2
1! DK11 �!. � ; t/; and R2

2 D�K11 �!. � ; t/;

where

K12.x1;x2/D
x1x2

�.x2
1
Cx2

2
/2

and K11.x1;x2/D
x2

2
�x2

1

2�.x2
1
Cx2

2
/2
:

The main result. The following definition is the one of the main fixtures of this paper. We will define
an approximation of ru.�.0; t/; t/ so that, for a short time of order .log N /=N , the flow is given by a
linear area-preserving map at each physical scale around the point �.0; t/. That is, the contribution to
ru.�.0; t/; t/ from the part of the vorticity which at time 0 was at an annulus at scale 2�j around 0 is
calculated as though the flow on the annulus were linear and given by some hj 2 SL.2/. This is inspired
by the following version of the Biot–Savart law:

ru.�.0; t/; t/D

Z
!.s; t/K.s��.0; t// ds

D

Z
!.�.s; t/; t/K.�.s; t/��.0; t// ds

D

X
j2Z

Z
Aj

!0.s/K.�.s; t/��.0; t// ds; (5)

where Aj Dfx W 2
�j � jxj< 21�j g and by dropping the index of K we mean a generic entry in the matrix

ru.�.x; t/; t/. We have used the aforementioned change of coordinates s 7! �.s; t/. This change of
coordinates is especially convenient because, in two space dimensions, the vorticity is purely transported
by the flow map. That is,

@!

@t
Cu � r! D 0 and so !0.s/D !.�.s; t/; t/
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for all t � 0. In (5), we are focusing on �.0; t/, which we think of as a generic interior point of a fluid
flow, in order to study whether double exponential growth is in the making at that point as it moves along
the flow.

Definition 1. Let h.t/ be an element of SL.2/. We define

.ru/j ;h.t/D

�
�.ru/j ;h;2 .ru/j ;h;1
.ru/j ;h;1 .ru/j ;h;2

�
;

where

.ru/j ;h;i.t/D

Z
Aj

!0;j .s/K1i.h.t/ � s/ ds;

!j D �Aj
.EjClog N �Ej�log N /!;

and !0;j .x/D !j .x; 0/:

(6)

Remark 2. Two things regarding the above definition are worth emphasizing. First, a heuristic note: the
object

P
j .ru/j ;hj

.t/ should be thought of as an approximation of ru.�.0; t/; t/. This is, of course, in
the event that each matrix hj .t/ is a linear approximation of the movement of the fluid particles roughly
distance 2�j from �.0; t/. Indeed, if in (6) we replaced !0;j with !0 and h.t/ � s with �.x; t/��.0; t/,
we would have

P
j .ru/j ;hj

.t/Dru.�.0; t/; t/ (at least formally).
Second, despite the notation, .ru/j ;h;i.t/ does not explicitly depend on the velocity field u at time t .

We now state the main result: for a short time, we can approximate the average of the Jacobian of
the flow map at the scale 2�j by a linear map for each j and these linear maps satisfy an autonomous
system of differential equations not depending on the solution to the Euler equations. The behavior of
this system can be a test for whether double exponential growth can occur and what it should look like.

Theorem 3. Assume that
1X

jD0

kPjrukL1 .N

and kPjrukL1 . 1;

and let hj 2 SL.2/ be defined as the solution to the ODE

dhj

dt
D

�X
k<j

.ru/k;hk

�
hj ;

hj .0/D I:

Then there is a (small) universal constant C > 0 such that, for all times 0� t � C.log N /=N , we have

jhj .t/�Ej D�.0; t/j DO.N�
7

10 /

for all j > 0.
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Remark 4. The purpose of using !0;j instead of just !0 is a technical advantage: !0;j is a projection onto
the frequencies of ! that make a significant contribution to ru.�.0; t/; t/ coming from the annulus Aj .
Indeed, if, in light of (5), we define

zru.�.0; t/; t/ WD
X
j2Z

Z
Aj

!j .�.s; t/; t/K.�.s; t/��.0; t// ds;

whereas (at least formally)

ru.�.0; t/; t/D
X
j2Z

Z
Aj

!.�.s; t/; t/K.�.s; t/��.0; t// ds;

the difference isX
j

X
jk�j j>log N

Z
Aj

Pk.!.�.s; t/; t//K.�.s; t/��.0; t// ds

D

X
f.j ;k/Wjk�j j>log N g

Z
Aj

�Z
!.y; t/ L k.y ��.s; t// dy

�
K.�.s; t/��.0; t// ds

D

X
f.j ;k/Wjk�j j>log N g

Z
Aj

�Z
!.y; t/

�Z
e2�i.y��.s;t//�� k.�/ d�

�
dy

�
K.�.s; t/��.0; t// ds: (7)

