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Abstract. We introduce and investigate a new notion of the approximation
property AP[c], where c = (cn) is an arbitrary positive real sequence, tending
to infinity. Also, we study the corresponding notion of [c]-nuclear operators in
Banach spaces. Some characterization of the AP[c] in terms of tensor products,
as well as sufficient conditions for a Banach space to have the AP[c], are given.
We give also sufficient conditions for a positive answer to the question: When
it follows from the [c]-nuclearity of an adjoint operator the nuclearity of the
operator itself. Obtained results are applied then to the study of properties of
nuclear operators in some spaces of analytical functions. Many examples are
given.

1. Introduction and preliminaries

1.1. Introduction. A Banach space X has the approximation property AP if
the identity operator in X can be approximated, in the topology of compact
convergence, by finite rank operators. As was noted by A. Grothendieck [6, Chap.
I, p. 112], J. Dieudonné and L. Schwartz showed that every compact subset of a
Banach space is contained in the closed convex hull of a sequence, converging to
zero (see [4, proof of Theorem 5] or [10, p. 30, Proposition 1.e.2]). Therefore, the
notion of the approximation property can be defined in the following way: The
space X has the AP if, for every sequence (xn) in X with ||xn|| → 0 and every
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ε > 0, there exists a finite rank operator R in X such that supn ||xn −Rxn|| ≤ ε.
It is natural to replace in this definition the condition “for every sequence (xn)
in X with ||xn|| → 0”, for example, by the condition “

∑
||xn||p < ∞ for some

p ∈ (0,∞)” and to get corresponding approximation property (say AP [p]). It
seems that for the first time it was done in the second author’s paper [21, Lemma
2.1]. Let us mention that instead of lp-sequences, we can take in the definition
any other set of zero-sequences.

Once a new notion of approximation property is defined, a natural next step is
to study whether some results on the classical AP can be extended to the case of
this new notion. As examples, we can consider the characterizations of the AP in
terms of tensor products, some sufficient conditions for a space to have AP, the
statements like “X∗ has the AP =⇒ X has the AP”, the connections between
the AP and the properties of nuclear operators, question of whether an operator
is nuclear if its adjoint is nuclear and so on.

In this paper, we introduce and investigate approximation properties defined
(as above) by one-point sets of zero-sequences.

Namely, let us denote by C the set of all real positive sequences, tending to ∞:
C := {(cn) : cn ∈ R+, cn → +∞}. For a sequence c ∈ C, we define a new notion
of the approximation property AP[c].

Definition 1.1. A Banach space X has the approximation property with respect
to c, the AP[c], if for every ϵ > 0 and any sequence (xn) in X with ||xn|| ≤ c−1

n

there exists a finite rank operator R in X such that ||Rxn − xn|| ≤ ϵ for every n.

Note that X has the classical AP if and only if X has the AP[c] for every c ∈ C.

Remark 1.2. One can define also the CAP[c], the compact approximation property
with respect to c : We need only to change the words “finite rank operator” by
“compact operator” in Definition 1.1. See Example 3.8 and Proposition 3.10
below.

Our interest in such properties was inspired by the known fact, that the space
H∞ of bounded analytic functions in the unit disk has the AP “up to log” [1,
Theorem 9]. As a matter of fact, we first had some new properties of nuclear
operators, acting fromH∞ or from the space L1/H

1
0 (predual toH∞) (see Sections

5 and 6 below) and then decided to consider, instead of only the sequence (log(n+
1)), also other positive sequences (cn) with cn → ∞.

These properties AP[c] are closely connected with a new notion of [c]-nuclear
operators.

Definition 1.3. Let c ∈ C. An operator T : X → Y is said to be [c]-nuclear, if
it admits a representation

Tx =
∞∑
n=1

µn x
′
n(x) yn, x ∈ X,

where (x′n) ⊂ X∗, (yn) ⊂ Y,
∑

n ||x′n|| ||yn|| <∞ and |µn| ≤ 1/cn.

For example, a [log]-nuclear operator between Banach spaces X and Y is
an operator T : X → Y, that admits a nuclear representation of type Tx =
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n 1/ log(n+ 1) x′n(x) yn (for x ∈ X) with

∑
n ||x′n|| ||yn|| <∞. One of the main

questions in our study of the classes of [c]-nuclear operators is to give condi-
tions, under which it follows from the [c]-nuclearity of an adjoint operator T ∗ the
nuclearity of the operator T itself.

The history of the questions of such a type takes its beginning from a result of
A. Grothendieck on the linear operators with nuclear adjoints. He showed in [6]
that if a linear operator T maps a Banach space X into a Banach space Y, if T ∗

is nuclear and if the dual space X∗ has the AP, then the operator T is nuclear.
This result turned up to be sharp (with respect to the space X), in the sense that
there exists an operator T in a Banach space X, which is not nuclear but has a
nuclear adjoint. This was shown already in 1973 by T. Figiel and W. B. Johnson
[5]. Moreover, in their example, the space X possesses the Grothendieck AP.
Later, E. Oja and O. Reinov [13] (see [14] for the complete proofs) gave another
sufficient condition for a positive answer to the above question: If T maps X into
Y, T ∗ is nuclear, and Y ∗∗∗ has the AP, then the operator T is nuclear. Again, as
was shown in the same paper, the condition is essential: There are a Banach space
Z and an operator T : Z∗∗ → Z; so that Z∗∗ has a basis and T ∗ is nuclear but T
is not nuclear. Of course, here the space Z∗∗∗ (which is, by the way, separable in
the example) does not have the AP.

It is easy to see that the nuclearity of an adjoint operator T ∗ : Y ∗ → X∗ is
equivalent to the nuclearity of the operator πY T : X → Y → Y ∗∗, where πY is the
natural injection of Y into its second dual Y ∗∗. Thus, the above positive results say
that, under some approximation conditions posed on the spaces X or Y, the space
N(X, Y ) of all nuclear operators from X to Y possesses a property of “regularity”
(recall that an operator ideal J is regular if it follows from U : X → Y and
πYU ∈ J(X,Y ∗∗) that U ∈ J(X,Y ); see [16]). After the Figiel–Johnson example
had appeared, the natural questions about the regularity of such operator ideals
as the ideals of p-nuclear or p-integral (in the sense of A. Pietsch) operators were
posed in 1970s (e.g., by A. Pe lczyński, A. Pietsch, P. Saphar, and others; see
[19]). In a more general setting, a corresponding question on the regularity of the
ideals of (p, q, r)-nuclear operators can be found in the book [16]. Between 1980
and 2017, E. Oja and O. Reinov made several contributions in answering such
questions. We refer here only to a nice paper of E. Oja [12], where also some
corresponding references can be found (see also [11]).

