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Abstract. Let Pt (a ≤ t ≤ b) be a function whose values are projections in a
Banach space. The paper is devoted to bounded linear operators A admitting
the representation

A =

∫ b

a

ϕ(t)dPt + V,

where ϕ(t) is a scalar function and V is a compact quasi-nilpotent operator such
that PtV Pt = V Pt (a ≤ t ≤ b). We obtain norm estimates for the resolvent of
A and a bound for the spectral variation of A. In addition, the representation
for the resolvents of the considered operators is established via multiplicative
operator integrals. That representation can be considered as a generalization of
the representation for the resolvent of a normal operator in a Hilbert space. It
is also shown that the considered operators are Kreiss-bounded. Applications
to integral operators in Lp are also discussed. In particular, bounds for the
upper and lower spectral radius of integral operators are derived.

1. Introduction

Throughout this paper X is a Banach space with the approximation property;
that is, any compact operator in X is a limit in the operator norm of finite rank
operators, see [22]; B(X ) is the set of all bounded operators in X , and I is the unit
operator in X . For an A ∈ B(X ), A∗ is the operator adjoint to A, σ(A) denotes
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the spectrum, Rλ(A) = (A−λI)−1 is the resolvent, and ρ(A, λ) := inft∈σ(A) |λ− t|
is the distance between λ ∈ C and σ(A). In addition,

svA(Ã) := sup
µ∈σ(Ã)

inf
λ∈σ(A)

|µ− λ|

is the spectral variation of an operator Ã ∈ B(X ) with respect to A.
In the present paper we consider a class of operators from B(X ) having rather

rich sets of invariant subspaces and admitting the triangular representation.
The deep theory of triangular representations of nonselfadjoint operators in a

Hilbert space H via integrals along maximal chains has been developed in the
works of M.S. Brodskii, I. C. Gohberg, M.G. Krein, L.A. Sakhnovich, and other
mathematicians; see [2, 3, 15, 17, 24] and references therein. We particularly
extend some of the representations investigated in the mentioned works.

In the 1930, Carleman established a norm estimate for the resolvent of a
Schatten–von Neumann operator via the regularized determinant; see [6]. In
[12] that estimate has been slightly refined. In [11] the author has obtained a
sharp norm estimate for the resolvent of a Schatten–von Neumann operator A
in terms of ρ(A, λ). The results of paper [11] have been extended to various
nonselfadjoint operators in a Hilbert space [13, 14]. In the present paper for the
resolvents of the considered operators in X , we obtain a norm estimate in terms
of ρ(A, λ). It gives us a bound for svA(Ã). It should be noted that the spectral
variations mainly investigated in the cases of finite rank operators and operators
in a Hilbert space; see [1, 25] (see also [14] and references therein).

We discuss applications of the above pointed results to integral operators.
In particular, inequalities for the upper and lower spectral radii of the Hille–
Tamarkin integral operators are suggested.

An operator T ∈ B(X ) is said to be Kreiss bounded, if

∥(λI − T )−1∥ ≤ c0
|λ| − 1

(|λ| > 1, c0 = const > 0)

see papers [21, 26]. In particular, in these papers it was shown that the op-
erator of the indefinite integration is Kreiss-bounded. Below we show that the
operators considered in this paper are Kreiss-bounded. In addition, we suggest
the representation for resolvents via the multiplicative operator integrals. That
representation can be considered as a generalization of the representation for the
resolvents of normal operators in a Hilbert space.

A few words about the contents. The paper consists of 10 sections.
In Section 2 we introduce the notion of the maximal chain of projections in X

and consider some properties of operators with invariant maximal chains.
Section 3 is devoted to projection functions whose values form continuous max-

imal chains and to operators commuting with these projection functions. In addi-
tion, the notion of the triangular representation is introduced for operators having
invariant continuous projection functions.

In Section 4, norm estimates are derived for the resolvents of the operators
admitting the triangular representations. In Section 5 these estimates are applied
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to the spectral variations of the considered operators. Sections 6–8 are devoted
to applications of the above pointed results to integral operators in Lp.

The representation for the resolvents of the considered operators via multi-
plicative operator integrals is presented in Section 9.

Section 10 deals with operators in a Hilbert space having Shatten–von Neu-
mann Hermitian components. Note that in paper [10] the representation of the
resolvent of such operators via the spectral measure has been suggested without
the proof. In [12, Chapter 10] and [14, Section 9.9] short proofs of the main result
from [10] are given. In Section 10 below we considerably refine the just mentioned
results from [12] and [14].

2. Maximal chains of projections

For two projections P1 and P2 in X ( P1 ̸= P2), we write P1 < P2 if P1P2 =
P2P1 = P1 (and thus P1X ⊂ P2X ). A set P of projections in X , containing at
least two projections, is called a chain (of projections), if from P1, P2 ∈ P with
P1 ̸= P2 it follows that either P1 < P2 or P1 > P2.

Let P−, P+ ∈ P , and let P− < P+. If for every P ∈ P we have either
P < P− or P > P+, then the pair (P+, P−) is called a gap of P . Besides,
dim (P+ − P−)X is the dimension of the gap. A chain which does not have gaps
is called a continuous chain.

A projection P in X is called a limit projection of a chain P if there exists a
sequence Pk ∈ P (k = 1, 2, . . .) which strongly converges to P . A chain is said to
be closed if it contains all its limit projections.

Definition 2.1. A chain P is said to be maximal if it is closed, contains 0 and
I, all its gaps (if they exist) are one dimensional, and supP∈P ∥P∥ <∞.

We will say that a maximal chain P is invariant for A ∈ B(X ), or A has a
maximal invariant chain P, if PAP = AP for any P ∈ P .

Lemma 2.2. Let P1 and P2 be two invariant projections of A, and let P1 < P2.
Then P ∗

2 − P ∗
1 is an invariant projection of P ∗

2A
∗.

Proof. Since P2P1 = P1P2 = P1, we have

(P2 − P1)A(P2 − P1) = P2AP2 − P2AP1 − P1AP2 + P1AP1

= AP2 − P2P1AP1 − P1AP2 + AP1

= AP2 − P1AP1 − P1AP2 + AP1

= (P2 − P1)AP2.

As claimed. □
Let us prove the following result.

Lemma 2.3. Let a compact operator V ∈ B(X ) have a maximal invariant chain
P. If, in addition,

(P+ − P−)V (P+ − P−) = 0, (2.1)

for every gap (P+, P−) of P (if it exists), then V is a quasi-nilpotent operator;
that is, σ(V ) = {0}.
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Proof. Indeed, since (P+ − P−)V (P+ − P−) is one dimensional, by the previous
lemma we have (P+ − P−)∗V ∗(P+ − P−)∗h = µ(P+ − P−)∗h = V ∗(P+ − P−)∗h
(µ ∈ C, h ∈ X ∗). So µ is an eigenvalue of V and (P+−P−)h is the corresponding
eigenvector. By (2.1) µ = 0. Moreover, at the points of the continuity of P
operator V does not have eigenvectors. So V does not have nonzero eigenvalues;
but V is compact. So it is quasi-nilpotent. □

In particular, if a compact operator has a continuous invariant chain, then it
is quasi-nilpotent.

We need also the following lemma.

Lemma 2.4. Let V be a compact quasi-nilpotent operator having a maximal
invariant chain P. Then equality (2.1) holds for every gap (P+, P−) of P (if it
exists).

Proof. As it is shown in the proof of the previous lemma, (P+ − P−)∗V ∗(P+ −
P−)∗h = µ(P2−P1)

∗h, where µ is an eigenvalue of V ∗. But V ∗ is quasi-nilpotent.
So µ = 0. This proves the lemma. □

In the what follows the expression (P+ −P−)T (P+ −P−) for a T ∈ B(X ) will
be called the block of the gap (P+, P−) of P on T .