Note that, by (3), the fundamental theorem of calculus, and (1), over a time period of order .log N /=N

we have
jsj

log N
. j�.s; t/j. jsj log N: (8)

In the right-hand side of (7), we integrate by parts in
R

e2�i.y��.s;t//�� k.�/ d� , moving a derivative
r� from the exponential onto  k for terms in which k > j C log N , and the opposite way for terms where
k < j C log N . Since jsj � 2�j in each Aj , this gives us a factor of .log N /2˙j from the exponential
term (because of (8)) and 2�k from the dilation of  1, and this gives the estimate

(7). log N
X

f.j ;k/Wjk�j j>log N g

2�jk�j j
kPk!kL1

Z
Aj

K.�.s; t/��.0; t// ds:

Since, by definition, jK.x/j � jxj�2, we have
R
Aj

K.�.s; t/��.0; t// ds . .log N /2 for all j . Hence,
we now have the bound

(7). .log N /3
X

f.j ;k/Wjk�j j>log N g

kPk!kL12�jk�j j

. .log N /3

N

X
k

kPk!kL1

. .log N /3: (9)

We also used (1) and the fact that kPk!kL1 � kPkrukL1 .
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The technical advantage of using !0;j is that we have, similarly to (1),

1X
jD0

k!jkL1 .
1X

jD0

X
f.k;j/Wjk�j j<log N

kPk!kL1 .N log N: (10)

The reader might ask why we chose to have the error estimate in (9) come to .log N /3. It is entirely
arbitrary. By replacing the range of log N scales by a range of C log N scales, which would only cost us
a constant in the estimate (10), we could reduce the estimate to an arbitrary negative power of N , but the
point is that, because of the brevity of our time period, any estimate for the error which has a power of N

lower than 1 will work. The error is smaller than the worst case we have for krukL1 . The important
part of these estimates is that we lose (at most) a factor of a power of log N in (10), which is enough for
our purposes, mainly because of the assumption (1).

3. Methods of the proof

Here is a brief outline of the proof. The proofs of the lemmas and the main theorem will follow in the
next section.

Many of the estimates will be based on the following Gronwall-type lemma, which says that solutions
to similar ODEs remain similar for a short time.

Lemma 5. Suppose that F , G1, G2, w and v are real-valued functions of time with domain Œ0;1/ such
that F.t/DO.N /, and that

dw

dt
.t/D F.t/w.t/CG1.t/;

dv

dt
.t/D F.t/v.t/CG2.t/;

w.0/D v.0/:

Assume further that, for some constant E,

jG1.t/�G2.t/j.
�

E for 0< t . 1=N;

jF.t/.w.t/� v.t//j for t & 1=N:

Then, there is a (small) universal constant C , independent of N , such that j.w� v/.t/j .EN�
9

10
� 1

100

for all times t � C.log N /=N .

The idea behind Lemma 5 is that, since the difference starts out at 0, the “error” term G1�G2 dominates
for times t . 1=N . At that time, the main term, F.t/.w.t/� v.t//, becomes the dominant term but
j.w� v/.t/j remains relatively small for an additional time . log N . Most of the time, we will not need
the extra factor of N�

1
100 . It will be used to eliminate factors of log N that show up in the error term E.