Roughly speaking, we can divide such problems on the regularity (of in different
senses nuclear operators) in three parts: Let A1 be the set of all projective tensor
products of Banach spaces, and let A+

1 be the set of all tensor products of Banach
spaces, equipped with norms, which are less than the projective tensor norm ||·||∧
and greater than the operator norm, and also let A−

1 be the set of all subspaces of
all projective tensor products of Banach spaces. In a natural way, we can define

the corresponding classes Ã1, Ã
+
1 , and Ã−

1 of operators induced by these sets. In
this setting, we can define a notion of regularity (note that it can be defined in
more general cases of Banach tensor products or quasi-normed tensor products of
Banach spaces): For example, let X⊗̃Y belong to one of the above sets, and let
J(X∗, Y ) be the corresponding set of operators. We say that J(X∗, Y ) is regular
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if the conditions

U : X∗ → Y, πYU is generated by an element from X⊗̃Y ∗∗

imply that U ∈ J(X∗, Y ) and generated by an element from X⊗̃Y.
The cases of the sets A1 and A+

1 (for tensor norms; see [25]) were studied
carefully by E. Oja in [12]. She showed that if X or Y ∗∗∗ has the AP, then

every space of operators from Ã1 and Ã+
1 is regular (recall that the corresponding

tensor products in [12] are equipped with tensor norms in the sense of [25]). Some
results, concerning the case of A−

1 can be found in [22] and [23].
In our paper, we study the case of the subset of A−

1 of tensor products, which
corresponds to the approximation properties AP[c], mentioned above. We will see
that some of the approximation properties that were considered and studied in
[22], [23], and [24] (e.g., APs, AP1;p,r AP(pq)) as well as the corresponding tensor
products are, essentially, special cases of our considerations.

Shortly about the content of the paper.
In Subsection 1.2, we present some standard notations concerning Banach

spaces, spaces of nuclear operators, tensor products, the approximation prop-
erty and formulate a classical result of J. Lindenstrauss from his famous paper
[9], which we will need below (in Sections 3 and 5).

In Section 2, we define the notions of [c]-projective tensor products of Banach
spaces and corresponding spaces of [c]-nuclear operators. The main result here is
Theorem 2.1, which gives some characterizations of the AP[c] in terms of tensor
products. In the end of the section, we show that if a dual space X∗ has the
AP[c], then the space X has the AP[c] too.

In Section 3, some sufficient conditions for a Banach space to have the AP[c]

are given. As a consequence, we get an essential generalization of some previous
facts about the approximation properties in subspaces of quotients of Lp-spaces.
In particular, we show that every Banach space has the AP[(

√
n)] (before it was

known that every Banach space has the approximation property with respect to
o(
√
n), that was a generalization of a famous 2/3-result of A. Grothendieck). In

the end of the section we present some examples with some assertions. In particu-
lar, as a consequence of Example 3.8, we obtain the existence of an asymptotically
Hilbertian space without the compact approximation property but with the prop-
erty AP[log1+ε] (see Proposition 3.10).

Section 4 is devoted to a study of operators with [c]-nuclear adjoints. We
get here an analogue of the main result of the paper [12], showing that the
set N[c](X

∗, Y ) of all [c]-nuclear operators from X∗ to Y is almost regular (cf.
definition of regularity mentioned above) if eitherX or Y ∗∗∗ has the AP[c]. Namely,
if X or Y ∗∗∗ has the AP[c], T : X∗ → Y, πY T is generated by an element from

the “[c]-projective tensor product” X
c
⊗ Y ∗∗ (see Section 4 for a definition), then

T ∈ N(X∗, Y ) (i.e., nuclear) and generated by an element from the projective
tensor product X⊗̂Y (Theorem 4.1). The main consequence of the theorem is
Corollary 4.2 that gives some sufficient conditions for an operator to be nuclear
if its adjoint is [c]-nuclear.
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In Section 5, some examples are given. These examples show, in particular,
that the condition “either X or Y ∗∗∗ has the AP[c]” is essential for the results of
the previous section, as well as the conclusion “T is nuclear” is the best possible
(this was known before; see, e.g., [23] and Section 6 below). After the examples,
we present several results on the nuclear operators in some spaces of analytical
functions; for instance, if an operator from L1/H

1
0 has a [(log(n + 1))]-nuclear

adjoint, then it is nuclear; if an operator from H∞ to a Banach space Y is
generated by a tensor element from L1⊗̂Y ∗∗, then it is nuclear as an operator
from H∞ to Y.

Finally, in Section 6, we generalize the notion of the AP[c] to the case where
one considers some subset C0 of the set of all positive real sequences, tending to
infinity. We introduce a notion of the approximation property APC0 for a Banach
space X (the property means that X has the AP[c] for every sequence c ∈ C0).
Also, we define a corresponding notion of a C0-nuclear operator. Examples 6.3
and 6.6 show that in some particular cases we get the notions of some approxi-
mation properties and the corresponding nuclear operators which were studied,
for example, in [24]. We give some generalizations of results from Section 4 and
present some applications. For example, we show that if 0 < s < 1, Z is either
any space of the spaces A,L1/H

1
0 or H∞ or any of its duals and T is an operator

from or into Z, then it follows from s-nuclearity of T ∗ the nuclearity of the oper-
ator T itself. The last theorem of the paper (Theorem 6.9) is a direct application
of Theorem 4.1 to the case where one of the Banach spaces under consideration
if H∞.

Let us mention that the results of the paper concerning nuclear operators in
the spaces of analytical functions were partially presented by the authors at the
Voronezh Winter Mathematical School “Modern methods of theory of functions
and related problems” (2003, Jan 26–Feb 2, Voronezh, Russia) [8].

1.2. Preliminaries. All the spaces under considerations (X, Y,W, . . . ) are Ba-
nach, all linear mappings (operators) are continuous; as usual, X∗, X∗∗, . . . are
Banach duals (to X), and x′, x′′, . . . (or y′, . . . ) are the functionals on X,X∗, . . .
(or on Y, . . . ). If x ∈ X, x′ ∈ X∗, then ⟨x, x′⟩ = ⟨x′, x⟩ = x′(x). L(X, Y ) stands
for the Banach space of all linear bounded operators from X to Y ; B(X, Y ) is
the Banach space of all continuous bilinear forms on X × Y. Every Banach space
is considered as a subspace of its second dual. If needed, by πY we denote the
natural isometric injection of Y into Y ∗∗.

We consider the algebraic tensor product X ⊗ Y as the linear subspace of
all continuous finite rank operators from X∗ to Y. The projective tensor product
X⊗̂Y of the spaces X and Y is the completion of X⊗Y with respect to the norm
||z||∧ := inf{

∑
|λk|}, where the infimum is taken over all finite representations of

z ∈ X ⊗ Y in the form z =
∑
λk xk ⊗ yk with ||xk|| = ||yk|| = 1. Every element

z ∈ X⊗̂Y admits a representation z =
∑∞

k=1 λkxk ⊗ yk such that
∑

|λk| < ∞
and ||xk|| = ||yk|| = 1. We denote by zt the transposed tensor element from
Y ⊗̂X : zt :=

∑∞
k=1 λkyk ⊗ xk. If X = Y ∗, then the functional “trace” on the

tensor product Y ∗⊗̂Y is well-defined by the formula trace z :=
∑
λk ⟨xk, yk⟩.

