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ABSTRACT. Several numerical radius inequalities for operator matrices are
proved by generalizing earlier inequalities. In particular, the following inequal-
ities are obtained: if n is even,

n—1
1 N _
20(T) < max{||Asl, |42, ... 1 4all} + 5 Do Ak AL
k=0
and if n is odd,
» 1n—1
2u(T) < max{l Al el [ A By, )+ 1Al AR,
k=0

for all t € [0, 1], A;’s are bounded linear operators on the Hilbert space H, and
T is off diagonal matrix with entries Ay, -, A,.

1. INTRODUCTION

1.1. Background and motivation. Let £(#) be the C*-algebra of all bounded
linear operators on a complex Hilbert space H with an inner product (.,.). The
numerical range of T € L(H), denoted by W (T'), is the subset of complex numbers
given by

W(T)={(Tx,z) : x € H,|z| = 1}.
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The numerical radius of T, denoted by w(T'), is defined by w(T') = sup{|z| : z €
W(T)}. Thus W(T) is the image of unit circle in H under the quadratic form
f(x) = (T'z,z) from H to C, and w(T) is the smallest radius of a circular disc
centered at the origin which contains W (7). It is well-known that w(.) defines

a norm on H, which is equivalent to the usual operator norm ||7'|| = sup ||7Tz||.
llz[|=1

For every T' € L(H), we have
1
SITN = w(T) < |7 (1.1)

Several numerical radius inequalities that provide alternative lower and upper
bounds for w(.) have attracted great research interest in recent years. The inter-
ested readers are referred to [3, 5] for the history and significance of numerical
radius inequalities. The authors of [9] showed that if T" is an operator in L(H),
then

1 1
w(T) < 5 (ITI+17°)2). (1.2)
Consequently, if 72 = 0, then
1
w(T) = 3|7 (1.3)

Let T'= U|T| be the polar decomposition of T'. Here U is a partial isometry and
IT| = (T*T)2. The Aluthge transform of the operator T', denoted by T, is defined
as T = |T|2U|T |%. Okubo [11] introduced a more general notion called ¢-Aluthge
transform. 1t is denoted by T}, and is defined as T, = |T['U|T|* "t for 0 < ¢ < 1. Tt
coincides with the usual Aluthge transform for ¢ = % When t = 1, the operator
T, = |T|U is called the Duggal transform of T € L(H). Bakherad and Shebrawi
[2] introduced generalized Aluthge transform of the operator T', denoted by T, g

It is defined by T g = f(IT))Ug(|T|), where f,g are non-negative continuous
functions such that f(x)g(xz) = = (x > 0) and T" € L(H). Several refinements
and generalizations of the inequality (1.2) are discussed in [1, 7, 14]. A nice
refinement of the inequality (1.2) is recently obtained in [15]. It says that, for an
operator T in L(H) and 0 < ¢ < 1,

w(T) < 3 (7] +w(T). (1.4)

An important property of the numerical radius norm is its weak unitary invari-
ance; that is, for T € L(H),
w(UTU) = w(T).

for every unitary U € L(H). Let r(.) denote the spectral radius. It is well-known
that, for every operator T in L£(H), we have

r(T) <w(T) < |7, (1.5)

and the equality holds if T" is normal. The above result basically focuses on the
relation among the numerical radius, the spectral radius, and the norm of an
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operator. Hirzallah et al. [7] studied numerical radius inequality for certain 2 x 2
operator matrices. They showed that if A, B € L(H), then

w (Lg ﬂ) < ”A”;HB”. (1.6)

Shebrawi [13] then proved several numerical radius inequalities for 2 x 2 operator
matrices, very recently. In particular, he obtained the following inequality: if A
and B are operators in L(H), then

0 A 1 t) ok 1—t £ g1t
20 (|5 o)) < max(Al IBI) + 5 (laris = + fiBrIaT=]) @)

for all t € [0,1]. The basic objective of this article is to find numerical radius
inequalities for n X n operator matrices.

1.2. Outline. The organization of this paper is as follows. In the next sub-
section, we present some preliminary results which are helpful to prove our main
results. Section 2 is devoted to the main results. Here we establish certain general
numerical radius inequalities for n X n operator matrices by applying t-Aluthge
transform and generalized Aluthge transform of operators. We also obtain upper
bounds for the numerical radius of n x n operator matrices.

