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Abstract. Starting from the finite adele ring AQ, we construct semigroup
dynamical systems of AQ, acting on certain C∗-probability spaces. From
such dynamical-systematic C∗-probability spaces, we construct Banach-space
operators acting on the C∗-probability spaces and corresponding Banach ∗-
probability spaces. In particular, we are interested in Banach-space operators
whose free distributions are the (weighted-)semicircular law(s).

1. Introduction

The main purpose of this paper is to construct-and-study semicircular-like
and semicircular elements induced by crossed product algebras of a semigroup
dynamical system of the finite adele ring AQ.

To do that, we study (i) functional analysis on the ∗-algebra MP , consisting
of measurable functions on the finite adele ring AQ, in terms of “nontraditional”
senses of free probability theory and its Hilbert-space representation and the cor-
responding C∗-algebra MP , (ii) a system of C∗-probability spaces Mp,j

P of MP , for
all p ∈ P and j ∈ Z, where P is the set of all primes in the set N of all natural
numbers and Z is the set of all integers, (iii) Banach-space operators acting on
the C∗-subalgebras SP of MP generated by certain projections for all p ∈ P and
j ∈ Z, (iv) certain semigroup dynamical system of the σ-algebra σ(AQ) acting on
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arbitrarily fixed unital C∗-probability spaces (A, ψ) and the corresponding crossed
product algebras of the systems, (v) functional analysis on the structures of (iv)
and (vi) establish-and-study Banach ∗-probability spaces LSA(p, j) for all p ∈ P
and j ∈ Z. Then, our semicircular-like laws and the semicircular law are obtained
“locally” for a prime p. Such “local” semicircular-like laws and the semicircular
law will be globalized over primes under Adelic analysis.

Our main results not only illustrate relations between primes and Banach-space
operators, but also provide connections among number theory, representation
theory, operator theory, operator algebra theory, and dynamical system theory,
via free probability theory.

1.1. Remark: NonTraditional vs. Traditional. In the beginning of this
section, we mentioned about “nontraditional” senses of free probability theory.
Note that the (traditional) free probability theory is a noncommutative operator-
algebraic version of measure theory and statistics (e.g., [3, 4, 5, 9, 11, 29] through
[18, 33] through [37]). However, such noncommutative free probability well-covers
the cases where given algebras are commutative, even though the freeness on such
algebras is trivial. In other words, the techniques and concepts in (noncommu-
tative) free probability are applicable to commutative algebras (if we are not
interested in freeness on them).

Recall that A is a noncommutative (topological ∗-)algebra, and φ is a (bounded,
or unbounded) linear functional on A; then the pair (A, φ) is said to be a (non-
commutative) free probability space. In the following text, even though a given
algebra B is commutative, if ψ is a well-defined linear functional on B, then we
will say the pair (B, ψ) is a free probability space “nontraditionally,” and use no-
tations, techniques, and concepts of free probability theory for studying statistical
data of operators of B in terms of ψ, as in the earlier works of [7, 8, 10, 11].

With help of such (nontraditional) free-probability-theoretic approaches, we
consider (traditional) free-probability-theoretic structures of Banach ∗-algebras
under crossed products for dynamical systems.

1.2. Background and Motivation. The relations between primes and opera-
tors have been studied in various different approaches (e.g., [2, 12, 6, 13, 15, 14,
19, 20, 21, 22, 23, 25, 26, 32]). For instance, in [9], we considered free-probabilistic
structures on a Hecke algebra H (GL2(Qp)) for primes p, where GL2(X) are the
general linear groups in the matricial sets M2(X) over X.

Independently, in [11], by using number-theoretic information from a certain
nontraditional C∗-probability space induced by a p-adic number field Qp, for ar-
bitrarily fixed p ∈ P , we established and studied weighted-semicircular elements
in a certain Banach ∗-probability space (implying p-adic number-theoretic data).
Such weighted-semicircular elements naturally generate semicircular elements.

In [7], we extended the (weighted-)semicircularity of [11] in a free product Ba-
nach ∗-probability space over primes. The main results of [7] demonstrate that
indeed the (weighted-)semicircularity of [11] are well-determined as traditional
free-probabilistic objects.
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By globalizing the main results of [7], we could construct weighted-semicircular
and semicircular elements from the finite adele ring AQ in [10], by applying nontra-
ditional free-probability-theoretic approaches of [8]. In this paper, we generalize
the main results of [10] in the traditional sense of free probability theory under
dynamical systems.

1.3. Overview and Main Results. In sections 2, we briefly introduce back-
grounds and motivations of our proceeding works.

Our nontraditional free-probabilistic model on the ∗-algebra MP is established
from Adelic analysis, and the statistical data on MP are considered in section
3. Then, a suitable Hilbert-space representation of our free-probabilistic model
of MP , preserving the statistical data implying number-theoretic information,
is constructed in section 4. Under representation, the corresponding C∗-algebra
MP is defined.

In sections 5 and 6, functional analysis on the C∗-algebra MP is considered
by putting a system of linear functionals dictated by the Adelic integration un-
der free-probability-theoretic language. In particular, distributions of generating
operators of MP are studied by computing moments of them. We in particular
focus on certain projections of MP . C∗-subalgebras Sp and the corresponding
nontraditional C∗-probability spaces generated by the projections are observed.

In sections 7, 8, and 9, we construct semigroup dynamical systems of the σ-
algebra σ (AQ) , regarding σ (AQ) as a semigroup with set-intersection and the
corresponding crossed product C∗-algebras of the dynamical systems. The tra-
ditional free-probabilistic structures are constructed, and free-distributional data
on them is studied for our main purpose. Especially, Theorem 9.2(and Corol-
laries 9.3 and 9.4 illustrates how our dynamical systems affects the original free
probability determined by (weighted-)semicircular law(s).

In section 10, we consider weighted-semicircular elements and semicircular ele-
ments induced by certain Banach-space operators in Banach ∗-probability spaces
of section 9, locally for fixed primes. See Theorem 10.2 and Corollary 10.3.

Finally, in sections 11 and 12, we globalize the weighted-semicircularity and
the semicircularity of section 10. See Theorems 11.1 and 11.2 and Theorem 12.2.

2. Preliminaries

In this section, we briefly mention about backgrounds for our proceeding works.
See also [8, 9, 17, 16, 33] for motivations from number theory.

2.1. Free Probability. Readers can review analytic-and-combinatorial free prob-
ability theory from [31, 37] (also see, e.g., [30, 34, 35, 36]). Free probability is
understood as the noncommutative operator-algebraic version of classical mea-
sure theory and statistics. The classical independence is replaced to the freeness,
by replacing measures on sets to linear functionals on algebras. It has various
applications not only in pure mathematics (e.g., [29, 27, 28, 24, 18]), but also
in applied fields (for example, see [1] through [11]). In particular, we will use
combinatorial approach of Speicher (e.g., [31]).
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In the text, without introducing detailed definitions and combinatorial back-
grounds, free moments and free cumulants of operators will be computed.

2.2. p-Adic Analysis on Qp. In this section, we briefly review p-adic calculus
on the ∗-algebras Mp of measurable functions on p-adic number fields Qp for p ∈
P . For more about p-adic analysis, see [33]. Also, for applications of p-adic and
Adelic analysis, see [15, 14, 25, 26].

For a fixed prime p ∈ P , one can define the p-norm |.|p on the set Q of all
rational numbers by

|x|p =
∣∣apk∣∣

p
= 1

pk
,

whenever x is factorized by apk for some a ∈ Q, k ∈ K. For instance,∣∣4
3

∣∣
2
=
∣∣1
3

· 22
∣∣
2
= 1

22
= 1

4
,∣∣4

3

∣∣
3
= |4 · 3−1|3 =

1
3−1 = 3,

and ∣∣4
3

∣∣
q
=
∣∣4
3
· q0
∣∣ = 1

q0
= 1 for all q ∈ P \ {2, 3}.

The p-adic number field Qp is defined to be the maximal |.|p-norm completion

in Q. So, Qp forms a Banach space in Q under |.|p .
Remark that all elements x of Qp are uniquely expressed by

x =
∑∞

k=−N xkp
k, with xk ∈ {0, 1, . . . , p− 1},

for some N ∈ N, decomposed by

x =
∑−1

k=−N xkp
k +

∑∞
l=0 xlp

k.

If x =
∑∞

k=0 xkp
k in Qp, then x is said to be a p-adic integer. Note that any

p-adic integer x satisfies |x|p ≤ 1. The subset

Zp = {x ∈ Qp : |x|p ≤ 1}
consisting of all p-adic integers is called the unit disk of Qp.
Under the p-adic addition and the p-adic multiplication of [35], Qp forms a

well-defined ring, algebraically.
Let us understand this Banach ring Qp as a measure space,

Qp = (Qp, σ(Qp), µp) ,

where σ(Qp) is the σ-algebra of Qp, consisting of all µp-measurable subsets,
where µp is a left-and-right additive-invariant Haar measure on Qp, satisfying

µp(Zp) = 1.

If we define

Uk = pkZp = {pkx ∈ Qp : x ∈ Zp}, (2.1)

for all k ∈ Z, satisfying U0 = Zp, then these µp-measurable subsets Uk satisfy

Qp = ∪
k∈Z

Uk,

µp (Uk) =
1

pk
, for all k ∈ Z, (2.2)

and

· · · ⊂ U2 ⊂ U1 ⊂ U0 ⊂ U1 ⊂ U2 ⊂ · · ·
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(e.g., see [33]).
Define now subsets ∂k of Qp by

∂k = Uk \ Uk+1, for all k ∈ Z, (2.3)

where Uk are in the sense of (2.1).
We call such µp-measurable subsets ∂k of (2.3), the k-th boundaries (of Uk) in

Qp for all k ∈ Z. By (2.2) and (2.3), one obtains that

Qp = ⊔
k∈Z

∂k,

where ⊔ means the disjoint union and

µp (∂k) = µp (Uk)− µp (Uk+1) =
1

pk
− 1

pk+1
for all k ∈ Z. (2.4)

Now, let Mp be an algebra,

Mp = C [{χS : S ∈ σ (Qp)}] , (2.5)

where χS are the usual characteristic functions of S. So, f ∈ Mp, if and only
if

f =
∑

S∈σ(Qp)

tSχS with tS ∈ C,

where
∑

is the finite sum.
Then this algebra Mp of (2.5) forms a ∗-algebra over C, equipped with the

adjoint ( ∑
S∈σ(Gp)

tSχS

)∗
def
=

∑
S∈σ(Gp)

tSχS,

where tS are the conjugates of tS in C.
If f ∈ Mp, then one can define the p-adic integral φp of f by

φp(f)
def
=

∫
Qp

f dµp =
∑

S∈σ(Qp)

tSµp(S). (2.6)

Note that, by (2.4), if S ∈ σ(Qp), then there exists a subset ΛS of Z, such that

ΛS = {j ∈ Z : S ∩ ∂j ̸= ∅}, (2.7)

satisfying
φp (χS) =

∫
Qp
χS dµp =

∫
Qp

∑
j∈ΛS

χS∩∂j dµp

by (2.4)
=
∑
j∈ΛS

µp (S ∩ ∂j)

by (2.6)

≤
∑
j∈ΛS

µp (∂j) =
∑
j∈ΛS

(
1
pj

− 1
pj+1

)
,

by (2.4); that is,
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∫
Qp

χS dµp ≤
∑
j∈ΛS

(
1

pj
− 1

pj+1

)
,

for all S ∈ σ(Qp), where ΛS is in the sense of (2.7).
More precisely, one can get the following proposition.

Proposition 2.1 (See [8]). Let S ∈ σ(Qp), and let χS ∈ Mp. Then there exist
rj ∈ R, such that

0 ≤ rj ≤ 1 in R, for all j ∈ ΛS,∫
Qp

χS dµp =
∑
j∈ΛS

rj

(
1

pj
− 1

pj+1

)
, (2.8)

where ΛS is in the sense of (2.7).

2.3. The adele Ring and the Finite adele Ring. In this section, we introduce
the adele ring AQ and the finite adele ring AQ. For more about the adele ring AQ
and the corresponding Adelic analysis, see [33].

Definition 2.2. Let P∞ = P ∪ {∞}, and identify Q∞ with the Banach field R
equipped with the usual-(distance-)metric topology. Let AQ be a set

AQ =

(xp)p∈P∞

∣∣∣∣∣∣
xp ∈ Qp, for allp ∈ P∞,

where only finitely many xp’s are in Qp \ Zp,
but all other xp’s are contained in Zp of Qp

 , (2.9)

equipped with the addition (+)

(xp)p∈P∞
+ (yp)p∈P∞

= (xp + yp)p∈P∞
, (2.10)

and the multiplication (·)

(xp)p∈P∞
(yp)p∈P∞

= (xpyp)p∈P∞
, (2.11)

where the entries xp+ yp of (2.10) and the entries xpyp of (2.11) , respectively,
are the p-adic addition and the p-adic multiplication on Qp (e.g., [33]) for all p
∈ P , and where x∞ + y∞, and x∞y∞ are the usual R-addition and the usual
R-multiplication, respectively.

