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Abstract. We consider exponential dichotomies on finite intervals and show
that if the constants in the notion of an exponential dichotomy are chosen
appropriately and uniformly on those intervals, then there exists an exponential
dichotomy on the whole line. We consider the general case of a nonautonomous
dynamics that need not be invertible. Moreover, we consider both cases of
discrete and continuous time.

1. Introduction

The notion of an exponential dichotomy or of an exponential splitting, together
with its various extensions and generalizations, plays a central role in a large
part of the stability and hyperbolicity theories of differential equations and dy-
namical systems. Essentially going back to Perron in [19], it is central in the
study of stable and unstable invariant manifolds, of topological and smooth con-
jugacies to the linear part of the dynamics, of normal forms under appropriate
resonance conditions, and of closing and shadowing properties, among many other
developments. We refer the reader to the books [6, 7, 10, 11, 14, 25] for details
and further references. A far reaching generalization of the hyperbolicity theory
is the nonuniform hyperbolicity theory, which goes back to landmark works of
Oseledets [16] and particularly Pesin [20, 21, 22]. For example, almost all trajec-
tories of a dynamical system preserving a finite invariant measure with nonzero
Lyapunov exponents are nonuniformly hyperbolic. The theory is an important
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part of the general theory of dynamical systems and a principal tool in the study
of stochastic behavior, particularly in the context of smooth ergodic theory.

An important property of the notion of an exponential dichotomy is that it
persists under sufficiently small linear perturbations, which naturally contributes
to the abundance of the hyperbolic behavior. This is usually called the robustness
or roughness property. The study of robustness has a long history. In particular, it
was discussed by Massera and Schäffer [13] (building on earlier work of Perron [19];
see also [14]), Coppel [5] and Dalec’kĭı and Krĕın [7]. For more recent works
we refer the reader to [4, 15, 23, 24] and the references therein. In a different
direction, and as an example, we note that for a geodesic flow on a compact
smooth Riemannian manifolds with strictly negative sectional curvature, the unit
tangent bundle is a hyperbolic set (this essentially corresponds to the existence of
an exponential splitting at all points). Furthermore, time changes and small C1

perturbations of flows with a hyperbolic set also have a hyperbolic set. This last
result is a natural version of the robustness property of an exponential dichotomy.

Here, in strong contrast with the usual stable and unstable exponential rates
that are present in the notion of an exponential dichotomy, we allow asymptotic
rates of the form ecρ(t) determined by an arbitrary function ρ. The usual expo-
nential behavior corresponds to take ρ(t) = t. This includes situations in which
the Lyapunov exponents are all zero or are all infinite and to which one cannot
apply, certainly without modifications, the existing hyperbolicity and stability
theories. Incidentally, in [1] we showed that for a large class of rate functions ρ
there exist many linear equations x′ = A(t)x exhibiting an asymptotic behavior
that can be expressed in terms of the more general exponentials ecρ(t). One can
also consider the case of discrete time and the same observations apply without
change.

In this work we consider exponential dichotomies on finite intervals. Certainly,
without other requirements, the notion is trivially satisfied in this case. However,
as first observed by Palmer in [18] (building on his related approach in [17]), if
the constants in the notion of an exponential dichotomy are chosen appropriately
and uniformly on intervals of sufficiently large length, then the existence of expo-
nential dichotomies on these intervals allows one to deduce that there exists an
exponential dichotomy on the whole line. More precisely, [18] considers the case
of a nonautonomous dynamics defined by a sequence of invertible matrices. In [8],
Ducrot, Magal, and Seydi extended Palmer’s work to exponential trichotomies
(which corresponds to consider stable, unstable, and central directions), again for
discrete time, but without assuming that the dynamics is invertible, which causes
several complications in the proof.

Our main aim is to obtain a version of Palmer’s result in [18] for exponential
dichotomies with arbitrary growth rates. As in [8], we also consider the general
case of a nonautonomous dynamics that need not be invertible. In addition we
consider both cases of discrete and continuous time. In order to formulate our
main result, we first introduce the notion of a ρ-exponential dichotomy. Let
(Am)m∈Z be a sequence of bounded linear operators acting on a Banach space X.
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For each m,n ∈ Z with m ≥ n, let

A(m,n) =

{
Am−1 · · ·An if m > n,

Id if m = n.