1.3. Primary results. Here we collect all those results which will be used to
prove the main results in the next section. Yamazaki [15] first proved that w(A4) =
sup || Re(e® A)|| for A € L(H). It was recently restated by Shebrawi [13] in the
H<R

following way.

Lemma 1.1. [13, Lemma 2.2]
Let A€ L(H). Then

_ i0
w(A) = max || Re(e” A)|
The next theorem extends the inequality given in (1.4).

Theorem 1.2. [2, Theorem 2.3]
Let A € L(H), and let f,g be non-negative continuous functions on [0,00) such
that f(x)g(xz) =x (x > 0). Then

1 1 ~
h(w(A)) < Z1A(g*(1AD) + A (AN + 55 (w(Agy)) (1.8)
for all non-negative nondecreasing convex function h on [0, 00).
Another generalization of the inequality (1.4) is recalled below.

Theorem 1.3. [2, Theorem 2.10]
Let A € L(H), and let f,g, and h be non-negative nondecreasing continuous
functions on [0,00) such that f(z)g(x) =z (x > 0). Then

w() < 5 (b)) + 1A

The final result of this section is an extension of the inequality (1.6).
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Theorem 1.4. [10, Theorem 2.2]

{0 o0 Al-l
Let A; € L(H), i =1,2,...,n, and let T = . A 0 . If n is even,
a0 o0
then
w(T) < 33 14|

On the other hand, if n is an odd number,

1 n
wT) < w(4sp ) +3 3 A,

i=1

. 1
7t

Next result deals with inequalities on block-norm matrix A. For H = D Hi
and A € L(H), the operator A can be represented as an n X n operator matrix;
that is, A = (A;;)nxn With A; € L(#H;,H;). The block-norm matrix A associated
with an operator matrix A = (A;j)nxn is defined by A = (|| Ai||)nxn, Which is an
n X n non-negative matrix. The following lemma presents some basic inequalities
on numerical radii, norms as well as spectral radii of an operator matrix A and
its block-norm matrix A.

Lemma 1.5. [8, Theorem 1.1]
Let A = (A;j)nxn be an operator matriz, and let A = (|| Aij||)nxn be its block-norm
matriz. Then

(i) w(A) < w(A), (i) [|A] < ||A|l, (i) r(A) < r(A).
2. MAIN RESULTS

In this section, we prove some new numerical radius inequalities concerning n
operators. The very first result generalizes the numerical radius inequality (1.7).

0 --- 0 A
. ' Ay 0
Theorem 2.1. Let A; € L(H), i=1,2,...,n, and let T =
0o . :
A, 0 - 0
If n is even, then
1 n—1 i} B
20(T) < max{[[All, [|A2ll, -, 1Anll} + 5 22 I Anel TATA I,
k=0
and if n 1s odd, then
_ 1 n—1 . B
2w(T) < max{[[A], [| A=, .., [[Anl} + IU<A<n;1)t) + 5 2 I A TG,
k=0

for all t €0, 1].
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Proof. Let T=Y, + Yo+ Y5+ ---4+Y,, where

0 --- 0 Al'l {0 ) 0‘| {0 ) O'I
Y, = 0 0 Y, — : Ay 0O LY, = : 0 0 ‘
0 . : 0 .- : 0o .- :
0O 0 --- 0 0O 0 --- 0 A, 0 - 0
Theorem 1.4 yields Y;? =0 for all i = 1,2,...,n, if n is an even number and so
W@ =w( V) < w) = IVl =304l @)
i=1 i=1 i=1 i=1

On the other hand, we have

o) = o(32%) < uw(ven) + 3 w00 = A ) 15 3 Al

- = =
(2.2)
if n is an odd number. Let A; = U;|A;|, i = 1,2,...,n be the polar decomposi-
tions of the operators A;. Then ||T|| = max{|| A1, ||[Az|,---,||Ax||} and
[0 0 Al [0 0 Tl 0 0
T | Ay 0| _ | Uy 0] 0 |4,
0o .- : 0 .- : : .0
A, 0 - 0 U, 0 - 0 0 0 |A

is the polar decomposition of T'. The t-Aluthge transform of T', for 0 <t <1, is
given by