The adele ring AQ is equipped with the product topology of the p-adic-norm
topologies for Qp’s, for all p ∈ P , and the usual-metric topology of Q∞ = R,
providing the AQ-norm |.|Q ,∣∣∣(xp)p∈P∞

∣∣∣
Q
= Π

p∈P∞
|xp|p , (2.12)

where |.|p are the p-adic norms on Qp, for all p ∈ P , and |.|∞ is the usual

absolute value |.| on R = Q∞.
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From the above definition, the set AQ of (2.9) forms a ring algebraically,
equipped with the binary operations (2.10) and (2.11), and this ring AQ is a
Banach space under its |.|Q-norm of (2.12). Thus, the set AQ of (2.9) forms a
Banach ring induced by the family

Q = {Qp}p∈P ∪ {Q∞ = R}.
Suppose that X = (xp)p∈P∞

∈ AQ, and assume that there are p1,. . . , pN ∈ P∞,
for some N ∈ N, such that

xpl ∈ Qp \ Zp,
for l = 1,. . . , N , and

xq ∈ Zq
for q ∈ P∞ \ {p1,. . . , pN}. Then, by (2.9) and (2.12),

|X|Q =

(
N

Π
l=1

|xpl|pl

)(
Π

q∈P∞\{p1,...,pN}
|xq|q

)

≤
(

N

Π
l=1

|xpl |pl

)
· 1 =

(
N

Π
l=1

|xpl |pl

)
<∞.

Equivalent to the definition (2.9), the adele ring AQ is in fact the weak-direct
product of Q, expressed by

AQ = Π′
p∈P∞

Qp (2.13)

(e.g., [33]), where Π′ means the weak-direct product of topological rings.

Definition 2.3. Let AQ be the adele ring (2.9) or (2.13). Define a set AQ by

AQ =

{
(xp)p∈P

∣∣∣∣∣ xp ∈ Qp, for all p ∈ P ,
and

(
0, (xp)p∈P

)
∈ AQ

}
, (2.14)

equipped with the inherited binary operations (2.10) and (2.11) of AQ, under
subspace topology of the norm topology (2.12). Then this topological ring AQ is
said to be the finite adele ring.

By (2.13) and (2.14), one can conclude that

AQ = Π′
p∈P

Qp, (2.15)

where Π′ is the weak-direct product of topological rings.
By (2.15) and [35], the finite adele ring AQ of (2.14) can be regarded as a

measure space equipped with its measure,

µ = ×
p∈P

µp, (2.16)

on the σ-algebra σ (AQ) of AQ, which is the product σ-algebra of {σ(Qp)}p∈P ,
where (2.16) means the product measure.

So, one can define the ∗-algebra MP by
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MP = C [{χY : Y ∈ σ (AQ)}] . (2.17)

Remark here that Y ∈ σ (AQ) if and only if

Y = Π
p∈P

Sp, with Sp ∈ σ (Qp) ,

by (2.15) (under additional conditions; See (2.21) below for details).
By (2.17), f ∈ MP if and only if

f =
∑

Y ∈σ(AQ)

sY χY , with sY ∈ C, (2.18)

where
∑

means the finite sum.
Thus, one obtains the (finite-)Adelic integration φ of f ∈ MP by

φ(f)
def
=

∫
AQ

f dµ =
∑

Y ∈σ(AQ)

tY µ (Y ) , (2.19)

whenever f is in the sense of (2.18) in MP , where µ is the product measure
(2.16).

Definition 2.4. Let MP be in the sense of (2.17), and let φ be the linear
functional (2.19) on MP . Then the pair

(MP , φ) (2.20)

is called the finite-Adelic (∗-)probability space (under the nontraditional sense in
section 1.1).

Recall that our finite adele ring AQ is a weak-direct product of {Qp}p∈P by
(2.15), and hence, Y ∈ σ (AQ) if and only if there exist N ∈ N and p1,. . . , pN ∈
P such that

Y = Π
p∈P

Sp, where Sp ∈ σ (Qp) , with Sp =

{
Sp ⊂ Qp if p ∈ {p1, . . . , pN},
Zp otherwise,

(2.21)
for all p ∈ P .
Thus, if Y ∈ σ (AQ) satisfying (2.21), one has

φ (χY ) =
∫
AQ

χY dµ =
∫
AQ

χ Π
p∈P

Sp dµ

= Π
p∈P

(∫
Qp
χSpdµp

)
by (2.16)

=

(
N

Π
l=1

µpl (Sp)

)(
Π

q∈P \ {p1,...,pN}
µq (Zq)

)
by (2.21)
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=
N

Π
l=1

µpl (Sp) =
N

Π
l=1

(
φpl
(
χSpl

))
, (2.22)

since µq (Zq) = 1, for all q ∈ P , where φp are the p-adic integrations (2.6) for
all p ∈ P .

Proposition 2.5. Let Y ∈ σ (AQ), satisfying (2.21), and let χY ∈ (MP , φ) .
Then

φ (χnY ) =
N

Π
l=1

 ∑
j∈ΛSpl

r
Spl
j

(
1

pjl
− 1

pj+1
l

) , (2.23)

for all n ∈ N, where rSpl
j are in the sense of (2.8) for all j ∈ ΛSpl

and for all
l = 1, . . . , N.

Proof. The formula (2.23) is obtained by (2.8), (2.21), and (2.22). □

Notice that, by the construction (2.17) of MP , one can conclude that

MP
Alg
= Π′

p∈P
Mp, (2.24)

where Π′ means the weak-direct product of ∗-algebras, where “
Alg
=” means “being

pure-algebraic ∗-isomorphic.” The isomorphism (2.24) holds because of (2.15)
(and (2.21)).

Proposition 2.6. Let (MP , φ) be the finite-Adelic probability space. Then

MP = Π′
p∈P

Mp and φ = Π
p∈P

φp, (2.25)

where Mp and φp, respectively, are in the sense of (2.5) and (2.6) for all p ∈ P .

Proof. The ∗-isomorphism theorem of MP in (2.25) is obtained by (2.24). The
equivalence (2.25) for φ is guaranteed by (2.16) and (2.23). □

3. Analysis on MP

Let (MP , φ) be the finite-Adelic probability space. By abusing notation, one
may / can re-write the relation (2.25) by

(MP , φ) = Π′
p∈P

(Mp, φp) . (3.1)

Recall that, in [7, 11], we call the pairs (Mp, φp) , the p-adic probability spaces
for all p ∈ P .
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Proposition 3.1. Let Y1,. . . , Yn ∈ σ (AQ) , and let χYl ∈ (MP , φ) for
l = 1, . . . , n for some n ∈ N. Then there exist a unique “finite” subset Po of P
and Xp ∈ σ (Qp) , for all p ∈ Po, such that

φ

(
n

Π
l=1

χYl

)
= Π

p∈Po

 ∑
j∈ΛXp

r
Xp

j

(
1

pj
− 1

pj+1

) , (3.2)

where r
Xp

j are in the sense of (2.8) and ΛXp are in the sense of (2.7).

Proof. The formula (3.2) is obtained by (2.23) and (3.1). See [8] for more details.
□

The above formula (3.2) characterizes the (free) distributions of generating
elements of our finite-Adelic probability space (MP , φ). As a corollary of (3.2),
one obtains the following result.

Corollary 3.2. Let Yl = Π
p∈P

Slp ∈ σ (AQ) , for l = 1,. . . , n for some n ∈ N, where

Slp =

{
∂ptkpt,l

if pt ∈ {pl,1, . . . , pl,Nl
},

Zp otherwise,
(3.3)

where ∂pkp are the kp-th boundaries for kp ∈ Z in Qp, for p ∈ P , and where
kpt,1,. . . , kpt,Nl

∈ Z, for all l = 1, . . . , n, all p ∈ P . Now, let

Po =
n
∪
l=1

{pl,1, . . . , pl,Nl
} in P .

Then one obtains that

φ

(
n

Π
l=1

χYl

)
= Π

p∈Po

βkp

(
1

pkp
− 1

pkp+1

)
, (3.4)

where pkp are in the sense of (3.3), where

βkp =

{
1 if

n
∩
l=1

Slp ̸= ∅,
0 otherwise,

for all p ∈ Po.

Proof. The formula (3.4) is shown by (3.2), under the condition (3.4). See [8] for
details. □

Let Yl ∈ σ (AQ) be in the sense of (3.3), for l = 1,. . . , n, and let

X =
n

Π
l=1

χYl ∈ (MP , φ) . (3.5)

Definition 3.3. Such elements X of (3.5) are called boundary-product elements
of the finite-Adelic probability space (MP , φ) . Let X be a boundary-product
element (3.5) of (MP , φ) . Assume that Yl are in the sense of (3.3) and that Po
is in the sense of the above corollary. Assume further that, for all p ∈ Po, the
corresponding integers kp are “non-negative”; that is,

kp ≥ 0 for all p ∈ Po. (3.6)
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Then this boundary-product element X is said to be a (+)-boundary element
of (MP , φ) .

Let ϕ : N → C be the Euler totient function defined by an arithmetic function,

ϕ(n) =

∣∣∣∣{k ∈ N
∣∣∣∣ 1 ≤ k ≤ n
gcd(n, k) = 1

}∣∣∣∣ , (3.7)

for all n ∈ N, where |S| mean the cardinalities of sets S, and gcd means the
greatest common divisor. It is well-known that

ϕ(n) = n

(
Π

p∈P, p|n

(
1− 1

p

))
, for all n ∈ N, (3.8)

where “p | n” means “p divides n” or “n is divisible by p.” For instance,

ϕ(p) = p− 1 = p
(
1− 1

p

)
,

for all p ∈ P , by (3.7) and (3.8).
Remark that the Euler totient function ϕ is a multiplicative arithmetic function

in the sense that

ϕ(n1n2) = ϕ(n1)ϕ(n2), whenever gcd(n1, n2) = 1 for all n1, n2 ∈ N. (3.9)

Theorem 3.4. Let X be a (+)-boundary element (3.5) of the finite-Adelic prob-
ability space (MP , φ) satisfying (3.6). Then there exist a finite subset Po of P
and

Ko = {kp ∈ N0 : p ∈ Po} of Z,
where N0 = N ∪ {0}, such that

nX = Π
p∈Po

pkp ∈ N,

0 < rX = Π
p∈Po

1

pkp+1
=

 1

Π
p∈Po

p

( 1

nX

)
≤ 1 in Q, (3.10)

and

φ(X) = rX ϕ(nX).

Proof. LetX be a (+)-boundary element (3.5) in (MP , φ) satisfying (3.6). Then,
by (3.4), there exist the subsets Po of P , and Ko of Z, such that

φ (X) = Π
p∈Po

(
1
pkp

− 1
pkp+1

)
,

with kp ∈ Ko, with kp ≥ 0 in Z. Observe that

φ(X) = Π
p∈Po

1
pkp

(
1− 1

p

)
=

(
Π

p∈P+
o

1
pkp+1

)
ϕ (nX) ,

where
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nX =

(
Π
p∈Po

pkp
)

∈ N,

by (3.7), (3.8), and (3.9). □
The relations in (3.10) characterize the free distributions of (+)-boundary el-

ements of the finite-Adelic probability space (MP , φ) , in terms of the Euler-
totient-functional values.

Theorem 3.5. Let n ∈ N be prime-factorized by

n = p
kp1
1 p

kp2
2 . . . p

kpN
N in N, (3.11)

where kp1 ,. . . , kpN ∈ N for some N ∈ N. Then there exists a (+)-boundary
element X of the finite-Adelic probability space (MP , φ) , such that

X = Π
p∈P

χYp ∈ (MP , φ) , with Po = {p1, . . . , pN} ⊂ P , (3.12)

Ko = {kp1 ,. . . , kpN} ⊂ N0,

and

Yp =

{
∂pkp if p ∈ Po,

Zp otherwise,

for all p ∈ P , where kp ∈ Ko, satisfying that

ϕ (n) = nonφ(X), with no = Π
p∈Po

p ∈ N. (3.13)

Proof. Let X be a (+)-boundary element (3.12) in (MP , φ) . Then

φ (X) =

(
1

Π
p∈Po

pkp

)(
Π
p∈Po

1
p

)
(ϕ(n)) =

(
1
n

)(
1
Π

p∈P+
o

p

)
(ϕ(n)) ,

where n is in the sense of (3.11). So, we obtain (3.13). □
The above two theorems illustrate connections between our analysis and num-

ber theory.