Given an increasing function ρ : Z → Z with ρ(0) = 0 and an interval I ⊂ Z
(that is, the intersection of Z with some interval in R), we say that the sequence
(Am)m∈Z has a ρ-exponential dichotomy on I if:

(1) there exist projections Pm for m ∈ I satisfying

PmA(m,n) = A(m,n)Pn, for m ≥ n,

such that, writing Qn = Id− Pn, the map

A(m,n)| imQn : imQn → imQm (1.1)

is onto and injective;
(2) there exist c, κ > 0 such that, for all m,n ∈ I with m ≥ n, we have

∥A(m,n)Pn∥ ≤ κe−c(ρ(m)−ρ(n))

and

∥A(n,m)Qm∥ ≤ κe−c(ρ(m)−ρ(n)),

where A(n,m) denotes the inverse of the map in (1.1).

The vector spaces imPn and imQn are then called, respectively, stable and un-
stable spaces at time n. For example, when ρ(n) = n we recover the classical
notion of an exponential dichotomy. By considering other functions ρ one can
consider other types of asymptotic behavior.

The following theorem is our main result. Given τ ∈ N, we say that an in-
creasing sequence (αi)i∈Z in Z is τ -dense if αi+1 ≤ αi+ τ for every i ∈ Z (in other
words, each interval of length τ contains at least one element of the sequence).

Theorem 1.1. Let (Am)m∈Z be a sequence of bounded linear operators such that

K := sup
m∈Z

(
∥Am∥ec(ρ(m+1)−ρ(m))

)
< +∞, (1.2)

for some c > 0, and let (αi)i∈Z be a τ -dense sequence. Given c > c > 0, there
exist ℓ = ℓ(τ, c, c, κ,K) and κ = κ(κ,K) such that if (Am)m∈Z has a ρ-exponential
dichotomy on [αi, αi + ℓ] for each i ∈ Z with constants c and κ, then it has a ρ-
exponential dichotomy on Z with constants c and κ.

See Section 2 for the proof of Theorem 1.1. The method of proof follows the
strategy devised by Palmer in [17, 18] and also used in [8]. Namely, there are two
main elements:

(1) In a first step we show that if there are exponential dichotomies in suf-
ficiently large intervals intersecting only at their endpoints, and the pro-
jections of two intervals at the intersection endpoint are sufficiently close,
then there is an exponential dichotomy on the whole line. An important
element of this part of the proof is the use of the robustness property of
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an exponential dichotomy to deduce that the original dynamics has an ex-
ponential dichotomy by showing that this happens for a sufficiently close
related dynamics.

(2) In a second step we show that if the original finite intervals in which we
assume that there are exponential dichotomies have a sufficiently large
intersection, then the projections associated with any two intersecting in-
tervals are uniformly close. This is assured by assuming that the original
intervals are sufficiently close, while the closeness of the projections al-
lows one to apply the first step to the original intervals (and not only to
those that intersected at the endpoints; recall that in the first step the
projections are assumed to be sufficiently close).

The corresponding result for continuous time (see Theorem 3.1) is obtained by
reducing the statement to the case of discrete time and then applying a result of
Henry in [12] that shows the existence of an exponential dichotomy on the whole
line for continuous time if it exists for the discretization of the dynamics (under
some appropriate growth assumptions).

2. Proof of Theorem 1.1

We first consider the case when there exists q ∈ N such that the sequence
(Am)m∈Z has a ρ-exponential dichotomy on [(i − 1)q, iq] for each i ∈ Z, with
constants c and κ (independent of i). Later on the general case will be reduced
to this one. Thus, we assume that

(1) there exist projections P i
n for i ∈ Z and n ∈ [(i− 1)q, iq] and satisfying

P i
mA(m,n) = A(m,n)P i

n for m ≥ n

such that, writing Qi
n = Id− P i

n, the map

A(m,n)| imQi
n : imQi

n → imQi
m (2.1)

is onto and injective;
(2) there exist c, κ > 0 such that for all i ∈ Z and m,n ∈ [(i − 1)q, iq] with

m ≥ n we have

∥A(m,n)P i
n∥ ≤ κe−c(ρ(m)−ρ(n)) (2.2)

and

∥A(n,m)Qi
m∥ ≤ κe−c(ρ(m)−ρ(n)), (2.3)

where A(n,m) denotes the inverse of the map in (2.1).