The Banach dual to X⊗̂Y can be identified with the space L(Y,X∗) = B(X,Y )
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with duality given by “trace”: For z ∈ X⊗̂Y and U ∈ L(Y,X∗), we put ⟨U, z⟩ :=
trace U ◦ z =

∑
λk ⟨xk, Uyk⟩.

There is a natural map from the tensor product X ⊗ Y to L(X∗, Y ), that
takes elementary tensors x ⊗ y to operators ⟨πXx, ·⟩y of rank one. This map
is continuous as a map from (X ⊗ Y, || · ||∧) to L(X∗, Y ) and can be extended
to the natural map j : X⊗̂Y → L(X∗, Y ). We will denote by Nw(X∗, Y ) the
Banach space of operators belonging to the image j(X⊗̂Y ) of this map (one can
identify this space with the quotient X⊗̂Y/Ker j). If X is dual to a Banach
space, say W, then the corresponding map j can be considered as a map from
W ∗⊗̂Y to L(W,Y ). We denote by N(W,Y ) the image of this map with a natural
norm, induced from the quotient W ∗⊗̂Y/Ker j. The operators from N(W,Y ) are
called nuclear operators (from W to Y ). Thus, in the general case, N∗(X∗, Y ) is
a subspace of N(X∗, Y ). If z ∈ X⊗̂Y (or z ∈ W ∗⊗̂Y ), then we denote by z̃ the
corresponding nuclear operator from X∗ to Y (or from W to Y ).

A Banach space X has the classical AP, if for every Y , the canonical map j is
one-to-one. Equivalently, X has the AP if for every Banach space Y the natural
map Y ∗⊗̂X → L(Y,X) is one-to-one. The classical definition of the AP for X is:
a Banach space X has the AP, if for every compact subset K of X and for any
ε > 0 one can find a finite rank operator R in X such that supx∈K ||Rx−x|| ≤ ε.
See [6] for further information.

We use standard notations for the classical Banach spaces such as Lp(µ), C(K),
lp, c0, lpq, and so on. l0p∞ is denoted the minimal kernel lmin

(p,∞) of l(p,∞) (see,

e.g., [16, 13.9.3 Remark]: A sequence c = (cn) belongs to l0(p,∞) if and only if

limn n
1/pc∗n = 0, where (c∗n) is a nonincreasing rearrangement of |c| := (|cn|).

Finally, A and H∞ are the disk algebra and the space of bounded analytical
functions, respectively. For the information about these spaces that is needed,
see [15]. Let us mention only that A∗ = L1/H

1
0 ⊕ L and A∗∗ = H∞ ⊕ L∗, where

L is an L1-space.
We will need below the following fact from [9] (see proof of Corollary 1 there).

Lemma 1.4. For every separable Banach space X there exist a separable Banach
space Z and a linear homomorphism φ from Z∗∗ onto X with the kernel Z ⊂ Z∗∗;
so that the subspace φ∗(X∗) is complemented in Z∗∗∗ and, moreover, Z∗∗∗ ∼=
φ∗(X∗) ⊕ Z∗.

2. Tensor characterizations of the AP[c]

Recall that C := {(cn) : cn ∈ R+, cn → +∞}.
For c ∈ C, let us denote by X

c
⊗ Y a subset of the projective tensor product

X⊗̂Y, consisting of all tensors z such that z admits a representation of type

z =
∞∑
n=1

µn xn ⊗ yn, where
∑

||xn|| ||yn|| <∞, |µk| ≤ c−1
k (k = 1, 2, . . . ).

Let us note that we can identify X
c
⊗ Y with Y

c
⊗X (in a natural way). Also, we

can consider X
c
⊗ Y as a subset of X

c
⊗ Y ∗∗ (or as a subset of X∗∗ c

⊗ Y ). Indeed,
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X
c
⊗ Y is a subset of X⊗̂Y, X⊗̂Y is a subspace of X⊗̂Y ∗∗ (see [6, Chap. I, Cor.

3, p. 41]), and X
c
⊗Y ∗∗ is a subset of X⊗̂Y ∗∗. Thus the natural map from X

c
⊗Y

to X
c
⊗ Y ∗∗ is one-to-one.

On the other hand, we have a natural mapping from X⊗̂Y to L(X∗, Y ) (or

to B(X∗, Y ∗)). Therefore, we can consider also a natural map jc from X
c
⊗ Y

to L(X∗, Y ). The image of this map jc will be denoted by Nw
[c](X

∗, Y ). Thus,

an operator T : X∗ → Y is in the space Nw
[c](X

∗, Y ) if and only if it admits a
representation

Tx′ =
∞∑
n=1

µn ⟨πXxn, x′⟩ yn, x′ ∈ X∗,

where (xn) ⊂ X, (yn) ⊂ Y,
∑

n ||xn|| ||yn|| <∞ and |µn| ≤ 1/cn. In the particular
case where the first space is a dual space, say W ∗, we get a canonical mapping

W ∗ c
⊗ Y → L(W,Y ). The image of this map will be denoted by N[c](W,Y ) and

the operators from the space N[c](W,Y ) are exactly [c]-nuclear operators (see
Definition 1.3).

Let us present some characterizations of the AP[c] in terms of tensor products.

Theorem 2.1. For c ∈ C and for a Banach space X, the following statements
are equivalent:

1) X has the AP[c].

2) For every Banach space Y the natural mapping from Y
c
⊗X to B(Y ∗, X∗)

(or to L(Y ∗, X)) is one-to-one.

3) For every Banach space Y the natural mapping Y ∗ c
⊗X → L(Y,X) is one-

to-one.

4) The natural mapping X∗ c
⊗ X → L(X,X) is one-to-one (or, what is the

same, there exists no tensor element z ∈ X∗ c
⊗ X with trace z = 1 and z̃ = 0,

where z̃ is the associated (with z) operator from X to X).

Proof. 2) =⇒ 3) =⇒ 4) evident.
4) =⇒ 3). Suppose that there exists a Banach space Y such that the natural

map Y ∗ c
⊗X → L(Y,X) is not one-to-one. Take an element z ∈ Y ∗ c

⊗X which is
not zero, but generates a zero operator z̃ : Y → X. Then we can find an operator
U ∈ L(X,Y ∗∗); so that trace U ◦z = 1. If z =

∑∞
k=1 λk y

′
k⊗xk is a representation

of z in Y ∗ c
⊗X (

∑
||x′n|| ||yn|| <∞, |λk| ≤ c−1

k , k = 1, 2, . . . ), then

1 = trace U ◦ z =
∞∑
k=1

λk⟨Uxk, y′k⟩ =
∞∑
k=1

λk ⟨xk, U∗y′k⟩

and
∑∞

k=1 λk U
∗y′k(x)xk = 0 for every x ∈ X.