4. Representation of (MP , φ)

Let (MP , φ) be the finite-Adelic probability space,

(MP , φ) = Π′
p∈P

(Mp, φp)

=

(
Π′
p∈P

Mp, Π
p∈P

φp

)
.

(4.1)
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In [7, 11], we established-and-studied Hilbert-space representations (Hp, α
p) of

the p-adic probability spaces (Mp, φp) for p ∈ P . By (4.1), one can construct a
Hilbert-space representation of MP from the representations,

{(Hp, α
p) : p ∈ P}

of [7, 11]. However, instead of using them, we provide the following equivalent
construction.

Define a form

[, ] : MP ×MP → C

[f1, f2]
def
=

∫
AQ

f1f
∗
2dµ = φ(f1f

∗
2 ) for all f1, f2 ∈ MP . (4.2)

Proposition 4.1. The form [, ] of (4.2) on the finite-Adelic ∗-algebra MP is an
inner product. Equivalently, the pair (MP , [, ]) forms an inner product space.

Proof. The form [, ] of (4.2) is an inner product on MP . See [9] for details. □
From the inner product [, ] of (4.2), one can construct the norm ∥.∥ and the

metric d(, ), canonically.

Definition 4.2. Let d be the metric induced by the inner product [, ] of (4.2).
Then the maximal d-metric-topology closure HP in MP is called the finite-Adelic
Hilbert space.

By the definition of finite-Adelic Hilbert space HP , our ∗-algebra MP is acting
on HP via a linear morphism α from MP into the operator algebra B (HP)
(consisting of all bounded operators on HP under the operator-norm);

α(f)(h)
denote
= αf (h) = fh, for all h ∈ HP , (4.3)

for all f ∈ MP . That is, the algebra-action α of (4.3) assigns each element f
of MP to the multiplication operator α(f) = αf with its symbol f in the operator
algebra B (HP) consisting of all bounded linear operators on HP .

Notation 4.1 For convenience, we denote the multiplication operators α (χY ) =
αχY

simply by αY , for all Y ∈ σ (AQ) from below.

Observe that, for any f1, f2 ∈ MP ,

αf1f2 = αf1αf2 on HP , (4.4)

and, for any f ∈ MP ,

α∗
f = αf∗ on HP (4.5)

(e.g., [8, 10]).

Proposition 4.3. Let HP be the finite-Adelic Hilbert space, and let α be in the
sense of (4.3). Then the pair (HP , α) is a Hilbert-space representation of the
finite-Adelic ∗-algebra MP .
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Proof. The linear morphism α of (4.3) is a ∗-homomorphism fromMP to B (HP),
by (4.4) and (4.5). □

By the above proposition, one can understand all elements f of MP as a
Hilbert-space operator αf acting on HP .

Definition 4.4. Let (MP , φ) be the finite-Adelic probability space, and let
(HP , α) be the Hilbert-space representation of MP . Then we call (HP , α), the
finite-Adelic representation of (MP , φ) . Define now the finite-Adelic C∗-algebra
MP by a C∗-subalgebra of B (HP),

MP = C∗ (MP)
def
= C [α (MP)] (4.6)

where X means the operator-norm-topology closures of subsets X of B (HP) .

5. Functional Analysis on MP

Let (MP , φ) be the finite-Adelic probability space, and let MP be the finite-
Adelic C∗-algebra (4.6) of (MP , φ) under the finite-Adelic representation (HP , α) .
In this section, we will consider functional analysis on the C∗-algebraMP by con-
structing a system {φp,j}p∈P, j∈Z of linear functionals φp,j’s (implying number-
theoretic information) on MP .

Define a linear functional φp,j on MP by

φp,j(T ) =
[
T
(
χBp

j

)
, χBp

j

]
, for all T ∈MP , (5.1)

for all p ∈ P and j ∈ Z, where [, ] is the inner product (4.2) on the finite-Adelic
Hilbert space HP , and where

Bp
j = Π

q∈P
Yq in σ (AQ)

with

Yq =

{
∂pj if q = p,
Zq otherwise,

for all q ∈ P ; that is,

χBp
j
= χZ2×Z3×Z5×···× ∂pj

p-th position

× ····· ∈ HP .

All vectors h of the finite-Adelic Hilbert space HP have their expressions,

h =
∑

Y ∈σ(AQ)

tY χY , with tY ∈ C,

where
∑

is a finite, or an infinite (a limit of finite) sum(s) under the Hilbert-
space topology, while every operator T of MP has its expression,

T =
∑

Y ∈σ(AQ)

sY αY , with sY ∈ C,

where
∑

is a finite, or an infinite (limit of finite) sum(s) under the C∗-topology
for MP , and where αY are in the sense of Notation 4.1.

So, the linear functionals φp,j of (5.1) are well-defined on MP , and hence, one
can get the mathematical pairs,
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Mp,j
P

denote
= (MP , φp,j) for all p ∈ P and j ∈ Z. (5.2)

Definition 5.1. Let Mp,j
P = (MP , φp,j) be a mathematical pair (5.2), where φp,j

is a linear functional (5.1), for p ∈ P and j ∈ Z. Then we call this pair Mp,j
P ,

the (p, j)(-finite)-Adelic C∗-probability space of the finite-Adelic C∗-algebraMP ,
nontraditionally.

In the rest of this section, let us fix p ∈ P and j ∈ Z and the corresponding

(p, j)-Adelic C∗-probability space Mp,j
P of (5.2).

Consider that, if αY = αχY
∈ Mp,j

P , for Y ∈ σ (AQ) , satisfying

Y = Π
p∈P

Sp, with Sp ∈ σ (Qp) , where Sp =

{
Sp ̸= Zp if p ∈ PY ,
Zp if p /∈ PY ,

(5.3)

for all p ∈ P , where
PY = {p ∈ P : Sp ̸= Zp}

is a finite subset in P .
Then we have

φp,j (αY ) =
[
αY (χBp

j
), χBp

j

]
=
∫
AQ

χY ∩Bp
j
dµ = µ

(
Y ∩Bp

j

)


(
Π

q∈PY

µq (Sq ∩ Zq)
)(

µp
(
Zp ∩ ∂pj

))
if p /∈ PY ,

(
Π

q∈PY \{p}
µq (Sq ∩ Zq)

)(
µp
(
Sp ∩ ∂pj

))
if p ∈ PY .

(5.4)

Thus, one obtains the following result.

Theorem 5.2. Let αY be an element of the (p, j)-Adelic C∗-probability space
Mp,j

P , where Y ∈ σ (AQ) is in the sense of (5.3). Then

φ (αnY ) =

(
Π

q∈(PY ∪{p})\{p}
µq (Sq ∩ Zq)

)(
µp
(
Sp ∩ ∂pj

))
for all n ∈ N. (5.5)

Proof. Since αY is a projection in MP , one has αnY = αY for all n ∈ N. So, the
formula (5.5) is obtained by (5.4). Remark that the formula (5.5) is nothing but
a re-expression of conditional formulas in (5.4). □

Now, let Y be in the sense of (5.3), with specific condition as follows:

Y = Π
p∈P

Sp, with Sp ∈ σ (Qp) , where Sp =

{
∂pkp if p ∈ PY
Zp if p /∈ PY ,

(5.6)

for all p ∈ P , where kp ∈ Z for p ∈ PY , and PY = {p1,. . . , pN} in P for some
N ∈ N.
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If Y is in the sense of (5.6), then the corresponding element αY of the (p, j)-
Adelic C∗-probability space Mp,j

P satisfies that

φp,j (α
n
Y ) =

(
Π

q∈(PY ∪{p})\{p}
µq

(
∂qkq ∩ Zq

))(
µp
(
Sp ∩ ∂pj

))


(
Π

q∈PY

µq

(
∂qkq ∩ Zq

))(
µp
(
Zp ∩ ∂pj

))
if p /∈ PY ,

δj,kp

(
1
pj

− 1
pj+1

)(
Π

q∈PY \{p}
µq

(
∂qkq ∩ Zq

))
if p ∈ PY ,

(5.7)

by (5.4) and (5.5), for all n ∈ N, where δ is the Kronecker delta. Therefore,
one obtains the following special case of (5.5) with help of (5.7).

Corollary 5.3. Let Y be in the sense of (5.6) in σ (AQ) , and let αY be the

corresponding element of the (p, j)-Adelic C∗-probability space Mp,j
P . Then

φp,j (α
n
Y ) = δj,Y

(
1

pj
− 1

pj+1

)(
Π

q∈PY \{p}
µq

(
∂qkq ∩ Zq

))
, (5.8)

for all n ∈ N, where

δj,Y =

 δj,kp if p ∈ PY ,
0 if p /∈ PY and j < 0,
1 otherwise,

where PY is in the sense of (5.6).

Proof. The formula (5.8) is proven by (5.5) and (5.7). □
Note that the operator αY of the above corollary is an operator α (χY ) induced

by a boundary-product element χY of the finite-Adelic probability space (MP , φ) ,
and hence, they provide building blocks for computing (free) distributions of all
operators in MP . So, as in section 3, we focus on studying (free-)distributional
data of these operators αY for investigating statistical data on MP .

Definition 5.4. Let αY be the operator of the finite-Adelic C∗-algebra MP ,
generated by the µ-measurable subset Y of (5.6). Then we call such an operator
αY , a boundary-product operator of MP .

Now, let Y and PY ⊂ P be in the sense of (5.6). Then PY is partitioned by

PY = P+
Y ⊔ P−

Y in P , (5.9)

where

P+
Y = {q ∈ PY : kq ≥ 0 in Z},

and

P−
Y = {q ∈ PY : kq < 0 in Z}.
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Then the formula (5.8) can be refined as follows with help of (5.9).

Theorem 5.5. Let Y be in the sense of (5.6), inducing a finite subset PY =

P+
Y ⊔ P−

Y of P , as in (5.9). If αY ∈ Mp,j
P , for p ∈ P and j ∈ Z, then

φp,j (α
n
Y ) =

 δj,kp

(
Π

q∈PY

(
1
qkq

− 1
qkq+1

))
if P−

Y = ∅,

0 if P−
Y ̸= ∅,

(5.10)

for all n ∈ N, where ∅ means the empty set.

Proof. The proof of (5.10) is done by (5.8) and (5.9). Indeed, if P−
Y ̸= ∅ in PY ,

and if q ∈ P−
Y in PY , and hence, kq < 0 in Z, then

∂qkq ∩ Zq = ∅ in Qq,

implying

µ
(
Y ∩Bp

j

)
= 0,

for “any” p ∈ P , j ∈ Z. (Also, see the definition δj,Y of (5.8), implying the
above discussion.)

So, whenever P−
Y ̸= ∅, the free moments φp,j (α

n
Y ) vanish. □

The above distributional data (5.10) allow us to have the following result.

Theorem 5.6. Let αY be a boundary operator of the (p, j)-Adelic C∗-probability

space Mp,j
P for p ∈ P and j ∈ Z. If the subset PY of (5.9) satisfies P−

Y = ∅,
equivalently, if PY = P+

Y in P , then there exist

nY = Π
q∈P+

Y ∪{p}
qkq ∈ N0, such that φp,j (α

n
Y ) =

δj,kp
nY np,j

ϕ(np,j), for all n ∈ N,

(5.11)
where

np,j = Π
q∈P+

Y ∪{p}
q in N,

where ϕ is the Euler totient function.

Proof. Recall that, for a fixed p ∈ P , j ∈ Z, if Y is a µ-measurable set (5.6) of
AQ, satisfying P

−
Y = ∅, then the corresponding boundary-product operator αY

in the finite-Adelic C∗-probability space Mp,j
P satisfies

φp,j (αY ) = δj,kp

(
Π

q∈PY ∪{p}

(
1
qkq

− 1
qkq+1

))
by (5.10)

= δj,kp

(
Π

q∈PY ∪{p}
qkq

qkq+1

(
1− 1

q

))

= δj,kp

(
1
nY

)(
1
np,j

)
ϕ(np,j)
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where

nY = Π
q∈PY,p

qkq , np,j = Π
q∈PY,p

q,

in N, and hence, it goes to

= δj,kp

(
1

nY np,j

)
ϕ(np,j)

for all n ∈ N. □

The above results (5.10) and (5.11) illustrate connections between our C∗-
probabilistic structures and number-theoretic information. Also, they show a
relation between the ∗-distributional data of section 3 and our C∗-probabilistic
data, whenever PY = P+

Y in P.

6. Projections in Mp,j
P

Let Mp,j
P = (MP , φp,j) be the (p, j)-Adelic C∗-probability space of the finite-

Adelic C∗-algebra MP , and a linear functional φp,j of (5.1) for p ∈ P and j ∈
Z.

