Adv. Oper. Theory 4 (2019), no. 1, 24-70
https://doi.org/10.15352/aot.1802-1317
ISSN: 2538-225X (electronic)
https://projecteuclid.org/aot

SEMICIRCULAR-LIKE AND SEMICIRCULAR LAWS ON BANACH *-PROBABILITY SPACES INDUCED BY DYNAMICAL SYSTEMS OF THE FINITE ADELE RING $A_{\mathbb{Q}}$

ILWOO CHO
Communicated by F. Uwe

Abstract

Starting from the finite adele ring $A_{\mathbb{Q}}$, we construct semigroup dynamical systems of $A_{\mathbb{Q}}$, acting on certain C^{*}-probability spaces. From such dynamical-systematic C^{*}-probability spaces, we construct Banach-space operators acting on the C^{*}-probability spaces and corresponding Banach *probability spaces. In particular, we are interested in Banach-space operators whose free distributions are the (weighted-)semicircular law(s).

1. Introduction

The main purpose of this paper is to construct-and-study semicircular-like and semicircular elements induced by crossed product algebras of a semigroup dynamical system of the finite adele ring $A_{\mathbb{Q}}$.

To do that, we study (i) functional analysis on the $*$-algebra $\mathcal{M}_{\mathcal{P}}$, consisting of measurable functions on the finite adele ring $A_{\mathbb{Q}}$, in terms of "nontraditional" senses of free probability theory and its Hilbert-space representation and the corresponding C^{*}-algebra $M_{\mathcal{P}}$, (ii) a system of C^{*}-probability spaces $M_{\mathcal{P}}^{p, j}$ of $M_{\mathcal{P}}$, for all $p \in \mathcal{P}$ and $j \in \mathbb{Z}$, where \mathcal{P} is the set of all primes in the set \mathbb{N} of all natural numbers and \mathbb{Z} is the set of all integers, (iii) Banach-space operators acting on the C^{*}-subalgebras $\mathfrak{S}_{\mathcal{P}}$ of $M_{\mathcal{P}}$ generated by certain projections for all $p \in \mathcal{P}$ and $j \in \mathbb{Z}$, (iv) certain semigroup dynamical system of the σ-algebra $\sigma\left(A_{\mathbb{Q}}\right)$ acting on

[^0]arbitrarily fixed unital C^{*}-probability spaces (A, ψ) and the corresponding crossed product algebras of the systems, (v) functional analysis on the structures of (iv) and (vi) establish-and-study Banach *-probability spaces $\mathfrak{L S}_{A}(p, j)$ for all $p \in \mathcal{P}$ and $j \in \mathbb{Z}$. Then, our semicircular-like laws and the semicircular law are obtained "locally" for a prime p. Such "local" semicircular-like laws and the semicircular law will be globalized over primes under Adelic analysis.

Our main results not only illustrate relations between primes and Banach-space operators, but also provide connections among number theory, representation theory, operator theory, operator algebra theory, and dynamical system theory, via free probability theory.
1.1. Remark: NonTraditional vs. Traditional. In the beginning of this section, we mentioned about "nontraditional" senses of free probability theory. Note that the (traditional) free probability theory is a noncommutative operatoralgebraic version of measure theory and statistics (e.g., [3, 4, 5, 9, 11, 29] through $[18,33]$ through [37]). However, such noncommutative free probability well-covers the cases where given algebras are commutative, even though the freeness on such algebras is trivial. In other words, the techniques and concepts in (noncommutative) free probability are applicable to commutative algebras (if we are not interested in freeness on them).

Recall that A is a noncommutative (topological $*-$)algebra, and φ is a (bounded, or unbounded) linear functional on A; then the pair (A, φ) is said to be a (noncommutative) free probability space. In the following text, even though a given algebra B is commutative, if ψ is a well-defined linear functional on B, then we will say the pair (B, ψ) is a free probability space "nontraditionally," and use notations, techniques, and concepts of free probability theory for studying statistical data of operators of B in terms of ψ, as in the earlier works of $[7,8,10,11]$.

