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Abstract. Let C[0, T ] denote the space of continuous real-valued functions on
[0, T ]. In this paper we introduce two Banach algebras: one of them is defined
on C[0, T ] and the other is a space of equivalence classes of measures over paths
of bounded variation on [0, T ]. We establish an isometric isomorphism between
them and evaluate analytic Feynman integrals of the functions in the Banach
algebras, which play significant roles in the Feynman integration theories and
quantum mechanics.

1. Introduction

Let C0[0, T ] denote classical Wiener space; that is, the space of continuous real-
valued functions x on the interval [0, T ] with x(0) = 0. Cameron and Storvick
[2] introduced a Banach algebra S ′ of functions on C0[0, T ], a space of general-
ized Fourier–Stieltjes transforms of the C-valued, and finite Borel measures over
the functions of bounded variation on [0, T ]. They showed that S ′ is isometri-
cally embedded in the Banach algebra S, a space of generalized Fourier–Stieltjes
transforms of the complex Borel measures on L2[0, T ].

On the other hand, let C[0, T ] denote an analogue of a generalized Wiener
space, the space of continuous real-valued functions on the interval [0, T ]. On
the space C[0, T ], Ryu [9, 10] introduced a finite measure wα,β;φ and investigated
its properties, where α, β : [0, T ] → R are continuous functions such that β is
strictly increasing and φ is an arbitrary finite measure on the Borel class of R.
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On this space (C[0, T ], wα,β;φ), the author [3] introduced an Itô type integral Iα,β
which generalizes the Paley–Wiener–Zygmund integrals on C0[0, T ] and C[0, T ],
and in [4, 5] he derived two Banach algebras Sα,β;φ and S̄α,β;φ, by using Iα,β,
which generalize Cameron–Storvick’s Banach algebra S with the mean function
and the variance function determined by α and β, respectively.

In this paper, we introduce two Banach algebras S̄ ′
α,β;φ and M̄(B[0, T ]); S̄ ′

α,β;φ

is defined on C[0, T ], and M̄(B[0, T ]) is a space of equivalence classes of measures
over the paths of bounded variation on [0, T ]. We also establish an isomorphism
between S̄ ′

α,β;φ and M̄(B[0, T ]) and prove that S̄ ′
α,β;φ is embedded in S̄α,β;φ. As

an application, we derive analytic Feynman integrals of the functions in S̄ ′
α,β;φ,

which play significant roles in the Feynman integration theories and quantum
mechanics. In particular, if α(t) = 0, β(t) = t, for t ∈ [0, T ], and φ = δ0, which
is the Dirac measure concentrated at 0, then S̄ ′

α,β;φ = S ′ and S̄α,β;φ = S; so that
the results of this paper generalize those in [2]. We also note that every path in
C[0, T ] starts at an arbitrary point; so that C[0, T ] generalizes C0[0, T ].

2. An analogue of a generalized Wiener space

In this section we introduce an analogue of a generalized Wiener space with
preliminaries which will be used in the next sections.

Let mL denote the Lebesgue measure on the Borel class B(R) of R. Let C[0, T ]
denote the space of continuous real-valued functions on the interval [0, T ]. Let
α, β : [0, T ] → R be two continuous functions, where β is strictly increasing. Let
φ be a positive finite measure on B(R). For t⃗n = (t0, t1, . . . , tn) with 0 = t0 <
t1 < · · · < tn ≤ T , let Jt⃗n : C[0, T ] → Rn+1 be the function defined by

Jt⃗n(x) = (x(t0), x(t1), . . . , x(tn)).

For
∏n

j=0Bj in B(Rn+1), the subset J−1
t⃗n

(
∏n

j=0Bj) of C[0, T ] is called an interval

I, and let I be the set of all such intervals I. Define a premeasure mα,β;φ on I
by

mα,β;φ(I) =

[
1∏n

j=1 2π[β(tj)− β(tj−1)]

] 1
2

×
∫
B0

∫
∏n

j=1 Bj

exp

{
−1

2

n∑
j=1

[uj − α(tj)− uj−1 + α(tj−1)]
2

β(tj)− β(tj−1)

}
dmn

L(u1, . . . , un)dφ(u0).