For q ∈ P and k ∈ Z, let Bq
k ∈ σ (AQ) be in the sense of (5.1); that is,

Bq
k = Z2 × Z3 × · · · × ∂qk

q-th position in P
× · · ·, (6.1)

in AQ.
For Bq

k ∈ σ (AQ) of (6.1), let

αq,k
denote
= αBq

k
= α

(
χBq

k

)
∈MP , (6.2)

as a boundary-product operator, for all q ∈ P , k ∈ Z.
Then, by (6.1) and (6.2), we obtain the following special result of (5.10).

Corollary 6.1. Let αq,k ∈ Mp,j
P be in the sense of (6.2) for p, q ∈ P and j, k ∈

Z. Then

φp,j
(
αnq,k

)
=

{
δj,{p,q}

n{p,q}np,j
ϕ(np,j) if k ≥ 0,

0 if p ̸= q and k < 0,
(6.3)

with

δj,{p,q} =

{
δj,k if p ̸= q,
1 if p = q,

n{p,q} = Π
s∈{p,q}

sks , where ks =

{
j if s = p,
k if s = q,

and

np,j = Π
s∈{p,q}

s in N

for all n ∈ N.

Proof. The proof of (6.3) is straightforward by (5.10). □
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The above free distribution (6.3) of the projection αq,k inM
p,j
P is refined by the

following four formulas (6.4), (6.5), (6.6), and (6.7): if p = q and j = k, then

φp,j
(
αnp,j
)
=

1

pj+1
ϕ(p) =

(p− 1)

pj+1
=

1

pj
− 1

pj+1
; (6.4)

if p = q and j ̸= k, then

φp,j
(
αnp,k

)
=

δj,k
n{p}np,j

ϕ(np,j) = 0; (6.5)

if p ̸= q and j = k, then

φp,j
(
αnq,j
)

=
δk≥0

(pjqj)(pq)
ϕ(pq)

= δk≥0

(
1
pj

− 1
pj+1

)(
1
qj
− 1

qj+1

)
,

(6.6)

where

δk≥0 =

{
1 if k ≥ 0,
0 if k < 0,

and if p ̸= q and j ̸= k, then, because δj,k = 0,

φp,j
(
αnq,k

)
= 0 for all n ∈ N. (6.7)

6.1. The C∗-Subalgebra Sp of MP . Let Mp,j
P = (MP , φp,j) be (p, j)-Adelic

C∗-probability spaces, and let αq,k = αBq
k
be projections (6.2) in the finite-Adelic

C∗-algebra MP for all p, q ∈ P and j, k ∈ Z.

Definition 6.2. LetMP be the finite-Adelic C∗-algebra. Define a C∗-subalgebra
Sp of MP by the C∗-algebra generated by the family

Ωp = {αp,k ∈MP : k ∈ Z} (6.8)

of projections αp,k’s of (6.2) for an arbitrarily fixed p ∈ P . That is,

Sp = C∗ (Ωp) = C [Ωp] in MP , (6.9)

for all p ∈ P , where X means the C∗-topology closures of subsets X in MP .
We call Sp of (6.9), the p-adic projection (C∗-)subalgebra of MP for all p ∈ P .

Let p ∈ P , and let αp,k and αp,j be generating projections of the p-adic projec-
tion subalgebra Sp of MP for k, j ∈ Z. Then

αp,kαp,j = δk,jαp,j in Sp, (6.10)

by (2.4).

Proposition 6.3. Let Sp be the p-adic projection subalgebra (6.9) of the finite-
Adelic C∗-algebra MP . Then

Sp
∗-iso
= ⊕

j∈Z
(C · αp,j)

∗-iso
= C⊕|Z|, (6.11)
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in MP , where “
∗-iso
= ” means “being ∗-isomorphic.”

Proof. Since Sp is generated by the family Ωp of (6.8), and the generators αp,j’s
satisfy the orthogonality (6.10)), the ∗-isomorphic relations (6.11) hold inMP . □

Let Sp be the p-adic projection subalgebra of the finite-Adelic C∗-algebra of
MP . Then, by determining the restrictions φp,j |Sp of the linear functionals φp,j
of (5.1), also denoted by φp,j, one can define C∗-probability spaces,

Sp,j = (Sp, φp,j) , (6.12)

for all j ∈ Z, for any fixed p ∈ P .

Definition 6.4. Let Sp be the p-adic projection subalgebra (6.9) of the finite-
Adelic C∗-algebra MP , and let Sp,j be C

∗-probability spaces (6.12) for all j ∈ Z.
Then we call Sp,j, the (p, j)-projection (C∗-)probability spaces.

The free distributions of generating operators αp,k’s in the (p, j)-projection

probability spaces Sp,j
P are characterized by (6.4), refined by (6.5) and (6.6).

Proposition 6.5. Let Sp,j = (Sp, φp,j) be the (p, j)-projection probability space
for p ∈ P and j ∈ Z, and let αp,k be generating operators of Sp for all k ∈ Z.
Then

φp,j
(
αnp,k

)
= δj,k

(
ϕ(p)

pj+1

)
= δj,k

(
1

pj
− 1

pj+1

)
(6.13)

for all n ∈ N.

Proof. The formula (6.13) is obtained from (6.4) (or, (6.5) and (6.6)) and (6.11).
□

6.2. On C∗-Probability Spaces S(p) = (Sp, φp). Let p ∈ P be fixed, and
let Sp,j = (Sp, φp,j) be (p, j)-projection probability spaces (6.12) for all j ∈ Z.
Recall that the C∗-algebra Sp satisfies the structure theorem (6.11). Thus, one
can define the following linear functional φp on Sp by

φp =
∑⊕

k∈Z
φp,j on ⊕

k∈Z
(C · αp,k) = Sp;

by a linear morphism,

φp

(
⊕
j∈Z
tjαp,j

)
=
∑
j∈Z

tjφp,j (αp,j) . (6.14)

By the definition (6.14) of φp, one has

φp

(
⊕
j∈Z
tjαp,j

)
=
∑
j∈Z

tj

(
1

pj
− 1

pj+1

)
=
∑
j∈Z

tjϕ(p)

pj+1
(6.15)

and

φp (αp,k) = φp,k (αp,k) =
1

pk
− 1

pk+1
=
ϕ(p)

pk+1
, (6.16)
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for all k ∈ Z, by (6.13).
Note that the above linear functional φp of (6.14) is well-defined by (6.11).

Definition 6.6. Let Sp be the p-adic projection subalgebra of MP for p ∈ P ,
and let φp be the linear functional (6.14) on Sp. Then the pair

S(p) = (Sp, φp) (6.17)

is called the p-projection (free-)probability space (generated by (p, j)-projection
probability spaces {Sp,j}j∈Z) for all p ∈ P .

The free-distributional data on the p-projection probability spaces S(p) of
(6.17) are characterized by (6.16) for all p ∈ P .
Proposition 6.7. Let S(p) = (Sp, φp) be a p-projection probability space for p
∈ P , and let {αp,k}k∈Z be the generators of S(p). Then

φp
(
αnp,k

)
=
ϕ(p)

pk+1
=

1

pk
− 1

pk+1
, for all k ∈ Z, (6.18)

for all n ∈ N.
Proof. Note that the generating operators αp,k’s of S(p) are projections satisfying
αnp,k = αp,k for all n ∈ N and all k ∈ Z. So, the formula (6.18) holds by (6.16). □

Note that the formula (6.18) gives the full characterization of free distributions
on S(p) by (6.11) and (6.15).

6.3. On a C∗-Probability Space over S. Now, let S(p) = (Sp, φp) be p-
projection probability spaces (6.17) for all p ∈ P , where φp are the linear func-
tionals (6.16) on the p-projection C∗-algebra Sp in the finite-Adelic C∗-algebra
MP . By (4.1), one can construct the C∗-probability space

S
denote
= (S, φ) (6.19)

from {S(p)}p∈P as the pair of the weak direct product algebra S,

S = Π′
p∈P

Sp, (6.20)

where Π′ means the weak direct product of C∗-algebras, and

φ = Π
p∈P

φp, (6.21)

satisfying that

φ
(
(ap)p∈P

)
= Π

p∈P
φp (ap) for all (ap)p∈P = Π

p∈P
ap ∈ S.

That is, like in (4.1), by abusing notation, one has

S = (S, φ) = Π′
p∈P

(Sp, φp) = Π′
p∈P

S(p), (6.22)

by (6.19), (6.20), and (6.21).
By the very definition (6.19) and its characterization (6.22), the C∗-probability

space S is a well-defined C∗-probabilistic sub-structures of MP = (MP , φ).
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Definition 6.8. Let S = (S, φ) be in the sense of (6.22). Then this pair S is
called “the” projection (C∗-)probability space (in MP).

Note that, by (6.20) or (6.22), if T is an element of the projection probability
space S of (6.22), then it is generated by the generating operators {αp,k}p∈P,k∈Z,
formed by

αp,k =
(
βq,kq

)
q∈P, kq∈Z

∈ S, with βq,kq =

{
α[p,k] if q = p, with k ∈ Z
αZq if q ̸= p,

(6.23)

for all q ∈ P , for k ∈ Z, where

α[p,k] = α
(
χ∂kp

)
, for k ∈ Z, and αZq = α

(
χZq

)
, for all q ̸= p in P , (6.24)

in S. Note that

αp,k = αp,k in MP ,

by (6.24) where αp,k are in the sense of (6.2).
But, the notation αp,k is from the definition of MP naturally, and αp,k are

obtained from the definition (6.22) of S. So, whenever we want to distinguish
the origins of them, or to focus on structures where they belong, the different
notations will be used below.

Theorem 6.9. Let αp,j be a generating operator (6.23) of the projection proba-
bility space S of (6.22) for p ∈ P and j ∈ Z. Then

φ
(
(αp,j)n

)
=
ϕ(p)

pj+1
=

1

pj
− 1

pj+1
(6.25)

for all n ∈ N.

Proof. Let αp,j be a generating operator (6.23) of S for p ∈ P and j ∈ Z. Then
it is a projection in S, satisfying (αp,j)

n
= αp,j, for all n ∈ N, by (6.24). So, it

suffices to consider φ (αp,j) to obtain the free-distributional data (6.25). Observe
that

φ (αp,j) =

(
Π
q∈P

φq

)
(αp,j)

by (6.21), (6.22), (6.23), and (6.24).

= φp (αp,j) = φp,j (αp,j)
by (6.14)

= ϕ(p)
pj+1 = 1

pj
− 1

pj+1 ,

by (6.18).
Therefore, the free-distributional data (6.25) holds. □
Note that, by (6.22), every operator of S is a limit of linear combinations of

operators T formed by
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T =
(
T q,kq

)
q∈P = Π

q∈P
T q,kq , (6.26)

for some kq ∈ Z, with a unique finite subset PT of P, such that

T q,kq =

{
αq,kq if q ∈ PT ,
αB0

q
if q ∈ P \ PT ,

(6.27)

for all q ∈ P .

Notation 6.1 Let T be an element (6.26) of the projection probability space
S of (6.22), satisfying (6.27). Then, by abusing notation, we write T simply by

T = Π′
p∈PT

αp,kp , (6.28)

where the set PT in (6.28) is a finite subset of P satisfying (6.26) and (6.27)
for the operator T.

Corollary 6.10. Let T = Π′
p∈PT

αp,kp ∈ S be in the sense of Notation 6.1. Then

φ(T n) = Π
p∈PT

ϕ(p)

pkp+1
=

1

NT

ϕ(nT ), (6.29)

for all n ∈ N, where
NT = Π

p∈PT

pkp+1 ∈ Q, and nT = Π
p∈PT

p ∈ N.

Proof. Let T = Π′
p∈PT

αp,kp ∈ S be in the sense of (6.28). Then

T n =

(
Π′
p∈PT

αp,kp
)n

= Π′
p∈PT

(
αp,kp

)n
= Π′

p∈PT

αp,kp = T,

in S for all n ∈ N. So,

φ(T n) = φ(T ) = φ

(
Π′
p∈PT

αp,kp
)

= Π
p∈PT

φp
(
αp,kp

)
= Π

p∈PT

φp,kp
(
αp,kp

)
= Π

p∈PT

(
1
pkp

− 1
pkp+1

)
= Π

p∈PT

ϕ(p)

pkp+1

by (6.25)

=
Π

p∈PT
ϕ(p)

Π
p∈PT

pkp+1 =
ϕ

(
Π

p∈PT
p

)
Π

p∈PT
pkp+1 ,

by (3.10), for all n ∈ N. □
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7. Semigroup C∗-Dynamical Systems Induced by AQ

Now, independent from the above analytic results (but to generalize those
results), let us consider semigroup dynamical systems of the σ-algebra σ (AQ) of
the finite adele ring AQ. In this section, we regard σ (AQ) as a semigroup,

σ (AQ) = (σ(AQ), ∩) , (7.1)

where ∩ is the usual intersection of sets.
Indeed, under finite intersection, σ(AQ) is closed, and definitely the set-operation

∩ is associative on σ(AQ), and hence, the pair σ(AQ) of (7.1) forms a well-defined
semigroup.