Note that

∥P i
n∥ ≤ κ and ∥Qi

n∥ ≤ κ (2.4)

for all i ∈ Z and n ∈ [(i− 1)q, iq].
We also recall a result from [9] (see their Lemma 3.1 and Claim 3.3).

Lemma 2.1. Let F, F : X → X be bounded linear operators such that

∥F − F∥ ≤ δ <
√
2− 1.
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Then F is invertible from imF onto imF and

∥(F | imF )−1x∥ ≤ 1

1− δ
∥x∥ for x ∈ imF.

Now we establish some auxiliary results. We first show that if the projections
P i
iq and P i+1

iq are sufficiently close uniformly on i, then the sequence (Am)m∈Z has
a ρ-exponential dichotomy.

Lemma 2.2. If there exists δ ∈ (0,
√
2− 1) such that

∥P i
iq − P i+1

iq ∥ ≤ δ, (2.5)

for all i ∈ Z, then (Am)m∈Z has a ρ-exponential dichotomy on Z with constants c
and κ.

Proof. We define projections P n and Qn = Id− P n for each n ∈ Z by

P n = P i
n, Qn = Qi

n, for i ∈ Z, n ∈ [(i− 1)q, iq). (2.6)

Note that

P iq = P i+1
iq , Qiq = Qi+1

iq for i ∈ Z. (2.7)

We also define linear operators An for each n ∈ Z

An =

{
An if n ∈ [(i− 1)q, iq − 1),

P i+1
iq Aiq−1P

i
iq−1 +Qi+1

iq Aiq−1Q
i
iq−1 if n = iq − 1.

(2.8)

We first show that (Am)m∈Z has a ρ-exponential dichotomy with projections Pm.
Then we show that the two sequences (Am)m∈Z and (Am)m∈Z are sufficiently
close on m, which by the robustness property of the notion of a ρ-exponential
dichotomy implies that the sequence (Am)m∈Z also has a ρ-exponential dichotomy.

Step 1. Invariance and invertibility along subspaces. We need to show that

P n+1An = AnP n (2.9)

for all n ∈ Z. It follows readily from (2.6) and (2.8) that identity (2.9) holds for
all n ∈ Z such that n ∈ [(i − 1)q, iq − 1) for some i ∈ Z. Now take n = iq − 1.
By (2.7) and (2.8) we obtain

P n+1An = P iqAiq−1 = P i+1
iq (P i+1

iq Aiq−1P
i
iq−1 +Qi+1

iq Aiq−1Q
i
iq−1)

= P i+1
iq Aiq−1P

i
iq−1

= (P i+1
iq Aiq−1P

i
iq−1 +Qi+1

iq Aiq−1Q
i
iq−1)P

i
iq−1

= Aiq−1P
i
iq−1

and so identity (2.9) also holds in this case.
Now we show that for each n ∈ Z the linear operator

AnQn : imQn → imQn+1 (2.10)

is onto and injective. Since

AnQn = AnQ
i
n and Qn+1 = Qi

n+1,
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for all n ∈ [(i − 1)q, iq − 1), it follows that the operator in (2.10) is onto and
injective for these values of n. Now take n = iq − 1. By (2.8) we have

Aiq−1Qiq−1 = Qi+1
iq Aiq−1Q

i
iq−1 = Qi+1

iq Aiq−1.