With help of such (nontraditional) free-probability-theoretic approaches, we consider (traditional) free-probability-theoretic structures of Banach *-algebras under crossed products for dynamical systems.
1.2. Background and Motivation. The relations between primes and operators have been studied in various different approaches (e.g., $[2,12,6,13,15,14$, 19, 20, 21, 22, 23, 25, 26, 32]). For instance, in [9], we considered free-probabilistic structures on a Hecke algebra $\mathcal{H}\left(G L_{2}\left(\mathbb{Q}_{p}\right)\right)$ for primes p, where $G L_{2}(X)$ are the general linear groups in the matricial sets $M_{2}(X)$ over X.

Independently, in [11], by using number-theoretic information from a certain nontraditional C^{*}-probability space induced by a p-adic number field \mathbb{Q}_{p}, for arbitrarily fixed $p \in \mathcal{P}$, we established and studied weighted-semicircular elements in a certain Banach *-probability space (implying p-adic number-theoretic data). Such weighted-semicircular elements naturally generate semicircular elements.

In [7], we extended the (weighted-)semicircularity of [11] in a free product Banach *-probability space over primes. The main results of [7] demonstrate that indeed the (weighted-)semicircularity of [11] are well-determined as traditional free-probabilistic objects.

By globalizing the main results of [7], we could construct weighted-semicircular and semicircular elements from the finite adele ring $A_{\mathbb{Q}}$ in [10], by applying nontraditional free-probability-theoretic approaches of [8]. In this paper, we generalize the main results of [10] in the traditional sense of free probability theory under dynamical systems.
1.3. Overview and Main Results. In sections 2, we briefly introduce backgrounds and motivations of our proceeding works.

Our nontraditional free-probabilistic model on the $*$-algebra $\mathcal{M}_{\mathcal{P}}$ is established from Adelic analysis, and the statistical data on $\mathcal{M}_{\mathcal{P}}$ are considered in section 3. Then, a suitable Hilbert-space representation of our free-probabilistic model of $\mathcal{M}_{\mathcal{P}}$, preserving the statistical data implying number-theoretic information, is constructed in section 4. Under representation, the corresponding C^{*}-algebra $M_{\mathcal{P}}$ is defined.

In sections 5 and 6 , functional analysis on the C^{*}-algebra $M_{\mathcal{P}}$ is considered by putting a system of linear functionals dictated by the Adelic integration under free-probability-theoretic language. In particular, distributions of generating operators of $M_{\mathcal{P}}$ are studied by computing moments of them. We in particular focus on certain projections of $M_{\mathcal{P}} . C^{*}$-subalgebras \mathfrak{S}_{p} and the corresponding nontraditional C^{*}-probability spaces generated by the projections are observed.

In sections 7,8 , and 9 , we construct semigroup dynamical systems of the σ algebra $\sigma\left(A_{\mathbb{Q}}\right)$, regarding $\sigma\left(A_{\mathbb{Q}}\right)$ as a semigroup with set-intersection and the corresponding crossed product C^{*}-algebras of the dynamical systems. The traditional free-probabilistic structures are constructed, and free-distributional data on them is studied for our main purpose. Especially, Theorem 9.2 (and Corollaries 9.3 and 9.4 illustrates how our dynamical systems affects the original free probability determined by (weighted-)semicircular law(s).

In section 10, we consider weighted-semicircular elements and semicircular elements induced by certain Banach-space operators in Banach $*$-probability spaces of section 9, locally for fixed primes. See Theorem 10.2 and Corollary 10.3.

Finally, in sections 11 and 12, we globalize the weighted-semicircularity and the semicircularity of section 10 . See Theorems 11.1 and 11.2 and Theorem 12.2.