Now, let (A, ψ) be an arbitrarily fixed unital C∗-probability space, where A is
a C∗-algebra in the operator algebra B(H) (consisting of all bounded operators
on a Hilbert space H), satisfying

ψ(1A) = 1,

where 1A is the unit (or the operator-multiplication-identity) in A.
Let MP be the finite-Adelic algebra (2.24) generated by σ(AQ), and let HP

be the finite-Adelic Hilbert space of section 4, where the finite-Adelic C∗-algebra
MP induced by the finite-Adelic probability space (MP , φ) act.

Now, consider a new Hilbert space H,

H = H ⊗HP , (7.2)

where H is the Hilbert space where a given C∗-algebra A acts, and HP is the
finite-Adelic Hilbert space, and let

AP = A⊗C MP (7.3)

be the tensor product C∗-algebra of A and MP acting on the Hilbert space H of
(7.2).

Define now a semigroup-action π of the semigroup σ(AQ) of (7.1) acting on
the C∗-algebra AP of (7.3) by a morphism π,

S ∈ σ(AQ) 7−→ π(S)
denote
= πS ∈ End(AP),

satisfying

πS(a⊗ αY ) = a⊗ αY αS, (7.4)

for all S, Y ∈ σ(AQ) and a ∈ A, where

End(AP) =

E : AP → AP

∣∣∣∣∣∣
E is a

∗-endomorphism
on AP

 .

Recall that ∗-endomorphisms are surjective (bounded) ∗-homomorphisms from
a (topological) ∗-algebra onto itself.

By the definition (7.4) of the morphism π, it is not difficult to check that

πS1∩S2 = πS1πS2 on AP , (7.5)

for all S1, S2 ∈ σ(AQ).
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Moreover, one can check that

πS ((a⊗ αY )
∗) = a∗ ⊗ α∗

Y αS = a∗ ⊗ α∗
Y α

∗
S

= a∗ ⊗ (αSαY )
∗ = a∗ ⊗ (αY αS)

∗

= (a⊗ αY αS)
∗ = (πS(a⊗ αY ))

∗
(7.6)

for all a ∈ A and S, Y ∈ σ(AQ).
By (7.6), we have

πS (T
∗) = (πS(T ))

∗ , for all T ∈ AP (7.7)

for all S ∈ σ(AQ).
So, indeed, the images πS of our morphism π of (7.2) are well-determined ∗-

endomorphisms on the C∗-algebra AP , for all S ∈ σ(AQ), by (7.5) and (7.7); that
is,

πS ∈ End (AP) for all S ∈ σ(AQ). (7.8)

Notation 7.1 In the rest of this paper, for convenience, we denote πS(T )
simply by T S for all T ∈ AP and for all S ∈ σ(AQ).

Definition 7.1. Let B be an arbitrary topological ∗-algebra (C∗-algebra, orW ∗-
algebra, or Banach ∗-algebra, etc.), and let K be a semigroup, and let

θ : K → End(B)

be a morphism whose images θ(k)
denote
= θk are ∗-endomorphisms on B, for all

k ∈ K, satisfying

θk1k2 = θk1θk2 for all k1, k2 ∈ K.

Then the triple (B, K, θ) is called the semigroup (topological-∗-)dynamical
system of K acting on B via a semigroup-action θ.

By the above definition, we obtain the following result.

Proposition 7.2. Let (A, ψ) be the fixed unital C∗-probability space, and let
σ(AQ) be the σ-algebra of the finite adele ring AQ, regarded as a semigroup
(7.1). Then the triple (AP , σ(AQ), π) is the well-defined semigroup C∗-dynamical
system of the semigroup σ(AQ) acting on the tensor product C∗-algebra AP =
A⊗C MP of (7.3) via a semigroup-action π of (7.4).

Proof. The proof is trivial by (7.4), (7.5), and (7.8). □
Definition 7.3. Let (AP , σ(AQ), π) be the semigroup C∗-dynamical system
of the semigroup σ(AQ) of (7.1) acting on the C∗-algebra AP of (7.3) via a
semigroup-action π of (7.4). Then we call it the finite-Adelic A-dynamical system.

Now, let (B, K, θ) be the semigroup C∗-dynamical system of a semigroup
K acting on a C∗-algebra B via a semigroup-action θ. Then it induces a new
C∗-algebra BK generated by both B and θ(K),

BK
denote
= B ×θ K, (7.9)
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dictated by the θ-relation:

(b1, k1)(b2, k2) = (b1θk1(b2), k1k2) and (b, k)∗ = (θk(b
∗), k) , (7.10)

for all b, b1, b2 ∈ B and k, k1, k2 ∈ K.

Definition 7.4. A C∗-algebra BK of (7.9) is called the crossed product C∗-
algebra of (B, K, θ), and the relations in (7.10) are called the θ-relation on BK .

For the finite-Adelic A-dynamical system (AP , σ(AQ), π) , define the corre-
sponding crossed product C∗-algebra,

AP
denote
= AP ×π σ(AQ), (7.11)

satisfying the π-relation:

(a1 ⊗ T1, S1) (a2 ⊗ T2, S2)7 =
(
(a1 ⊗ T1) (a2 ⊗ T2)

S1 , S1 ∩ S2

)
and (a⊗ T, S)∗ =

(
(a∗ ⊗ T ∗)S, S

)
,

(7.12)

for all a, a1, a2 ∈ A and T, T1, T2 ∈MP and S, S1, S2 ∈ σ(AQ), underNotation
7.1.

The definitions (7.11) and (7.12) are from (7.9) and (7.10), respectively.

Definition 7.5. Let (AP , σ(AQ), π) be the finite-Adelic A-dynamical system,
and let AP be the corresponding crossed product C∗-algebra (7.11) with the π-
relation (7.12). Then we call AP , the finite-Adelic A-dynamical-(crossed-product-
C∗-)algebra (of (AP , σ(AQ), π)).

By (7.4) and (7.6), the π-relation (7.12) on the finite-Adelic A-dynamical al-
gebra AP of (7.11) can be re-written as follows:

(a1 ⊗ T1, S1)(a2 ⊗ T2, S2) = ((a1 ⊗ T1)(a2 ⊗ T2αS1), S1 ∩ S2)
= (a1a2 ⊗ T1T2αS1 , S1 ∩ S2) ,

and (a⊗ T, S)∗ = (a∗ ⊗ T ∗αS, S) ,
(7.13)

for all a, a1, a2 ∈ A and T, T1, T2 ∈ MP and S, S1, S2 ∈ σ(AQ).
Suppose that BK be the crossed product C∗-algebra (7.9) of a semigroup C∗-

dynamical system (B, K, θ), satisfying the θ-relation (7.10). Now, consider the
C∗-algebra K = C∗(K) generated by the semigroup K,

k ∈ K 7−→ ek ∈ K ⊂ B(HK),

such that

ek1ek2 = ek1k2 in K, for all k1, k2 ∈ K,

where HK is a Hilbert space where K acts (under a suitable representation).
Define the conditional tensor product C∗-algebra,

BK = B ⊗θ K, (7.14)

by the C∗-subalgebra of the usual tensor product C∗-algebra B⊗CK generated
by B and K, satisfying the θ-condition:
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(b1 ⊗ ek1)(b2 ⊗ ek2) = b1θk1(b2)⊗ ek1ek2
= b1θk1(b2)⊗ ek1k2 ,

and (b⊗ ek)
∗ = θk(b

∗)⊗ ek

(7.15)

for all b, b1, b2 ∈ B and k, k1, k2 ∈ K.

Proposition 7.6. Let BK be the crossed product C∗-algebra (7.9) of a semigroup
C∗-dynamical system (B, K, θ), and let BK be the conditional tensor product
C∗-algebra (7.14). Then

BK
∗-iso
= BK , (7.16)

where “
∗-iso
= ” in (7.16) means “being C∗-isomorphic.”

Proof. Let BK and BK be in the sense of (7.9) and (7.14), respectively. Define a

linear morphism Φ : BK → BK by a linear transformation satisfying that

Φ ((b, k)) = b⊗ ek ∈ BK for all (b, k) ∈ BK .

By the above definition, the linear transformation Φ preserves the generators
of BK to the generators of BK . So, it is not only bounded but also bijective.

Also, by the θ-relation (7.10) on BK and the θ-condition (7.15) on BK , one has
that

Φ ((b1, k1)(b2, k2)) = Φ ((b1θk1(b2)), k1k2)
= b1θk1(b2)⊗ ek1k2 = b1θk1(b2)⊗ ek1ek2
= (b1 ⊗ ek1) (b2 ⊗ ek2)

in BK for all (b1, k1), (b2, k2) ∈ BK . Thus, this bounded linear transformation
Φ is multiplicative.

Moreover,

Φ ((b, k)∗) = Φ ((θk(b
∗), k))

= θk(b
∗)⊗ ek = (b⊗ ek)

∗ ,

in BK , for all (b, k) ∈ BK , by (7.10) and (7.15).
Thus, this multiplicative bijective bounded linear transformation Φ is a ∗-

homomorphism from BK onto BK ; equivalently, it is a ∗-isomorphisms. Therefore,
two C∗-algebras BK and BK are ∗-isomorphic. □

Now, let AP = AP ×π σ(AQ) be our finite-Adelic A-dynamical algebra, and
let MP be the finite-Adelic C∗-algebra. Define a conditional tensor product C∗-
algebra

Ao
P = AP ⊗π MP = (A⊗C MP)⊗π MP , (7.17)

by the C∗-subalgebra of the usual tensor product C∗-algebra AP ⊗C MP , sat-
isfying the π-condition:

((a1 ⊗ T1)⊗ αS1) ((a2 ⊗ T2)⊗ αS2) =
(
(a1 ⊗ T1)(a2 ⊗ T2)

S1
)
⊗ αS1∩S2

= (a1a2 ⊗ T1T2αS1)⊗ αS1∩S2
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and
((a⊗ T )⊗ αS)

∗ = (a∗ ⊗ T ∗)S ⊗ αS
= (a∗ ⊗ T ∗αS)⊗ αS,

(7.18)

for all a1, a2, a ∈ A and T1, T2, T ∈ MP and S1, S2, S ∈ σ(AQ).

Corollary 7.7. Let AP be the finite-Adelic A-dynamical algebra, and let Ao
P be

the conditional tensor product C∗-algebra (7.17) satisfying the π-condition (7.18).
Then

AP
∗-iso
= Ao

P . (7.19)

Proof. The isomorphism theorem (7.19) is a special case of (7.16). □

Assumption and Notation 7.2 (in short, AN 7.2 from below) By the
above isomorphism theorem (7.19), in the following text, we use AP and Ao

P
alternatively, case-by-case. Also, we use the notation AP for both AP and Ao

P ,
and we call them, the finite-Adelic A-dynamical algebra. Also, we use π-relation
of (7.12) (or (7.13)) and the π-condition (7.18) alternatively, under the identified
term, the π-relation.

Let AP be the finite-Adelic A-dynamical algebra. Then, by (7.19), one can
understand it as a C∗-subalgebra of the usual tensor product C∗-algebra AP ⊗C
MP ; more precisely, it is a C∗-subalgebra of

(A⊗C MP)⊗C MP ,

by (7.3) and (7.17).
Define now a ∗-endomorphism

Ψ : A⊗C MP ⊗C MP → A⊗C MP = AP

by a multiplicative surjective bounded linear transformation satisfying

Ψ (a⊗ T1 ⊗ T2) = a⊗ T1T2 (7.20)

for all a ∈ A and T1, T2 ∈ MP .
Then, by the commutativity on MP , this morphism Ψ of (7.20) is indeed a

well-defined ∗-endomorphism. Since our finite-Adelic A-dynamical algebra AP is
a C∗-subalgebra,

(A⊗C MP)⊗π MP in AP ⊗C MP ,

the ∗-endomorphism Ψ is naturally inherited to

Ψ = Ψ |AP : AP → AP , (7.21)

under π-relation.
Now, since a C∗-algebra A is from our fixed unital C∗-probability space (A, ψ)

and the finite-Adelic C∗-algebraMP have a system of linear functionals {φp,j}p∈P, j∈Z
of (5.1), one can determine linear functionals {ψp,j}p∈P, j∈Z on the C∗-algebra
AP = A⊗C MP by linear morphisms satisfying that

ψp,j (a⊗ T ) = φp,j (ψ(a)T ) = φp,j(T )ψ(a), (7.22)



52 I. CHO

for all a ∈ A and T ∈ MP , for all p ∈ P and j ∈ Z.
Let AP be the finite-Adelic A-dynamical algebra. Define linear functionals φAp,j

on AP by the linear morphisms,

φAp,j
def
= ψp,j ◦Ψ on AP , (7.23)

for all p ∈ P , j ∈ Z, where ψp,j are in sense of (7.22), and Ψ is in the sense of
(7.21). By the linearity of ψp,j’s and Ψ, the morphisms φAp,j of (7.23) are indeed
well-defined linear functionals on AP .

