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Abstract. In this paper, we obtain results for factorizability of quantum
channels. Firstly, we prove that if a tensor T ⊗ Sk of a quantum channel T
on Mn(C) with the completely depolarizing channel Sk is written as a convex
combination of automorphisms on the matrix algebra Mn(C) ⊗ Mk(C) with
rational coefficients, then the quantum channel T has an exact factorization
through some matrix algebra with the normalized trace. Next, we prove that if
a quantum channel has an exact factorization through a finite dimensional von
Neumann algebra with a convex combination of normal faithful tracial states
with rational coefficients, then it also has an exact factorization through some
matrix algebra with the normalized trace.

1. Introduction

In [1], Anantharaman-Delaroche introduced the class of factorizable Markov
maps to deal with the noncommutative analogue of Rota’s theorem which is one
of the most important convergence theorems from classical probability theory. Af-
ter the works of [1], Haagerup and Musat proved in [3, Theorem 6.1] that every
nonfactorizable quantum channel onMn(C) (n ≥ 3) fails the asymptotic quantum
Birkhoff conjecture which was raised by Smolin, Verstraete, and Winter (see [7])
as one of the most important problems in quantum information theory. In [3, 4],
they also approached the Connes embedding problem by using factorizable quan-
tum channels, in particular, tensors of factorizable quantum channels with the
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completely depolarizing channel. In this paper, we focus on the relation between
the factorizability of quantum channels and the property of tensors of factoriz-
able quantum channels with the completely depolarizing channel. Haagerup and
Musat proved in [4, Proposition 3.4] that a quantum channel T onMn(C) satisfies
that T ⊗ Sk ∈conv(Aut(Mn(C)⊗Mk(C))), (where Sk is the completely depolar-
izing channel on Mk(C)), if and only if T has an exact factoirzation through a
tracial W ∗-probability space (Mn(C)⊗ (Mk(C)⊗L∞([0, 1],m)), τn⊗ (τk⊗ τL∞)),

where m denotes the Lebesgue measure on [0, 1] and τL∞(f) :=
∫ 1

0
f(t)dm(t) for

all f ∈ L∞([0, 1],m). (Note that k is the same positive integer in the equivalent
property). From the reason, it is very important to understand tensors T ⊗Sk of
a quantum channel T with the completely depolarizing channel Sk to know what
T has an exact factorization through some W ∗-probability space. Moreover they
proved in [4, Corollary 3.5] that if a quantum channel T on Mn(C) has an exact
factorization through a tracial W ∗-probability space (Mn(C) ⊗Mk(C), τn ⊗ τk),
then T ⊗ Sk ∈ conv(Aut(Mn(C) ⊗ Mk(C))). We raise the natural problem of
whether the converse claim of the statement is true or not (see below).

Problem 1.1. Let n be a positive integer, and let T be a quantum channel on
Mn(C). Is it true that the following properties are equivalent?
(1) T has an exact factorization through (Mn(C) ⊗ Mk(C), τn ⊗ τk) for some
positive integer k.
(2) T ⊗ Sl ∈conv(Aut(Mn(C)⊗Ml(C))) for some positive integer l.

By [4, Corollary 3.5], the implication (1) ⇒ (2) is true, and we should choose
a positive integer k of the assumption (1) as a positive integer l of the condition
(2), but the implication (2) ⇒ (1) and the relation between positive integers k
(of (1)) and l (of (2)) are unknown.

We obtain that Problem 1.1 is true in the special case of quantum channels.
But we conclude that Problem 1.1 is not true in the general case.

Theorem 1.2. Let T be a quantum channel on Mn(C). If there exists a positive

integer k such that T ⊗ Sk =
∑d(k)

i=1 αiad(ui) ∈conv(Aut(Mn(C) ⊗ Mk(C))) for
some positive integer d(k), unitary matrices u1, . . . , ud(k) ∈ U(Mn(C) ⊗Mk(C)),
and positive rational numbers α1, . . . , αd(k) with

∑d(k)
i=1 αi = 1, then there exists

a positive integer N such that T has an exact factorization through (Mn(C) ⊗
MN(C), τn ⊗ τL). In particular, if we can write αi =

Li

L
, where L1, . . . , Ld(k), L

are positive integers and L1 + · · ·+ Ld(k) = L, then we should choose N = kL.