Lemma 2.5. Let V1 and V2 be compact quasi-nilpotent operators having a joint
maximal invariant chain P. Then V1 + V2 is a quasi-nilpotent operator having
the same maximal invariant chain.

Proof. Since the blocks of the gaps of P on both V1 and V2, if they exist, are zero
(due to Lemma 2.4), the blocks of the gaps of P on V1 + V2 are also zero. Now
the required result is due to Lemma 2.3. □

Lemma 2.6. Let V and B be bounded linear operators in X having a joint max-
imal invariant chain P. In addition, let V be a compact quasi-nilpotent operator.
Then V B and BV are quasi-nilpotent and P is their maximal invariant chain.

Proof. It is obvious that

PV BP = V PBP = V BP (P ∈ P).

Now let Q = P+−P− for a gap (P+, P−). Then according to Lemma 2.4 equality
(2.1) holds. Further, we have QV P− = QBP− = 0 and

QV BQ = QV B(P+ − P−) = QV (P+BP+ − P−BP−)

= QV [(P− +Q)B(P− +Q)− P−BP−] = QVQBQ = 0.

Due to Lemma 2.3, this relation implies that V B is a quasi-nilpotent operator.
Similarly we can prove that BV is quasi-nilpotent. □

Lemma 2.7. Let V and B be bounded linear operators in X having a joint max-
imal invariant chain P. In addition, let V be a compact quasi-nilpotent operator
and the regular set of B be simply connected. Then σ(B + V ) = σ(B).
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Proof. We have

PRλ(B)P = −
∞∑
k=0

P
Bk

λk+1
P = Rλ(B)P (|λ| > ∥B∥, P ∈ P).

Since the set of regular points of B is simply connected, by the resolvent identity
one can extend the equality PRλ(B)P = Rλ(B)P to all regular λ of B (see also
[23, pp. 32–33]).

Put T = B + V . For any λ ̸∈ σ(B), an operator V Rλ(B) is quasi-nilpotent
due to Lemma 2.6. So I + V Rλ(B) is boundedly invertible, and therefore,

Rλ(T ) = (B + V − λI)−1 = Rλ(B)(I + V Rλ(B))−1 (λ ̸∈ σ(B)).

Hence it follows that λ is a regular point for T . Consequently,

σ(T ) ⊆ σ(B). (2.2)

So the regular set of T is also simply connected.
Now let λ ̸∈ σ(T ). Since P is invariant for T , as above we can show that P is

invariant for Rλ(T ). Then operator V Rλ(T ) is quasi-nilpotent due to Lemma 2.6.
So I − V Rλ(T ) is boundedly invertible. Furthermore, according to the equality
B = T − V , we get

Rλ(B) = (T − V − λI)−1 = Rλ(T )(I − V Rλ(T ))
−1.

Hence, it follows that λ is a regular point also for B, and therefore σ(B) ⊆ σ(T ).
This proves the result. □

3. Operators having continuous maximal chains

Definition 3.1. Let Pt (t ∈ [a, b]) be a function defined on a finite segment
[a, b], whose values form a maximal continuous chain P of projections such that
Pt2Pt1 = Ps, (s = min{t2, t1}) Pa = 0, and Pb = I. Then we will call Pt a
continuous maximal projection function (CMPF).

So Pt is a particular case of a resolution of the identity.
It is assumed that there is a constant mP dependent on Pt only such that

∥
n∑
k=1

ak∆Pk∥ ≤ mP max
j

|aj|
(
n <∞, ∆Pk = Ptk − Pk−1

a = t0 < t1 < · · · < tn = b

)
(3.1)

for arbitrary numbers ak and an arbitrary partitioning of [a, b].
Let ψ(t) be a bounded scalar function defined on [a, b], and there exists a limit

S of the operator sums

Sn =
n∑
k=1

ψ(tk)∆Pk

in the operator norm. Then we write

S =

∫ b

a

ψ(t)dPt; (3.2)
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ψ(t) and S will be called a Pt-integrable function and a Pt-scalar operator, re-
spectively. We write S = ψ(T0), where

T0 =

∫ b

a

tdPt

is a scalar type spectral operator [7]. So a Pt-scalar operator is a function of a
scalar type spectral operator.

Due to (3.1), ∥Sn∥ ≤ mp supt |ψ(t)|; by the Banach–Steinhaus theorem, S is
bounded and ∥S∥ ≤ supn ∥Sn∥ ≤ mP supt |ψ(t)|.

For example, let as usually Lp = Lp(0, 1) (1 ≤ p < ∞) be the space of scalar-
valued functions h defined on [0, 1] and equipped with the norm

|h|Lp = [

∫ 1

0

|h(x)|pdx]1/p.

Let P̂t (0 ≤ t ≤ 1) be the truncation projection function, defined by the relations

P̂0 = 0, P̂1 = I, and

(P̂tf)(x) =

{
f(x) if 0 ≤ x < t,
0 if t < x ≤ 1

(t ∈ (0, 1), f ∈ Lp). (3.3)

It is simple to check that the values of P̂t form a continuous maximal chain and
the operator Ŝ defined by

(Ŝf)(x) = ψ̂(x)f(x) (0 ≤ x ≤ 1, f ∈ Lp(0, 1))

with an integrable function ψ̂ can be written in the form (3.2).
Furthermore, if infa≤t≤b |ψ(t)| > 0, then 1/ψ(t) is also Pt-integrable and ac-

cording to (3.2),

S−1 =

∫ b

a

1

ψ(t)
dPt. (3.4)

Indeed, put

Bn =
n∑
k=1

1

ψ(tk)
∆Pk.

Then

BnSn = SnBn =
n∑
k=1

∆Pk = I.

So Bn = S−1
n , and by (3.1), ∥S−1

n ∥ ≤ mP

inft |ψ(t)| <∞. Since

S−1
m − S−1

n = −S−1
m (Sm − Sn)S

−1
n → 0 (m,n→ ∞)

in the operator norm, we have S−1
n → S−1. So (3.4) is valid and ∥S−1∥ ≤

mP

inft |ψ(t)| <∞.

It is simple to check that

σ(S) = {z ∈ C : z = ψ(t), t ∈ [a, b]}.
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Let λ ̸= ψ(t), t ∈ [a, b]. Then according to (3.2) and (3.1),

(S − λI)−1 =

∫ b

a

1

ψ(t)− λ
dPt (3.5)

and
∥(S − λI)−1∥ ≤ mP

ρ(S, λ)
(λ ̸∈ σ(S)). (3.6)

Besides, ρ(S, λ) = inft |ψ(t)− λ|.

Definition 3.2. Let A ∈ B(X ), and let Pt be a CMPF. If PtAPt = APt (a ≤ t ≤
b), then Pt is said to be an invariant CMPF of A or A has a CMPF Pt.

Definition 3.3. Let A ∈ B(X ) have a CMPF Pt defined on [a, b], and let there
be a bounded Pt-integrable function ϕ such that

A = D + V, (3.7)

where

D =

∫ b

a

ϕ(t)dPt,

and V is a compact quasi-nilpotent operator in X . In addition, let the regular set
of A be simply connected. Then we will say that A is a Pt-triangular operator,
if equality (3.7) is its triangular representation, D and V are the diagonal and
nilpotent parts of A, respectively, and ϕ(.) is a Pt-diagonal function of A.

Note that PtV Pt = Pt(A−D)Pt = V Pt (a ≤ t ≤ b).
According to (3.5) we have

(D − λI)−1 =

∫ b

a

1

ϕ(t)− λ
dPt (λ ̸∈ σ(D)). (3.8)

Corollary 3.4. Let A be Pt-triangular, and let D and V be its diagonal part
and nilpotent one, respectively. Then for any regular point λ of D, the opera-
tors V Rλ(D) and Rλ(D)V are quasi-nilpotent ones. Besides Pt is invariant for
V Rλ(D) and Rλ(D)V .