Note that, by the definition (7.23), one can get that

φAp,j ((a⊗ αY )⊗ αS) = ψp,j (a⊗ αY ∩S)
= φp,j (αY ∩S)ψ(a)

(7.24)

for all a ∈ A and Y, S ∈ σ(AQ).

Definition 7.8. Let
(
AP , φ

A
p,j

)
be the (traditional) C∗-probability spaces of the

finite-Adelic A-dynamical C∗-algebra AP and the linear functionals φAp,j of (7.23)
for all p ∈ P and j ∈ Z. Then they are said to be the A-dynamical (p, j)-(finite-
Adelic-)C∗-probability spaces over MP for all p ∈ P and j ∈ Z.

As we have seen in sections 5 and 6, one can construct free-probabilistic sub-

structures of the A-dynamical (p, j)-C∗-probability spaces
(
AP , φ

A
p,j

)
, because of

the structure theorem (7.19).
Let SA,p be C

∗-subalgebras of AP defined by

SA,p = A⊗π Sp, for all p ∈ P , (7.25)

where ⊗π is the conditional tensor product in the sense of (7.25) satisfying
the π-relation (7.18), where Sp is the p-adic projection subalgebra (6.9) of the
finite-Adelic C∗-algebra MP . Note that the above sub-structures (7.25) of AP are
well-determined by (7.19).

By understanding Sp as the p-projection probability spaces S(p) of (6.17), one
can construct new C∗-probability spaces,

SA,p
denote
= (SA,p, φA,p) , for all p ∈ P , (7.26)

where φA,p are the linear functionals satisfying that

φA,p ((a⊗ T )⊗ αS) = φA,p (a⊗ TαS)
= φp (TαS)ψ(a),

(7.27)

for all S ∈ σ(AQ) and a ∈ (A, ψ), where φp are the linear functionals (6.14)
on Sp, for all p ∈ P .

These linear functionals φA,p of (7.27) are well-determined in SA,p of (7.25)
because of the well-definedness of the linear functionals φp of (6.14), by (7.24).

Remark that the projection probability space S of (6.19) is constructed by

S = (S, φ) = Π′
p∈P

S(p).



SEMICIRCULARITY ON DYNAMICAL SYSTEMS 53

Hence, motivated by (6.19) and (7.26), one can construct a new C∗-probability
space,

SA = AP ⊗π S ⊂ AP ⊗π MP , (7.28)

equipped with the linear functional φA defined by the linear morphism satis-
fying that

φA ((a⊗ T1)⊗ T2) = φ(T1T2)ψ(a), (7.29)

as in (7.27), for all a ∈ (A, ψ) and T1 ∈ MP and T2 ∈ S = Π′
p∈P

Sp, where φ is

in the sense of (6.19).

Definition 7.9. Let SA = (SA, φA) be the C
∗-probability space (7.28). We call

it the A-dynamical-projection (C∗-)probability space. We call the C∗-algebra
SA, the A-dynamical-projection C∗-algebra.

Let SA be the A-dynamical-projection probability space (7.28). If

T p,ka =
(
a⊗ αp,k

)
⊗ αp,k ∈ SA, (7.30)

then(
T p,ka

)n
=
(
(a⊗ αp,k)⊗ αp,k

)
· · ·
(
(a⊗ αp,k)⊗ αp,k

)

=

ap,kaBk
p

p,ka
Bk

p∩Bk
p

p,k . . . a

(n−1)-times︷ ︸︸ ︷
Bk
p ∩ · · · ∩Bk

p
p,k

⊗
(
αp,k

)n
;

by (7.28) and by the induction on (7.18), where Bk
p are in the sense of (6.1)

and

ap,k
denote
= a⊗ αp,k in AP ,

then it goes to

=
(
ap,ka

Bk
p

p,ka
Bk

p

p,k . . . a
Bk

p

p,k

)
⊗ αp,k

because Bk
p ∩ ... ∩Bk

p = Bk
p in σ(AQ), for all p ∈ P and k ∈ Z, by (6.23)

= ap,k

(
a
Bk

p

p,k

)n−1

⊗ αp,k (7.31)

with axiomatization
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a
Bk

p

p,k

)0
= 1A ⊗ αp,k for all n ∈ N.

But, in this case where T p,ka is in the sense of (7.30), one can verify that(
T p,ka

)n
= ap,k

(
a
Bk

p

p,k

)n−1

⊗ αp,k

by (7.31)

=
((
a⊗ αp,k

) (
a⊗ αp,kαp,k

)n−1
)
⊗ αp,k

by (7.24), (7.27), and (7.29)

=
(
(a⊗ αp,k)

(
a⊗ αp,k

)n−1
)
⊗ αp,k

=
(
a⊗ αp,k

)n ⊗ αp,k

=
(
an ⊗ αp,k

)
⊗ αp,k;

that is, (
T p,ka

)n
=
(
an ⊗ αp,k

)
⊗ αp,k = T p,kan , (7.32)

in the sense of (7.30).
Thus, one can have that

φA
((
T p,ka

)n)
= φ

(
αp,kαp,k

)
ψ (an)

by (7.27), (7.28), and (7.32)

= φp (αp,k) ψ (an) =
(
ϕ(p)
pk+1

)
ψ (an)

=

(
1

pk
− 1

pk+1

)
ψ (an) (7.33)

for all n ∈ N.

Proposition 7.10. Let T p,ja = (a⊗ αp,j) ⊗ αp,j be a free random variable (7.30)
in the A-dynamical-projection probability space SA of (7.28). Then

φA
(
(T p,ja )

n)
= ϕ(p)

pj+1ψ (an)

=
(

1
pj

− 1
pj+1

)
ψ (an)

(7.34)

for all n ∈ N.

Proof. The free-distributional data (7.34) is obtained by (7.33). □

More general to (7.30), let

T p,ka,q,l =
(
a⊗ αq,l

)
⊗ αp,k ∈ SA, (7.35)

for a ∈ (A, ψ), p, q ∈ P and k, l ∈ Z.

Assumption In the rest of the paper, whenever operators T p,ka,q,l of (7.35) are
considered in SA, we automatically assume that
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a ̸= 0A and that ψ(a) ̸= 0 in C,
where 0A is the zero element of (A, ψ). Remark that the operators T p,ka of

(7.30) are regarded as T p,ka,p,k of (7.35) in SA, and hence, the above conditions will

be automatically assumed for T p,ka , from below.

Then, similar to (7.33) and (7.34), one can get the following free-distributional
data.

Theorem 7.11. Let T p,ja,q,l be a free random variable (7.35) of the A-dynamical-
projection probability space SA. Then

φA
(
(T p,ja,q,l)

n
)
=


ψ(an)

(
1
pj

− 1
pj+1

)
if (p, j) = (q, l),

ψ(an)
(

1
pj

− 1
pj+1

)(
1
ql
− 1

ql+1

)
if (p, j) ̸= (q, l)

(7.36)

for all n ∈ N.

Proof. Suppose that (p, j) = (q, l) in P × Z. Then the operator T p,ja,p,j of (7.35)

is identical to the operator T p,ja of (7.30). Therefore, the first formula in (7.36)
holds.

Assume now that (p, j) ̸= (q, l) in P×Z. Then, one can get the second formula
of (7.36) by (6.13), (6.18), (6.25), (6.29), (7.27), and (7.28).

Therefore, the free-distributional data (7.36) on the A-dynamical-projection
probability space SA. □

8. On the A-Dynamical-Projection Probability Space (SA, φA)

In this section, we use same concepts and notations from previous sections.
Let SA = (SA, φA) be the A-dynamical-projection probability space (7.28),

and let

T p,ja,q,l =
(
a⊗ αq,l

)
⊗ αp,j andT p,ja = T p,ja,p,j (8.1)

respectively, be the simplest generating operators (7.35) and (7.30) of the A-
dynamical-projection C∗-algebra SA for all a ∈ (A, ψ), p, q ∈ P , and j, l ∈
Z.

Recall that, if T p,ja,q,l is in the sense of (8.1) in SA, then(
T p,ja,q,l

)n
=
(
an ⊗ αq,lαp,j

)
⊗ αp,j, in SA,

and φA

((
T p,ja,q,l

)n)
=
(

ϕ(pq)
pj+1ql+1

)
ψ (an) ,

(8.2)

for all n ∈ N, by (7.36).
As special cases of (8.2),

(T p,ja )
n

= (an ⊗ αp,jαp,j)⊗ αp,j = T p,jan , in SA,

and φA
(
(T p,ja )

n)
=
(
ϕ(p)
pj+1

)
ψ(an),

(8.3)
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for all n ∈ N, by (7.34).
Now, we focus on the A-dynamical-projection C∗-algebra SA. Define linear

morphisms cA and aA acting on SA by the bounded linear transformations satis-
fying

cA
(
T p,ja,q,l

)
= T p,j+1

a,q,l and aA
(
T p,ja,q,l

)
= T p,j−1

a,q,l , (8.4)

in SA, for all a ∈ (A, ψ), p, q ∈ P , and j, l ∈ Z, where T p,ja,q,l are generating
operators (8.1) of SA.

Thus, by (8.4), one has

cA
(
T p,ja

)
= T p,j+1

a and aA
(
T p,ja

)
= T p,j−1

a , (8.5)

in SA, where T
p,j
a = T p,ja,p,j are in the sense of (8.1).

By definition, one can understand the linear transformations cA and aA of (8.4)
as elements of the operator space B (SA) (in the sense of [12]), consisting of all
bounded linear transformations “on SA.” That is, by regarding our A-dynamical-
projection algebra SA as a Banach space, the morphisms cA and aA of (8.4) are
well-determined Banach-space operators on SA.

Definition 8.1. Let cA and aA be in the sense of (8.4) in the operator space
B (SA). Then we call cA and aA, the A-dynamical (Adelic-)creation and the A-
dynamical (Adelic-)annihilation on the A-dynamical-projection C∗-algebra SA,
respectively. Define a new element lA ∈ B (SA) by

lA = cA + aA. (8.6)

Then we call lA, the A-dynamical (Adelic-)radial operator on SA.

For any generating operator T p,ja,q,l ∈ SA of (8.1), one obtains that

cAaA
(
T p,ja,q,l

)
= cA

(
T p,j−1
a,q,l

)
= T p,ja,q,l

and aAcA
(
T p,ja,q,l

)
= aA

(
T p,j+1
a,q,l

)
= T p,ja,q,l,

(8.7)

and hence,

cAaA = 1SA
= aAcA on SA, (8.8)

by (8.7), where 1SA
∈ B (SA) is the identity operator,

1SA
(T ) = T for all T ∈ SA.

By the relation (8.8), the following result is obtained.

Lemma 8.2. Let cA and aA, respectively, be the A-dynamical creation and the
A-dynamical annihilation (8.4) on SA. Then

cn1
A a

n2
A = an2

A c
n1
A on SA, (8.9)

for all n1, n2 ∈ N0 = N ∪ {0}, with axiomatization

c0A = 1SA
= a0A on SA.



SEMICIRCULARITY ON DYNAMICAL SYSTEMS 57

Proof. The equality (8.9) holds for all n1, n2 ∈ N, by induction on (8.8). Moreover,
under the above axiomatization, the relation (8.9) holds for all n1, n2 ∈ N0,
too. □

Let lA be the A-dynamical radial operator (8.6) on SA. Then, by (8.9), one
has that

lnA =
n∑
k=0

(
n
k

)
ckAa

n−k
A on SA, for all n ∈ N, (8.10)

where (
n
k

)
= n!

k!(n−k)! for all k ≤ n ∈ N0.

Define now a cyclic Banach algebra LA by

LA = C[{lA}] in B (SA) , (8.11)

where Y means the operator-norm-topology closures of subsets Y of the oper-
ator space B (SA) , where the operator-norm ∥.∥ on B (SA) is defined to be

∥T∥ = sup

{
∥Tx∥SA

∣∣∣∣ x ∈ SA, where
∥x∥SA

= 1

}
,

where ∥.∥SA
is the C∗-norm on SA (e.g., [13]).

From the construction (8.11), it is a well-defined Banach “algebra,” embedded
in the Banach space B (SA) . Moreover, by the cyclicity of LA, one can define the
adjoint (∗) on it by

(
∑n

k=0 tkl
nk
A )

∗
=
∑n

k=0 tk l
nk
A ,

where tk ∈ C with their conjugates tk in C. Then it is a well-defined adjoint
on LA (i.e., all elements are adjointable under (∗) in B(SA), in the sense of [12]),
and hence, LA forms a Banach ∗-algebra. We call the Banach ∗-algebra LA of
(8.11), the A-dynamical radial (Banach-∗-)algebra.