- : U, 0 _
_|An‘t 0 0 '| I'O 0 U1 |An‘1—t 0 0 -|
_ 0 [Ap_1]* Us 0 0 |[Ap_1|'" :
: o0 ‘ {0 J : - 0
L O 0 \A1|t Uy 0 0 0 0 \A1|17t
_ 0 0 |An‘tU1|A1|1_t-|
_ | A1 ' U2 | Ag|* 1 0
0 . :
AU AL 0 0
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Applying the triangle inequality for numerical radius, we have

0 0 |An|tU1|A1’1—t‘|
—~ t 1-t
o) = | A [1Us| A 0
0 . :
AL UL A0 0
0 -+ 0 |A| UL A 0 --- 0 0
—wl I 0 0 E | A1 [1Us| Ap [
0 : O '
0 0 0 0 0
- o
+ -4 : 0
0
!AlltU A 0

{0 0 |A, \U1]A1]1 t
<w l
< |An— 1!tU2\A2\1 - }

0 O
+-tw ]
0 . :
| AL U |AE 0 -0 0
Applying inequalities (2.1) and (2.2), we get
1 n—1
w(T,) < Z 1 An—&|" U1 | Aga | 1]
when n is even, and we have
n—1

(@) < w (| At [ Vs [ Angs ) + z N An ki Apa 7,

when n is odd. Now,
[AI]* = AiAT = Ui Ail(Uil Ail)* = Uil Al Adl"UT = Uil APPUT,
and so |A;|170 = UF|A;|17tU; for all t € [0,1]. Thus,
Akl Uker] Axea N = M An-a Uk Upa [ Afa ' Usa | = 1 Ani 1AL ] -
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Therefore, we have

L 1 n—1

w(Ty) < 5 3 M Al Uksa| g ]
k=0

1 n—1

= 5 2 Al 14Tl
k=0

for n is even, and

1 n—1

W(Ty) < w (| Anp [ Ung [Ana |') 4 5 S Ml Auci Uk [ A |

k=0

N 1 n—1 . B
- UJ(A(”;I)t) + 5 kZ_% [ b b |

when n is odd. Since w(T') < 1 (||T| + w(i)) , SO

[ 0O --- 0 Al‘l
: Ay 0 1 —~ .
2w . _ =2w(T) <2x 5 (TN +w(T)) = T + w(Th).
A, 0 - 0

If n is even, then

[0 e 0 Al]
: Ay 0

L DO N L R B
An 0 0

1 n—1

+5 20 I Anil 1AL L
2 k=0

and if n is odd, then

{0 ) Al‘l

: Ay 0 .
S O O B N N R | R

A, 0 -+ 0

1 n—1 i} B
+5 2 I Anal 1 Ara -
2 k=0

OJ

The next result provides the numerical radius inequality for off-diagonal n x n
operator matrix.
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0 -~ 0 A

Theorem 2.2. Let T = A2 , where A; € L(H),i=1,2,...,n
0o .- :
A, 0 - 0

Suppose that f and g are two non-negative continuous functions on [0,00) such
that f(z)g(z) =z (x > 0) and r > 1. If n is even, then

,,,LT‘—I n

1 w1\ |7
w'(T) < ~ maX{HgQT(M )+ (14 |>I|} ot 22 1 (Anina Dg (14T DI,
i=1
and if n is odd, then

w%T><11nm<@m”ﬂAA»+f%uAJw}

4 1<i<n

r

1
2

|
w( Aoy, )+§:fAnH1><A:>‘

Z?én—kl

Proof. Let A; = U;|A;], i = 1,2,...,n be the polar decomposition of the operators