We will often use the following estimate, which says the individual Littlewood–Paley pieces of D�

stay small:

Lemma 6. Under assumptions (1)–(2), supj>0kPj D�.t/kL1 .N�
9

10
� 1

100 for times t � C.log N /=N .
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In order to prove Theorem 3, we will show that, for the time period we are considering, the flow maps
are essentially linear on a given dyadic annulus. That is, we will estimate the difference between the
linear map .Ej D�.0; t// �x and the difference �.x; t/��.0; t/ for jxj � 2�j . To do so, we first show
that the averages of the Jacobians of the flow maps are close to the averages of the differences in the flow
maps, that is,

jEj D�.0; t/ �x� .Ej�.x; t/�Ej�.0; t//j. 2�j N�
9

10 ;

a sort of approximate mean value theorem. We do this by using (3) to examine the time derivative of
the difference of the flow maps and (4) to examine the average of D� at the appropriate scale. With the
fundamental theorem of calculus, and on frequency support grounds, we have that the time derivative of
the difference is essentially�Z 1

0

Ejru.s�.x; t/C .1� s/�.0; t/; t/ ds

�
� .Ej�.x; t/�Ej�.0; t//:

If we throw away log N many frequencies from the integrand, it is almost constant on its domain. The
error from doing so is acceptable, so we have now, essentially,

Ej ..ru/ ı�/.0; t/ � .Ej�.x; t/�Ej�.0; t//CO.2�j log N /

and we apply Lemma 5. We will still have to show that the difference of averages is close to the actual
difference for x at the appropriate scale. Since

P
Pk D 1, this is entirely a matter of controlling the

frequency bands bigger than 2j . We do this by first using a trivial bound for the high (at least j C log N )
frequencies, which comes from the fundamental theorem of calculus. For j � k � j C log N , we can
again exploit the fact that averages at scale 2�j are essentially constant at scale 2�j�log N .

Putting all of this together, we have:

Lemma 7. For times t � C.log N /=N and jxj � 2�j , we haveˇ̌
.Ej D�.0; t// �x� .�.x; t/��.0; t//

ˇ̌
DO.2�j N�

9
10 /:

Finally, we will prove Theorem 3 by using Lemma 7 to substitute the linear map .Ej D�.0; t// �x for
the difference �.x; t/��.0; t/ in each piece of the convolution used to calculate ru by the Biot–Savart
law.

4. The proof

Note that the constant C may change from line to line. It will only change finitely many times and, in the
end, it will be a universal constant which is independent of N .

Proof of Lemma 5. Observe that

d.w� v/

dt
.t/D F.t/.w� v/.t/� .G1.t/�G2.t//;

.w� v/.0/D 0;
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and suppose that T is the first time that j.w� v/.T /j D E=N . Then, for times t � minf1=N;T g, we
have, by assumption,

F.t/.w� v/.t/DO.E/ D)

ˇ̌̌̌
d.w� v/

dt
.t/

ˇ̌̌̌
.E:

Therefore, since the growth of the difference is at most linear of rate E, it follows that T DO.1=N /.
For T � t � C.log N /=N , we haveˇ̌̌̌

d.w� v/

dt
.t/

ˇ̌̌̌
. jF.t/.w� v/.t/j DO.N /j.w� v/.t/j

and so, by Gronwall’s lemma, we have

j.w� v/.t/j. E

N
eN t .EN�

9
10
� 1

100 ;

where we get the last inequality by choosing C such that t . C.log N /=N � .log.N
1

10
� 1

100 //=N . �

Proof of Lemma 6. Taking Pj of both sides of (4), we have, on frequency support grounds

@

@t
Pj D� D Pj .EjC3..ru/ ı�/ � zPj D�/CPj . zPj ..ru/ ı�/ �Ej�2D�/

CPj

� 1X
kDj

zPkC1..ru/ ı�/ �PkC3D�CPkC3..ru/ ı�/ � zPkD�

�
: (11)

(Notice that explicit dependence on x and t has been omitted for convenience of notation. This
will continue throughout this work.) We will make frequent use of the following versions of the cheap
Littlewood–Paley inequality:

sup
j

kPjf kL1 . kf kL1 (12)

and sup
j

kEjf kL1 . kf kL1 : (13)

To prove (13), observe that, for any x,

jEjf .x/j D

ˇ̌̌̌Z
f .xC 2�j s/ y .s/ ds

ˇ̌̌̌
� kf kL1

ˇ̌̌̌Z
y .s/ ds

ˇ̌̌̌
D  .0/ � kf kL1 D kf kL1 ;

by the definition of  . The estimate (12) is proven analogously.
Let S.t/D supj>0kPj D�.t/kL1 . For the first term of (11) we then have

ˇ̌
Pj

�
EjC3..ru/ ı�/ � zPj D�

�ˇ̌
.kEjC3..ru/ ı�/kL1k zPj D�kL1.