Indeed, due to (3.8), Pt is invariant for Rλ(D). Now Lemma 2.6 ensures the
required result.

From Lemma 2.7, the following corollary is obtained.

Corollary 3.5. Let A be Pt-triangular. Then σ(A) = σ(D), where D is the
diagonal part of A.

Moreover, from (3.1), we have

Rλ(A) = (D + V − λI)−1 = Rλ(D)(I + V Rλ(D))−1 (λ ̸∈ σ(A)). (3.9)

Similarly one can check that

Rλ(A) = (I +Rλ(D)V )−1Rλ(D) (λ ̸∈ σ(A)).

Note that
ρ(A, λ) = ρ(D,λ) = inf

t
|ϕ(t)− λ|.
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4. Norm estimates for resolvents

Definition 4.1. Let Pt be a CMPF in X , and let E be a linear subspace of the
set of compact operators in X endowed with a norm NE(.) having the following
property: for arbitrary Pt-scalar operators S, S1 ∈ B(X ) the inequality

NE(SBS1) ≤ ∥S1∥∥S∥NE(B) (B ∈ E) (4.1)

is valid. Then E will be called a Pt-subset of compact operators.

For example, let E be the set of operators B in Lp = Lp(0, 1) (1 ≤ p < ∞)
defined by

(Bh)(x) =

∫ 1

0

k(x, s)h(s)ds (h ∈ Lp, x ∈ [0, 1]),

where k(x, s) is a scalar kernel defined on [0, 1]2 and satisfying the condition

Mp(B) := [

∫ 1

0

[

∫ 1

0

|k(x, s)|p′ds]p/p′dx]1/p <∞ (1 < p <∞, 1/p+ 1/p′ = 1)

(4.2)
or

M1(B) := ess sup
x

∫ 1

0

|k(x, s)|dx <∞.

Operators satisfying condition (4.2) are called (p, p′)-Hille–Tamarkin operators
[22, p.245].

It is not hard to check that NE(.) = Mp(.) is a norm. Take Pt = P̂t as
in (3.3). Then arbitrary Pt-scalar type operators S and S1 are the operators
of the multiplication by some scalar bounded measurable functions ψ and ψ1,
respectively. In this case we have

Mp(SBS1) = [

∫ 1

0

[

∫ 1

0

|ψ(x)k(x, s)ψ1(s)|p
′
ds]p/p

′
dx]1/p

≤ sup
x

|ψ(x)| sup
x

|ψ1(x)|[
∫ 1

0

[

∫ 1

0

|k(x, s)|p′ds]p/p′dx]1/p

= ∥S1∥∥S∥Mp(B).

So condition (4.1) is satisfied.
Furthermore, let us suppose that, for any quasi-nilpotent operator W ∈ E,

there are positive numbers θk (k = 1, 2, . . .) independent of W (but dependent on
E) such that

∥W k∥ ≤ θkN
k
E(W ) (k = 1, 2, . . .) (4.3)

and

lim
k→∞

k
√
θk = 0. (4.4)

Then

∥(I −W )−1∥ = ∥
∞∑
k=0

W k∥ ≤
∞∑
k=0

θkN
k
E(W ) <∞. (4.5)

Now we are in a position to formulate and prove the main result of this section.



RESOLVENTS OF LINEAR OPERATORS IN A BANACH SPACE 121

Theorem 4.2. Let A be a Pt-triangular operator, whose nilpotent part V belongs
to a Pt-subset of compact operators E such that conditions (4.1), (4.3), and (4.4)
hold. Then

∥Rλ(A)∥ ≤
∞∑
k=0

mk+1
P θkN

k
E(V )

ρk+1(A, λ)
(λ ̸∈ σ(A)). (4.6)

Proof. Let D be the diagonal part of A. Due to (3.6)

∥(D − λI)−1∥ ≤ mP

ρ(D,λ)
(λ ̸∈ σ(D)).

By Corollary 3.4, V Rλ(D) (λ ̸∈ σ(D)) is quasi-nilpotent, and according to (4.1),
(4.3) and (4.4),

∥(V Rλ(D))k∥ ≤ θkN
k
E(V Rλ(D))) ≤ θk∥Rλ(D)∥kNk

E(V ).

This implies

∥(V Rλ(D))k∥ ≤ mk
P θkN

k
E(V )

ρk(D,λ)

and therefore by (4.5),

∥(I + V Rλ(D))−1∥ = ∥
∞∑
k=0

(−V Rλ(D))k∥ ≤
∞∑
k=0

mk
P θkN

k
E(V )

ρk(D,λ)
.

Hence (3.9) yields

∥Rλ(A)∥ ≤
∞∑
k=0

mk+1
P θkN

k
E(V )

ρk+1(D,λ)
(λ ̸∈ σ(D)).

Taking into account that, by Corollary 3.4, ρ(D,λ) = ρ(A, λ), we arrive at the
required result. □

Observe that (4.6) implies

∥Rλ(A)∥ ≤
∞∑
k=0

mk+1
P θkN

k
E(V )

(|λ| − rs(A))k+1
(|λ| > rs(A)),

where rs(A) is the (upper) spectral radius. Assume that rs(A) < 1. Then

∥Rλ(A)∥ ≤ cA
|λ| − 1

(|λ| > 1)

with

cA =
∞∑
k=0

mk+1
P θkN

k
E(V )

(1− rs(A))k
.

We thus arrive at the following corollary.

Corollary 4.3. Under the hypothesis of Theorem 4.2, let rs(A) < 1. Then A is
Kreiss-bounded.
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5. Perturbations of triangularizable operators

Let A, Ã ∈ B(X ), and let q := ∥A − Ã∥. Recall that the spectral variation of
Ã with respect to A is defined in Section 1.

Due to the Hilbert identity Rλ(Ã)−Rλ(A) = Rλ(A)(A− Ã)Rλ(Ã), we have

∥Rλ(Ã)∥ ≤ ∥Rλ(A)∥+ q∥Rλ(A)∥∥Rλ(Ã)∥.

So if a λ ∈ C is regular for A and

q∥Rλ(A)∥ < 1, (5.1)

then λ is also regular for Ã. Moreover,

∥Rλ(Ã)∥ ≤ ∥Rλ(A)∥
1− q∥Rλ(A)∥

.

Assume that

∥Rλ(A)∥ ≤ F

(
1

ρ(A, λ)

)
(λ ̸∈ σ(A)), (5.2)

where F (t) is a monotonically increasing non-negative continuous function of a
non-negative variable such that F (0) = 0 and F (∞) = ∞. We need the following
technical lemma.

Lemma 5.1. Let A, Ã ∈ B(X ), and let condition (5.2) hold. Then svA(Ã) ≤
z(F, q), where z(F, q) is the unique positive root of the equation

qF (1/z) = 1.

For the proof see [14, Lemma 1.10]. Now Theorem 4.2 implies the following
corollary.

Corollary 5.2. Let A ∈ B(X ) satisfy the hypothesis of Theorem 4.2. Then, for
any Ã ∈ B(X ), we have svA(Ã) ≤ zE(A, q), where zE(A, q) is the unique positive
root of the equation

q
∞∑
k=0

mk+1
P θkN

k
E(V )

zk+1
= 1.