Since (Am)m∈Z has a ρ-exponential dichotomy, the linear operator Aiq−1 is invert-
ible from imQiq−1 = imQi

iq−1 onto imQi
iq and since

∥Qi
iq −Qi+1

iq ∥ ≤ δ

(see (2.5)), it follows from Lemma 2.1 that the map

Qi+1
iq : imQi

iq → imQi+1
iq (2.11)

is onto and injective. This implies that the linear operator

Aiq−1Qiq−1 : imQiq−1 = imQiq−1 → imQ
i+1

iq−1 = imQi+1
iq−1

is onto and injective. Moreover,(
Aiq−1Qiq−1

)−1
=

(
Qi+1

iq Aiq−1Q
i
iq−1

)−1
=

(
Aiq−1Q

i
iq−1

)−1(
Qi+1

iq

)−1
,

for i ∈ Z, where
(
Qi+1

iq

)−1
denotes the inverse of the map in (2.11). This shows

that the linear operator in (2.10) is onto and injective for all n ∈ Z. Finally, it
follows from (2.3) and (2.5) together with Lemma 2.1 that

∥
(
Aiq−1Qiq−1

)−1
x∥ ≤ κec(ρ(iq−1)−ρ(iq))

1− δ
∥x∥ (2.12)

for x ∈ imQ
i+1

iq−1. This inequality will be used later one in the proof of the lemma.

Step 2. Existence of contraction and expansion. Finally, we show that the se-
quence (Am)m∈Z exhibits contraction and expansion.

Before proceeding, we show that, for each i ∈ Z, the linear operators Aiq−1 and
Aiq−1 are sufficiently close. Note first that

∥Aiq−1 − Aiq−1∥
=

∥∥P i
iqAiq−1 +Qi

iqAiq−1 − P i+1
iq−1Aiq−1 −Qiq+1

iq Aiq−1

∥∥
=

∥∥P i
iqAiq−1P

i
iq−1 − P i+1

iq Aiq−1P
i
iq−1 +Qi

iqAiq−1Q
i
iq−1 −Qi+1

iq Aiq−1Q
i
iq−1

∥∥
≤

∥∥(P i
iq − P i+1

iq )Aiq−1P
i
iq−1

∥∥+
∥∥(Qi

iq −Qi+1
iq )Aiq−1Q

i
iq−1

∥∥.
It follows from (1.2) and (2.4) that

∥Aiq−1 − Aiq−1∥ ≤ 2Kκδe−c(ρ(iq)−ρ(iq−1)), (2.13)

and so

∥Aiq−1∥ ≤ ∥Aiq−1 − Aiq−1∥+ ∥Aiq−1∥
≤ K(2κδ + 1)e−c(ρ(iq)−ρ(iq−1)).

(2.14)

To obtain the exponential estimates we first consider integers on a single in-
terval [(i − 1)q, iq). Namely, take i ∈ Z and m,n ∈ [(i − 1)q, iq) with m ≥ n.
Then

A(m,n)P n = A(m,n)P i
n and A(n,m)Qm = A(n,m)Qi

m.
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It follows from (2.2) and (2.3) that

∥A(m,n)P n∥ ≤ κe−c(ρ(m)−ρ(n))

and

∥A(n,m)Qm∥ ≤ κe−c(ρ(m)−ρ(n)).

Now take i ∈ Z, n ∈ [(i− 1)q, iq] and m = iq. Then

A(iq, n)P n = P iq = P i+1
iq , A(n, iq)Qn = Qiq = Qi+1

iq ,

for n = iq, and

A(iq, n)P n = Aiq−1A(iq − 1, n)P i
n,

A(n, iq)Qiq = A(n, iq − 1)Qi
iq−1

(
Aiq−1Qiq−1

)−1

for n < iq. Hence, it follows from the first case together with (2.14) that

∥A(m,n)P n∥ ≤ K(2κδ + 1)κe−c(ρ(iq)−ρ(iq−1))e−c(ρ(iq−1)−ρ(n))

= K(2κδ + 1)κe−c(ρ(iq)−ρ(n))

and it follows from the first case and (2.12) that

∥A(n,m)Qm∥ ≤ κ2

1− δ
e−c(ρ(iq)−ρ(n)).

Combining the inequalities, we find that, for all i ∈ Z and m,n ∈ [(i − 1)q, iq]
with m ≥ n, we have

∥A(m,n)P n∥ ≤ κe−c(ρ(m)−ρ(n)) (2.15)

and

∥A(n,m)Qm∥ ≤ κe−c(ρ(m)−ρ(n)), (2.16)

where

κ = max
{
1, κ,K(2κδ + 1), κ2/(1− δ)

}
. (2.17)

One can take any fixed δ <
√
2− 1, which ensures that κ = κ(κ,K).