1X
jD0

kPjrukL1S.t/.O.N /S.t/:

The first inequality follows from (12), the second follows from the triangle inequality and from adding
nonnegative terms, and the definitions of zPj and S.t/, and the last follows from assumption (1). Along
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similar lines, for the second term of (11) we haveˇ̌
Pj

�
zPj ..ru/ ı�/ �Ej�2D�

�ˇ̌
. k zPj ..ru/ ı�/kL1kEj�2D�kL1

. sup
j

kPjrukL1kD�kL1

.O.kD�kL1/;

which follows from (12), the definition of zPj and (13), and assumption (2). Finally, for the last term
in (11),ˇ̌̌̌
Pj

� 1X
kDj

zPkC1..ru/ ı�/ �PkC3D�CPkC3..ru/ ı�/ � zPkD�

�ˇ̌̌̌
.
1X

kDj

k zPkC1rukL1kPkC3D�kL1 CkPkC3rukL1k zPkD�kL1

. S.t/

1X
kDj

kPkrukL1

.O.N /S.t/;

which we justify with (12), the definitions of zPk and S.t/, and assumption (1). Putting together these
three estimates, we have

d

dt
S.t/DO.N /S.t/CO.kD�kL1/:

Further, using (4), (1) and Gronwall’s lemma, we see that

kD�kL1 . eN t (14)

and so
d

dt
S.t/DO.N /S.t/CO.eN t /:

From here, we can apply a traditional, inhomogeneous version of Gronwall’s lemma to achieve the
desired bound. �

The proof of Lemma 7 is achieved in two parts. First, we show that the average of the Jacobian of
a flow map is closely approximated by the average difference of a flow map at a fixed scale. That is,
for jxj � 2�j , we haveˇ̌

.Ej D�.0; t// �x� .Ej�.x; t/�Ej�.0; t//
ˇ̌
DO.2�j N�

9
10 /:

We do this by comparing the time derivatives of each expression and using Lemma 5. Then we show that
the differences of the flow maps themselves at scale � 2�j are closely approximated by their averages at
the same scale, that is,ˇ̌

Ej�.x; t/�Ej�.0; t/� .�.x; t/��.0; t//
ˇ̌
. 2�j N�

9
10 ;

hence proving Lemma 7 by the triangle inequality.
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Proof of Lemma 7. First, we claim that, for jxj � 2�j ,

ˇ̌
.Ej D�.0; t// �x� .Ej�.x; t/�Ej�.0; t//

ˇ̌
DO.2�j N�

9
10 /: (15)

We examine @
�
.Ej D�.0; t// � x

�ı
@t using (4). The goal is to use Lemma 5. In this case, we want

to show that @
�
.Ej D�.0; t// �x

�ı
@t DEj ..ru/ ı�/.0; t/ �

�
.Ej D�.0; t// �x

�
plus an error term which

obeys acceptable bounds. Taking Ej and then the product with x of both sides of (4), we have, purely on
frequency support grounds,

@

@t

�
.Ej D�.0; t// �x

�
DEj

�
EjC3..ru/ ı�/.0; t/ �EjC3D�.0; t/

�
�x

CEj

� 1X
kDj

�
zPkC1..ru/ ı�/ �PkC3D�CPkC3..ru/ ı�/ � zPkD�

��
�x: (16)

(Note that, in the second line, we have again omitted the arguments of .ru/ı� and D� for brevity.) The
second term is entirely an error term. Observe that, by (2), Lemma 6, and frequency support, the second
term of (16) is

O
�
sup

j

kPjrukL1
�
Ej

� 1X
kDj

PkD�.0; t/

�
�x DO.2�j /; (17)

which will prove to be a tolerable error. For the first term of (16), since Ej is not actually a projection,
we have to separate some of the frequencies. We use the fact that Ej Ej�2 DEj�2, giving