6. Powers of Volterra operators in Lp

The results of this section have been particularly published in [12, Chapters 16
and 17], but for the convenience of the reader we present here the brief proofs.
Throughout this section W is a Volterra operator in Lp ≡ Lp(0, 1) (1 ≤ p ≤ ∞)
defined by

(Wh)(x) =

∫ x

0

K(x, s)h(s)ds (h ∈ Lp, x ∈ [0, 1]), (6.1)

where K(x, s) is a scalar kernel defined on 0 ≤ s ≤ x ≤ 1 and satisfying the
inequalities pointed below.
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6.1. Hille–Tamarkin Volterra operators. Let 1 < p <∞, and let

Mp(W ) := [

∫ 1

0

[

∫ x

0

|K(x, s)|p′ds]p/p′dx]1/p <∞ (1/p+ 1/p′ = 1). (6.2)

That is, W is a (p, p′)-Hille–Tamarkin Volterra operator.

Lemma 6.1. Under condition (6.2), the operator W defined by (6.1) satisfies the
inequality

|W k|Lp ≤
Mk

p (W )
p
√
k!

(k = 1, 2, . . .).

Proof. Put

w(x) = [

∫ x

0

|K(x, s)|p′ds]p/p′ . (6.3)

Employing Hölder’s inequality, we have

|Wh|pLp ≤
∫ 1

0

w(s1)

∫ s1

0

|h(s2)|pds2 ds1 (h ∈ Lp).

Using this inequality, we obtain

|W kh|pLp ≤
∫ 1

0

w(s1)

∫ s1

0

|W k−1h(s2)|pds2 ds1.

Once more apply Hölder’s inequality,

|W kh|pLp ≤
∫ 1

0

w(s1)

∫ s1

0

w(s2)

∫ s2

0

|W k−2h(s3)|pds3 ds2 ds1.

Repeating these arguments, we arrive at the relation

|W kh|pLp ≤
∫ 1

0

w(s1)

∫ s1

0

w(s2) . . .

∫ sk

0

|h(sk+1)|pdsk+1 . . . ds2 ds1.

Hence,

|W k|pLp ≤
∫ 1

0

w(s1)

∫ s1

0

w(s2) . . .

∫ sk−1

0

w(sk)dsk . . . ds2 ds1. (6.4)

It is simple to see that with y(x) =
∫ x
0
w(s)ds we have∫ 1

0

w(s1) . . .

∫ sk−1

0

w(sk)dsk . . . ds1 =

∫ y(1)

0

. . .

∫ yk−1

0

dyk . . . dy1

=
yk(1)

k!
=

(
∫ 1

0
w(s)ds)k

k!
.

Thus (6.4) and (6.3) give us the inequality

|W k|pLp ≤
(
∫ 1

0
w(s)ds)k

k!
=Mpk

p (W ).

As claimed. □
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6.2. Volterra operators in L1 and L∞.

Lemma 6.2. Assume that

M1(W ) := ess− sup
s∈[0,1]

∫ 1

s

|K(x, s)|dx <∞.

Then the operator defined by (5.1) satisfies the inequality

|W k|L1 ≤ Mk
1 (W )

k!
(k = 1, 2, . . .).

Proof. We have∫ x

0

|(Wh)(s)|ds ≤
∫ x

0

∫ s

0

|K(s, s1)h(s1)|ds1ds

≤
∫ x

0

v(s)

∫ s

0

|h(s1)|ds1 ds (x ∈ [0, 1], h ∈ L1),

where v(s) = ess sups1≤s |K(s, s1)|. Hence∫ 1

0

|(W 2h)(s)|ds ≤
∫ 1

0

v(s)

∫ s

0

v(s1)

∫ s1

0

h(s2)ds2ds1ds.

Consequently,

∥W 2∥L1 ≤
∫ 1

0

v(s)

∫ s

0

v(s1)ds1.

Continuing this process we have

|W k|L1 ≤
∫ 1

0

v(s1)

∫ s1

0

v(s2) . . .

∫ sk−1

0

v(sk)dsk . . . ds2ds1.

It is simple to see that∫ 1

0

v(s1) . . .

∫ sk−1

0

v(sk)dsk . . . ds1 =
(
∫ 1

0
v(s)ds)k

k!
.

Thus we get the inequality

|W k|L1 ≤
(
∫ 1

0
v(s)ds)k

k!
=
Mk

1 (W )

k!
.

As claimed. □
Recall that the space L∞(0, 1) = L∞ is the space of scalar functions h defined

on [0, 1] with the finite norm |h|L∞ = ess supx∈[0,1] |h(x)|.
Repeating the arguments of the previous lemma we arrive at the following

lemma.

Lemma 6.3. Assume that

M∞(W ) := ess sup
x∈[0,1]

∫ x

0

|K(x, s)|ds <∞.

Then the operator defined by (5.1) satisfies the inequality

|W |L∞ ≤ Mk
∞(W )

k!
(k = 1, 2, . . .).
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Various aspects of powers of Volterra operators have been considered in papers
[8, 9, 18, 19, 20, 21, 27], but mainly the convolution operators, in particular the
operators of the indefinite integration have been considered.

7. Triangularizable operators in Lp

Consider in Lp[0, 1] (1 ≤ p <∞) the operator A defined by

(Ah)(x) = ϕ(x)h(x) +

∫ 1

x

k(x, s)h(s)ds (h ∈ Lp, x ∈ [0, 1]), (7.1)

where k(x, s) is a scalar kernel defined on 0 ≤ x ≤ s ≤ 1 and having the properties
pointed below, and ϕ(x) is a scalar bounded Riemann-integrable function, whose
values lie on an unclosed Jordan curve. The Volterra operator in (7.1) is assumed
to be compact.

Let P̂t (0 ≤ t ≤ 1) be the truncation projection function, defined by (3.3). It

is simple to check that P̂tAP̂t = AP̂t. Define the operators D̂ and V̂ by

(D̂h)(x) = ϕ(x)h(x) and (V̂ h)(x) =

∫ 1

x

k(x, s)h(s)ds (h ∈ Lp, x ∈ [0, 1]).

Then P̂tV̂ P̂t = V̂ P̂t and

D̂ =

∫ 1

0

ϕ(s)dP̂s.

Omitting the obvious calculations we arrive at the following result.

Lemma 7.1. Let A be defined by (7.1). Then it is a P̂s-triangular operator, its

diagonal part is D̂, and its nilpotent part is V̂ .

Assume that either

Mp(V̂ ) := [

∫ 1

0

[

∫ 1

x

|k(x, s)|p′ds]p/p′dx]1/p <∞ (1 < p <∞, 1/p+ 1/p′ = 1),

(7.2)
or

M1(V̂ ) :=

∫ 1

0

ess− sup
s∈[x,1]

|k(x, s)|dx <∞ (7.3)

Recall that a compact operator K in X is said to be p-summing (1 ≤ p <∞),
if there is a constant ν such that regardless of a natural number m and regardless
of the choice x1, . . . , xm ∈ X we have

[
m∑
k=1

∥Kxk∥p]1/p ≤ ν sup{[
m∑
k=1

|(x∗, xk)|p]1/p : x∗ ∈ X ∗, ∥x∗∥ = 1};

see [5]. Here X ∗ means the space adjoint to X . The least ν, for which this
inequality holds, is a norm and is denoted by πp(K). The set of p-summing
operators in X with the finite norm πp is a two-sided normed ideal in the set of
bounded linear operators, which is denoted by Πp; see [22]. As is well known,
[22, Proposition 7.2.7] and [5, p. 43], any (p, p′)-Hille–Tamarkin operator K is a
p-summing operator with πp(K) ≤Mp(K) (1 ≤ p <∞).



126 M.I. GIL’

Theorem 4.2, and Lemmas 6.1 and 6.2 imply

|Rλ(A)|Lp ≤
∞∑
k=0

Mk
p (V̂ )

p
√
k!ρk+1(A, λ)

(1 ≤ p <∞, λ ̸∈ σ(A)), (7.4)

if condition (7.2) or (7.3) holds. Besides ρ(A, λ) = ρ(D̂, λ) = inf0≤x≤1 |ϕ(x)− λ|.
So

|Rλ(A)|L1 ≤ 1

ρ(A, λ)
exp[

M1(Ṽ )

ρ(A, λ)
]

if condition (7.3) holds.
Let p > 1. Then by the Hölder inequality for any c > 1 we get

∞∑
k=0

ckMk
p (Ṽ )xk

ck p
√
k!