Now, define the tensor product Banach ∗-algebra LSA by

LSA
def
= LA ⊗C SA

= LA ⊗C ((A⊗C MP)⊗π S) ,
(8.12)

where the first tensor product ⊗C in the second equality of (8.12) means the
(usual) tensor product of Banach ∗-algebras, and the second tensor product ⊗C
is the tensor product of C∗-algebras, where ⊗π is the conditional tensor product
under the π-relation.

Definition 8.3. Let LSA be the tensor product Banach ∗-algebra (8.12) of the
A-dynamical radial algebra LA of (8.11) and the A-dynamical projection algebra
SA. We call it the A-dynamical radial-projection (Banach-∗-)algebra.
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9. On the A-Dynamical Radial-Projection Algebra LSA

Let LSA = LA ⊗C SA be the A-dynamical radial-projection algebra (8.12),
where (A, ψ) is a fixed unital C∗-probability space and SA is the A-dynamical
projection algebra (7.30) induced by our finite-Adelic C∗-algebra MP , and where
LA is in the sense of (8.11).

Define a linear morphism EA : LSA → SA by a surjective bounded linear
transformation satisfying that

EA

(
lnAl ⊗

(
Π′

p∈P,q∈Q
T
p,kp
a,q,kq

))

def
=



(
Π

p∈P
(pkp+1)

n+1
)(

Π
q∈Q

qkq+1

)n+1

(
Π

p∈P
ϕ(p)

)(
Π

q∈P
ϕ(q)

)
([n2 ]+1)

lnA

(
T
p,kp
a,q,kq

)
if (p, kp) ̸= (q, kq),

Π
p∈P

(pkp+1)
n+1

(
Π

p∈P
ϕ(p)

)
([n2 ]+1)

lnA

(
T
p,kp
a

)
if (p, kp) = (q, kq),

(9.1)

for all generating operators lA ⊗
(
T
p,kp
a,q,kq

)
, satisfying that

(
lA ⊗

(
T
p,kp
a,q,kq

))n
= lnA ⊗

(
(an ⊗ αq,kqαp,kp)⊗ αp,kp

)
and

(
lA ⊗

(
T
p,kp
a

))n
= lnA ⊗

(
T
p,kp
an

)
,

(9.2)

for all n ∈ N0, a ∈ (A, ψ), and for all finite subsets P and Q of P , for kr ∈ Z
and r ∈ P , where [n

2
] mean the minimal integers greater than or equal to n

2
for

all n ∈ N; for instance,
[3
2
] = 2 = [4

2
].

Recall that the tensor factors T
p,kp
a,q,kq

and T
p,kp
a = T

p,kp
a,p,kp

in (9.2) are the gener-

ating operators (8.1) of SA.
This morphism EA of (9.1) is indeed a well-defined bounded linear transfor-

mation from LSA “onto” SA because of (8.11), (8.12), (7.30), and (6.20).
Now, on LSA, define linear functionals τAp,j by the bounded linear morphism

satisfying

τAp,j = φAp,j ◦ EA on LSA, (9.3)

where φAp,j are in the sense of (7.23) satisfying (7.27) for all p ∈ P and j ∈
Z. Note that, by the well-definedness of the linear functional φA of (7.29), these
linear functionals (9.3) are well-defined.
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Definition 9.1. The well-defined Banach ∗-probability spaces

LSA(p, j)
denote
=

(
LSA, τ

A
p,j

)
, (9.4)

are called the A-dynamical (radial-projection-)(p, j)-filterization of the finite-
Adelic C∗-algebra MP for all p ∈ P and j ∈ Z.

Let LSA(p, j) be the A-dynamical (p, j)-filterization (9.4) of MP . Then one
can get the following free-distributional data.

Theorem 9.2. Let LSA(p, j) =
(
LSA, τ

A
p,j

)
be the A-dynamical (p, j)-filterization

of the finite-Adelic C∗-algebra MP for p ∈ P and j ∈ Z. Let a ∈ (A, ψ), and let

Up,j
a = lA ⊗

(
T p,ja

)
∈ LSA(p, j), (9.5)

where T p,ja = T p,ja,p,j ∈ SA is in the sense of (8.1). Then

τAp,j
(
(T p,ja )

n)
=
(
ωn
(
p2(j+1)

)n
2 cn

2

)
(ψ (an)) ,

where ωn =

{
1 if n is even,
0 if n is odd,

(9.6)

for all n ∈ N, and where

cm = 1
m+1

(
2m
m

)
= (2m)!

m!(m+1)!

are the m-th Catalan numbers for all m ∈ N0.

Proof. Let Up,j
a be in the sense of (9.5) in the A-dynamical (p, j)-filterization

LSA(p, j), for p ∈ P and j ∈ Z. Then

(
Up,j
a

)n
=
(
lA ⊗ (T p,ja )

)n
= lnA ⊗

(
T p,jan

)
, (9.7)

by (9.2) with identity a0 = 1A (for all p ∈ P and j ∈ Z).
So, one can get that:

τAp,j
(
(Up,j

a )
n)

= τAp,j
(
lnA ⊗

(
T p,jan

))
by (9.7)

= φAp,j
(
EA
(
lnA ⊗ T p,jan

))
=
(
φAp,j
)((pj+1)

n+1

[n
2
]+1

lnA
(
T p,jan

))

=
(pj+1)

n+1

[n
2
] + 1

φAp,j
(
lnA
(
(an ⊗ αp,j)⊗ αp,j

))
(9.8)

for all n ∈ N.
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Observe now that, for any n ∈ N,

l2n−1
A =

∑2n−1
k=0

(
2n− 1
k

)
ckAa

2n−k−1
A

and l2nA =
∑2n

k=0

(
2n
k

)
ckAa

2n−k
A ,

(9.9)

by (8.10), where cA and aA are the A-dynamical creation and A-dynamical
annihilation on SA, respectively.

Thus, by (9.9), one can realize that l2n−1
A does not contain 1SA

-terms, and l2nA
contains its 1SA

-term,

(
2n
n

)
cnAa

n
A =

(
2n
n

)
(cAaA)

n =

(
2n
n

)
1SA

,

for all n ∈ N, with help of (8.8) and (8.9).
So, the formula (9.8) goes to

τAp,j
(
(T p,ja )

n)
=

(pj+1)
n+1

ϕ(p)([n2 ]+1)
φAp,j

(
lnA
(
T p,jan

))
= ωn

(
(pj+1)

n+1

ϕ(p)(n
2
+1)

)
φAp,j

(
lnA
(
T p,jan

))
where

ωn =

{
1 if n is even,
0 if n is odd,

(9.10)

by (9.9), and hence,

= ωn

(
(pj+1)

n+1

ϕ(p) (n
2
+1)

)
φAp,j

 n

n
2

T p,jan + [Rest terms]


by (8.10)

= ωn

(
(pj+1)

n+1

ϕ(p) (n
2
+1)

)
φAp,j

 n

n
2

T p,jan


by (9.3)

= ωn

(
(pj+1)

n+1

ϕ(p)(n
2
+1)

)  n

n
2

 φp,j (α
p,j) ψ (an)

by (9.2)

= ωn

(
(pj+1)

n+1

ϕ(p)(n
2
+1)

)  n
2
+1

n
2
+1

 n

n
2

( ϕ(p)
pj+1

)
ψ (an)

by (6.13)
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=
(
ωn (p

j+1)
n
cn

2

)
ψ (an)

for all n ∈ N, where

cm = 1
m+1

(
2m
m

)
= (2m)!

m!(m+1)!

are the m-th Catalan numbers for all m ∈ N0.
Therefore, if Up,j

a is a free random variable (9.5) in the A-dynamical (p, j)-
filterization LSA(p, j) of (9.4), then

τAp,j
(
(Up,j

a )
n)

=
(
ωn
(
p2(j+1)

)n
2 cn

2

)
(ψ(an)) ,

for all n ∈ N, where ωn are in the sense of (9.10). Therefore, the free-
distributional data (9.6) holds. □

In the above theorem, if a ∈ (A, ψ) is self-adjoint, then a generating operator
Up,j
a of (9.5) is self-adjoint in LSA, too. Indeed,

(Up,j
a )

∗
= (lA ⊗ T p,ja )

∗

= lA ⊗ ((a∗ ⊗ αp,j)⊗ αp,j) = Up,j
a ,

in LSA, since a
∗ = a in A, under the π-relation on tensor-factor SA of LSA.

Therefore, if a is self-adjoint in (A, ψ), then, by the self-adjointness of Up,j
a ,

the above formula (9.6) fully characterizes the free distribution of Up,j
a in the

A-dynamical (p, j)-filterization LSA(p, j) for p ∈ P and j ∈ Z.

Corollary 9.3. Let T p,j1A
= lA ⊗

(
T p,j1A

)
be in the sense of (9.5) in LSA(p, j), for

p ∈ P and j ∈ Z, where 1A is the unit of A. Then

τAp,j

((
Up,j
1A

)n)
= ωn

(
p2(j+1)

)n
2 cn

2
, (9.11)

for all n ∈ N, where ωn are in the sense of (9.6) and cn
2
are the

(
n
2

)
-th Catalan

numbers.

Proof. Since (A, ψ) is assumed to be a unital C∗-probability space, we have

ψ(1nA) = ψ(1A) = 1 for all n ∈ N.

Thus, one can get that

τAp,j

((
Up,j
1A

)n)
=
(
ωn
(
p2(j+1)

)n
2 cn

2

)
· ψ(1nA), (9.12)

by (9.6), for all n ∈ N. So, the free distribution (9.11) holds for Up,j
1A

in LSA(p, j)
by (9.12). □
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Also, one can get the following corollary, too.

Corollary 9.4. Let Up,j
a = lA ⊗ T p,ja be in the sense of (9.5) in the A-dynamical

(p, j)-filterization LSA(p, j) of MP for p ∈ P and j ∈ Z. Assume that a is self-
adjoint and that

ψ(an) = ψ(a)n for all n ∈ N. (9.13)

Then

τAp,j
((
Up,j
a

)n)
= ωn

(
p2(j+1)ψ(a)2

)n
2 cn

2
, (9.14)

for all n ∈ N.

Proof. Let Up,j
a be in the sense of (9.5) in LSA(p, j), for p ∈ P and j ∈ Z, where

a given self-adjoint operator a satisfies the additional conditions (9.13) in (A, ψ).
Then

τAp,j
(
(Up,j

a )
n)

=
(
ωn
(
p2(j+1)

)n
2 cn

2

)
(ψ (an))

by (9.6)

=
(
ωn
(
p2(j+1)

)n
2 cn

2

)
(ψ(a))n

by (9.13)

= ωn
(
p2(j+1)ψ(a)2

)n
2 cn

2
,

for all n ∈ N. So, the free-distributional data (9.14) holds for Up,j
a in LSA(p, j),

under (9.13). □
The above free-probabilistic results, expressed by (9.6), (9.11), and (9.14), not

only generalize the main results of [10], but also universalize the main results of
[7, 11].

10. Weighted-Semicircular Elements in LSA

In this section, we use same concepts and notations in previous sections. Let
LSA be the A-dynamical radial-projection algebra, and let

LSA(p, j) =
(
LSA, τ

A
p,j

)
be the A-dynamical (p, j)-filterizations, for all p ∈ P and j ∈ Z.
For fixed p ∈ P and j ∈ Z, and a self-adjoint a ∈ (A, ψ), the operator Up,j

a ,

Up,j
a = lA ⊗

(
T p,ja

)
∈ LSA (10.1)

has its free distribution determined by

τAp,j
((
Up,j
a

)n)
=
(
ωn
(
p2(j+1)

)n
2 cn

2

)
(ψ(an)) , (10.2)

for all n ∈ N, by (9.6).
Moreover, if the fixed self-adjoint operator a ∈ A satisfies

ψ(an) = (ψ(a))n for all n ∈ N; (10.3)
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then

τAp,j
((
Up,j
a

)n)
= ωn

(
p2(j+1)ψ(a)2

)n
2 cn

2
, (10.4)

for all n ∈ N, by (9.14).

10.1. Weighted-Semicircular and Semicircular Elements. Let (B, φB) be
an arbitrary topological ∗-probability space, where B is a topological ∗-algebra and
φB is a (bounded, or unbounded) linear functional on B.

Definition 10.1. A self-adjoint free random variable b is said to be weighted-
semicircular in (B, φB) with weight t0 ∈ C, (or in short, t0-semicircular in (B,
φB)), if b satisfies the free-cumulant computation,

kBn (b, . . . , b) =

{
kB2 (b, b) = t0 if n = 2,
0 otherwise,

(10.5)

for all n ∈ N, where kBn (. . .) is the free cumulant on B (in the sense of [31])
with respect to φB under the Möbius inversion of [31].