Theorem 1.3. In general, Problem 1.1 has a negative answer.

Moreover we also raise the following problem for the quantum channels which
have an exact factorization through a finite dimensional W ∗-probability space
(see below).

Problem 1.4. Let T be a quantum channel on Mn(C). Is it true that if there
exists a finite dimensional W ∗-probability space (N , ϕ) (i.e. a pair of a finite
dimensional von Neumann algebra N and a normal faithful state ϕ on N ) such
that T has an exact factorization through (Mn(C)⊗N , τn⊗ϕ), then there exists



FACTORIZABLE QUANTUM CHANNELS 809

a positive integer k such that T also has an exact factorization through (Mn(C)⊗
Mk(C), τn ⊗ τk)?

Note that every finite dimensional von Neumann algebra is ∗-isomorphic to a
direct sum of some matrix algebras. We obtain that Problem 1.4 is true in the
special case of normal faithful states on finite dimensional von Neumann algebras.
But we also conclude that Problem 1.4 is not true in the general case.

Theorem 1.5. Let T be a quantum channel onMn(C). If for α := (α1, . . . , αd) ∈
Qd

+ with α1 + · · ·+ αd = 1 there exist positive integers k1, . . . , kd such that T has
an exact factorization through (Mn(C)⊗ (Mk1(C)⊕· · ·⊕Mkd(C)), τn⊗τα), where
τα is a normal faithful tracial state on Mk1(C)⊕ · · · ⊕Mkd(C) defined by

τα(x1, . . . , xd) := α1τk1(x1) + · · ·+ αdτkd(xd)

for all (x1, . . . , xd) ∈ Mk1(C)⊕ · · · ⊕Mkd(C), then there exists a positive integer
k such that T has an exact factorization through (Mn(C)⊗Mk(C), τn ⊗ τk).

Theorem 1.6. In general, Problem 1.4 has a negative answer.

In section 2, we set notation and definitions in this paper. In section 3, we
recall and discuss for the concepts and basic properties of quantum channels,
factorizable quantum channels, and completely depolarizing channels. In sections
4 and 5, we prove that Theorems 1.2, 1.3 and Theorems 1.5, 1.6 hold, respectively.

2. Notation and definitions

In this paper, we use the following notation:

• N := {1, 2, 3, . . . } and Q+ is the set of all positive rational numbers.
• Mn(C) is the set of all n× n matrices with complex entries.
• U(n) is the set of all n× n unitary matrices with complex entries.
• τn is the normalized trace onMn(C); that is, τn((xij)1≤i,j≤n) := x11+···+xnn

n
.

• idn is the identity map on Mn(C).
• Define ad(u)(x) := u∗xu for all x ∈Mn(C), u ∈ U(n).
• conv(Aut(Mn(C))) is the convex hull of the set Aut(Mn(C)) := {ad(u) :
u ∈ U(n)}.

• 1M is the unit in von Neumann algebra M; in particular, 1n := 1Mn(C).

A pair (M, ϕ) is called a W ∗-probability space if M is a von Neumann algebra
and ϕ is a normal faithful state on M. In particular, we call (M, ϕ) a tracial
W ∗-probability space when ϕ is tracial; that is, ϕ(xy) = ϕ(yx) for all x, y ∈ M.

3. Basic properties of factorizable quantum channels

In [1], Anantharaman-Delaroche considered factorizable Markov maps to prove
a noncommutative analogue of Rota’s theorem. We first recall the definition of
Markov maps on a W ∗-probability space. The concept is a noncommutative
analogue of the measure-preserving Markov operator on a probability space.