≤ (
∞∑
k=0

1

ckp′
)1/p

′
(

∞∑
k=0

ckpMpk
p (Ṽ )xkp

k!
)1/p

=
c

(cp′ − 1)1/p′
exp[cpMp

p (Ṽ )xp/p] (x > 0).

By virtue of (7.4), we can write

|Rλ(A)|Lp ≤ 1

(1− c−p′)1/p′ρ(A, λ)
exp

[
cpMp

p (V̂ )

ρp(A, λ)p

]
(1/p+1/p′, c > 1, λ ̸∈ σ(A)).

Take c = p1/p. Then we obtain

|Rλ(A)|Lp ≤ bp
ρ(A, λ)

exp

[
Mp

p (V̂ )

ρp(A, λ)

]
(1 < p <∞, λ ̸∈ σ(A)),

where

bp :=
1

(1− p−p′/p)1/p′
.

Let qp = |A− Ã|Lp , and let zp(V̂ , qp) be the unique positive root of the equation

qpFp(V̂ , 1/z) = 1, (7.5)

where

Fp(V̂ , x) = bpx exp[M
p
p (V̂ )xp] (1 < p <∞)

and

F1(V̂ , x) = x exp[xM1(V̂ )] (x ≥ 0).

Note that one can take b1 = 1. Now Corollary 5.2 implies the following result.

Lemma 7.2. Let A be defined by (7.1) and satisfy one of the conditions (7.2) or

(7.3). Then for any Ã ∈ B(X ) we have svA(Ã) ≤ zp(V̂ , qp) (1 ≤ p <∞).

To estimate zp(V̂ , qp) we can apply the following lemma.

Lemma 7.3. The unique positive root za of the equation

y ey = a (a = const > 0) (7.6)
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satisfies the inequality za ≥ δp(a), where

δp(a) :=

{
ae−1 if a ≤ e,
1
2
ln (ae) if a ≥ e.

Proof. Let a ≥ e. Then za ≥ 1. By the usual calculations, the function f(y) =
ey−1

y
has, for y ≥ 1, a unique extremum-minimum at y = 1, and f(y) ≥ 1

for y ≥ 1. We obtain 1 ≤ za ≤ eza−1, and a = zae
za ≤ e2za−1 and therefore

za ≥ 1
2
ln(ea).

Now let a ≤ e. Then za ≤ 1. Thus eza ≤ e and therefore, a = zae
za ≤ eza, as

claimed. □
Rewrite equation (7.5) with p = 1 and z = 1/x as

q1M1(V̂ )x exp[xM1(V̂ )] =M1(V̂ ).

Then we obtain equation (7.6) with y = xM1(V̂ ) and a =M1(V̂ )/q1. So

z1(V̂ , q1) =
M1(V̂ )

za
.

Now Lemma 7.3 implies z1(A, q) ≤ δ1(V̂ , q1), where

δ1(V̂ , q1) :=

 q1e if M1(V̂ ) ≤ q1e,
2M1(V̂ )

ln

(
M1(V̂ )e

q1

) if M1(V̂ ) > q1e.

Now let 1 < p <∞. Then equation (7.5) with z = 1/x takes the form

qpbpx exp[x
pMp

p (V̂ )] = 1 or bppq
p
px

p exp[pxpMp
p (V̂ )] = 1.

Therefore

(qpbp)
ppMp

p (V̂ )xp exp[pxpMp
p (V̂ )] = pMp

p (V̂ ).

Hence we obtain the equation (7.6) with y = pxpMp
p (V̂ ) and

a =
pMp

p (V̂ )

(qpbp)p
.

So

zp(V̂ , qp) =
p1/pMp(V̂ )

z
1/p
a

.

From Lemma 7.3 it follows that zp(V̂ , qp) ≤ δp(V̂ , qp), where

δp(V̂ , qp) :=


qpbpe

1/p if Mp(V̂ ) ≤ bpqp(e/p)
1/p,

21/pMp(V̂ )

ln1/p
(

(pe)1/pMp(V̂ )e

qpbp

) if Mp(V̂ ) > bpqp(e/p)
1/p.

Now Lemma 7.2 implies the following corollary.

Corollary 7.4. Let A be defined by (7.1) and satisfy one of the conditions (7.2)
or (7.3). Then, for any Ã ∈ B(X ), we have svA(Ã) ≤ δp(Ṽ , qp) (1 ≤ p <∞).
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8. Integral operators in Lp

Throughout this section Ã is a linear operator in Lp = Lp(0, 1) (1 ≤ p < ∞)
defined by

(Ãh)(x) = ϕ(x)h(x) +

∫ 1

0

k(x, s)h(s)ds (h ∈ Lp, x ∈ [0, 1]), (8.1)

where ϕ is the same as in the previous section and k(x, s) is a scalar kernel defined
on [0, 1]2 and having the properties pointed below.

8.1. The case 1 < p <∞. Let

[

∫ 1

0

[

∫ 1

0

|k(x, s)|p′ds]p/p′dx]1/p <∞ (1 < p <∞, 1/p+ 1/p′ = 1). (8.2)

So k is a Hille–Tamarkin kernel. Take A as in (7.1) namely, A = D̂ + V̂ , where

D̂ and V̂ are the same as in the previous section. By (8.2)

τp := [

∫ 1

0

[

∫ x

0

|k(x, s)|p′ds]p/p′dx]1/p <∞.

So qp = |A − Ã|Lp ≤ τp. Now Corollary 7.4 and Lemma 7.2 imply the following
theorem.

Theorem 8.1. Let Ã be defined by (8.1), and let condition (8.2) hold. Then

σ(Ã) ⊆ {z ∈ C : |ϕ(x)− z| ≤ zp(A, τp) ≤ δp(V̂ , τp), x ∈ [0, 1]},

where z(A, τp) is the unique positive root of the equation

bpτp
z

exp[
Mp

p (V̂ )

zp
] = 1

and

δp(V̂ , τp) :=


τpbpe

1/p if Mp(V̂ ) ≤ bpτp(e/p)
1/p,

21/pMp(V̂ )

ln1/p
(

(pe)1/pMp(V̂ )e

τpbp

) if Mp(V̂ ) > bpτp(e/p)
1/p.

This result is sharp; if τp = 0, then we have σ(Ã) = {z ∈ C : z = ϕ(x), x ∈
[0, 1]}. From Theorem 8.1 it follows the following corollary.

Corollary 8.2. Under condition (8.2), the (upper) spectral radius rs(Ã) of the
operator Ã defined by (8.1) satisfies the inequalities

rs(Ã) ≤ sup
x

|ϕ(x)|+ zp(A, τp) ≤ sup
x

|ϕ(x)|+ δp(V̂ , τp).

If, in addition,

inf
x
|ϕ(x)| > zp(A, τp),

then the lower spectral radius rlow(Ã) := inf |σ(Ã)| satisfies the inequality

rlow(Ã) ≥ inf
x
|ϕ(x)| − zp(A, τp).
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Moreover, if

inf
x
|ϕ(x)| > δp(V̂ , τp),

then rlow(Ã) ≥ infx |ϕ(x)| − δp(V̂ , τp).

8.2. The case p = 1. Now suppose that∫ 1

0

sup
s∈[0,1]

|k(x, s)|dx <∞. (8.3)

Then according to (7.1)

|A− Ã|L1 ≤ τ1 :=

∫ 1

0

sup
s∈[0,x]

|k(x, s)|dx.

Now Lemma 7.2 and Corollary 7.4 imply the following theorem.