A self-adjoint free random variable b is semicircular in (B, φ), if b is 1-semicircular
in the sense of (10.5); that is,

kBn (b, . . . , b) =

{
1 if n = 2,
0 otherwise,

(10.6)

for all n ∈ N.

By the Möbius inversion of [31], one can characterize the weighted-semicircularity
(10.5) as follows: a self-adjoint element b is t0-semicircular in (B, φB) if and only
if

φB(b
n) = ωn

(
t
n
2
0 cn

2

)
, (10.7)

where ωn are in the sense of (9.6) for all n ∈ N, and ck are the k-th Catalan
numbers for all k ∈ N0.

Similarly,a free random variable b is semicircular in (B, φB) if and only if b is
1-semicircular in (B, φB), if and only if

φB(b
n) = ωncn

2
, (10.8)

by (10.6) for all n ∈ N.
So, we use the t0-semicircularity (10.5) (resp., the semicircularity (10.6)) and

its characterization (10.7) (resp., (10.8)) alternatively.

10.2. Weighted-Semicircular Elements in LSA(p, j). For p ∈ P and j ∈ Z,
let LSA(p, j) be the A-dynamical (p, j)-filterization, and let

Up,j
a = lA ⊗ T p,ja = lA ⊗ ((a⊗ αp,j)⊗ αp,j)

be in the sense of (10.1) in LSA(p, j), where a is self-adjoint in (A, ψ), and
hence, having its free distribution (10.2).

By (10.5) and (10.7), one can obtain the following weighted-semicircular ele-
ments in LSA(p, j) for p ∈ P and j ∈ Z.
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Theorem 10.2. Let Up,j
a be in the sense of (10.1) in the A-dynamical (p, j)-

filterization LSA(p, j) of MP , for p ∈ P and j ∈ Z, where a self-adjoint operator
a satisfies the following additional condition (10.3) in (A, ψ); that is,

ψ(an) = (ψ(a))n for all n ∈ N.
Then Up,j

a is (pj+1ψ(a))
2
-semicircular in LSA(p, j). That is,

a satisfies (10.3) ⇒ Up,j
a is

(
pj+1ψ(a)

)2
-semicircular, (10.9)

for p ∈ P and j ∈ Z.

Proof. Suppose a self-adjoint free random variable a satisfies the additional con-
dition (10.3) in a fixed unital C∗-probability space (A, ψ). Then, by (10.2) and
(10.4), one obtains the free distribution of the operator Up,j

a of (10.1), determined
by the free moments,

τAp,j
(
(Up,j

a )
n)

= ωn

(
(pj+1ψ(a))

2
)n

2
cn

2

for all n ∈ N.
So, by (10.7), this operator Up,j

a is (pj+1ψ(a))
2
-semicircular in LSA(p, j), since

it is self-adjoint in the A-dynamical radial-projection algebra LSA. Therefore,
the statement (10.9) holds true. □

As a corollary of the weighted-semicircularity (10.9) on LSA(p, j), we have the
following result.

Corollary 10.3. Let Up,j
1A

be in the sense of (10.1) in the A-dynamical (p, j)-
filterization LSA(p, j), for p ∈ P and j ∈ Z, where 1A is the unit of A. Then this
operator Up,j

1A
is p2(j+1)-semicircular in LSA(p, j).

Up,j
1A

is p2(j+1)-semicircular in LSA(p, j), (10.10)

for p ∈ P and j ∈ Z.

Proof. First of all, this operator Up,j
1A

is self-adjoint in LSA,, and the free distri-
bution of it is determined by the free-moments,

τAp,j

((
T p,j1A

)n)
= ωn

(
p2(j+1)

)n
2 cn

2
, for all n ∈ N,

by (9.11). Therefore, one can conclude that Up,j
a is p2(j+1)-semicircular in

LSA(p, j).
Alternatively, the weighted-semicircularity (10.9) directly allows the p2(j+1)-

semicircularity of Up,j
1A
, because 1A is a self-adjoint element of (A, ψ) satisfying

the condition (10.3). □
The main results (10.9) and (10.10) of this section show that, starting from the

finite-Adelic C∗-algebra MP , and the semigroup-dynamical systems of σ(AQ),
one can construct weighted-semicircular elements. Therefore, they generalize
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(operator-theoretically) and globalize (number-theoretically) the weighted-semicircularity
of [7, 10, 11].

11. Semicircular Elements in LSA(p, j)

Let LSA(p, j) be the A-dynamical (p, j)-filterization, for p ∈ P and j ∈ Z.
In section 10.2, we considered weighted-semicircular elements in LSA(p, j). In
particular, if an operator Up,j

a of (10.1) satisfies the condition (10.3), then it is(
p2(j+1)ψ(a)2

)
-semicircular in LSA(p, j), by (10.9).

In this section, we fix p ∈ P , j ∈ Z, and the corresponding A-dynamical (p, j)-
filterization LSA(p, j). Also, define an operator,

Sp,ja =
1

pj+1
Up,j
a ∈ LSA(p, j), (11.1)

where Up,j
a is in the sense of (10.1), and where a is self-adjoint in (A, ψ).

Theorem 11.1. Let Sp,ja = 1
pj+1U

p,j
a be in the sense of (11.1) in the A-dynamical

(p, j)-filterization LSA(p, j), where a is self-adjoint in (A, ψ). Assume further
that a satisfies the condition (10.3); that is,

ψ (an) = (ψ(a))n for all n ∈ N.
Then the operator Sp,ja is ψ(a)2-semicircular in LSA(p, j). That is,

a satisfies (10.3) ⇒ Sp,ja is ψ(a)2-semicircular. (11.2)

Proof. Let a ∈ (A, ψ) be a self-adjoint free random variable satisfying the condi-

tion (10.3). Now, let kA,p,jn (. . .) be the free cumulant (in the sense of [31]) on the
A-dynamical radial-projection algebra LSA in terms of the linear functional τAp,j.
Then

kA,p,jn

Sp,ja , Sp,ja , . . . , Sp,ja︸ ︷︷ ︸
n-times

 = kA,p,jn

(
1

pj+1U
p,j
a , . . . , 1

pj+1U
p,j
a

)
by (11.1)

=
(

1
pj+1

)n
kA,p,jn (Up,j

a , Up,j
a , . . . , Up,j

a )

by the bimodule map property of free cumulants (e.g., [31])

=

{ (
1

pj+1

)2
kA,p,j2 (Up,j

a , Up,j
a ) if n = 2,

0 otherwise,

by the weighted-semicircularity (10.9) of Up,j
a
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=

{ (
1

pj+1

)2 (
p2(j+1)ψ(a)2

)
if n = 2,

0 otherwise,
by (10.9)

=

{
ψ(a)2 if n = 2,
0 otherwise,

for all n ∈ N. Therefore, by the weighted-semicircularity (10.5), this operator
Sp,ja is ψ(a)2-semicircular in LSA(p, j). □

By the weighted-semicircularity (11.2), we have the following semicircularity
on LSA(p, j). Recall first that we automatically assume ψ(a) ̸= 0 from section 8.

Theorem 11.2. Let Sp,ja ∈ LSA(p, j) be in the sense of (11.1). Now, suppose a
self-adjoint a ∈ (A, ψ) satisfies (10.3), and let

Xp,j
a = 1

ψ(a)
Sp,ja = 1

pj+1ψ(a)
Up,j
a ∈ LSA(p, j).

Then this free random variable Xp,j
a is semicircular in LSA(p, j); that is,

a satisfies (10.3) ⇒ 1

pj+1ψ(a)
Up,j
a is semicircular in LSA(p, j). (11.3)

Proof. The proof of (11.3) is similar to that of (11.2). But, here, we provide a
different type of proofs. Let Xp,j

a be as above, where a satisfies the condition
(10.3) in (A, ψ). Then

τAp,j
(
(Xp,j

a )
n)

= τAp,j

((
1

pj+1ψ(a)
Up,j
a

)n)
=
(

1
pj+1ψ(a)

)n
τAp,j
(
(Up,j

a )
n)

=
(

1
pj+1ψ(a)

)n (
ωn (p

j+1ψ(a))
n
cn

2

)
by the (pj+1ψ(a))

2
-semicircularity of Up,j

a under (10.3)

= ωncn
2

for all n ∈ N. Therefore, by (10.8), this free random variableXp,j
a is semicircular

in LSA(p, j). So, the statement (11.3) holds. □
The main result (11.3) of this section generalize and globalize the semicircu-

larity of [7, 10, 11].
By the weighted-semicircularity (11.2), one also obtains the following semicir-

cularity on LSA(p, j) independent from (11.3).

Corollary 11.3. Let Sp,j1A
= 1

pj+1U
p,j
1A

be in the sense of (11.1) in LSA(p, j). Then

it is semicircular in LSA(p, j). That is,
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Sp,j1A
is semicircular in LSA(p, j). (11.4)

Proof. Since the unit 1A of (A, ψ) satisfies the self-adjointness and

ψ(1nA) = ψ(1A) = 1 = ψ(1A)
n,

for all n ∈ N, the operator Sp,j1A
is semicircular in LSA(p, j), by (11.3). There-

fore, the statement (11.4) holds. □

12. Weighted-Semicircularity and Semicircularity on LSA

In this section, we globalize the main results of sections 9 and 10. Let (A, ψ)
be a fixed unital C∗-probability space as above, and let

LSA = LA ⊗C SA

= LA ⊗C ((A⊗C MP)⊗π S)

be the A-dynamical radial-projection algebra.
By defining linear functionals τAp,j = φAp,j ◦EA of (9.3) on LSA, one obtains the

corresponding A-dynamical (p, j)-filterizations (9.4),

LSA(p, j) =
(
LSA, τ

A
p,j

)
(12.1)

for all p ∈ P and j ∈ Z.
Define now a new linear functional τA on LSA by a linear transformation,

τA = φA ◦ EA =

(
Π
p∈P

(
⊕∑
j∈Z

φAp,j

))
◦ EA, (12.2)

where φA is in the sense of (7.28) and (7.29) and EA is in the sense of (9.1).
Then this linear functional τA of (12.2) is well-defined, and it globalize our linear
functionals {τAp,j}p∈P, j∈Z on LSA. So, the pair (LSA, τA) forms a well-defined
Banach ∗-probability space.

Definition 12.1. The Banach ∗-probability space

LSA
denote
= (LSA, τA) (12.3)

is called the A-dynamical filterization of the finite-Adelic C∗-algebraMP , where
τA is the linear functional (12.2) on the A-dynamical radial-projection algebra
LSA.

On theA-dynamical filterization LSA of (12.3), we obtain the following weighted-
semicircularity.

Theorem 12.2. Let LSA = (LSA, τA) be the A-dynamical filterization (12.3).
Suppose that a ∈ (A, ψ) is a self-adjoint free random variable satisfying that

ψ(an) = ψ(a)n in C× = C \ {0} (12.4)
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for all n ∈ N. Then the operator Up,j
a of (10.1) is (pj+1ψ(a))

2
-semicircular in

LSA for all p ∈ P and j ∈ Z. That is,

a satisfies (12.4) ⇒ Up,j
a is

(
pj+1ψ(a)

)2
-semicircular, (12.5)

in LS0
A for all p ∈ P and j ∈ Z.

Proof. Let Up,j
a be in the sense of (10.1) in the A-dynamical radial-projection

algebra LSA, where a self-adjoint free random variable a ∈ (A, ψ) satisfies the
additional condition (12.4). Then Up,j

a is self-adjoint in LSA, and it satisfies that
τA
((
Ua
p,j

)n)
= τAp,j

((
Ua
p,j

) n)
by (12.2)

= ωn
(
p2(j+1)ψ(a)2

)n
cn

2
,

by (10.9), for all n ∈ N.
Therefore, this operator Up,j

a ∈ LSA is (pj+1ψ(a))
2
-semicircular in the A-

dynamical filterization LSA. It proves the statement (12.5) holds under condition
(12.4). □

By the above weighted-semicircularity (12.5), one obtains the following corol-
lary.

Corollary 12.3. Let Up,j
a be in the sense of (10.1) in the A-dynamical filteriza-

tion LSA, where a self-adjoint free random variable a ∈ (A, ψ) satisfies (12.4).

1

pj+1
Up,j
a is ψ(a)2 -semicircular in LSA. (12.6)

1

pj+1ψ(a)
Up,j
a is semicircular in LSA. (12.7)

Up,j
1A

is p2(j+1)-semicircular in LSA. (12.8)

1

pj+1
Up,j
1A

is semicircular in LSA. (12.9)

Proof. The proofs of (12.6), (12.7), (12.8), and (12.9) are done by (12.5), with
help of the main results of sections 10.2 and 10.3. □

The weighted-semicircularity (12.4) and its special cases (12.6), (12.7), (12.8),
and (12.9) not only generalize the main results of [7, 10, 11] (operator-theoretically),
but also globalize those (number-theoretically).
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