The Borel σ-algebra B(C[0, T ]) of C[0, T ] with the supremum norm, coincides
with the smallest σ-algebra generated by I, and there exists a unique, positive,
and finite measure wα,β;φ on B(C[0, T ]) with wα,β;φ(I) = mα,β;φ(I) for all I ∈ I.
This measure wα,β;φ is called an analogue of a generalized Wiener measure on
(C[0, T ],B(C[0, T ])) according to φ [9, 10].

For further work, we give additional conditions for α and β. Let α and β
be absolutely continuous real-valued functions on [0, T ] such that β is strictly
increasing and |α|′(t) + β′(t) > 0 for t ∈ [0, T ]. We note that both |α|′(t) and
β′(t) exist for mL-almost everywhere t; since α is of bounded variation, so that
|α| is increasing on [0, T ]. We observe that the functions α and β induce a
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Lebesgue–Stieltjes measure να,β on [0, T ] by

να,β(E) =

∫
E

d(|α|+ β)(t)

for a Lebesgue measurable subset E of [0, T ]. Define L2
α,β[0, T ] to be the space

of functions on [0, T ] that are square integrable with respect to the measure να,β;
that is,

L2
α,β[0, T ] =

{
f : [0, T ] → R :

∫ T

0

[f(t)]2dνα,β(t) < ∞
}
.

The space L2
α,β[0, T ] is a Hilbert space and has the obvious inner product [8]

⟨f, g⟩α,β =

∫ T

0

f(t)g(t)dνα,β(t) for f, g ∈ L2
α,β[0, T ].

We note that there exists a complete orthonormal set of functions in L2
α,β[0, T ];

so that L2
α,β[0, T ] is separable [5].

Let S[0, T ] denote the collection of all step functions on [0, T ]. For f in
L2
α,β[0, T ], let {ϕn} be a sequence of the step functions in S[0, T ] with limn→∞ ∥ϕn−

f∥α,β = 0. Define Iα,β(f) by the L2(C[0, T ])-limit

Iα,β(f)(x) = lim
n→∞

∫ T

0

ϕn(t)dx(t),

for all x ∈ C[0, T ] for which this limit exists, where
∫ T

0
ϕn(t)dx(t) denotes the

Riemann–Stieltjes integral of ϕn with respect to x. We note that Iα,β(f)(x)
exists for wα,β;φ-almost everywhere x ∈ C[0, T ] and it is independent of choice
of the sequence {ϕn} in S[0, T ] to define it [3]. We also note that Iα,β(f) is

normally distributed with the mean
∫ T

0
f(t)dα(t) and the variance ∥f∥20,β if φ is

a probability measure [3].
Let Mα,β be the class of complex measures of finite variation on L2

α,β[0, T ] with

the Borel σ-algebra B(L2
α,β[0, T ]) of L

2
α,β[0, T ] as its class of measurable sets. If

µ ∈ Mα,β, then we set ∥µ∥ = varµ, the total variation of µ over L2
α,β[0, T ]. Then

Mα,β is a Banach algebra under convolution, with the total variation norm, since
L2
α,β[0, T ] is a separable infinite dimensional Hilbert space [7]. Let S̄α,β;φ be the

space of functions of the form

F (x) =

∫
L2
α,β [0,T ]

exp{iIα,β(f)(x)}dµ(f), (2.1)

for all x ∈ C[0, T ] for which the integral exists, where µ ∈ Mα,β. Here we take

∥F∥ = inf{∥µ∥},

where the infimum is taken over all µ’s so that F and µ are related by (2.1).
We note that F is well-defined for wα,β;φ-almost everywhere x ∈ C[0, T ] and it is
an integrable function of x on C[0, T ]. Moreover, it is not difficult to show that
S̄α,β;φ is a Banach algebra with unit over C [5].
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Let F : C[0, T ] → C be a measurable function and suppose that the integral

JF (λ) ≡
∫
C[0,T ]

F (λ− 1
2x)dwα,β;φ(x)

exists as a finite number for all λ > 0. If there exists a function J∗
F (λ) analytic in

C+ ≡ {λ ∈ C : Reλ > 0}
such that J∗

F (λ) = JF (λ) for all λ > 0, then J∗
F (λ) is defined to be a generalized

analytic Wiener wα,β;φ-integral of F over C[0, T ] with the parameter λ, and it is
denoted by ∫ anwλ

C[0,T ]

F (x)dwα,β;φ(x) = J∗
F (λ)

for λ ∈ C+. Let q be a nonzero real number. If
∫ anwλ

C[0,T ]
F (x)dwα,β;φ(x) has a limit

as λ approaches −iq through C+, then we call it a generalized analytic Feynman
wα,β;φ-integral of F over C[0, T ] with the parameter q, and it is denoted by∫ anfq

C[0,T ]

F (x)dwα,β;φ(x) = lim
λ→−iq

∫ anwλ

C[0,T ]

F (x)dwα,β;φ(x).