I' o --- 0 Al'l
. : Ay O
A, i =1,2,... ,n,and let T' = . It follows from the polar
0 )
A, O 0
decomposition of
0 0 Ui [|Ax] 0 0
T_ G 011 0 An] that
0 : 0
U, 0 0] 10 0 A
{ 0 0 U
Uy 0
Ty =f(IT1) . ’ (I17'1)
U, 0 0
[ f([An]) 0 0 0 0 U
_ 0 f(An-1]) : 5 Uy, 0
) ) 0 0 ) )
. 0 0 f(AD] [Un 0 0
[9(1Anl) 0 0 ]
0 (lAn-1l)
0
L 0 0 g(|Ai])
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0 0 (AR Urg(An])
_ : f(1An-1])U29(| A2|) 0
0 :
Then
0 0 F(A)U1g(|A1])
wo(Fr) = w : F(14n-1)U2(1Az]) 0
0 - :
f(lA1)Ung(JAnl) 0 0

It follows from inequalities (2.1

~—

and (2.2); that is, if n» is an even number, then

n

Y (A DUig(JADI

=1
and if n is an odd number, then

. 1
wlTr) < w( FAapDUaigllAeaD) + 5 3 1GAw-ssaDUig(ADI
i=1
ittt
Using |Af]? = A A7 = U A;]2U;, where i = 1,2,...,n, we have g(|4;]) =

Fg(|Af|)U; for every non-negative continuous function g on [0, 00). Therefore
we have

ng ) <

l\'J\H

T 1 . * *
w(Tyg) <5 2 I1F (A U7 9(| AT U]
i=1

- Z 1 (Ansa DA D] (2.3)

for even n, and

e
‘:H
N
=

%

el e 1 & * *
wTrg) <0(Apupysy ) + 5 2 1A OGO

:w<A(n21)ﬁg) +
it

for odd n. Applying Theorem 1.2, we get

N[ —
(]

Il
—

1 ([ An-ss1[)g (1 A7 DI (2.4)

3
+

W (T) < g (T + (TN + 5 (w(Ty,)

If n is an even number, we then have

W' (T) < § ax (g% (A0 + 7 (ADI} + [22 1£(AncaDg (14 D
1 -1 n
< 3 (1 (AD + £ UADIY + G D15 An-csaDo(ADI
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While for odd n, we obtain

w'(T) <1 max {||g” (| A;]) + £ (| Ai]) I}

1<z<

e . i
w(Aapyr) + 5 > I (AnieaDo(l4: D

l;é*n-z'rl

1
2

by using the convexity of h(z) = x". O

Numerical radius inequality for off-diagonal 2 x 2 operator matrix is obtained
below as a corollary.

Corollary 2.3. [2, Theorem 2.6
Let A, B € L(H). Suppose that f and g are two non-negative continuous functions
on [0,00) such that f(x) (x) =z (£ >0) and r > 1. Then

O A T T T T
w (|5 o)) < Jmax (I QAD + £71ADIL I (B + £ B)I)
1 * r * T
+ 1 UFABDg(ATDI"™ + 1LF(AADg (I BTDI)-
We next prove another numerical radius inequality which yields a new upper
bound and is stated in the next theorem. From Theorem 1.3, we obtain

2w(T) < w'(Tyg) + T

Applying inequalities (2.3) and (2.4), when n is an even number, we have

1 "
2u"(T) < max {|| 4]} + [QZ ||f<|An_i+1|>g<|A:|>||] ,
== i=1

and when n is an odd number, we have

[ ~ 1 " * -Ir
w(Aapyr,) + 5 > 1 Awiag(145D)

27571;1

20"(T) < max {[| 4"} +

Thus, we have the following result.

. : Ay 0

Theorem 2.4. Let A; € L(H),i=1,2,...,n, and let T =
0o .- :
A, 0 - 0

Suppose that [ and g are two non-negative nondecreasing continuous functions
on [0,00) such that f(x)g(z) =z (x > 0) and r > 1. Then, for an even number
n, we get

T

() < e (IAI7)+ |5 32 11 4ucssa D141

1<i<n
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and for an odd number n, we have

o(Aepyn)

Another estimate of numerical radius in
operator matrix is presented below.