Theorem 8.3. Let Ã be defined by (8.1), and let condition (8.3) hold. Then

σ(Ã) ⊆ {z ∈ C : |ϕ(x)− z| ≤ z1(A, τ1) ≤ δ1(V̂ , τ1), x ∈ [0, 1]},
where z(A, τ1) is the unique positive root of the equation

τ1
z
exp[

M1(V̂ )

z
] = 1

and

δ1(V̂ , τ1) :=

 τ1e if M1(V̂ ) ≤ τ1e,
2M1(V̂ )

ln

(
M1(V̂ )e

τ1

) if M1(V̂ ) > τ1e.

From this theorem we obtain the following result.

Corollary 8.4. Let condition (8.3) hold. Then

rs(Ã) ≤ sup
x

|ϕ(x)|+ z1(A, τ1) ≤ sup
x

|ϕ(x)|+ δ1(V̂ , τ1).

If, in addition,
inf
x
|ϕ(x)| > z1(A, τ1),

then rlow(Ã) ≥ infx |ϕ(x)| − z1(A, τ1). Moreover, if

inf
x
|ϕ(x)| > δ1(V̂ , τ1),

then rlow(Ã) ≥ infx |ϕ(x)| − δ1(A, τ1).

9. Multiplicative representations for resolvents of operators
in a Banach space

In this section we suggest a representation for the resolvent of a Pt-triangular
operator. We begin with the following lemma.

Lemma 9.1. Let a sequence of compact quasi-nilpotent operators Vn ∈ B(X )
(n = 1, 2, . . .) in the operator norm converge to an operator V . Then V is compact
and quasi-nilpotent.
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Proof. From the approximation property X it follows that the uniform limit of
compact operators is compact. So V is compact. Assume that V has an eigenvalue
λ0 ̸= 0. Since V is compact, λ0 is an isolate point of σ(V ). Consequently, there is
a circle L which contains λ0 and does not contain zero and other points of σ(V ).
We have

∥Rz(Vn)∥ − ∥Rz(V )∥ ≤ ∥Rz(Vn)−Rz(V )∥ ≤ ∥V − Vn∥∥Rz(Vn)∥∥Rz(V )∥.

Hence, for sufficiently large n,

∥Rz(Vn)∥ ≤ ∥Rz(V )∥
1− ∥V − Vn∥∥Rz(Vn)∥∥Rz(V )∥

.

Therefore ∥Rz(Vn)∥ are uniformly bounded on L. Since Vn (n = 1, 2, . . .) are
quasi-nilpotent operators, we have∫

L

Rz(Vn)dz = 0

and∫
L

Rz(V )dz =

∫
L

(Rz(V )−Rz(Vn))dz =

∫
L

Rz(V )(V − Vn)Rz(Vn)dz → 0.

So
∫
L
Rz(V )dz = 0, but this is impossible, since that integral represents the

eigen-projection corresponding to λ0. This contradiction proves the lemma. □

This lemma is well-known for operators in a Hilbert space [3, Lemma 17.1].
Let ψ(.) be a scalar function defined and bounded on a finite real segment [a, b],

and let Qt be a resolution of the identity defined on [a, b], B ∈ B(X ), and let

Mn =
→∏

1≤k≤n

(I + ψ(tk)B∆Qk)

(
∆Qk = Qtk −Qtk−1

a = t0 < t1 < · · · < tn = b

)
:= (I + ψ(t1)B∆Q1)(I + ψ(t2)B∆Q2) · · · (I + ψ(tn)B∆Qn)

If the sequence of operators Mn converges in the operator norm to some M ∈
B(X ), then M is called the right multiplicative integral. We write

M =

∫ →

[a,b]

(I + ψ(t)BdQt).

Lemma 9.2. Let V be a compact quasi-nilpotent operator in X having an invari-
ant CMPF Pt (a ≤ t ≤ b), and let

n∑
k=1

∆PkV∆Pk → 0 as n→ ∞
(

Pk = Ptk − Ptk−1

a = t0 < t1 < · · · < tn = b

)
(9.1)

in the operator norm. Then

(I − V )−1 =

∫ →

[a,b]

(I + V dPt).
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Proof. Put

Vn =
n∑
k=1

Ptk−1
V∆Pk.

Since

V =
n∑
j=1

∆PjV
n∑
k=1

∆Pk =
n∑
k=1

k∑
j=1

∆PjV∆Pk,

we have

V − Vn =
n∑
k=1

∆PkV∆Pk.

Due to (9.1), the sequence of the operators Vn tends to V in the operator norm
since V is compact. Besides, Vn is nilpotent, since with the notation Pk = Ptk ,
we have

V n
n = V n

n Pn = V n−1
n Pn−1Vn = V n−2

n Pn−2VnPn−1Vn = · · · = VnP1 · · ·VnPn−1Vn = 0.

Due to [14, Lemma 3.14],

(I − Vn)
−1 =

→∏
2≤k≤n

(I + Vn∆Pk).

That lemma is proved in a Hilbert space, but in X the proof is similar. In
addition, (I − Vn)

−1 → (I − V )−1 in the operator norm; see [7, p. 585, Lemma
VII.6.3]. Hence the required result follows. □

Theorem 9.3. Let A be a Pt-triangular operator. Then

(A− λI)−1 =

∫
[a,b]

dPτ
ϕ(τ)− λ

∫ →

[a,b]

(
I +

V dPt
ϕ(t)− λ

)
(λ ̸∈ σ(A)),

where V is the nilpotent part of A and ϕ(.) is its Pt-diagonal function.

Proof. Due to Corollary 3.4, V (D − λI)−1 is quasi-nilpotent. By the previous
lemma

(I + V (D − λI)−1)−1 =

∫ →

[a,b]

(I + V (D − λI)−1dPt).

According to (3.9) we have

(A− λI)−1 = (D − λI)−1

∫ →

[a,b]

(I + V (D − λI)−1dPt) (λ ̸∈ σ(A)). (9.2)

But

(D − λI)−1 =

∫
[a,b]

dPτ
ϕ(τ)− λ

and therefore (D − λI)−1dPt =
1

ϕ(t)− λ
dPt.

Now (9.2) yields the required result. □
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10. Resolvents of nonselfadjoint operators in a Hilbert space

In this section in the case of a Hilbert space we obtain the multiplicative rep-
resentation for the resolvents of nonselfadjoint operators having maximal chains
and Schatten–von Neumann Hermitian components. Besides we do not assume
that the chain is continuous. For operators with continuous maximal chains and
real spectra, the results of the present section are similar to Theorem 9.3.

10.1. Auxiliary results. Let H be a separable Hilbert space with a scalar prod-
uct (., .) and the unit operator I = IH; B(H) denotes the algebra of bounded linear
operators in H and SNp (p ∈ [1,∞)) is the Schatten–von Neumann ideal of com-
pact operators K in H with the finite norm Np(K) = (trace (KK∗)p/2)1/p. Let
A ∈ B(H), and let

ℑA := (A− A∗)/2i ∈ SNp (1 < p <∞). (10.1)

The notion of the chain of projections in H is defined as above. It is only required
that the projections are orthogonal. Namely, for two orthogonal projections P1

and P2 in H, we write P1 < P2 if P1H ⊂ P2H. A set P of orthogonal projections
in H containing at least two orthogonal projections is called a chain, if from
P1, P2 ∈ P with P1 ̸= P2 it follows that either P1 < P2 or P1 > P2. For two
chains P1 and P2, we write P1 < P2 if from P ∈ P1 it follows that P ∈ P2. In
this case we say that P1 precedes P2. The chain that precedes only itself is called
a maximal chain. Let P−, P+ ∈ P , and P− < P+. A gap (P+, P−) is defined
as in the case of a Banach space (see Section 2 of the present paper). Besides,
dim (P+H)⊖(P−H) is the dimension of the gap. An orthogonal projection P inH
is called a limit projection of a chain P if exists a sequence Pk ∈ P (k = 1, 2, . . .)
which strongly converges to P . A chain is said to be closed if it contains all its
limit projections.