3. A Banach algebra of classes of measures

In this section we introduce a Banach algebra of equivalence classes of measures
over the paths of bounded variation on [0, T ].

Let B[0, T ] be the space of real right-continuous functions of bounded variation
on [0, T ] that vanish at T . Let A′ be the σ-algebra of subsets of B[0, T ] generated
by the class of sets of the form

{v ∈ B[0, T ] : ⟨v, f⟩α,β < λ},
where f and λ range over all elements of L2

α,β[0, T ] and all real numbers, respec-
tively. Let M(B[0, T ]) be the class of complex measures of finite variation defined
on subsets of B[0, T ] with A′ as their class of measurable sets. If µ ∈ M(B[0, T ]),
we set ∥µ∥ = varµ over B[0, T ]. Note that M(B[0, T ]) is a Banach algebra under
convolution, with the total variation norm [2]. For v ∈ B[0, T ], let

J(x, v) = exp

{
i

∫ T

0

v(t)dx(t)

}
for x ∈ C[0, T ]. (3.1)

Define a relation ∼ on M(B[0, T ]) by µ1 ∼ µ2, for µ1, µ2 ∈ M(B[0, T ]), if∫
B[0,T ]

J(x, v)dµ1(v) =

∫
B[0,T ]

J(x, v)dµ2(v)

for wα,β;φ-almost everywhere x ∈ C[0, T ]. It is obvious that ∼ is an equivalence
relation onM(B[0, T ]). Let M̄(B[0, T ]) be the set of equivalence classes under ∼.
For [µ1], [µ2] ∈ M̄(B[0, T ]) and c ∈ C, define [µ1] + [µ2] = [µ1+µ2], c[µ1] = [cµ1],
and [µ1][µ2] = [µ1 ∗ µ2]. In the following lemma, we prove that these operations
are well-defined and that M̄(B[0, T ]) is an algebra.

Lemma 3.1. M̄(B[0, T ]) is an algebra with unit over C.
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Proof. It is obvious that the addition and scalar multiplication are well-defined.
Let σ1 ∈ [µ1] and σ2 ∈ [µ2], where [µ1], [µ2] ∈ M̄(B[0, T ]) for µ1, µ2 ∈ M(B[0, T ]).
Then the multiplication is well-defined, since, for wα,β;φ-almost everywhere x ∈
C[0, T ],∫

B[0,T ]

J(x, v)d(µ1 ∗ µ2)(v) =

∫
B[0,T ]

∫
B[0,T ]

J(x, u+ v)dµ1(u)dµ2(v)

=

[∫
B[0,T ]

J(x, u)dµ1(u)

][∫
B[0,T ]

J(x, v)dµ2(v)

]
=

[∫
B[0,T ]

J(x, u)dσ1(u)

][∫
B[0,T ]

J(x, v)dσ2(v)

]
=

∫
B[0,T ]

∫
B[0,T ]

J(x, u+ v)dσ1(u)dσ2(v)

=

∫
B[0,T ]

J(x, v)d(σ1 ∗ σ2)(v).

We also have, for D ∈ A′ and µ ∈ M(B[0, T ]),

(δ0 ∗ µ)(D) =

∫
B[0,T ]

∫
B[0,T ]

χD(u+ v)dδ0(u)dµ(v) =

∫
B[0,T ]

χD(v)dµ(v) = µ(D),

where δ0 is the Dirac measure concentrated at the zero function in B[0, T ]. So
that [δ0][µ] = [δ0 ∗ µ] = [µ]; that is, [δ0] is the unit of M̄(B[0, T ]). Now it is easy
to prove that M̄(B[0, T ]) is an algebra with unit [δ0] over C. □
Lemma 3.2. Define ∥[µ]∥ = inf{∥µ1∥ : µ1 ∈ [µ]} for [µ] ∈ M̄(B[0, T ]). Then
(M̄(B[0, T ]), ∥ · ∥) is a normed algebra with unit over C.