Put x′k := λkU
∗y′k, z0 :=

∑∞
k=1 λkx

′
k ⊗ xk ∈ X∗ c

⊗X. We have

trace z0 = 1, z̃0 ̸= 0
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(by the assumption about X). Consider a one-dimensional operator R = x′ ⊗ x
in X with the property that trace R ◦ z0 > 0. Then

0 < trace R ◦ z0 =
∞∑
k=1

λk⟨x′k, x⟩⟨x′, xk⟩ =
∞∑
k=1

λk ⟨U∗y′k, x⟩⟨x′, xk⟩

= ⟨
∞∑
k=1

λk ⟨Ux, y′k⟩xk, x′⟩ = ⟨x′,
∞∑
k=1

λk U
∗y′k(x)xk⟩ = 0.

1) =⇒ 4). Let z ∈ X∗ c
⊗X and trace z = 1. Write z =

∑
λk x

′
k ⊗ xk, where

the sequences (x′k) and (xk) are bounded and (λkck) ∈ l1. Then

z =
∞∑
k=1

(λkck x
′
k) ⊗ (c−1

k xk).

Let ε > 0 be such that ||(λkck)||l1 supk ||x′k|| · ε < 1/2. By 1), there exists a finite
rank operator R ∈ X∗ ⊗X such that ||R(c−1

k xk) − c−1
k xk|| ≤ ε for each k ∈ N. It

follows that, for this operator R,

| trace (z −R ◦ z)| = |
∞∑
k=1

⟨λkckx′k, c−1
k xk −R(c−1

k xk)⟩|

≤
∞∑
k=1

λkck||x′k|| · ε ≤ ||(λkck)||l1 sup
k

||x′k|| · ε < 1/2.

Hence,

| trace R ◦ z| ≥ 1/2

and therefore z generates a nonzero operator z̃.

3) =⇒ 2). It follows from 3) that for every Y the natural map Y ∗∗ c
⊗ X →

L(Y ∗, X) is one-to-one. Since Y
c
⊗X is a subset of Y ∗∗ c

⊗X, we get 2).
4) =⇒ 1). Suppose that X does not have the AP[c]. Then there is a sequence

(xn) such that ||xn|| ≤ c−1
n (n = 1, 2, . . . ) and there exists an ε > 0 with the

property that for any finite rank operator R ∈ X∗⊗X the inequality supn ||Rxn−
xn|| > ε is valid. Consider the space C0(K;X) for the compact setK := {xn}∞n=1∪
{0}. Every operator U in X can be considered as a continuous function on K with
values in X by setting fU(k) := U(k) for k ∈ K. In particular, for the identity
map id in X and for any R ∈ X∗ ⊗X we have

||fid − fR||C0(K;X) ≥ ε.

The subset R := {fR : R ∈ X∗ ⊗X}
C0(K;X)

of C0(K;X) is a closed linear sub-
space in C0(K;X). So, there exists an X∗-valued measure

µ = (x′k)∞k=1 ∈ C∗
0(K;X) = l1({xn}∞n=1) ∪ {0};X)

such that µ|R = 0 and µ(fid) = 1. In other words, we can find a sequence (x′k)
with

∑∞
k=1 ||x′k|| < ∞ such that

∑∞
k=1⟨x′k, xk⟩ = 1 and

∑∞
k=1⟨x′k, Rxk⟩ = 0 for

any R ∈ X∗ ⊗X.
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Define a tensor element z ∈ X∗⊗̂X by z :=
∑∞

k=1 x
′
k ⊗ xk. Since ||xn|| ≤

c−1
n for (n = 1, 2, . . . ) and (x′k) ∈ l1(X

∗), we get that z ∈ X∗ c
⊗ X, trace z =∑∞

k=1⟨x′k, xk⟩ = 1 and trace R ◦ z = 0 for every R ∈ X∗ ⊗ X. This means that
the condition 4) is not fulfilled. □

We give here only one of the natural consequences of Theorem 2.1.

Theorem 2.2. If the dual space X∗ has the AP[c], then X has the AP[c] too.

Proof. We use Theorem 2.1. As it is known [6, Chap. I, Cor. 3, p. 41], the
projective tensor product X∗⊗̂X is a subspace of the tensor product X∗⊗̂X∗∗.

The tensor product X∗ c
⊗X is a linear subspace of X∗⊗̂X, as well as X∗ c

⊗X∗∗ is

a linear subspace of X∗⊗̂X∗∗. Therefore, the natural map X∗ c
⊗X → X∗ c

⊗X∗∗

is one-to-one. Now if X∗ has the AP[c], then the canonical map X∗∗ c
⊗ X∗ →

L(X∗, X∗) is one-to-one. Since we can identify the tensor product X∗∗ c
⊗X∗ with

the tensor product X∗ c
⊗X∗∗, it follows that the natural map X∗ c

⊗X → L(X,X)
is one-to-one. Thus, if X∗ has the AP[c], then X has the AP[c] too. □

Remark 2.3. The converse, generally, is not true: It is well-known that there are
Banach spaces with the AP , whose duals do not have the AP . Hence, if X is one
of such spaces, then there exists a sequence (x′n) ⊂ X∗, tending to zero; so that
X∗ does not have the AP[c], where c = (||x′n||−1).

3. Sufficient conditions for a Banach space to have the AP[c]

We give here some examples which are interesting for our notes. To state them,
we formulate and prove the following statement.

Proposition 3.1. Let c ∈ C be a nondecreasing sequence. For a Banach space
Y, suppose that there exist a number sequence (mn), mn → +∞, and a positive
constant d such that for every natural number n, for every ε > 0, and for every
subspace E of Y with dim E ≤ mn there exists a finite rank operator R in Y so
that ||R|| ≤ dcmn and ||R|E − idE||L(E,Y ) ≤ ε.

Then Y ∈ AP[c].

Proof. Suppose that there is an element z ∈ Y ∗ c
⊗ Y such that trace z = a > 0,

but z̃ = 0. Consider a representation of z of the kind

z =
∞∑
k=1

c−1
k y′k ⊗ yk,

where
∑∞

k=1 ||y′k|| ||yk|| < +∞. Take a decreasing sequence (bn) ∈ c0 such that
0 ≤ bn ≤ 1 for all n and still

∑∞
k=1 b

−1
n ||y′k|| ||yk|| < +∞.

Fix a natural number N, large enough, such that for all m ≥ N

m∑
k=1

c−1
k ⟨y′k, yk⟩ ≥ a/2 and d bm

∞∑
k=m+1

b−1
k ||y′k|| ||yk|| ≤ a/8.
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Fix an m = mn,m > N, put E := span{yk}mk=1, and apply given conditions (C)

to find a corresponding operator R ∈ Y ∗ ⊗ Y for n = m and ε =
a/4∑m

k=1 c
−1
k ||y′k||

.

By our assumption, trace R ◦ z = 0. From this, we get

0 =
m∑
k=1

c−1
k ⟨y′k, Ryk⟩ +

∞∑
k=m+1

c−1
k ⟨y′k, Ryk⟩.