Ej

�
EjC3..ru/ ı�/.0; t/ �EjC3D�.0; t/

�
�x DEj�2..ru/ ı�/.0; t/ �

�
.Ej�2D�.0; t// �x

�
CEj

� jC2X
k;lDj�2

Pk..ru/ ı�/.0; t/ �PlD�.0; t/

�
�x:

We now add and subtract
�PjC2

k;lDj�2
Pk..ru/ ı �/.0; t/ �PlD�.0; t/

�
� x. This gives us, from (16)

and (17),

@

@t
..Ej D�.0; t// �x/

DEj ..ru/ ı�/.0; t/ � ..Ej D�.0; t// �x/CO.2�j /

C

jC2X
k;lDj

�
Pk..ru/ ı�/.0; t/ �PlD�.0; t/

�
�x

C

jC2X
k;lDj�2

Ej

�
Pk..ru/ ı�/.0; t/ �PlD�.0; t/

�
�x�Pk..ru/ ı�/.0; t/ �PlD�.0; t/ �x; (18)
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where the last two lines are error terms which we denote by ‰. Notice that, for a typical term in the last
sum, we haveˇ̌
Ej

�
Pk..ru/ ı�/.0; t/ �PlD�.0; t/

�
�x�Pk..ru/ ı�/.0; t/ �PlD�.0; t/ �x

ˇ̌
�
ˇ̌
Ej

�
Pk..ru/ ı�/.0; t/ �PlD�.0; t/

�
�x
ˇ̌
C
ˇ̌
Pk..ru/ ı�/.0; t/ �PlD�.0; t/ �x

ˇ̌
. 2�j

kPk..ru/ ı�/ �PlD�kL1

. 2�j
kPkrukL1kPlD�kL1

DO.2�j /; (19)

where we have used the triangle inequality, (13), the hypothesis that jxj � 2�j , (2) and Lemma 6. A
similar (simpler) argument can be used to achieve the same estimate for a typical term in the first sum
and, since both sums have only O.1/ many terms, we now have the estimate

j‰j DO.2�j /:

We have now achieved the goal,

@

@t

�
.Ej D�.0; t// �x

�
DEj ..ru/ ı�/.0; t/ �

�
.Ej D�.0; t// �x

�
CO.2�j /: (20)

To use Lemma 5, we need an analogous statement for @.Ej�.x; t/�Ej�.0; t//=@t . We begin by
using (3). Since @=@t commutes with Ej , and by (3) and the fundamental theorem of calculus, we have

@

@t
.Ej�.x; t/�Ej�.0; t//DEj

@

@t
.�.x; t/��.0; t//

DEj

�
u.�.x; t/; t/�u.�.0; t/; t/

�
DEj

��Z 1

0

ru.s�.x; t/C .1� s/�.0; t/; t/ ds

�
� .�.x; t/��.0; t//

�
:

We now take Ej of the product, move Ej inside the integral, and the above expression gives

Ej

��Z 1

0

EjC3ru.s�.x; t/C .1� s/�.0; t/; t/ ds

�
� .EjC3�.x; t/�EjC3�.0; t//

�
CEj

� 1X
kDj

zPkC1..ru/ı�/ �PkC3.�.x; t/��.0; t//CPkC3..ru/ı�/ � zPk.�.x; t/��.0; t//

�
; (21)

which we justify on frequency support grounds. We use the same technique on the first term as we used
to achieve (20). That is, we add and subtract

jC2X
k;lDj�2

�Z 1

0

Pkru.s�.x; t/C .1� s/�.0; t/; t/ ds

�
� .Pl�.x; t/�Pl�.0; t//
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to exploit the fact that Ej Ej�2 DEj�2. This gives us that (21) equals�Z 1

0

Ejru.s�.x; t/C.1�s/�.0; t/; t/ ds

�
�.Ej�.x; t/�Ej�.0; t//

C

jC2X
k;lDj�2

Ej

��Z 1

0

Pkru.s�.x; t/C.1�s/�.0; t/; t/ ds

�
�.Pl�.x; t/�Pl�.0; t//

�

�

jC2X
k;lDj�2

�Z 1

0

Pkru.s�.x; t/C.1�s/�.0; t/; t/ ds

�
�.Pl�.x; t/�Pl�.0; t//

CEj

� 1X
kDj

zPkC1..ru/ı�/�PkC3.�.x; t/��.0; t//CPkC3..ru/ı�/� zPk.�.x; t/��.0; t//

�
: (22)