Proof. By Lemma 3.1, it remains to prove that ∥ · ∥ is a norm on the algebra
M̄(B[0, T ]) with unit [δ0]. It is clear that ∥[0]∥ = 0. Suppose that ∥[µ]∥ = 0 for
[µ] ∈ M̄(B[0, T ]). Then, for wα,β;φ-almost everywhere x ∈ C[0, T ], we have∣∣∣∣∫

B[0,T ]

J(x, f)dµ(f)

∣∣∣∣ = ∣∣∣∣∫
B[0,T ]

J(x, f)dµ1(f)

∣∣∣∣ ≤ ∥µ1∥

for all µ1 ∈ [µ]; so that we have∣∣∣∣∫
B[0,T ]

J(x, f)dµ(f)

∣∣∣∣ ≤ inf{∥µ1∥ : µ1 ∈ [µ]} = ∥[µ]∥ = 0,

which implies that ∫
B[0,T ]

J(x, f)dµ(f) = 0.

Now we have [µ] = [0]. Let c ∈ C and [µ] ∈ M̄(B[0, T ]). If c = 0, then
∥c[µ]∥ = |c|∥[µ]∥. Suppose that c ̸= 0. Then

∥c[µ]∥ = inf{∥σ∥ : σ ∈ [cµ]}

= inf

{
|c|
∥∥∥∥1cσ

∥∥∥∥ :
1

c
σ ∈ [µ]

}
= |c| inf{∥τ∥ : τ ∈ [µ]} = |c|∥[µ]∥.
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Moreover let [µ1], [µ2] ∈ M̄(B[0, T ]), and let ϵ > 0 be arbitrary. Take σ1 ∈ [µ1]
and σ2 ∈ [µ2] such that

∥σ1∥ < ∥[µ1]∥+
ϵ

2
and ∥σ2∥ < ∥[µ2]∥+

ϵ

2
.

Then

∥[µ1] + [µ2]∥ = ∥[σ1 + σ2]∥ ≤ ∥σ1 + σ2∥ ≤ ∥σ1∥+ ∥σ2∥ < ∥[µ1]∥+ ∥[µ2]∥+ ϵ

and

∥[µ1][µ2]∥ = ∥[σ1 ∗ σ2]∥ ≤ ∥σ1 ∗ σ2∥ ≤ ∥σ1∥∥σ2∥ <

(
∥[µ1]∥+

ϵ

2

)(
∥[µ2]∥+

ϵ

2

)
.

Since ϵ is arbitrary, we have

∥[µ1] + [µ2]∥ ≤ ∥[µ1]∥+ ∥[µ2]∥ and ∥[µ1][µ2]∥ ≤ ∥[µ1]∥∥[µ2]∥.
We also have ∥[δ0]∥ ≤ ∥δ0∥ = 1 and ∥[δ0]∥ = ∥[δ0][δ0]∥ ≤ ∥[δ0]∥2 which imply
∥[δ0]∥ = 1 because [0] ̸= [δ0]. Now ∥ · ∥ is a norm on M̄(B[0, T ]) which completes
the proof. □
Theorem 3.3. M̄(B[0, T ]) is a Banach algebra with unit.

Proof. It only remains to be shown that M̄(B[0, T ]) is complete under the norm
given by Lemma 3.2. Let {[µn]}∞n=1 be a Cauchy sequence of elements in M̄(B[0, T ])
and take a subsequence {[µnk

]}∞k=1 of {[µn]}∞n=1 satisfying

∥[µnk
]− [µnk−1

]∥ <
1

2k
for k = 2, 3, . . . .

Take σ1 ∈ [µn1 ] with

∥σ1∥ < ∥[µn1 ]∥+ 1.

For each k = 2, 3, . . ., take σk ∈ [µnk
− µnk−1

] with

∥σk∥ < ∥[µnk
]− [µnk−1

]∥+ 1

2k
.

Then we have
∞∑
k=1

∥σk∥ < ∥µn1∥+
∞∑
k=1

1

2k−1
< ∞.