Definition 3.1. Let (M, ϕ) and (N , ψ) be W ∗-probability spaces. A linear map
T : M → N is called a (ϕ, ψ)-Markov map if
(1) T is completely positive,
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(2) T is unital,
(3) T is (ϕ, ψ)-preserving; that is, ψ ◦ T = ϕ,

(4) T ◦ σϕt = σψt ◦ T , where {σϕt }t∈R denotes the automorphism group of ϕ.
In particular, we call it ϕ-Markov map when (M, ϕ) = (N , ψ).

If (M, ϕ) = (N , ψ) = (Mn(C), τn) in Definition 3.1, the fourth condition is
removed since the operator στt is trivial for any normal faithful tracial states τ
on von Neumann algebras and t ∈ R; so that a τn-Markov map means a unital
completely positive trace-preserving map (quantum channel) on Mn(C). Denote
by

Q(n) := {T :Mn(C) →Mn(C) : T is a quantum channel}.
In [1, Definition 6.2], Anantharaman-Delaroche defined the class of factorizable
Markov maps in the following sense.

Definition 3.2. A (ϕ, ψ)-Markov map T : M → N is called factorizable if there
exist a W ∗-probability space (L, χ) and ∗-monomorphisms α : M → L and
β : N → L such that α is (ϕ, χ)-Markov, β is (ψ, χ)-Markov and T = β∗ ◦ α,
where β∗ : L → M is the adjoint of β (see [3, Remark 1.2]).

The set of all factorizable (ϕ, ψ)-Markov maps is closed under composition, the
adjoint operation, taking convex combinations, and w∗-limits (See [6, Proposition
2]). Haagerup and Musat proved in [3, Theorem 2.2] the following statement for
the class of factorizable quantum channels.

Proposition 3.3. Consider T ∈ Q(n). Then the following properties are equiv-
alent:
(1) T is factorizable,
(2) There exist a tracial W ∗-probability space (M, ϕ) and a unitary u in Mn(C)⊗
M such that

Tx = (idn ⊗ ϕ)(u∗(x⊗ 1M)u), x ∈Mn(C).
In this case, we say that T has an exact factorization through (Mn(C)⊗M, τn⊗

ϕ). A factorization of quantum channels is not unique. We have two examples of
a factorization of quantum channels. Firstly we show the following statement.

Lemma 3.4. If T ∈ Q(n) has an exact factorization through a tracial W ∗-
probability space (Mn(C) ⊗ M, τn ⊗ ϕ) and there exist a tracial W ∗-probability
space (N , ψ) and a (ϕ, ψ)-Markov *-homomorphism S : (M, ϕ) → (N , ψ), then
T also has an exact factorization through (Mn(C)⊗N , τn ⊗ ψ).

Proof. Since T has an exact factorization through (Mn(C) ⊗ M, τn ⊗ ϕ), there
exists a unitary u ∈Mn(C)⊗M such that

Tx = (idn ⊗ ϕ)(u∗(x⊗ 1M)u), x ∈Mn(C).
Since S is a *-homomorphism, (idn ⊗ S)(u) is a unitary in Mn(C)⊗N . Hence,

(idn ⊗ ψ)
(
(idn ⊗ S)(u)∗(x⊗ 1N )(idn ⊗ S)(u)

)
= (idn ⊗ ψ)(idn ⊗ S)(u∗(x⊗ 1M)u)

= (idn ⊗ ϕ)(u∗(x⊗ 1M)u)

= Tx
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for all x ∈ Mn(C). Therefore T has an exact factorization through (Mn(C) ⊗
N , τn ⊗ ψ). □

As the second example, we consider a linear map T defined by

Tx =
d∑

k=1

EkkxEkk, x ∈Md(C),

where {Ekl}1≤k,l≤d is the set of standard matrix units inMd(C). By [2], it is clear
that T is a quantum channel on Md(C). Then we have the following proposition.