For the first sum:
m∑
k=1

c−1
k ⟨y′k, Ryk⟩ ≥

m∑
k=1

c−1
k ⟨y′k, yk⟩ −

∣∣ m∑
k=1

c−1
k ⟨y′k, yk −Ryk⟩

∣∣
≥ a/2 −

m∑
k=1

c−1
k ||y′k|| ||yk −Ryk||

≥ a/2 −
m∑
k=1

c−1
k ||y′k|| sup

1≤j≤m
||yj −Ryj||

≥ a/2 − a/4 = a/4.

For the second sum:∣∣ ∞∑
k=m+1

c−1
k ⟨y′k, Ryk⟩

∣∣ ≤ ∞∑
k=m+1

c−1
k bk b

−1
k ||y′k|| ||Ryk||

≤ c−1
m bm ||R||

∞∑
k=m+1

b−1
k ||y′k|| ||yk||

≤ d c−1
m bm cm

∞∑
k=m+1

b−1
k ||y′k|| ||yk|| =: dm,

where 0 ≤ dm ≤ a/8.
Now, from the last three relations, we obtain 0 ≥ a/4 − dm, which is a contra-

diction. □
Let us consider some consequences of Proposition 3.1.

Corollary 3.2. Let c ∈ C be a nondecreasing sequence. For a Banach space Y,
suppose that there exists a constant d > 0 such that for every natural number n
and for every n-dimensional subspace E of Y there exists a finite rank operator
R in Y so that ||R|| ≤ d cn and R|E = idE. Then Y ∈ AP[c].

Corollary 3.3. Let c ∈ C be a nondecreasing sequence. For a Banach space Y,
suppose that there exists a constant d > 0 such that for every natural number n
and for every n-dimensional subspace E of Y there exists a finite dimensional
subspace F of Y, containing E and dcn-complemented in Y. Then Y ∈ AP[c].

Corollary 3.4. Let c ∈ C be a nondecreasing sequence. For a Banach space Y,
suppose that there exists a constant d > 0 such that for every natural number n
every n-dimensional subspace E of Y is dcn-complemented in Y. Then Y ∈ AP[c].
Moreover, every subspace of the space Y has the AP[c].
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It is well-known that, for each natural number n, every n-dimensional subspace
E of any Banach space X is

√
n-complemented; that is, there exists a continuous

linear projector P from X onto E with ||P || ≤
√
n (see [7]). Taking in Corollary

3.4 c = (
√
n), we get the following.

Corollary 3.5. For any Banach space X, for every ϵ > 0 and any sequence (xn)
in X with ||xn|| ≤ 1/

√
n, there exists a finite rank operator R in X such that

||Rxn − xn|| ≤ ϵ for every n.

More generally, let X be a subspace of a quotient of an Lp-space (1 ≤ p ≤
∞). There is a constant C(p) such that if n ∈ N and E is an n-dimensional
subspace of the space X, then there exists a projector P from X onto E with
||P || ≤ C(p)n|1/2−1/p| (this follows from [17, Theorem 4.1 and its Corollaries]).
Therefore, we get the following from Corollary 3.4.

Corollary 3.6. Let 1 ≤ p ≤ ∞, p ̸= 2, and let X be a subspace of a quotient of
an Lp-space. For every ϵ > 0 and any sequence (xn) in X with ||xn|| ≤ n−|1/2−1/p|,
there exists a finite rank operator R in X such that ||Rxn − xn|| ≤ ϵ for every n.

Remark 3.7. Corollary 3.5 generalizes a theorem of A. Grothendieck about the
property AP2/3 (see [6], [20] or [22]). Moreover, Corollaries 3.5 and 3.6 are gen-
eralizations of the corresponding facts, mentioned in [24, Section 1], where the
same conclusions were made for sequences (xn) with ||xn|| = o(1/

√
n) or with

||xn|| = o(n−|1/2−1/p|), respectively. Also, we have the following generalization of
the assertion (∗ ∗ ∗)′ in that paper (where the Lorentz spaces l0q,∞(X) were con-
sidered): Given α ∈ (0, 1/2] and a Banach space X with the property that every
finite dimensional subspace F of X is contained in a finite dimensional subspace
E ⊂ X, which in turn is C (dimF )α-complemented in X, we have

(∗ ∗ ∗)′′ for every sequence (xn) ∈ lq,∞(X), where 1/q = α, for any ε > 0 there
is a finite rank operator R in X so that supn ||Rxn − xn|| ≤ ε.

Taking into account Theorem 2.1, we can reformulate this statement and
Corollaries 3.5 and 3.6 in terms of tensor products: Given α ∈ (0, 1/2] and a
Banach space X with the property that every finite dimensional subspace F
of X is contained in a finite dimensional subspace E ⊂ X, which in turn is
C (dimF )α-complemented in X, for any Banach space Y the natural mapping

Y
nα

⊗ X → L(Y ∗, X) is one-to-one. Thus, if 1 ≤ p ≤ ∞, α = |1/2 − 1/p| > 0 and
X is a subspace of a quotient of an Lp-space, then for any Y the natural mapping

Y
nα

⊗ X → L(Y ∗, X) is one-to-one. In particular, for any Banach spaces X and

Y the natural mapping Y

√
n

⊗ X → L(Y ∗, X) is one-to-one. Let us mention that
the last two statements, as well as (∗ ∗ ∗)′′, are optimal in the scale of Lorentz
sequence spaces (this follows, e.g., from Examples, given in [23]).

Example 3.8. In [18] the second author constructed, for every ε > 0, a separable
reflexive space Xε with the following properties: The space Xε does not possess
the AP. There exists a constant Cε > 0 such that if E is an n-dimensional sub-
space of Xε, then 1) d(E, l2n) ≤ Cε log1+ε n and 2) E is Cε log1+ε n-complemented
in Xε. Fix ε > 0. By Corollary 3.4, the space Xε and all of its subspaces have
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the AP[log1+ε], where log1+ε := (log1+ε(n + 1)) (but, as was said, does not have
the AP ). Note that it was used in [18] a construction of the space Xε from [26].
Therefore, this space can be taken in such a way that a “bad compact set” K ⊂ X
(in the definition of the CAP ) possesses the properties described in [26]. There-
fore, Xε does not possess the CAP. Moreover, this space is an asymptotically
Hilbertian space as follows from the construction in [18].

Example 3.9. One can find a Banach space W such that W has a Schauder
basis and W ∗ does not have the classical AP but has, for example, the AP[log2],

where log2 = (log2(n+ 1)). Indeed, let Xε be a separable reflexive Banach space
without the AP, possessing the property AP[log1+ε] from Example 3.8. Let Z be a
separable space such that Z∗∗ has a basis and there exists a linear homomorphism
φ from Z∗∗ onto X∗

ε so that the subspace φ∗(Xε) is complemented in Z∗∗∗ and,
moreover, Z∗∗∗ ∼= φ∗(Xε) ⊕ Z∗ (see Lemma 1.4). Put W := Z∗∗. This (second
dual) space W has a Schauder basis and its dual W ∗ does not have the AP, but
has the AP[log1+ε]. We can take ε = 1 to get the desired example with log2 .