Let µ =
∑∞

k=1 σk ∈ M(B[0, T ]). Then we also have

∥[µ]− [µnk
]∥ =

∥∥∥∥[µ]− k∑
j=2

[µnj
− µnj−1

]− [µn1 ]

∥∥∥∥ =

∥∥∥∥[µ]− k∑
j=1

[σj]

∥∥∥∥
≤

∥∥∥∥ ∞∑
j=k+1

σj

∥∥∥∥ ≤
∞∑

j=k+1

∥σj∥ ≤
∞∑

j=k+1

1

2j−1
=

1

2k−1
,

which converges to 0 as k → ∞. Since {[µn]}∞n=1 is a Cauchy sequence it follows
that

lim
n→∞

∥[µ]− [µn]∥ = 0;

so that M̄(B[0, T ]) is complete as desired. □
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4. A Banach algebra of transforms of measures

In this section, we introduce a Banach algebra of generalized Fourier–Stieltjes
transforms of the C-valued finite Borel measures over B[0, T ].

Let S̄ ′
α,β;φ be the space of functions of the form

F (x) =

∫
B[0,T ]

J(x, f)dµ(f), (4.1)

for wα,β;φ-almost everywhere x ∈ C[0, T ], where µ ∈ M(B[0, T ]) and where J is
defined by (3.1). Here we take

∥F∥′ = inf{∥µ∥},
where the infimum is taken over all µ’s; so that F and µ are related by (4.1). By
using the same method as the proof of Lemma 3.2, we can prove that (S̄ ′

α,β;φ, ∥·∥′)
is a normed space over C.

Lemma 4.1. For each positive integer n, let Fn ∈ S̄ ′
α,β;φ with

∞∑
n=1

∥Fn∥′ < ∞.

Then the sum defined by

F (x) ≡
∞∑
n=1

Fn(x), for wα,β;φ-almost everywhere x ∈ C[0, T ], (4.2)

converges absolutely and uniformly, and it is an element of S̄ ′
α,β;φ.

Proof. For each positive integer n, take µn ∈ M(B[0, T ]) such that

∥µn∥ < ∥Fn∥′ +
1

2n

and Fn and µn are related by (4.1). Then, for wα,β;φ-almost everywhere x ∈
C[0, T ],

∞∑
n=1

|Fn(x)| ≤
∞∑
n=1

∥µn∥ ≤
∞∑
n=1

(
∥Fn∥′ +

1

2n

)
=

∞∑
n=1

∥Fn∥′ + 1 < ∞.

Hence the absolute and uniform convergences of the right-hand side of (4.2)
follow for wα,β;φ-almost everywhere x ∈ C[0, T ]. Define µ ∈ M(B[0, T ]) by
µ =

∑∞
n=1 µn. For f ∈ B[0, T ] and x ∈ C[0, T ], let

Jk(x, f) = exp

{
m

2k
πi

}
when, for m = −2k + 1,−2k + 2, . . . , 2k; k = 1, 2, . . .,

m− 1

2k
π < ArgJ(x, f) ≤ m

2k
π.

Then Jk(x, ·) is a simple function with respect to each of the measures µ1, µ2,
. . ., and µ, and

lim
k→∞

Jk(x, f) = J(x, f)
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uniformly for all f ∈ B[0, T ]. Since Jk(x, ·) is a simple function and
∑∞

n=1 ∥µn∥
converges, it follows that∫

B[0,T ]

Jk(x, f)dµ(f) =
∞∑
n=1

∫
B[0,T ]

Jk(x, f)dµn(f)

uniformly. Taking limits on the both sides of the above equality, we obtain∫
B[0,T ]

J(x, f)dµ(f) = lim
k→∞

∫
B[0,T ]

Jk(x, f)dµ(f)

= lim
k→∞

∞∑
n=1

∫
B[0,T ]

Jk(x, f)dµn(f)

=
∞∑
n=1

lim
k→∞

∫
B[0,T ]

Jk(x, f)dµn(f)

=
∞∑
n=1

Fn(x) = F (x)

for wα,β;φ-almost everywhere x ∈ C[0, T ]; so that F ∈ S̄ ′
α,β;φ. □

Theorem 4.2. S̄ ′
α,β;φ is a Banach space.