20" (T) < max {||A;]|"} +

1<i<n

ntl

207

T

|

equality for a special type of n x n

+l Z 1£(|An-i1Dg(| A DI

75"-4-1

{Al Ag An'l
0 0 0
Theorem 2.5. Let A; € L(H),i=1,2,...,n, and let T = | . . .
0 0 0
Then
1 1
w(T) < o (1A + [ ALAT + A2A5 + -+ A, A7 7).
[Al A An-l
0 O 0
Proof. Let T = | . _ . Then
0 O 0
| Re(e®T)| = r(Re(eT))
( ZQT—F z@T
1 A, A7 0 0
0 1AS 0 0
: e :
0 Ar 0 0
zGA + 67’9_/4* 6i9A2 eieAn‘I
_ZGA* 0 0
I —ZGA* 0 0 ‘
[A7 0 19]'| [e‘iel 0 O'I
A3 0 0 0 0 0
|AY 0 0 A A A,
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Using the commutativity property of the spectral radius, we get

| Re(eT)
_191 O X O-| [A{ 0o --- eief'l
0|4 0 -~ 0
Al 4, 0 -+ 0 ‘
e"eA*{ 0 I -I
0 0 --- 0
| A1 A] —|—A2A* ek AZAE 0 - €A
' [l 0 o 1]
r 0 0o --- 0
< . . )
-2 Do :
|| A1 AG +A2A* e AJAE O - AL
|AD| -~ 0 0 o1
r
=35 : : + : :
0 - JJA | A1 AT + A A5 + -+ ARAL -+ 0

1
< 5 (1A + 1ALAT + Apds 4+ A 47 12).
Applying Lemma 1.1, we have
_ 70
w(T) = max || Re(e™T)|
1
< 5 (Ml + A4 + Apds 4+ 4,47 12)
O

The following result is a numerical radius inequality for a 2 x 2 operator matrix.

Corollary 2.6. [13, Theorem 3.1]
Let Ay and Ay be operators in L(H). Then

A A 1 ] x||d
w([5§]) =3 (- nacas+ ).

The next result deals with the same class of operators as mentioned in Theorem
2.5.

[Al Ay An-l
0 0
Lemma 2.7. Let A; € L(H), 1 = 1,2,...,n, and let T = :
0 O 0
Then
A 1 1
w(T) < w(2 ) + 1 + Z||A1A{ + A AS+ -+ AAN .



NUMERICAL RADIUS INEQUALITIES 209

A Ay oo A,
o 0 --- 0
Proof. Let T = | . ) ) | . Then
0O 0 --- 0
|Re(e”T)|| =r(Re(e"T))
eiGT + (610T)*
=r|{—
2
A Ay oo A, A; 0 -+ 0
o 0 --- 0 A0 --- 0
:f 616 + 6—26 .2
2 : : : : Do : :
o o --- 0 A 0 --- 0
'eiHAl + efiHAT 6i9A2 L eiOAn
r e‘i9A§ 0 - 0
2 : S :
i e‘ieA; 0 - 0
(AT 0 -+ ew]-l {e‘iel 0 -~ 0 -I
r A5 0 .- 0 0 0 --- 0
"2 oo : A
LAy 0 - 0 A Ay - A,

Using the commutativity property of the spectral radius and r(7") < w(T) < ||T||,
we get

e 0 -~ 0 A7 0 - el
; r 0 o --- 0 A 0 - 0
e N O
LA Ay - Al LA 0 0
[ e AL 0 I
o 0 0 - 0
2 : S :
(A A + Ag A+ -+ A AE 0 - P4,
[ e_wA’{ 0o --- I _I
1 0 o --- 0
<-w ) . )
2 : Co :
e~ 0Ax 0 ... 0 0 0 - I
1 [ 0 ' 0 - 0 -I [ 0 0 - 0-|
=W : Do : + : R
{ 0 0 ew.A1| LlA{ + A2A§.+ ce ApAj 0 - 6J

=5t Tl AA A AL+ A AL
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Applying Lemma 1.1, we have
_ i
w(T) = o | Re(e"T) |

1 * * *
< —3 + 1 + Z”AlAl + AJAS 4+ ALAY

OJ

Similarly, one can easily prove the following result for A; € L(H),i=1,2,...,n.