These examples 3.8 and 3.9 (the space Xε) seem to be quite interesting, since,
as far as we know, this is the first example (mentioned in the literature) of an
asymptotically Hilbertian space without the CAP . Let us formulate the result
as follows.

Proposition 3.10. There exists an asymptotically Hilbertian space without the
compact approximation property. Moreover, this space can be chosen in such a
way that it has the property AP[log1+ε], but does not have the CAP.

Recall that the first example of an asymptotically Hilbertian space without the
classical AP was constructed (by O. Reinov) in 1982 [18], where A. Szankowski’s
results were used (let us note that in that time there was not yet such notion
as “asymptotically Hilbertian space”). Later, in 2000, by applying Per Enflo’s
example in a version of A. M. Davie [3], P. G. Casazza, C. L. Garćıa and W. B.
Johnson [2] gave another example of an asymptotically Hilbertian space which
fails the AP. In [23] O. Reinov got another example by using a construction from
[16].

4. Operators with [c]-nuclear adjoints

The following theorem is one of the main results of the paper, and it is an
analogue of the main result of the paper [12] (see Introduction above). Let us
mention that the condition “either X or Y ∗∗∗ has the AP[c]” is essential in the
theorem, as well as the conclusion “T is nuclear” is the best possible (see Section
6 below). Notations are as above (before Theorem 2.1).

Theorem 4.1. Let c ∈ C, z ∈ X
c
⊗ Y ∗∗, T ∈ L(X∗, Y ) be such that πY T = z̃ ∈

Nw
[c](X

∗, Y ∗∗). If either X ∈ AP[c] or Y ∗∗∗ ∈ AP[c], then T ∈ Nw(X∗, Y ). In

other words, under these conditions on the spaces involved, from the [c]-nuclearity
of the conjugate (weak∗-to-weak continuous) operator T ∗ : Y ∗ → X it follows that
the operator T belongs to the space Nw(X∗, Y ) (in particular, is nuclear).
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Proof. Suppose that there exists a weak∗-to-weak continuous operator T ∈ L(X∗, Y )
such that T /∈ Nw(X∗, Y ), but πY T ∈ Nw

[c](X
∗, Y ∗∗). Since either X or Y ∗∗ has

the AP[c] (see Theorem 2.2), N[c](Y
∗, X) = Y ∗∗ c

⊗X (= X
c
⊗ Y ∗∗). Therefore the

operator πY T can be identified with the tensor element z ∈ X
c
⊗Y ∗∗ ⊂ X⊗̂Y ∗∗; in

addition, by the choice of T, z /∈ X⊗̂Y (the space X⊗̂Y is considered as a closed
subspace of the space X⊗̂Y ∗∗). Hence there is an operator U ∈ L(Y ∗∗, X∗) =(
X⊗̂Y ∗∗)∗ with the properties that trace U ◦ z = trace (zt ◦ (U∗|X)) = 1 and

trace U ◦ πY ◦ u = 0 for each u ∈ X⊗̂Y. From the last it follows that, in particu-
lar, UπY = 0 and π∗

Y U
∗|X = 0. In fact, if x ∈ X and y ∈ Y, then

⟨UπY y, x⟩ = ⟨y, π∗
Y U

∗|Xx⟩ = trace U ◦ (x⊗ πY (y)) = 0.

Evidently, the tensor element U ◦ z ∈ X
c
⊗X∗ induces the operator UπY T, which

is identically equal to zero.

If X ∈ AP[c], then X
c
⊗X∗ = Nw

[c](X
∗, X∗) and, therefore, this tensor element

is zero what contradicts to the equality trace U ◦ z = 1.
Let now Y ∗∗∗ ∈ AP[c]. In this case

V := (U∗|X) ◦ T ∗ ◦ π∗
Y : Y ∗∗∗ → Y ∗ → X → Y ∗∗∗

uniquely determines a tensor element z0 from the [c]-projective tensor product

Y ∗∗∗∗ c
⊗Y ∗∗∗. Let us take any representation z =

∑
µn xn⊗y′′n for z as an element

of the space X
c
⊗ Y ∗∗. We have

V y′′′ = U∗|X (T ∗π∗
Y y

′′′) = U∗|X
(

(
∑

µn y
′′
n ⊗ xn) π∗

Y y
′′′
)

= U∗|X
(∑

µn ⟨y′′n, π∗
Y y

′′′⟩xn
)

=
∑

µn ⟨π∗∗
Y y

′′
n, y

′′′⟩U∗|Xxn.

So, the operator V (or the element z0) has in the space Y ∗∗∗∗ c
⊗ Y ∗∗∗ the

representation

V =
∑

µn π
∗∗
Y (y′′n) ⊗ U∗|Xxn.

Therefore,

trace z0 = trace V

=
∑

µn ⟨π∗∗
Y (y′′n), U∗|Xxn⟩

=
∑

µn ⟨y′′n, π∗
Y U

∗|Xxn⟩ =
∑

0 = 0

(since π∗
Y U

∗|X = 0; see above).
On the other hand,

V y′′′ = U∗|X (πY T )∗ y′′′ = U∗|X ◦ zt(y′′′)

= U∗|X
(∑

µn ⟨y′′n, y′′′⟩ xn
)

=
∑

µn ⟨y′′n, y′′′⟩U∗|Xxn,
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whence V =
∑
µn y

′′
n ⊗ U∗|Xxn. Therefore

trace z0 = trace V =
∑

µn ⟨y′′n, U∗|Xxn⟩ =
∑

µn ⟨Uy′′n, xn⟩ = trace U ◦ z = 1.

A contradiction. □

Corollary 4.2. Let S ∈ L(X, Y ) and S∗ ∈ N[c](Y
∗, X∗). If either X∗ ∈ AP[c]

or Y ∗∗∗ ∈ AP[c], then S ∈ N(X, Y ).

Proof. Suppose that the conditions are fulfilled. Let S∗ =
∑
µn y

′′
n ⊗ x′n be a

representation of S∗ in N[c](Y
∗, X∗) = Y ∗∗ c

⊗X∗ (the equality holds by the con-
ditions).

Consider S∗∗ as an operator T from X∗∗ to Y :

Tx′′ :=
∑

µn ⟨x′n, x′′⟩y′′n ∈ πY (Y ) ⊂ Y ∗∗,

identifying Y with πY (Y ) in a natural way. We are in conditions of Theorem 4.1.
By this theorem, T ∈ Nw(X∗∗, Y ), that is, T admits a nuclear representation
T =

∑
x̄′n ⊗ yn (with

∑
||x̄′n|| ||yn|| <∞). But T |Xx = Sx for all x ∈ X. □

Corollary 4.3. Under the conditions of Corollary 4.2, if the space Y has the
classical AP and X = Y, then the nuclear trace of S is well-defined and equal to
trace S∗, that is, to

∑
µn ⟨y′′n, x′n⟩ in notation of the proof of Corollary 4.2.