We need the following result proved in [15, Proposition XX.4.1, p. 478] and [3,
Theorem II.14.1].

Theorem 10.1. A chain in H is maximal if and only if it is closed, contains 0
and I, and all its gaps (if they exist) are one dimensional.

So in the Hilbert space the definition of a maximal chain coincides with Defi-
nition 2.1, provided the projections in H are orthogonal. Any compact operator
in H has a maximal invariant chain [17, Theorem I.3.1].

Let ψ(P ) be a scalar valued function of P ∈ P . If for some operator T and
any ϵ > 0, there is a partitioning Pn (n = 2, 3, . . .) of P of the form

0 = P0 < P1 < P2 < · · · < Pn = I (P1, . . . , Pn ∈ P)

such that

∥T −
n∑
k=1

ψ(Pk)∆Pk∥ < ϵ (Pk ∈ Pn,∆Pk = Pk − Pk−1),

then T is called the integral in the Shatunovsky sense. We write

T =

∫
P
ψ(P )dP.
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Besides ψ is called P-integrable. For more details about such types integrals see
[4], [15, Chapters XX and XI], and references therein.

Furthermore, let F be a function defined on a maximal chain P with values in
B(H), and let Pn be a partitioning of P . Put

Mn(P) :=
→∏

1≤k≤n

(1 + ∆F (Pk)) := (1 + ∆F (P1))(I +∆F (P2)) · · · (I +∆F (Pn)).

Here ∆F (Pk) = F (Pk) − F (Pk−1). If, for some M ∈ B(H) and any ϵ > 0, there
is a partitioning Pn of P such that ∥M −Mn(P)∥ < ϵ, then M is called the right
multiplicative integral along chain P . We write

M =

∫ →

P
(I + dF (P )).

For more details about the multiplicative integrals and their applications see [15,
p. 493]. In particular, if ψ is a scalar function defined and bounded on P and
B ∈ B(H), then the integral ∫ →

P
(I + ψ(P )BdP )

means the limit (if it exists) in the operator norm of the products
→∏

1≤k≤n

(I + ψ(Pk)B∆Pk).

Assume that for a given A ∈ B(H) there is a bounded scalar P-integrable
function ϕ(P ) of P ∈ P such that

A =

∫
P
ϕ(P )dP + V, (10.2)

where V is a quasi-nilpotent operator with invariant maximal chain P.

Theorem 10.2. Let A ∈ B(H) be represented by (10.2), and let the regular set
of A be simply connected. Then

(A− λI)−1 =

∫
P

dQ

ϕ(Q)− λ

∫ →

P

(
I +

V dP

ϕ(P )− λ

)
(λ ̸∈ σ(A)). (10.3)

For the proof see [14, Theorem 9.9].

Remark 10.3. In [14] instead of the condition on the regular set it is assumed
that the spectrum lies on an unclosed Jordan curve, but the proof is the same.

Furthermore, let ϕ(P ) be real valued; then it is said to be nondecreasing, if
ϕ(P ) ≤ ϕ(P1) for P < P1.

Under condition (10.1) representation (10.2) is valid with a nondecreasing func-
tion ϕ and V ∈ SNp, provided σ(A) is real, see [14, Corollary 8.4]. Thus from
Theorem 10.2 we get the following result.

Corollary 10.4. Assume that condition (10.1) holds and that σ(A) is real. Then
there are a maximal chain P and a nondecreasing function ϕ(P ) defined on P
such that (10.3) holds. Moreover, V ∈ SNp.
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Take into account that V dP = PV dP and PV ∗ = PV ∗P . Let us check that
PV ∗dP = 0. Indeed, for any P1 > P , we have PV ∗(P1 − P ) = PV ∗P (P1 − P ) =
PV ∗(P − P ) = 0. If P1 − P is a gap, then dP = P1 − P and PV ∗dP = 0. If P
is a point of continuity of the chain, then letting P1 → P (P1 > P ), we get the
required result.

Therefore, V P = P (V − V ∗)dP = 2iP (ℑV )dP (ℑV = (V − V ∗)/2i). If σ(A)
is real, then ℑV = ℑA. Now Corollary 10.4 implies the following result.

Corollary 10.5. Let condition (10.1) hold, and let σ(A) be real. Then there are
a maximal chain P and a nondecreasing scalar valued function ϕ(P ) defined on
P such that

(A− λI)−1 =

∫
P

dQ

ϕ(Q)− λ

∫ →

P

(
I +

2iP (ℑA)dP
ϕ(P )− λ

)
(λ ̸∈ σ(A)). (10.4)

Let A = A∗. Then from (10.4) we have

(A− λI)−1 =

∫
P

dQ

ϕ(Q)− λ
.

Thus, Corollary 10.5 generalizes the representation for the resolvent of a selfad-
joint operator.

Furthermore, since ℑA is compact, according to Theorem I.5.2 from [16], the
nonreal spectrum of A consists of no more than countable set of points which are
normal; that is, they are the isolated eigenvalues having finite multiplicities.

Denote by E the closed linear hull of all the root vectors of A corresponding
to nonreal eigenvalues λ̂k(A). Choose in each root subspace a Jordan basis.

Then we obtain vectors hk for each of which either Ahk = λ̂k(A)hk, or Ahk =

λ̂k(A)hk + hk+1. Orthogonalizing the system {hk}, we obtain the (orthonormal)
Schur basis {ek} of the triangular representation,

Aek = a1ke1 + a2ke2 + · · ·+ akkek (k = 1, 2, . . .)

with akk = λ̂k(A) (see [16, Section II.6]). Besides, E is an invariant subspace of
A. Let ZE be the orthogonal projection of H onto E , and let C = AZE = ZEAZE .
So σ(C) consists of the nonreal spectrum of A. Denote M = (I − ZE)A(I − ZE)
and W = ZEA(I − ZE). Since (I − ZE)AZE = 0, we have

A = (ZE + (I − ZE))A(ZE + (I − ZE)) = C +M +W,

So on ZEH⊕ (I − ZE)H, A is represented by the matrix

A =

(
C W
0 M

)
.

Besides σ(A) = σ(M)∪σ(C) and σ(M) is real. Take into account that Cek = Aek.
So

Cek = a1ke1 + a2ke2 + · · ·+ akkek = (DC + VC)ek, (10.5)

where DCek = λk(C)ek = λ̂k(A)ek (k = 1, 2, . . .),

VCek = a1ke1 + a2ke2 + · · ·+ ak−1,kek (k = 2, 3, . . .), and V e1 = 0.
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Note that M −M∗ = (I − ZE)(A − A∗)(I − ZE) and C − C∗ = ZE(A − A∗)ZE .
So if condition (10.1) holds, then Np(M −M∗) ≤ Np(A−A∗) and Np(C −C∗) ≤
Np(A− A∗). Hence,

Np(W −W ∗) ≤ Np(A− A∗) +Np(M −M∗) +Np(C − C∗) <∞.

10.2. Resolvents of infinite triangular matrices. Let C ∈ B(H) be an op-
erator represented in the orthonormal basis {ek} by an upper triangular matrix
(ajk) as in (10.5). Put

P̃j =

j∑
k=1

(., ek)ek (j = 1, 2, . . .), P̃0 = 0, ∆P̃j = (., ej)ej, DC =
∞∑
k=1

λk(C)∆P̃k

and P̃k (k = 1, 2, . . .) is the maximal chain of the invariant projections of operator
C. We have

∆P̃jVC∆P̃k = 0 if j ≥ k.