Proof. It suffices to be shown that S̄ ′
α,β;φ is complete under the norm ∥ · ∥′. Let

{Fn}∞n=1 be a Cauchy sequence of elements in S̄ ′
α,β;φ, and take a subsequence

{Fnk
}∞k=1 of {Fn}∞n=1 satisfying

∥Fnk
− Fnk−1

∥′ < 1

2k
for k = 2, 3, . . . .

Let G1 = Fn1 and Gk = Fnk
−Fnk−1

for k = 2, 3, . . .. Then
∑∞

k=1 ∥Gk∥′ < ∞ and
each Gk ∈ S̄ ′

α,β;φ. By Lemma 4.1, there exists a function G ∈ S̄ ′
α,β;φ such that

G(x) =
∞∑
k=1

Gk(x)

for wα,β;φ-almost everywhere x ∈ C[0, T ]. Let {µk}∞k=1 be a sequence of measures
in M(B[0, T ]) such that Gk and µk are related by (4.1) with

∥µk∥ < ∥Gk∥′ +
1

2k
.

By Lemma 4.1, G and
∑∞

k=1 µk are related by (4.1). Now, for wα,β;φ-almost
everywhere x ∈ C[0, T ],

G(x)− Fnk
(x) = G(x)−

k∑
j=1

Gj(x) =

∫
B[0,T ]

J(x, f)d

( ∞∑
j=k+1

µj

)
(f);

so that

∥G− Fnk
∥′ ≤

∥∥∥∥ ∞∑
j=k+1

µj

∥∥∥∥ ≤
∞∑

j=k+1

∥µj∥ ≤
∞∑

j=k+1

(
∥Gj∥′ +

1

2j

)
≤ 1

2k−1
,
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which converges to 0 as k → ∞. Since {Fn}∞n=1 is a Cauchy sequence, it follows
that

lim
n→∞

∥G− Fn∥′ = 0,

which proves this theorem. □
Theorem 4.3. The space S̄ ′

α,β;φ is a Banach algebra with unit. Moreover, S̄ ′
α,β;φ

is isometrically isomorphic to M̄(B[0, T ]).

Proof. Let F,G ∈ S̄ ′
α,β;φ, and let ϵ > 0 be arbitrary. Let F,G and µ, ν be related

by (4.1), respectively, with

∥µ∥ < ∥F∥′ + ϵ and ∥ν∥ < ∥G∥′ + ϵ.

It is not difficult to show that FG and µ ∗ ν are related by (4.1). Moreover,

∥FG∥′ ≤ ∥µ ∗ ν∥ ≤ ∥µ∥∥ν∥ < (∥F∥′ + ϵ)(∥G∥′ + ϵ);

so that

∥FG∥′ ≤ ∥F∥′∥G∥′,
since ϵ is arbitrary. The constant function 1 is the unit of S̄ ′

α,β;φ, since 1 and δ0
are related by (4.1). By the definition of ∥ · ∥′, we have ∥1∥′ ≤ ∥δ0∥ = 1. Since
∥1∥′ = ∥12∥′ ≤ ∥1∥′ ·∥1∥′ and 1 ̸= 0, we have 1 ≤ ∥1∥′; so that ∥1∥′ = 1 and S̄ ′

α,β;φ

is a Banach algebra with unit by Theorem 4.2. Define ϕ : M̄(B[0, T ]) → S̄ ′
α,β;φ

by

ϕ([µ]) =

∫
B[0,T ]

J(x, f)dµ(f)

for wα,β;φ-almost everywhere x ∈ C[0, T ]. Let c1, c2 ∈ C and [µ1], [µ2] ∈ M̄(B[0, T ]).
If [µ1] = [µ2], then µ1 ∼ µ2. By the definition of ∼, we have ϕ([µ1]) = ϕ([µ2]),
which implies that ϕ is well-defined. Now we have

ϕ(c1[µ1] + c2[µ2]) = ϕ([c1µ1 + c2µ2])

=

∫
B[0,T ]

J(x, f)d(c1µ1 + c2µ2)(f)

= c1ϕ([µ1]) + c2ϕ([µ2]).