Proof. Now, we have Y ∗⊗̂Y = N(Y, Y ) and S =
∑
y′n⊗ yn (with

∑
||y′n|| ||yn|| <

∞). We can consider the tensor element
∑
y′n ⊗ yn as an element of the tensor

product Y ∗∗⊗̂Y ∗ with the same projective norm. On the other hand, the tensor
element v :=

∑
µn y

′′
n ⊗ x′n from the proof of Corollary 4.2 represents the op-

erator S∗ and this tensor element must belong to a subspace πY (Y )⊗̂Y ∗ of the
space Y ∗∗⊗̂Y ∗ (see the proof of Theorem 4.1). This means, in particular, that
⟨idY ∗ , v⟩ = ⟨idY ∗ ,

∑
y′n ⊗ πY yn⟩, that is,

∑
µn ⟨y′′n, x′n⟩ =

∑
⟨y′n, yn⟩. □

5. Examples and some applications

Example 5.1. Fix ε > 0 and consider the separable reflexive space Xε from
Example 3.8 above. Recall that this space (as well as its dual) has the property
AP[log1+ε] but does not have the AP. Apply Lemma 1.4 to get a separable Banach
space Zε with the property that Z∗∗∗

ε
∼= φ∗(X∗

ε ) ⊕ Z∗
ε (φ is the corresponding

linear homomorphism from Z∗∗
ε onto Xε with the kernel Zε). Let u ∈ X∗

ε ⊗̂Xε with
trace u = 1 and ũ = 0, and let u =

∑
x′n ⊗ xn be a representation of the tensor

element u in the projective tensor product (where
∑

||x′n|| ||xn|| < ∞). Taking
z′′n ∈ Z∗∗

ε such that φz′′n = xn and ||z′′n|| ≤ 2 ||xn|| and putting z′′′n := φ∗x′n, consider
ū :=

∑
z′′′n ⊗ z′′n, a tensor element of the projective tensor product Z∗∗∗

ε ⊗̂Z∗∗
ε . It

is clear that trace ū = 1 and ˜̄u(Z∗∗
ε ) ⊂ πZε(Zε) ⊂ Z∗∗

ε (since φ˜̄u = 0). On the
other hand, ˜̄u|πZε (Zε) = 0. It follows from this that the operator ˜̄u, considered as
an operator from Z∗∗

ε to Zε, is not nuclear, but is nuclear as an operator from
Z∗∗

ε to Z∗∗
ε .

On the other hand, if we take any operator T from Z∗∗
ε to a Banach space

Y (respectively, from a Banach space W to Zε), for which the operator πY T
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(respectively, the operator πZεT ) has a nuclear representation of the kind
∞∑
n=1

1

log1+ε(n+ 1)
z′′′n ⊗ y′′n,

where
∑

||z′′′n || ||y′′n|| <∞ (respectively, of the kind
∞∑
n=1

1

log1+ε(n+ 1)
w′

n ⊗ z′′n,

where
∑

||w′
n|| ||z′′n|| <∞), then the operator T is nuclear, that is, it has a nuclear

representation of the kind
∑∞

n=1 ẑ
′′′
n ⊗ yn (respectively,

∑∞
n=1 ŵ

′
n ⊗ zn). The last

follows from Corollary 4.2.

Example 5.2. Put X := L1/H
1
0 , and use Lemma 1.4 to define a separable

Banach space Z with the property that Z∗∗∗ ∼= φ∗(X∗) ⊕ Z∗ ∼= H∞ ⊕ Z∗. Since
the space Z∗ has a basis and H∞ possesses the property AP[log(1+n)] [1], the space
Z∗∗∗ has the property AP[log(1+n)] too. Thus, Corollary 4.2 can be applied and we
get: for any Banach space W, if U ∈ L(W,Z) and

πZUw =
∞∑
n=1

1

log (n+ 1)
⟨w′

n, w⟩z′′n, w ∈ W,

where
∑

||w′
n|| ||z′′n|| < ∞, then there exist sequences {v′n} ⊂ W ∗ and {zn} ⊂ Z

with
∑

||v′n|| ||zn|| <∞ so that

Uw =
∞∑
n=1

⟨v′n, w⟩zn, w ∈ W.

Let us mention that it is unknown whether we can omit “1/log(n+ 1)” above.

Let us consider the first application of our results to the investigation of prop-
erties of nuclear operators in the spaces of analytic functions.

Theorem 5.3. Let T ∈ L(L1/H
1
0 , Y ). If there exist sequences (gn) ⊂ H∞ and

(y′′n) ⊂ Y ∗∗ such that
∑

||gn|| ||y′′n|| <∞ and T ∗y′ =
∑

1/ log(n+ 1) ⟨y′′n, y′⟩gn for
all y′ ∈ Y ∗, then the operator T is nuclear. Moreover, if Y = L1/H

1
0 , then the

nuclear trace of T is well-defined and equals
∑

1/ log(n+ 1) ⟨y′′n, gn⟩.

Proof. As we know, the space H∞ = (L1/H
1
0 )∗ has the property AP[(log(n+1))].

Thus, the first part follows from Corollary 4.2. In the case where Y = L1/H
1
0 ,

the trace of T is well-defined since the space L1/H
1
0 has the AP. The equality

follows from Corollary 4.3. □
Proposition 5.4. Let a linear operator T : H∞ → Y be such that there are a
sequence of functions (gn) ⊂ L1 and a bounded sequence (y′′n) ⊂ Y ∗∗, for which∑

k

∫
|gk| dm <∞ and

πY T (f) =
∞∑
k=1

∫
gk(t) f(t) dm(t) y′′k .

Then the operator T is nuclear as an operator, acting from H∞ into Y.
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Proof. Let S := T |A : A→ Y. Then πY S = (πY T )|A =
∑
g0k⊗y′′k ∈ (L1/H

1
0 )⊗̂Y ∗∗,

where g0k is the image of gk under the quotient map L1 → L1/H
1
0 . If y′ ∈ Y ∗, then

S∗y′ =
∞∑
k=1

⟨y′′k , y′⟩g0k ∈ L1/H
1
0 and S∗∗|H∞ = πY T.

Since A∗ has the AP and S∗ is nuclear, the operator S is nuclear too (by
Grothendieck). Now, if S =

∑
ψn ⊗ yn is a nuclear representation of S : A→ Y,

where ψn ∈ A∗, yn ∈ Y,
∑

||ψn|| ||yn|| < ∞, then πY T =
∑
ψn|H∞ ⊗ πY yn

(we consider here the elements ψn as the functionals on A∗∗). It follows that
T =

∑
ψn|H∞ ⊗ yn ∈ N(H∞, Y ). □

Note that it is unknown whether the conclusion of the proposition is true if we
suppose just that the operator πY T is nuclear. The same can be said about the
next consequence of Proposition 5.4.