The term in the first line is good and the remaining terms are error terms. Denote the difference of the
middle two sums by ˆ; the indices in these sums match and we can use (13) on each term in the first sum
and the fact that there are only O.1/ many terms in the sum to estimate

jˆj DO

�



�Z 1

0

Pkru.s�.x; t/C .1� s/�.0; t/; t/ ds

�
� .Pl�.x; t/�Pl�.0; t//






L1

�
: (23)

We use assumption (2) to estimate the integral, giving



�Z 1

0

Pkru.s�.x; t/C .1� s/�.0; t/; t/ ds

�
� .Pl�.x; t/�Pl�.0; t//






L1

DO
�
kPl�.x; t/�Pl�.0; t/kL1

�
: (24)

Using (12), (8) and the hypothesis that jxj � 2�j , we now have the estimate

jˆj DO.2�j log N /:

We now estimate the last error term of (21), which we denote by „. Using assumption (2), we have

j„j. sup
k

kPkrukL1

ˇ̌̌̌
Ej

� 1X
kDj

PkC3.�.x; t/��.0; t//C zPk.�.x; t/��.0; t//

�ˇ̌̌̌

.
ˇ̌̌̌
Ej

� 1X
kDj

PkC3.�.x; t/��.0; t//C zPk.�.x; t/��.0; t//

�ˇ̌̌̌
: (25)

Because of the operator Ej , by frequency support, there are only O.1/ many terms left in the sum.
Therefore, it suffices to estimate a typical term in the sum, such as

Pk.�.x; t/��.0; t//;

where k � j . Using (12), (8), and the fact that jxj � 2�j , we have

jPk.�.x; t/��.0; t//j. 2�j log N
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and hence
j„j DO.2�j log N /:

Using these estimates on jˆj and j„j, we now have that (21) equals�Z 1

0

Ejru.s�.x; t/C .1� s/�.0; t/; t/ ds

�
� .Ej�.x; t/�Ej�.0; t//CO.2�j log N /: (26)

At this point, we reiterate that the goal is to show that the above expression is equal to

Ej ..ru/ ı�/.0; t/.Ej�.x; t/�Ej�.0; t//

plus an acceptable error term, and that the error so far, O.2�j log N /, is acceptable. For convenience, we
adopt the following notation for the integral term in (26):

I.t/ WD

Z 1

0

Ejru.s�.x; t/C .1� s/�.0; t/; t/ ds

D

Z 1

0

�
Ekru.s�.x; t/C .1� s/�.0; t/; t/C

j�1X
lDk

Plru.s�.x; t/C .1� s/�.0; t/; t/

�
ds;

where we chose k D j � log N so that the first part of the integral is essentially constant. Indeed, if
kf kL1 .N and jx�yj � 2�j log N , with this choice of k we have

Ekf .x/�Ekf .y/D

Z
R2

f .s/22k
�
y .2k.xC s//� y .2k.yC s//

�
ds

. 22k
kf kL1kr y kL12k

jx�yjjB2�j .0/j

. kf kL12k�j log N

.N 2� log N log N

. log N;

wherein we can move from the first line to the second line by the definition of  . Since the first part of
the integrand is essentially constant, we can choose any point in the domain we want for its argument (we
choose �.0; t/). We then add and subtract the extra frequencies (that is, those between k and j ) and we have

I.t/DEjru.�.0; t/; t/C

Z 1

0

� jX
lDk

Plru.s�.x; t/C .1�s/�.0; t/; t/�Plru.�.0; t/; t/

�
dsC log N:

The integral of the sum is clearly . log N because of (2) and the choice of k. Substituting this into
(26) and using (8), we have (finally)

@

@t
.Ej�.x; t/�Ej�.0; t//DEjru.�.0; t/; t/ � .Ej�.x; t/�Ej�.0; t//CO.2�j .log N /2/:

Using this, together with (20), we can apply Lemma 5 with

w D .Ej D�.0; t// �x; v DEj�.x; t/�Ej�.0; t/; and E D 2�j .log N /2;
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which proves the claim that

jEj D�.0; t/ �x� .Ej�.x; t/�Ej�.0; t//j DO.2�j N�
9

10 /

for jxj � 2�j .
Now, to prove the lemma, it suffices to show that

jEj�.x; t/�Ej�.0; t/� .�.x; t/��.0; t//j. 2�j N�
9

10 :

By the definition of the Littlewood–Paley operators, we have

Ej�.x; t/�Ej�.0; t/� .�.x; t/��.0; t//D
X
k�j

Pk�.x; t/�Pk�.0; t/;

which we now estimate in two parts. First, for the large frequencies, we have (for arbitrary y)

1X
kDjClog N

Pk�.y; t/D

1X
kDjClog N

EkC1�.y; t/�Ek�.y; t/

D

1X
kDjClog N

Z
R2

�
�.yC 2�.kC1/s; t/��.yC 2�ks; t/

�
y .s/ ds

. kD�kL1
1X

kDjClog N

2�k

.N
1

10 2�j�log N

. 2�j N�
9

10 ; (27)

where we have used the definition of Ek , (14) and our choice of C (as in the proof of Lemma 5). For
the smaller frequencies, we have left

lX
kDj

.Pk�.x; t/�Pk�.0; t//; (28)

where l D j C log N � 1. We will estimate an arbitrary frequency band Pk�.x; t/�Pk�.0; t/ in this
range. Take xi to be points on the line segment from 0 to x such that jxiC1�xi j � 2�l ; thus we
have � 2l�j � N points xi . For convenience of notation, take x0 D 0 and xN D x. By adding and
subtracting Pk�.xi ; t/ for each i , we have

jPk�.x; t/�Pk�.0; t/j. 2l�j max
i
jPk�.xiC1; t/�Pk�.xi ; t/j: (29)

For each i , we have from Lemma 6 that

Pk.�.xiC1; t/��.xi ; t//. 2�l
kPkD�kL1 . 2�lN�

9
10
� 1

100 :
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Plugging this into (29) and, in turn, plugging the result into (28), we can use the factor of N�
1

100 and
the fact that there are only � log N terms in the sum to obtain

lX
kDj

Pk�.x; t/�Pk�.0; t/. 2�j N�
9

10 :

This, together with (27), proves the claim that

jEj�.x; t/�Ej�.0; t/� .�.x; t/��.0; t//j. 2�j N�
9

10

and we have already shown that

jEj D�.0; t/ �x� .�.x; t/��.0; t//j DO.2�j N�
9

10 /I

applying the triangle inequality, we complete the proof of Lemma 7. �

It only remains to prove the main theorem.

Proof of Theorem 3. Our goal is to show that

d.Ej D� � hj /

dt
D

�X
k<j

.ru/k;EkD�;i

�
Ej D� �

�X
k<j

.ru/k;hk ;i

�
hj CO.N

1
5 /Ej D� (30)

and apply a version of Lemma 5. (We remove explicit dependence on 0 and t in order to simplify notation.)
We use the definition of hj and (20) (from which we may omit the product with x) and, with some adding
and subtracting, we have

d.Ej D� � hj /

dt
D
�
Ej ..ru/ ı�/�Ej ..zru/ ı�/

�
�Ej D�CO.1/

C

�
Ej ..zru ı�//�

�X
k<j

.ru/k;EkD�

��
�Ej D�

C

�X
k<j

.ru/k;EkD�

�
Ej D� �

�X
k<j

.ru/k;hk

�
hj : (31)

(We are also omitting the explicit dependence on i , meaning that we are referring to a generic entry in the
matrix.) We want the last line of (31) to achieve (30). The other terms are error terms, which we require
to be controlled by O.N

1
5 /Ej D�. We can easily estimate the coefficient of Ej D� in the first line using