2. Preliminaries

In this section, we briefly mention about backgrounds for our proceeding works. See also $[8,9,17,16,33]$ for motivations from number theory.
2.1. Free Probability. Readers can review analytic-and-combinatorial free probability theory from [31, 37] (also see, e.g., [30, 34, 35, 36]). Free probability is understood as the noncommutative operator-algebraic version of classical measure theory and statistics. The classical independence is replaced to the freeness, by replacing measures on sets to linear functionals on algebras. It has various applications not only in pure mathematics (e.g., [29, 27, 28, 24, 18]), but also in applied fields (for example, see [1] through [11]). In particular, we will use combinatorial approach of Speicher (e.g., [31]).

In the text, without introducing detailed definitions and combinatorial backgrounds, free moments and free cumulants of operators will be computed.
2.2. p-Adic Analysis on \mathbb{Q}_{p}. In this section, we briefly review p-adic calculus on the $*$-algebras \mathcal{M}_{p} of measurable functions on p-adic number fields \mathbb{Q}_{p} for $p \in$ \mathcal{P}. For more about p-adic analysis, see [33]. Also, for applications of p-adic and Adelic analysis, see [15, 14, 25, 26].

For a fixed prime $p \in \mathcal{P}$, one can define the p-norm $|\cdot|_{p}$ on the set \mathbb{Q} of all rational numbers by

$$
|x|_{p}=\left|a p^{k}\right|_{p}=\frac{1}{p^{k}},
$$

whenever x is factorized by $a p^{k}$ for some $a \in \mathbb{Q}, k \in \mathbb{K}$. For instance,

$$
\begin{aligned}
& \left|\frac{4}{3}\right|_{2}=\left|\frac{1}{3} \cdot 2^{2}\right|_{2}=\frac{1}{2^{2}}=\frac{1}{4} \\
& \left|\frac{4}{3}\right|_{3}=\left|4 \cdot 3^{-1}\right|_{3}=\frac{1}{3^{-1}}=3
\end{aligned}
$$

and

$$
\left|\frac{4}{3}\right|_{q}=\left|\frac{4}{3} \cdot q^{0}\right|=\frac{1}{q^{0}}=1 \quad \text { for all } q \in \mathcal{P} \backslash\{2,3\} .
$$

The p-adic number field \mathbb{Q}_{p} is defined to be the maximal $|\cdot|_{p}$-norm completion in \mathbb{Q}. So, \mathbb{Q}_{p} forms a Banach space in \mathbb{Q} under $|\cdot|_{p}$.

Remark that all elements x of \mathbb{Q}_{p} are uniquely expressed by

$$
x=\sum_{k=-N}^{\infty} x_{k} p^{k}, \quad \text { with } x_{k} \in\{0,1, \ldots, p-1\}
$$

for some $N \in \mathbb{N}$, decomposed by

$$
x=\sum_{k=-N}^{-1} x_{k} p^{k}+\sum_{l=0}^{\infty} x_{l} p^{k} .
$$

If $x=\sum_{k=0}^{\infty} x_{k} p^{k}$ in \mathbb{Q}_{p}, then x is said to be a p-adic integer. Note that any p-adic integer x satisfies $|x|_{p} \leq 1$. The subset

$$
\mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}:|x|_{p} \leq 1\right\}
$$

consisting of all p-adic integers is called the unit disk of \mathbb{Q}_{p}.
Under the p-adic addition and the p-adic multiplication of $[35], \mathbb{Q}_{p}$ forms a well-defined ring, algebraically.

Let us understand this Banach ring \mathbb{Q}_{p} as a measure space,

$$
\mathbb{Q}_{p}=\left(\mathbb{Q}_{p}, \sigma\left(\mathbb{Q}_{p}\right), \mu_{p}\right),
$$

where $\sigma\left(\mathbb{Q}_{p}\right)$ is the σ-algebra of \mathbb{Q}_{p}, consisting of all μ_{p}-measurable subsets, where μ_{p} is a left-and-right additive-invariant Haar measure on \mathbb{Q}_{p}, satisfying

$$
\mu_{p}\left(\mathbb{Z}_{p}\right)=1
$$

If we define

$$
\begin{equation*}
U_{k}=p^{k} \mathbb{Z}_{p}=\left\{p^{k} x \in \mathbb{Q}_{p}: x \in \mathbb{Z}_{p}\right\} \tag{2.1}
\end{equation*}
$$