Corollary 5.5. Let a linear operator T : H∞ → A be such that there are two
sequences of functions (gn) ⊂ L1 and (fn) ⊂ H∞, for which

∑
k

∫
|gk dm < ∞,

∥fn∥ ≤ 1 for each n and

T (f) =
∞∑
k=1

∫
gk(t) f(t) dm(t) fk.

Then the operator T is nuclear as an operator, acting from H∞ into the disk-
algebra A.

Proof. As we know, the space H∞ is a complemented subspace of the second dual
A∗∗. Therefore the result follows directly from Proposition 5.4. □

6. Generalizations and further applications

Recall that we denote by C the set C := {(cn) : cn ∈ R+, cn → +∞}.
Let us consider a fixed subset C0 of this set (for example, we can take the set

{(cn) : cn ∈ R+, (c−1
n ) ∈ l2}).

Definition 6.1. A Banach space X has the property APC0 if it has the property
AP[c] for every c ∈ C0.

Remark 6.2. Let us denote by X
C0
⊗ Y the union

∪
c∈C0 X

c
⊗ Y. It is easy to see

that Theorem 2.1 is valid also for this kind of tensor products, that is, Theorem

2.1 holds if we replace AP[c] by APC0 and
c
⊗ by

C0
⊗. We omit a formulation of this

generalized Theorem 2.1.

Example 6.3. Let 0 < p <∞ and C0 = l−1
p := {c = (cn) : cn ∈ R+, (c−1

n ) ∈ lp}.
By the main definition 1.1, a space X has the APl−1

p
if for any c ∈ l−1

p , for every

ϵ > 0 and any sequence (xn) in X with ||xn|| ≤ c−1
n there exists a finite rank

operator R in X such that ||Rxn − xn|| ≤ ϵ for every n. Or: X has this property
if and only if for every ϵ > 0 and any sequence (xn) in X with

∑
||xn||p < ∞

there exists a finite rank operator R in X such that ||Rxn − xn|| ≤ ϵ for every n.
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We can see that this property APl−1
p

is exactly the property ÃP s = APs from [24,

Sections 1-2] (see also [22], [23]), if we take s from the equality 1/s = 1 + 1/q.

Definition 6.4. An operator T ∈ L(X,Y ) is said to be C0-nuclear, if there is a
sequence c ∈ C0 such that T ∈ N[c](X, Y ).

It is easy to see that Theorem 4.1 can be formulated and proved for the general
case of C0-nuclear operators. But we consider here only an evident generalization
of Corollary 4.2:

Theorem 6.5. Let S ∈ L(X,Y ), and let S∗ be C0-nuclear. If either X∗ has the
property APC0 or Y ∗∗∗ has the property APC0 , then S ∈ N(X, Y ).

Example 6.6. Let p ∈ (0,∞], r ∈ (0,∞], and consider a tensor product ⊗̂1;p,r

from [24, Section 3]. It is defined in the following way: For a couple of Banach
spaces X, Y the tensor product Y ⊗̂1;p,rX consists of those elements z of the
projective tensor product Y ⊗̂X which admit representations of the type

z =
∞∑
k=1

akbk yk ⊗ xk; (yk) and (xk) are bounded, (ak) ∈ l1, (bk) ∈ lpr

(recall that in [24] and here one considers l0p∞ in the case r = ∞). If we put C0 :=

l−1
pr := {c = (cn) : cn ∈ R+, (c−1

n ) ∈ lpr}, then it is clear that Y ⊗̂1;p,rX = Y
l−1
pr

⊗ X
and the property APl−1

pr
is just the property AP1;p,r from [24].

Also, let 0 < s < 1 and 0 < u ≤ ∞, or s = 1 and 0 < u ≤ 1. If 1 + 1/p = 1/s
and 1 + 1/r = 1/u, then AP1;p,r = AP(s,u) and Y ⊗̂1;p,rX = Y ⊗̂(s,u)X, where the
last tensor product is the “Lorentz tensor product”, consisting of those tensor
elements from Y ⊗̂X which admit the representations of type

∞∑
k=1

λk yk ⊗ xk, where (yk) and (xk) are bounded and (λk) ∈ lsu

(see [24, Section 3]). Thus the analogues of Theorems 2.1 and 6.5 are valid for
the cases of these tensor products and corresponding approximation properties
(cf. Remark 6.2). As for the case where 0 < p < ∞ and C0 = l−1

p∞, we have

Y
C0

⊗ X = Y
(n1/p)

⊗ X and APC0 = AP[(n1/p)] (evidently,
c−1
0

⊗ = ⊗̂ and APc−1
0

= AP ).

Recall that every Banach space has the AP[(
√
n)] (see Corollary 3.5).

Note that a partial case of Theorem 6.5 (namely, the case considered in Example
6.3) was studied already in [23]. In this case, the corresponding operators are
called s-nuclear (recall that 1/s = 1 + 1/p). Let us apply Theorem 6.5 to the
particular case of the given spaces of analytic functions.

Theorem 6.7. Let 0 < s < 1 and W be any of the following Banach spaces:
A,L1/H

1
0 or H∞. Let Z be either the space W or any of its duals (W ∗ or W ∗∗

etc.). If Y is a Banach space, T ∈ L(Z, Y ), U ∈ L(Y,A), T ∗ and U∗ are s-
nuclear, then T ∈ N(Z, Y ) and U ∈ N(Y,A).
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Proof. As was shown in [1, Theorem 1], the space H∞ and all of its duals have
the property APs for any s ∈ (0, 1). Therefore, the same is true for the spaces
A and L1/H

1
0 . Now, the assertion of Theorem 6.7 follows from the considered

partial case of Theorem 6.5. □
Remark 6.8. In the case where s = 1, the assertion of Theorem 6.7 is known to
be valid only if Z = A and T ∗ ∈ N(Y ∗, A∗) (cf. the proof of Theorem 5.3).

We end the paper with a direct application of Theorem 4.1 to some nuclear
bilinear forms on the products of type H∞ × Y :

Theorem 6.9. Let log := (log(n + 1)), and let T ∈ L((H∞)∗, X) be such that

T ∗(X∗) ⊂ H∞. If there is a tensor element z ∈ X∗∗
log
⊗ H∞ which generates the

operator T ∗, then T is a nuclear operator from (H∞)∗ to X that can be generated
by a tensor element belonging to the projective tensor product H∞⊗̂X.

Acknowledgments. The authors would like to thank the referee for careful
reading of the paper and for helpful remarks.
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Acad. Sc. Paris. – Serie I 305 (1987), 121–122.

14. E. Oja and O. Reinov, A counterexample to A. Grothendieck, Proc. Acad. Est. SSR, Phys.-
Math. 37 (1988), 14–17 (in Russian), Estonian and English summaries.



SOME APPROXIMATION PROPERTIES AND NUCLEAR OPERATORS 283
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