It remains to consider arbitrary integers m ≥ n (that are not necessarily in the
same interval [(i−1)q, iq]). Take m,n ∈ Z with m ≥ n. Then there exist integers
j ≤ i such that

n ∈ [(j − 1)q, jq] and m ∈ [(i− 1)q, iq].

When j = i we have the bounds in (2.15) and (2.16). Now assume that j ≤ i−1.
Then

∥A(m,n)P n∥ = ∥A(m, (i− 1)q)P (i−1)qA((i− 1)q, jq)P jqA(jq, n)P n∥
≤ κe−c(ρ(m)−ρ((i−1)q))κi−1−je−c(ρ(jq)−ρ((i−1)q))κe−c(ρ(jq)−ρ(n))

≤ κ2κi−1−je−c(ρ(m)−ρ(n))

≤ κ2(e−cκ1/q)ρ(m)−ρ(n)

≤ κ2e−(c− 1
q
log κ)(ρ(m)−ρ(n))



222 L. BARREIRA, C. VALLS

since (i− 1)q ≤ m ≤ ρ(m) and −jq ≤ −n ≤ −ρ(n) (because ρ is increasing) and
κ ≥ 1 (see (2.17)). One can show in a similar manner that

∥A(n,m)Qm∥ ≤ κ2(e−cκ1/q)ρ(m)−ρ(n) ≤ κ2e−(c− 1
q
log κ)(ρ(m)−ρ(n)).

Step 3. Conclusion. Taking q > 1
c
log κ sufficiently large, so that

c− 1

q
log κ > c,

we find that (Am)m∈Z has a ρ-exponential dichotomy with constants κ2 and c.
On the other hand, it follows readily from (2.8) and (2.13) that

sup
n∈Z

(
∥An − An∥ec(ρ(n+1)−ρ(n))

)
= sup

i∈Z

(
∥Aiq−1 − Aiq−1∥ec(ρ(iq)−ρ(iq−1))

)
≤ 2Kκδ.

Hence, by the robustness property of the notion of a ρ-exponential dichotomy
(see [2, 3] for details) that for δ sufficiently small the sequence (Am)m∈Z also
has a ρ-exponential dichotomy with constant arbitrarily close to κ2 and c. This
concludes the proof of the lemma. □

Now take a, b, r ∈ Z such that b− a ≥ 2r > 0.

Lemma 2.3. Assume that the sequence (Am)m∈Z has two ρ-exponential dichotomies
on [a, b] with constants c, κ and projections, respectively, (Pm)m∈Z and (Pm)m∈Z.
Then

sup
n∈[a+r,b−r]

∥Pn − P n∥ ≤ 2κ3e−2cr.

Proof. For each m > n, let Au(n,m) be the inverse of the operator

A(m,n)| imQn : imQn → imQn.

Now take n ∈ [a+ r, b− r] and x ∈ imQn. We have

x = Qnx = A(n, n− r)Au(n− r, n)x,

and so
P nx = A(n, n− r)P n−rA

u(n− r, n)x.

Therefore,

∥P nx∥ ≤ κ2e−2c(ρ(n)−ρ(n−r))∥x∥ for x ∈ imQn.

One can show in a similar manner that

∥Pnx∥ ≤ κ2e−2c(ρ(n)−ρ(n−r))∥x∥ for x ∈ imQn. (2.18)

Now take x ∈ imP n. Then

Qnx = Au(n, n+ r)A(n+ r, n)x = Au(n, n+ r)A(n+ r, n)P nx,

and so
∥Qnx∥ ≤ κ2e−2c(ρ(n)−ρ(n−r))∥x∥ for x ∈ imP n. (2.19)

Again, one can show in a similar manner that

∥Qnx∥ ≤ κ2e−2c(ρ(n)−ρ(n−r))∥x∥ for x ∈ imQn.
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Moreover, we have

∥P n − Pn∥ = ∥(Id− Pn)P n − Pn(Id− P n)∥
= ∥QnP n − PnQn∥
≤ ∥QnP n∥+ ∥PnQn∥,

and it follows from (2.18) and (2.19) that

∥P n − Pn∥ ≤ κ2e−2c(ρ(n)−ρ(n−r))
(
∥P n∥+ ∥Qn∥

)
≤ 2κ3e−2c(ρ(n)−ρ(n−r)) ≤ e−2cr,

where we have used that ρ(l)− ρ(j) ≥ l − j whenever l ≥ n. This completes the
proof of the lemma. □