for all $k \in \mathbb{Z}$, satisfying $U_{0}=\mathbb{Z}_{p}$, then these μ_{p}-measurable subsets U_{k} satisfy

$$
\begin{gather*}
\mathbb{Q}_{p}=\underset{k \in \mathbb{Z}}{\cup} U_{k} \\
\mu_{p}\left(U_{k}\right)=\frac{1}{p^{k}}, \quad \text { for all } k \in \mathbb{Z}, \tag{2.2}
\end{gather*}
$$

and

$$
\cdots \subset U_{2} \subset U_{1} \subset U_{0} \subset U_{1} \subset U_{2} \subset \cdots
$$

(e.g., see [33]).

Define now subsets ∂_{k} of \mathbb{Q}_{p} by

$$
\begin{equation*}
\partial_{k}=U_{k} \backslash U_{k+1}, \quad \text { for all } k \in \mathbb{Z} \tag{2.3}
\end{equation*}
$$

where U_{k} are in the sense of (2.1).
We call such μ_{p}-measurable subsets ∂_{k} of (2.3), the k-th boundaries (of U_{k}) in \mathbb{Q}_{p} for all $k \in \mathbb{Z}$. By (2.2) and (2.3), one obtains that

$$
\mathbb{Q}_{p}=\underset{k \in \mathbb{Z}}{\sqcup} \partial_{k}
$$

where \sqcup means the disjoint union and

$$
\begin{equation*}
\mu_{p}\left(\partial_{k}\right)=\mu_{p}\left(U_{k}\right)-\mu_{p}\left(U_{k+1}\right)=\frac{1}{p^{k}}-\frac{1}{p^{k+1}} \quad \text { for all } k \in \mathbb{Z} \tag{2.4}
\end{equation*}
$$

Now, let \mathcal{M}_{p} be an algebra,

$$
\begin{equation*}
\mathcal{M}_{p}=\mathbb{C}\left[\left\{\chi_{S}: S \in \sigma\left(\mathbb{Q}_{p}\right)\right\}\right], \tag{2.5}
\end{equation*}
$$

where χ_{S} are the usual characteristic functions of S. So, $f \in \mathcal{M}_{p}$, if and only if

$$
f=\sum_{S \in \sigma\left(\mathbb{Q}_{p}\right)} t_{S} \chi_{S} \quad \text { with } t_{S} \in \mathbb{C}
$$

where \sum is the finite sum.
Then this algebra \mathcal{M}_{p} of (2.5) forms a $*$-algebra over \mathbb{C}, equipped with the adjoint

$$
\left(\sum_{S \in \sigma\left(G_{p}\right)} t_{S} \chi_{S}\right)^{*} \stackrel{\text { def }}{=} \sum_{S \in \sigma\left(G_{p}\right)} \overline{t_{S}} \chi_{S}
$$

where $\overline{t_{S}}$ are the conjugates of t_{S} in \mathbb{C}.
If $f \in \mathcal{M}_{p}$, then one can define the p-adic integral φ_{p} of f by

$$
\begin{equation*}
\varphi_{p}(f) \stackrel{\text { def }}{=} \int_{\mathbb{Q}_{p}} f d \mu_{p}=\sum_{S \in \sigma\left(\mathbb{Q}_{p}\right)} t_{S} \mu_{p}(S) \tag{2.6}
\end{equation*}
$$