Proposition 3.5. Consider d ≥ 2. Let T be the above quantum channel on
Md(C). Then the following conditions hold.
(1) T has an exact factorization through (Md(C)⊗ LFd, τd ⊗ τLFd

).
(2) T has an exact factorization through (Md(C)⊗Md(C), τd ⊗ τd).

Proof. (1) Let g1, . . . , gd be generators of the free group Fd of degree d, and set

u :=
∑d

k=1Ekk ⊗ λgk ∈ U(Md(C) ⊗ LFd), where λg is the left representation of
g ∈ Fd; that is,

λg(f)(h) := f(g−1h), f ∈ l2Fd, g, h ∈ Fd,
and LFd is the free group von Neumann algebra. For all x ∈Md(C),

(idd ⊗ τLFd
)(u∗(x⊗ 1LFd

)u) =
d∑

k,l=1

τLFd
(λ∗gkλgl)E

∗
kkxEll

=
d∑

k,l=1

δklEkkxEll = Tx,

where

τLFd
(λ) :=< λδe, δe >l2Fd

, λ ∈ LFd,
and e ∈ Fd is the unit of Fd. Therefore T has an exact factorization through
(Md(C)⊗ LFd, τd ⊗ τLFd

).

(2) We can write T as Tx = 1
d

∑d
k=1(u

∗)kxuk with

u = diag(e
2πi
d , e

2π·2i
d , . . . , e

2π·di
d ) ∈ U(Md(C))

and define the unitary element v =
∑d

k=1 u
k ⊗ Ekk ∈ U(Md(C)⊗Md(C)). Then

we have

(idd ⊗ τd)(v
∗(x⊗ 1d)v) =

d∑
k,l=1

τd(E
∗
kkEll)(u

∗)kxul = Tx

for all x ∈Md(C). The proof is complete. □
Set

F(n) := {T ∈ Q(n) : T is factorizable}.
By the statements before Proposition 3.3, we have that conv(Aut(Mn(C)))⊂ F(n)
for all positive integers n. Haagerup and Musat found a quantum channel in
F(n)\conv(Aut(Mn(C))) in [3, Example 3.3]. In particular, Kümmerer proved
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in [5] that conv(Aut(M2(C)))=F(2). Haagerup and Musat pointed out the im-
portant relations between the factorizable quantum channels and the Connes
embedding problem in [3, 4].

Recall the completely depolarizing channels. Let Sk : Mn(C) → Mn(C) be a
linear map defined by

Sk(x) := τk(x)1k, x ∈Mk(C).

The map Sk is called the completely depolarizing channel on Mn(C). Note that
Sk is in conv(Aut(Mk(C))), and therefore it is a factorizable quantum channel
on Mn(C). By [3, Corollary 2.5], Haagerup and Musat found a quantum channel
T ∈ F(n)\ conv(Aut(Mn(C))) (n ≥ 3) such that it has an exact factorization
through (Mn(C) ⊗M2d(C), τn ⊗ τ2d) for some d ≥ 3. By [4, Corollary 3.5], we
have that T ⊗ S2d ∈ conv(Aut(Mn(C)⊗M2d(C))).

4. Proof of Theorems 1.2 and 1.3

We prove that Theorems 1.2 and 1.3 hold in this section. We first introduce
the following set.

Jn :=

{
T ∈ F(n)

∣∣∣∣ ∃k ∈ N s.t. T has an exact factorization through
(Mn(C)⊗Mk(C), τn ⊗ τk)

}
.

To prove Theorem 1.2, we give the following property for Jn.

Lemma 4.1. Jn is closed under convex combinations with rational coefficients.

Proof. Suppose that n ∈ N. We claim that if T1, . . . , Td ∈ Jn and α1, . . . , αd ∈
Q+ with α1 + · · · + αd = 1, then

∑d
i=1 αiTi ∈ Jn. By Lemma 3.4 and the

definition of Jn, there exists k ∈ N such that Ti has an exact factorization through
(Mn(C)⊗Mk(C), τn ⊗ τk) for all i = 1, . . . , d. Therefore for each i = 1, . . . , d, we
can find a unitary matrix ui ∈Mn(C)⊗Mk(C) such that

Ti(x) = (idn ⊗ τk)(u
∗
i (x⊗ 1k)ui), x ∈Mn(C).