(13) and (9): ˇ̌�
Ej ..ru/ ı�/�Ej ..zru/ ı�/

�ˇ̌
. k.ru/ ı� � .zru/ ı�kL1 . .log N /3; (32)

which gives that the first term in (31) is

O.N
1
5 /Ej D� (33)
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and so, in order to have (30), we only have to control the coefficient of Ej D� in the middle term. By
definition and using the Biot–Savart law, this is equal to

Ej

�X
k2Z

Z
Ak

!0;k.s/K.�.s; t/��.0; t// ds

�
�

X
k<j

Z
Ak

!0;k.s/K.EkD�.0; t/ � s/ ds: (34)

We split the sum on the left into two parts, k � j and k < j . For k � j , the sum is equal to

Ej

�X
k�j

Z
Ak

!0;k.s/K.�.s; t/��.0; t// ds

�
.
X
k�j

kKkL1.�.Ak ;t//

Z
Ak

Ej!0;k.s/ ds

. .log N /2
X
k�j

kEj!0;kkL1 : (35)

Above, we get a factor of 22k.log N /2 from integrating K and using (8), and a factor of 2�2k comes
from integrating Ej!0;k on Aj . For each k, kPk!kL1 . 1 and, by frequency support (after using the
triangle inequality), there are fewer than .log N /2 many terms in the sum. Hence the error contributed
by (35) is only O..log N /4/.N

1
5 .

The rest of the error term, (34), where the first sum is over k < j , isX
k<j

Z
Ak

!0;k.s/
�
K.�.s; t/��.0; t//�K.EkD�.0; t/ � s/

�
ds: (36)

By Lemma 7, we have j�.s; t/��.0; t/�EkD�.0; t/ � sj. 2�kN�
9

10 when jsj � 2�k . Further, by
(14) and (8), we may choose C so that, if x D �.s; t/��.0; t/, y DEkD�.0; t/ � s and � D 1

50
�

1
500

,
we have

2�kN�� . jxj; jyj. 2�kN �

for times 0� t � C.log N /=N . Then we have the bound

K12.x/�K12.y/. 24kN 4�.x1x2�y1y2/

D 24kN 4�.x1.x2�y2/Cy2.x1�y1//

.N 5�23k max
i
fjxi �yi jg

. 22kN 5�� 9
10

. 22kN�
4
5
� 1

100

and similarly for K11. We can then estimate the sum (36) by

N�
4
5
� 1

100

X
k<j

k!0;kkL1ds .N
1
5
� 1

100 log N .N
1
5

and with this we have the estimate that the middle term in (31) is O.N
1
5 /Ej D� and, therefore, we

have (30).
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We will now apply a version of Lemma 5 using (30). Assume for contradiction that the estimate
jhk.t/�EkD�.0; t/j DO.N�

7
10 / fails for the first time at time t0 < C.log N /=N and at scale j . So,

for k < j and times t < t0, the estimate holds. Therefore, we have, for t < t0,

d.Ej D� � hj /

dt

D

�X
k<j

.ru/k;EkD�

�
EkD� �

�X
k<j

.ru/k;hk

�
hj CO.N

1
5 /Ej D�

D

�X
k<j

.ru/k;hk

�
.EkD� � hj /C

�X
k<j

.ru/k;EkD� � .ru/k;hk

�
Ej D�CO.N

1
5 /Ej D�

.
�X

k<j

.ru/k;hk

�
.Ej D� � hj /CO.N

1
5 /Ej D�;

where, for the last line, we used our assumption that the estimate holds on scales k < j and the estimates
on the Biot–Savart kernels K1i . Note that, at time t D 0, the difference Ej D� � hj equals 0. Suppose
that T is the first time such that Ej D� � hj DN�

4
5 . If t �minf1=N;T g, we have

d.Ej D� � hj /

dt
.N

1
5 since N

1
5 .Ej D� � hj /DO.1/

and it follows that T DO.1=N /. For times t such that T � t � t0<C.log N /=N , the first term dominates
and

Ej D� � hj DO
�
N�

4
5 exp.tO.N //

�
DO.N�

7
10 /;

where the last equality comes from our choice of C , since t0 < C.log N /=N � .log N
1

10 /=N . Thus, the
assumption that the estimate breaks down at scale j and at time t0 < C.log N /=N was false, and hence
it holds for all j and t � C.log N /=N , proving the theorem. �
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