Note that, by (2.4), if $S \in \sigma\left(\mathbb{Q}_{p}\right)$, then there exists a subset Λ_{S} of \mathbb{Z}, such that

$$
\begin{equation*}
\Lambda_{S}=\left\{j \in \mathbb{Z}: S \cap \partial_{j} \neq \varnothing\right\} \tag{2.7}
\end{equation*}
$$

satisfying

$$
\varphi_{p}\left(\chi_{S}\right)=\int_{\mathbb{Q}_{p}} \chi_{S} d \mu_{p}=\int_{\mathbb{Q}_{p}} \sum_{j \in \Lambda_{S}} \chi_{S \cap \partial_{j}} d \mu_{p}
$$

by (2.4)

$$
=\sum_{j \in \Lambda_{S}} \mu_{p}\left(S \cap \partial_{j}\right)
$$

by (2.6)

$$
\leq \sum_{j \in \Lambda_{S}} \mu_{p}\left(\partial_{j}\right)=\sum_{j \in \Lambda_{S}}\left(\frac{1}{p^{j}}-\frac{1}{p^{j+1}}\right),
$$

by (2.4); that is,

$$
\int_{\mathbb{Q}_{p}} \chi_{S} d \mu_{p} \leq \sum_{j \in \Lambda_{S}}\left(\frac{1}{p^{j}}-\frac{1}{p^{j+1}}\right)
$$

for all $S \in \sigma\left(\mathbb{Q}_{p}\right)$, where Λ_{S} is in the sense of (2.7).
More precisely, one can get the following proposition.
Proposition 2.1 (See [8]). Let $S \in \sigma\left(\mathbb{Q}_{p}\right)$, and let $\chi_{S} \in \mathcal{M}_{p}$. Then there exist $r_{j} \in \mathbb{R}$, such that

$$
\begin{array}{r}
0 \leq r_{j} \leq 1 \text { in } \mathbb{R}, \quad \text { for all } j \in \Lambda_{S}, \\
\int_{\mathbb{Q}_{p}} \chi_{S} d \mu_{p}=\sum_{j \in \Lambda_{S}} r_{j}\left(\frac{1}{p^{j}}-\frac{1}{p^{j+1}}\right), \tag{2.8}
\end{array}
$$

where Λ_{S} is in the sense of (2.7).
2.3. The adele Ring and the Finite adele Ring. In this section, we introduce the adele ring $\mathbb{A}_{\mathbb{Q}}$ and the finite adele ring $A_{\mathbb{Q}}$. For more about the adele ring $\mathbb{A}_{\mathbb{Q}}$ and the corresponding Adelic analysis, see [33].

Definition 2.2. Let $\mathcal{P}_{\infty}=\mathcal{P} \cup\{\infty\}$, and identify \mathbb{Q}_{∞} with the Banach field \mathbb{R} equipped with the usual-(distance-)metric topology. Let $\mathbb{A}_{\mathbb{Q}}$ be a set

$$
\mathbb{A}_{\mathbb{Q}}=\left\{\begin{array}{c|c}
\left(x_{p}\right)_{p \in \mathcal{P}_{\infty}} & \begin{array}{c}
x_{p} \in \mathbb{Q}_{p}, \quad \text { for all } p \in \mathcal{P}_{\infty}, \\
\text { where only finitely many } x_{p} ’ \text { s are in } \mathbb{Q}_{p} \backslash \mathbb{Z}_{p} \\
\text { but all other } x_{p} ’ \text { s are contained in } \mathbb{Z}_{p} \text { of } \mathbb{Q}_{p}
\end{array} \tag{2.9}
\end{array}\right\}
$$

equipped with the addition (+)

$$
\begin{equation*}
\left(x_{p}\right)_{p \in \mathcal{P}_{\infty}}+\left(y_{p}\right)_{p \in \mathcal{P}_{\infty}}=\left(x_{p}+y_{p}\right)_{p \in \mathcal{P}_{\infty}} \tag{2.10}
\end{equation*}
$$

and the multiplication (\cdot)

$$
\begin{equation*}
\left(x_{p}\right)_{p \in \mathcal{P}_{\infty}}\left(y_{p}\right)_{p \in \mathcal{P}_{\infty}}=\left(x_{p} y_{p}\right)_{p \in \mathcal{P}_{\infty}} \tag{2.11}
\end{equation*}
$$

where the entries $x_{p}+y_{p}$ of (2.10) and the entries $x_{p} y_{p}$ of (2.11), respectively, are the p-adic addition and the p-adic multiplication on \mathbb{Q}_{p} (e.g., [33]) for all p $\in \mathcal{P}$, and where $x_{\infty}+y_{\infty}$, and $x_{\infty} y_{\infty}$ are the usual \mathbb{R}-addition and the usual \mathbb{R}-multiplication, respectively.