Since α1, . . . , αd are positive rational numbers such that α1+ · · ·+αd = 1, we can
write αi =

Li

L
, for i = 1, . . . , d, where L1, . . . , Ld, L > 0 and L1 + · · · + Ld = L.

Then we define

U := diag(

L1︷ ︸︸ ︷
u1, . . . , u1, . . . ,

Ld︷ ︸︸ ︷
ud, . . . , ud) ∈Mn(C)⊗Mk(C)⊗ML(C).
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Clearly the block matrix U is a unitary inMn(C)⊗Mk(C)⊗ML(C), and we have
that

(idn ⊗ τk ⊗ τL)(U
∗(x⊗ 1k ⊗ 1L)U)

= (idn ⊗ τk ⊗ τL)

 diag
( L1︷ ︸︸ ︷
u∗1(x⊗ 1k)u1, . . . , u

∗
1(x⊗ 1k)u1

, . . . ,

Ld︷ ︸︸ ︷
u∗d(x⊗ 1k)ud, . . . , u

∗
d(x⊗ 1k)ud

)


= (idn ⊗ τk ⊗ τL)

( ∑L1

i=1 u
∗
1(x⊗ 1k)u1 ⊗ Eii
+ · · ·+

∑Ld

i=1 u
∗
d(x⊗ 1k)ud ⊗ EL−Ld+i,L−Ld+i

)
=

L1∑
i=1

τL(Eii)(idn ⊗ τk)(u
∗
1(x⊗ 1k)u1)

+ · · ·+
Ld∑
i=1

τL(EL−Ld+i,L−Ld+i)(idn ⊗ τk)(u
∗
d(x⊗ 1k)ud)

=
d∑
i=1

Li
L
(idn ⊗ τk)(u

∗
i (x⊗ 1k)ui)

=
d∑
i=1

αiTi(x),

for all x ∈ Mn(C), where {Eij}1≤i,j≤L is the set of standard matrix units in

ML(C).Therefore
∑d

i=1 αiTi has an exact factorization through (Mn(C)⊗(Mk(C)⊗
ML(C)), τn ⊗ (τk ⊗ τL)). Thus

∑d
i=1 αiTi ∈ Jn. □

Finally, it is easy to prove that Theorem 1.2 holds.

Proof of Theorem 1.2. Suppose that n ∈ N and that T is a quantum channel on
Mn(C). Assume that there exists a positive integer k > 0 such that T ⊗ Sk(z) =∑d(k)

i=1 αiu
∗
i zui, (z ∈Mn(C)⊗Mk(C)), for some positive integer d(k) > 0, unitaries

u1, . . . , ud(k) ∈ Mn(C) ⊗Mk(C), and positive rational numbers α1, . . . , αd(k) > 0

with
∑d(k)

i=1 αi = 1. Therefore

Tx = (idn ⊗ τk)(T ⊗ Sk)(x⊗ 1k)

=

d(k)∑
i=1

αi(idn ⊗ τk)(u
∗
i (x⊗ 1k)ui), x ∈Mn(C).

Since Ti(·) := (idn ⊗ τk)(u
∗
i (· ⊗ 1k)ui) ∈ Jn for all i = 1, . . . , d(k), we have that

T ∈ Jn by Lemma 4.1. This means that T has an exact factorization through
(Mn(C)⊗MN(C), τn⊗ τN) for some positive integer N . In particular, if we write
αi =

Li

L
where L1, . . . , Ld(k), L > 0 and L1 + · · ·+Ld(k) = L, then T has an exact

factorization through (Mn(C) ⊗MkL(C), τn ⊗ τkL) by the proof of Lemma 4.1.
Thus the proof is complete. □