[0 0 0]
. 0O 0 --- 0
Lemma 2.8. @ Ifr=\|. . . .|, then
A Ay oo A,
A) 101
w(T) < w(2 )+4+4HA1A’{+A2A;+--~+A”A;H.
[Al 0 O]
Ay 0 0
(i) fT =1 . , then
A, 0 0
A) 11
w(T) < w<2 ) g T g lATA + Ay e A AL
0 0 A
0 0 Ay
(i) If T = |. . .|, then
00 --- A,
A) 101
w(@) < " A s s s A

Using Lemma 2.7, we prove the next result for n x n arbitrary operator matrix.

Theorem 2.9. Let A;; € L(H) where 1 <i,5 <n, and let T = [A;;]. Then

12 n 1
w(T) < =Y w(du)+—+= > [|Ay]%
2 4 4

i=1 ij=1
Proof. Let
Jexk | Orxn—rk }
Uy = ,
b {On—kxk ‘ In—kxn—k:
where
I'O - 0 ['I
I 0
chxk = B
0o . :
I 0 -0

Then Uy, is unitary and
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Ap A - Aln-‘
Ao Ay -+ Ay,
w : : : :
A Ang oo Apn
[All A12 e Aln ... 0
0 o --- 0 A21 A22 e Ay,
<w ) ) ) ) )
0 0 0
0
0
+eotw :
Anl An2
[An A - A22 A21 e AQn-I
0 0 e 0
sw : : : Us
0 0 0
Ann Ann 1 nl
0 0 0
+---+w | U, : U,
0 0 0
Since w(.) is weak unitary, then
{Au Arg Am-l {A22 Ao A2n-|
0 0 0 0 0 0
w(T) <w ] + w ]
0 0 0 0 0 0
Ann Ann—l Anl
0 0 0
+ o tw
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w(A 1 1
< WA A A Al o A
w(As 1 . «
(2 2 +1t7 HA22A + AgtAjy + -+ Ag 4G, ||
w(A, 1
o W) A A A A 4 A
1
— 5w + ) - +w<Am>}
101 .
1 1 . .
vty {HAQIAQI L A |
1
ot 4 + HAnlA*l +An2A:12+"'+AnnA:m|@
1 & n
< 23w+ 547 D A4
i=1 1] 1
1 & n
= o> w(du) + o+ 7 > 14,l*
2 ; 4 z]zjl ’
O
The above theorem is explained below for the case of right shift operators.
Siu Siz o Sin
So1 Sz v+ Sy
Example 2.10. Let T'= | . . . | . Then
Snl Sn2 Snn
1 n
w(T) < izw(su) + 4 + = Z HS%JHQ
=1 2] 1
Ty 1T
=—11
+ cosn 1

where S;;’s are right shift operators on C" and for 1 <1,j < n.

An operator A € L(H) is said to be polynomially bounded if there exists an
M > 1 such that ||p(A)|| < M sup{|p(z)| : |z| = 1} for all polynomials p. An
operator A € L(H) is similar to contraction if there exists a bounded invertible
operator L such that ||[LTL™'|| < 1. Halmos [0] raised a question whether every
polynomially bounded operator is similar to a contraction. There is a number of
results dealing with sufficient conditions for a polynomially bounded operator to
be similar to a contraction. Foias and Williams [4] studied operators of the form

T(X)= (% )é) acting on H2@® H?, where S is the forward unilateral shift on the
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Hardy space H? and X € L(H?). They conjectured that there exists a Hankel
operator H, with symbol ¢ such that the operator T'(H,) is polynomially bounded
and is not similar to a contraction. Petrovic [12] then exhibited a relationship
between the similarity of T'(H,) and a contraction. Now, we present the numerical

5 Hg) . Then,

radius inequality for a Foias—Williams operator. Let T'(H,) = < 0 9

by triangle inequality for numerical radius, we obtain
S* H, S* H, 0 0
oo )= W)l §)
1 * 1 * *
< Jw(s )+1HI+S S+ H,H;

+ w(S)

11 . .
< qu(s")+ {1 IS + 1 |2

} + w(S)

2
1 w(S*)

We conclude this article with the following observation for a Foias—Williams op-
erator 7.

Remark 2.11. The following inequality holds:
w(S*) 1  x?

w(T) <w(S)+ 5ty

for a Foias—Williams operator 7.
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