Let Xk (k = 1, 2, . . .) be a sequence of bonded operators in H. Put

Πm :=
→∏

1≤k≤m

(I +Xk) := (I +X1)(I +X2) . . . (I +Xm).

If there exists a limit Π∞ of Πm as m→ ∞ in the operator norm, we write

Π∞ :=
→∏

1≤k≤∞

Xk.

Lemma 10.6. Let C be represented by (10.5). Then

Rλ(C) = Rλ(DC)
→∏

2≤k≤∞

(
I +

VC∆P̃k
λ− λk(C)

)
(λ ̸∈ σ(C)). (10.6)

Besides,

Rλ(DC) =
∞∑
j=1

∆P̃k
λk(C)− λ

.

Proof. We have

Rλ(C) = (DC + VC − λI)−1 = Rλ(DC)(I + VCRλ(DC))
−1. (10.7)

With Cn = CP̃n, Dn = DCP̃n, and Vn = VCP̃n we obtain

VCRλ(DC)− VnRλ(Dn) = VCRλ(DC)(I − P̃n) → 0

in the operator norm. But due to Theorem 2.10.2 of [12],

(I + VnRλ(Dn))
−1 =

→∏
2≤k≤n

(
I +

Vn∆P̃k
λ− λk(C)

)
(λ ̸∈ σ(C)).

Consequently,

(I + VCRλ(DC))
−1 =

→∏
2≤k≤∞

(
I +

VC∆P̃k
λ− λk(C)

)
(λ ̸∈ σ(C)).
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Hence (10.7) implies (10.6). □

Making use of the relations VC∆P̃k = P̃k−1VC∆P̃k, P̃k−1V
∗
C P̃k = 0, and

VC∆P̃k = 2iP̃k−1ℑVC∆P̃k = 2iP̃k−1(ℑC −ℑλk(C))∆P̃k
from the preceding lemma, we have

Rλ(C) = Rλ(DC)
→∏

2≤k≤∞

(
I +

2iP̃k−1(ℑC −ℑλk(C))∆P̃k
λ− λk(C)

)
(λ ̸∈ σ(C)).

10.3. Resolvents of operators with non-real spectra. We need the following
lemma.

Lemma 10.7. Let A ∈ B(H) have a nontrivial invariant projection P and a
simply connected regular set. Then, for all its regular points λ, with the notation
P = I − P one has

PRλ(A)P = Rλ(A)P = (AP − λP )−1 (10.8)

and

PRλ(A)P = PRλ(A) = (PA− λP )−1, (10.9)

where (AP −λP )−1 is the inverse to AP −λP in subspace PH and (PA−λP )−1

is the inverse to PA− λP in subspace PH.

Proof. Since

AkP = Ak−1PAP = · · · = Ak−2PAPAP = · · · = PAP . . . APAP

we can write AkP = (AP )kP and AkP = PAkP . For a sufficiently large λ we
have

Rλ(A)P = −
∞∑
k=0

1

λk+1
AkP = −

∞∑
k=0

1

λk+1
PAkP = PRλ(A)P

and

Rλ(A)P = −
∞∑
k=0

1

λk+1
AkP = −

∞∑
k=0

1

λk+1
(AP )kP = (AP − λP )−1.

Extending this relation to all regular values, we obtain (10.8).
Similarly we can prove relations (10.9). □

Lemma 10.8. Let A ∈ B(H) have a nontrivial invariant projection P and a
simply connected regular set. Then

Rλ(A) = (AP − λP )−1 + (PA− λP )−1 − (AP − λP )−1A(PA− λP )−1.
(P = I − P, λ ̸∈ σ(A))

Proof. Since PAP = PA and PAP = 0, we have

A = PAP + PAP + PAP = AP + PAP + PA. (10.10)

Now, we check the equality

Rλ(A) = Ψ(λ) (λ ̸∈ σ(A)), (10.11)
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where

Ψ(λ) := Rλ(A)P + PRλ(A)−Rλ(A)PAPRλ(A).

Indeed, by the previous lemma, we have (A− λI)P (A− λI)−1P = (A− Iλ)(A−
Iλ)−1P = P and

P (A− Iλ)PRλ(A)P = P (A− λI)Rλ(A)P = P.

Taking into account (10.10), we obtain

(A− λI)Ψ(λ) = [(A− λI)P + PAP + P (A− Iλ)]Ψ(λ)

= P − (A− λI)PRλ(A)PAPRλ(A) + P + PAPRλ(A)

= I − PAPRλ(A) + PAPRλ(A) = I.

Similarly, Ψ(λ)(A− Iλ) = I. So (10.11) is true. This proves the lemma. □

Since

(I − A(AP − λP )−1)(I − A(PA− λP )−1) =I − A(AP − λP )−1 − A(PA− λP )−1

+ A(AP − λP )−1A(PA− λP )−1,

applying the previous lemma, we can write

I−ARλ(A) = I−A(AP −λP )−1−A(PA−λP )−1+(AP −λP )−1A(PA−λP )−1.

We thus arrive at the following corollary.

Corollary 10.9. Under the hypothesis of Lemma 10.8, one has

I − ARλ(A) = (I − A(AP − λP )−1)(I − A(PA− λP )−1) (λ ̸∈ σ(A)).

Let us apply this corollary to relation (10.2) with P = ZE and ẐE = I − ZE .
Recall that ZE is the projection of A into the invariant subspace corresponding
to the nonreal spectrum, C = AZE = ZEAZE , and M = ZEA = ZEAZE . Then
we have

I − ARλ(A) = (I − A(AZE − λZE)
−1)(I − A(ẐEA− λẐE)

−1)

= (I − A(C − λZE)
−1)(I − A(M − λẐE))

−1).

But due to Lemma 10.6,

(C − λZE)
−1 = (DC − λZE)

−1

→∏
2≤k≤∞

(
I +

VC∆P̃k

λ− λ̂k(A)

)
(λ ̸∈ σ(A)).

Recall that λ̂k(A) = λk(C) are nonreal eigenvalues of A with their multiplicities.
Due to Corollary 10.4,

(M − λẐE)
−1 = (DM − λẐE)

−1

∫ →

PM

(
I +

VMdP

ϕ(P )− λ

)
(λ ̸∈ σ(M)),

where PM is the maximal chain ofM , ϕ(P ) is a no-decreasing scalar function, and
VM ∈ SNp is the nilpotent part of M . Now Corollary 10.9 implies the following
theorem.
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Theorem 10.10. Let condition (10.1) hold. Then for all λ ̸∈ σ(A) one has

I − ARλ(A) =

(
I − A(DC − λZE)

−1

→∏
2≤k≤∞

(
I +

VC∆P̃k

λ− λ̂k(A)

))

×
(
I − A(DM − λẐE)

−1

∫ →

PM

(
I +

VMdP

ϕ(P )− λ

))
.

Besides,

(DM − λẐE)
−1 =

∫
PM

dQ

ϕ(Q)− λ

and

(DC − λZE)
−1 =

∞∑
j=1

∆P̃k

λ̂k(A)− λ
.

Note that
I − ARλ(A) = −λRλ(A)

If A is normal, then A = DC +DM and

−λRλ(A) = (I −DC(DC − λZE)
−1(I −DM(DM − λẐE)

−1

= I −DC(DC − λZE)
−1 −DM(DM − λẐE)

−1

+DC(DC − λZE)
−1DM(DM − λẐE)

−1

= I −DC(DC − λZE)
−1 −DM(DM − λẐE)

−1

= −λ[(DC − λZE)
−1 + (DM − λẐE)

−1]

For λ ̸= 0 we have the standard representation

Rλ(A) =

∫
PM

dQ

ϕ(Q)− λ
+

∞∑
j=1

∆P̃k

λ̂k(A)− λ
.

For regular λ = 0 we obtain this result by small perturbation.
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