We proceed with the proof of the theorem. Let ℓ = 6q > 3τ be an integer
multiple of 6 with q even (note that if necessary one can take ℓ larger in the
statement of the theorem). Then, for each n ∈ Z, the interval [n−2q, n] contains
at least one number αj and

[n+ q, n+ 2q] ⊂ [n, n+ 3q] ⊂ [αj, αj + 6q].

In particular, taking n = iq with i ∈ Z, we obtain

Ji := [(i+ 1)q, (i+ 2)q] ⊂ Ii := [iq, (i+ 3)q] ⊂ [αj, αj + 6q].

Since the sequence (Am)m∈Z has a ρ-exponential dichotomy on each interval
[αj, αj + 6q], it has also a ρ-exponential dichotomy on each interval Ji, which
as we have seen can be extended to the whole interval Ii. Therefore, one can
readily apply Lemma 2.2 on [a, b] = Ji provided that the integer r = q/2 in
Lemma 2.3 can be taken sufficiently large, so that

2κ3e−2cr = 2κ2e−cq < δ <
√
2− 1

with δ at least as small as in Step 3 of the proof of Lemma 2.2. But this is always
possible by taking q sufficiently large.

3. The case of continuous time

In this section we obtain a corresponding version of Theorem 1.1 for a dynamics
with continuous time. Let A : R → B(X) be a continuous function, where B(X)
is the set of all bounded linear operators acting on a Banach space X. Consider
the linear equation

x′ = A(t)x, (3.1)

and let T (t, s) be the linear evolution operator associated with equation (3.1).
Given an increasing function ρ : R → R with ρ(0) = 0 and an interval I ⊂ R, we
say that equation (3.1) has a ρ-exponential dichotomy on I if:

(1) there exist projections P (t), for t ∈ I, satisfying

P (t)T (t, s) = T (t, s)P (s) for t ≥ s

such that, writing Q(t) = Id− P (t), the map

T (t, s)| imQ(s) : imQ(s) → imQ(t) (3.2)
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is onto and injective;
(2) there exist c, κ > 0 such that, for all t, s ∈ I with t ≥ s, we have

∥T (t, s)P (s)∥ ≤ κe−c(ρ(t)−ρ(s))

and

∥T (s, t)Q(t)∥ ≤ κe−c(ρ(t)−ρ(s)),

where T (s, t) denotes the inverse of the map in (3.2).

The vector spaces imP (s) and imQ(s) are then called, respectively, stable and
unstable spaces at time s.

The following result is a version of Theorem 1.1 for continuous time.

Theorem 3.1. Let A : R → B(X) be a continuous function such that

K ′ := sup
t,s∈R,t≥s

(
∥T (t, s)∥ec(ρ(t)−ρ(s))

)
< +∞,

for some c > 0, and let (αi)i∈Z be a τ -dense sequence. Given c > c > 0, there
exist ℓ = ℓ(τ, c, c, κ,K ′) and κ = κ(κ,K ′) such that if equation (3.1) has a ρ-
exponential dichotomy on [αi, αi + ℓ] for each i ∈ Z with constants c and κ, then
it has a ρ-exponential dichotomy on R with constants c and κ.

Proof. Let

Am = T (m+ 1,m) for m ∈ Z.
It follows from the assumptions in the theorem that (Am)m∈Z is a sequence of
bounded linear operators satisfying (1.2) having a ρ-exponential dichotomy on
[αi, αi+ℓ] for i ∈ Z with constants c and κ. By Theorem 1.1, given c > c > 0, there
exist ℓ = ℓ(τ, c, c, κ,K ′) and κ = κ(κ,K ′) such that (Am)m∈Z has a ρ-exponential
dichotomy on Z with constants c and κ. Finally, applying Theorem 1.3 in [12]
(which allows one to pass from discrete time to continuous time), we conclude
that equation (3.1) has a ρ-exponential dichotomy on the whole R. □
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