We prove that Theorem 1.3 holds.
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Proof of Theorem 1.3. We define the quantum channel Tλ on M3(C) given by
Tλ(x) := λx + (1 − λ)u∗xu for all x ∈ M3(C), where u := diag(1, i,−1) ∈
U(M3(C)) and λ ∈ [0, 1]\Q. It is clear that Tλ⊗Sl ∈ conv(Aut(M3(C)⊗Ml(C)))
for all positive integers l. Assume that Tλ has an exact factorization through
(M3(C) ⊗ Mk(C), τn ⊗ τk) for some positive integer k. Since Tλ is the Schur
multiplier associated to the following matrix 1 λ+ (1− λ)i 2λ− 1

λ− (1− λ)i 1 λ+ (1− λ)i
2λ− 1 λ− (1− λ)i 1

 ,

we can find three unitary matrices u0, u1, u2 ∈ Mk(C) such that τk(u
∗
puq) =

λ + (1 − λ)iq−p for all p, q = 0, 1, 2 by [3, Proposition 2.8]. Without loss of
generality we may assume that u0 = 1k by replacing up by u

∗
0up for all p = 0, 1, 2.

Then we have the linear relation u2 = −i1k + (1+ i)u1. From the linear relation,
the matrices u1 and u2 commute, and therefore we can choose a unitary matrix
V ∈ Mk(C) such that V ∗u1V and V ∗u2V are diagonal. Consider that u1 has
eigenvalues eiθ1 , . . . , eiθk . Then u2 has eigenvalues −i + (1 + i)eiθj (j = 1, . . . , k)
by using the above relation and the unitary matrix V . Since u2 is unitary, we
have that

1 = | − i+ (1 + i)eiθj |2 = 3− 2
√
2 sin

(
θj +

π

4

)
, j = 1, . . . , k.

This implies that u2 has eigenvalues 1 (l times) or −1 (k − l times) for some
0 ≤ l ≤ k. Therefore we have that τk(u2) =

2l−k
k

. But this implies that λ ∈ Q.
Hence Tλ does not have an exact factorization through (M3(C)⊗Mk(C), τn⊗ τk)
for any positive integers k. □

5. Proof of Theorems 1.5 and 1.6

We prove that Theorem 1.5 holds. The proof is similar to Theorem 1.2.

Proof of Theorem 1.5. Since T has an exact factorization through (Mn(C) ⊗
(Mk1(C) ⊕ · · · ⊕Mkd(C)), τn ⊗ τα), there exist unitary matrices ui ∈ Mn(C) ⊗
Mki(C), for each i = 1, . . . , d, such that

Tx =
d∑
i=1

αi(idn ⊗ τki)(u
∗
i (x⊗ 1ki)ui), x ∈Mn(C).

Note that Ti(·) := (idn ⊗ τki)(u
∗
i (· ⊗ 1ki)ui) ∈ Jn for all i = 1, . . . , d. By Lemma

4.1, we have that T =
∑d

i=1 αiTi ∈ Jn; that is, there exists a positive integer k
such that T has an exact factorization through Mn(C)⊗Mk(C). □

We prove that Theorem 1.6 holds.

Proof of Theorem 1.6. Consider λ ∈ [0, 1] \ Q and the quantum channel Tλ on
M3(C) in the proof of Theorem 1.3. Since we have that

Tλ(x) = λ(id3 ⊗ τ3)(x⊗ 13) + (1− λ)(id3 ⊗ τ3)((u⊗ 13)
∗(x⊗ 13)(u⊗ 13)),

for all x ∈ M3(C), the quantum channel Tλ has an exact factorization through
(M3(C)⊗(M3(C)⊕M3(C)), τ3⊗τλ), where τλ is a tracial state onM3(C)⊕M3(C)
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given by τλ(x, y) := λτ3(x) + (1− λ)τ3(y) for all x, y ∈ M3(C). But Tλ does not
have an exact factorization through (M3(C) ⊗Mk(C), τn ⊗ τk) for any positive
integers k by Theorem 1.3. □
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