The adele ring $\mathbb{A}_{\mathbb{Q}}$ is equipped with the product topology of the p-adic-norm topologies for \mathbb{Q}_{p} 's, for all $p \in \mathcal{P}$, and the usual-metric topology of $\mathbb{Q}_{\infty}=\mathbb{R}$, providing the $\mathbb{A}_{\mathbb{Q}}$-norm $|\cdot|_{\mathbb{Q}}$,

$$
\begin{equation*}
\left|\left(x_{p}\right)_{p \in \mathcal{P}_{\infty}}\right|_{\mathbb{Q}}=\prod_{p \in \mathcal{P}_{\infty}}\left|x_{p}\right|_{p}, \tag{2.12}
\end{equation*}
$$

where $|\cdot|_{p}$ are the p-adic norms on \mathbb{Q}_{p}, for all $p \in \mathcal{P}$, and $|\cdot|_{\infty}$ is the usual absolute value $|$.$| on \mathbb{R}=\mathbb{Q}_{\infty}$.

From the above definition, the set $\mathbb{A}_{\mathbb{Q}}$ of (2.9) forms a ring algebraically, equipped with the binary operations (2.10) and (2.11), and this ring $\mathbb{A}_{\mathbb{Q}}$ is a Banach space under its $|\cdot|_{\mathbb{Q}}$-norm of (2.12). Thus, the set $\mathbb{A}_{\mathbb{Q}}$ of (2.9) forms a Banach ring induced by the family

$$
\mathcal{Q}=\left\{\mathbb{Q}_{p}\right\}_{p \in \mathcal{P}} \cup\left\{\mathbb{Q}_{\infty}=\mathbb{R}\right\} .
$$

Suppose that $X=\left(x_{p}\right)_{p \in \mathcal{P}_{\infty}} \in \mathbb{A}_{\mathbb{Q}}$, and assume that there are $p_{1}, \ldots, p_{N} \in \mathcal{P}_{\infty}$, for some $N \in \mathbb{N}$, such that

$$
x_{p_{l}} \in \mathbb{Q}_{p} \backslash \mathbb{Z}_{p}
$$

for $l=1, \ldots, N$, and

$$
x_{q} \in \mathbb{Z}_{q}
$$

for $q \in \mathcal{P}_{\infty} \backslash\left\{p_{1}, \ldots, p_{N}\right\}$. Then, by (2.9) and (2.12),

$$
\begin{aligned}
|X|_{\mathbb{Q}} & =\left(\prod_{l=1}^{N}\left|x_{p_{l}}\right|_{p_{l}}\right)\left(\prod_{q \in \mathcal{P}_{\infty} \backslash\left\{p_{1}, \ldots, p_{N}\right\}}\left|x_{q}\right|_{q}\right) \\
& \leq\left(\prod_{l=1}^{N}\left|x_{p_{l}}\right|_{p_{l}}\right) \cdot 1=\left(\prod_{l=1}^{N}\left|x_{p_{l}}\right|_{p_{l}}\right)<\infty .
\end{aligned}
$$

Equivalent to the definition (2.9), the adele ring $\mathbb{A}_{\mathbb{Q}}$ is in fact the weak-direct product of \mathcal{Q}, expressed by

$$
\begin{equation*}
\mathbb{A}_{\mathbb{Q}}=\prod_{p \in \mathcal{P}_{\infty}}^{\prime} \mathbb{Q}_{p} \tag{2.13}
\end{equation*}
$$

(e.g., [33]), where Π^{\prime} means the weak-direct product of topological rings.