Since J(x, f + g) = J(x, f)J(x, g), for f, g ∈ B[0, T ] and for wα,β;φ-almost every-
where x ∈ C[0, T ], we also have

ϕ([µ1][µ2]) = ϕ([µ1 ∗ µ2])

=

∫
B[0,T ]

J(x, f)d(µ1 ∗ µ2)(f)

=

∫
B[0,T ]

∫
B[0,T ]

J(x, f + g)dµ1(f)dµ2(g)

=

[∫
B[0,T ]

J(x, f)dµ1(f)

][∫
B[0,T ]

J(x, g)dµ2(g)

]
= ϕ([µ1])ϕ([µ2]).
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By the definition of S̄ ′
α,β;φ, it is obvious that ϕ is onto. If ϕ([µ1]) = ϕ([µ2]), then∫

B[0,T ]

J(x, f)dµ1(f) = ϕ([µ1]) = ϕ([µ2]) =

∫
B[0,T ]

J(x, f)dµ2(f)

for wα,β;φ-almost everywhere x ∈ C[0, T ]; so that µ1 ∼ µ2. Thus we have [µ1] =
[µ2], which implies that ϕ is one-to-one. Moreover, we have

∥ϕ([µ1])∥′ =

∥∥∥∥∫
B[0,T ]

J(·, f)dµ1(f)

∥∥∥∥′

= inf{∥µ∥ : µ ∈ M(B[0, T ]) and µ ∼ µ1}

= inf{∥µ∥ : µ ∈ [µ1]} = ∥[µ1]∥;

so that ϕ is an isometric Banach algebra isomorphism. □

Theorem 4.4. S̄ ′
α,β;φ ⊆ S̄α,β;φ, which is the Banach algebra of functions given by

(2.1).

Proof. If F ∈ S̄ ′
α,β;φ, then there exists µ′ ∈ M(B[0, T ]) such that (4.1) holds.

Note that B[0, T ] ⊆ L2
α,β[0, T ]; so that if E ∈ B(L2

α,β[0, T ]), then E∩B[0, T ] ∈ A′

by the definition of A′. Define a measure µ on L2
α,β[0, T ] by

µ(E) = µ′(E ∩B[0, T ]) for all E ∈ B(L2
α,β[0, T ]).

Then we have, for wα,β;φ-almost everywhere x ∈ C[0, T ],

F (x) =

∫
B[0,T ]

J(x, f)dµ′(f) =

∫
B[0,T ]

exp{iIα,β(f)(x)}dµ′(f)

=

∫
L2
α,β [0,T ]

exp{iIα,β(f)(x)}dµ(f), (4.3)

by Theorem 3.8 of [3], which completes the proof. □

Remark 4.5. It is not obvious whether S̄ ′
α,β;φ is isometrically embedded in S̄α,β;φ

or not. By Theorem 4.4, we can know that S̄ ′
α,β;φ is only a subspace of S̄α,β;φ as

a vector space.

Corollary 4.6. If F ∈ S̄ ′
α,β;φ, then ∥F∥ ≤ ∥F∥′, where ∥F∥ is the norm of F in

S̄α,β;φ; so that S̄ ′
α,β;φ is continuously embedded in S̄α,β;φ.

Proof. Let F ∈ S̄ ′
α,β;φ. Take any µ′ in M(B[0, T ]) such that (4.1) holds. Let µ

be the measure defined in the proof of Theorem 4.4. Since F and µ are related
by (2.1) from (4.3), we have ∥F∥ ≤ ∥µ∥; so that

∥F∥ ≤ ∥µ∥ = varB[0,T ]µ+ varL2
α,β [0,T ]−B[0,T ]µ = varB[0,T ]µ

′ + 0 = ∥µ′∥.

Since µ′ is an arbitrary measure satisfying (4.1), we have

∥F∥ ≤ inf{∥µ′∥} = ∥F∥′;

so that the proof of this corollary is completed. □
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Remark 4.7. Assume that the following condition [4] holds: φ is a probability
measure on R, α is absolutely continuous, β′ is continuous, positive, and bounded
away from 0, and L2

α,β[0, T ] = L2
0,β[0, T ] as sets. Then ∥F∥ = ∥F∥′, for F ∈ S̄ ′

α,β;φ,

by the uniqueness of the measure which is related by (4.1); so that S̄ ′
α,β;φ is

isometrically embedded in S̄α,β;φ. In particular, if α(t) = 0, β(t) = t for t ∈ [0, T ],
and φ = δ0, then we have S̄ ′

α,β;φ = S ′ and S̄α,β;φ = S, where S ′ and S are the
spaces of Fourier–Stieltjes transforms of measures of finite variation on B[0, T ]
and L2[0, T ], respectively. So that S̄ ′

α,β;φ and S̄α,β;φ generalize S ′ and S in [2],
respectively.

5. Applications to the analytic Feynman integrals

Feynman integrals are introduced by Feynman in his formulation of quantum
mechanics, but they are inadequate mathematically [6]. One of approaches to
define rigorously them, is to use an analytic continuation from real to imaginary
time, which is now called the analytic Feynman integral [7].

In this section we evaluate analytic Feynman integrals of the functions in S̄ ′
α,β;φ,

which play important roles in treating the heat equation and the Schrödinger
equation by integration over the Wiener space [1].

Theorem 5.1. For µ ∈ M(B[0, T ]) and F ∈ S̄ ′
α,β;φ, let F and µ be related by

(4.1). Then we have, for λ > 0,

JF (λ) = φ(R)
∫
B[0,T ]

exp

{
− 1

2λ

∫ T

0
[f(t)]2dβ(t) + iλ− 1

2

∫ T

0
f(t)dα(t)

}
dµ(f). (5.1)

In addition, if there exists M > 0 satisfying

∫
B[0,T ]

exp

{
Re(iλ− 1

2 )

∫ T

0

f(t)dα(t)

}
d|µ|(f) ≤ M, (5.2)

for any λ ∈ C+, then
∫ anwλ

C[0,T ]
F (x)dwα,β;φ(x) is given by the right-hand side of

(5.1). Moreover, if (5.2) holds for all λ ∈ {z ∈ C : Rez ≥ 0, z ̸= 0}, then, for
any nonzero real q,

∫ anfq
C[0,T ]

F (x)dwα,β;φ(x) is given by the right-hand side of (5.1)

with replacing λ by −iq.

Proof. Let φ0 = 1
φ(R)φ. Then φ0 is a probability measure on R; so that wα,β;φ0

is also a probability measure on C[0, T ], and wα,β;φ = φ(R)wα,β;φ0 by their def-
initions. Now the null sets with respect to wα,β;φ are equivalent to the null sets

with respect to wα,β;φ0 . Moreover, as a function on (C[0, T ], wα,β;φ0),
∫ T

0
f(t)dx(t)

is normally distributed with the mean
∫ T

0
f(t)dα(t) and the variance ∥f∥20,β for
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f ∈ L2
α,β[0, T ] (see [3]). We now have, for λ > 0,

JF (λ) =

∫
C[0,T ]

F (λ− 1
2x)dwα,β;φ(x)

= φ(R)
∫
B[0,T ]

∫
C[0,T ]

exp

{
iλ− 1

2

∫ T

0

f(t)dx(t)

}
dwα,β;φ0(x)dµ(f)

= φ(R)
∫
B[0,T ]

exp

{
− 1

2λ

∫ T

0

[f(t)]2dβ(t) + iλ− 1
2

∫ T

0

f(t)dα(t)

}
dµ(f),

by Fubini’s theorem, since B[0, T ] ⊆ L2
α,β[0, T ], which proves (5.1). If (5.2) holds,

then we have the remainder part of this theorem by the analytic continuation and
the dominated convergence theorem. □

By letting M = ∥µ∥ in (5.2) of Theorem 5.1, we now have the following corol-
lary.

Corollary 5.2. For µ ∈ M(B[0, T ]) and F ∈ S̄ ′
α,β;φ, let F and µ be related by

(4.1). If
∫ T

0
f(t)dα(t) = 0 for µ almost everywhere f ∈ B[0, T ], then we have, for

any λ ∈ C+,∫ anwλ

C[0,T ]

F (x)dwα,β;φ(x) = φ(R)
∫
B[0,T ]

exp

{
− 1

2λ

∫ T

0

[f(t)]2dβ(t)

}
dµ(f). (5.3)

Moreover, for any nonzero real q,
∫ anfq
C[0,T ]

F (x)dwα,β;φ(x) is given by the right-hand

side of (5.3) with replacing λ by −iq.

Remark 5.3. All the results of this paper are independent of choice of the initial
measure φ; that is, they does not depend on particular initial positions of the
generalized Wiener paths.
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