Definition 2.3. Let $\mathbb{A}_{\mathbb{Q}}$ be the adele ring (2.9) or (2.13). Define a set $A_{\mathbb{Q}}$ by

$$
A_{\mathbb{Q}}=\left\{\begin{array}{l|l}
\left(x_{p}\right)_{p \in \mathcal{P}} & \begin{array}{c}
x_{p} \in \mathbb{Q}_{p}, \text { for all } p \in \mathcal{P} \\
\text { and }(0, \\
\left.\left(x_{p}\right)_{p \in \mathcal{P}}\right) \in \mathbb{A}_{\mathbb{Q}}
\end{array} \tag{2.14}
\end{array}\right\}
$$

equipped with the inherited binary operations (2.10) and (2.11) of $\mathbb{A}_{\mathbb{Q}}$, under subspace topology of the norm topology (2.12). Then this topological ring $A_{\mathbb{Q}}$ is said to be the finite adele ring.

By (2.13) and (2.14), one can conclude that

$$
\begin{equation*}
A_{\mathbb{Q}}=\prod_{p \in \mathcal{P}}^{\prime} \mathbb{Q}_{p} \tag{2.15}
\end{equation*}
$$

where Π^{\prime} is the weak-direct product of topological rings.
By (2.15) and [35], the finite adele ring $A_{\mathbb{Q}}$ of (2.14) can be regarded as a measure space equipped with its measure,

$$
\begin{equation*}
\mu=\underset{p \in \mathcal{P}}{\times} \mu_{p}, \tag{2.16}
\end{equation*}
$$

on the σ-algebra $\sigma\left(A_{\mathbb{Q}}\right)$ of $A_{\mathbb{Q}}$, which is the product σ-algebra of $\left\{\sigma\left(\mathbb{Q}_{p}\right)\right\}_{p \in \mathcal{P}}$, where (2.16) means the product measure.

So, one can define the $*$-algebra $\mathcal{M}_{\mathcal{P}}$ by

$$
\begin{equation*}
\mathcal{M}_{\mathcal{P}}=\mathbb{C}\left[\left\{\chi_{Y}: Y \in \sigma\left(A_{\mathbb{Q}}\right)\right\}\right] . \tag{2.17}
\end{equation*}
$$

Remark here that $Y \in \sigma\left(A_{\mathbb{Q}}\right)$ if and only if

$$
Y=\prod_{p \in \mathcal{P}} S_{p}, \quad \text { with } S_{p} \in \sigma\left(\mathbb{Q}_{p}\right)
$$

by (2.15) (under additional conditions; See (2.21) below for details). By (2.17), $f \in \mathcal{M}_{\mathcal{P}}$ if and only if

$$
\begin{equation*}
f=\sum_{Y \in \sigma\left(A_{\mathbb{Q}}\right)} s_{Y} \chi_{Y}, \quad \text { with } s_{Y} \in \mathbb{C} \tag{2.18}
\end{equation*}
$$

where \sum means the finite sum.
Thus, one obtains the (finite-)Adelic integration φ of $f \in \mathcal{M}_{\mathcal{P}}$ by

$$
\begin{equation*}
\varphi(f) \stackrel{\text { def }}{=} \int_{A_{\mathbb{Q}}} f d \mu=\sum_{Y \in \sigma\left(A_{Q}\right)} t_{Y} \mu(Y) \tag{2.19}
\end{equation*}
$$

whenever f is in the sense of (2.18) in $\mathcal{M}_{\mathcal{P}}$, where μ is the product measure (2.16).

Definition 2.4. Let $\mathcal{M}_{\mathcal{P}}$ be in the sense of (2.17), and let φ be the linear functional (2.19) on $\mathcal{M}_{\mathcal{P}}$. Then the pair

$$
\begin{equation*}
\left(\mathcal{M}_{\mathcal{P}}, \varphi\right) \tag{2.20}
\end{equation*}
$$

is called the finite-Adelic (*-)probability space (under the nontraditional sense in section 1.1).

Recall that our finite adele ring $A_{\mathbb{Q}}$ is a weak-direct product of $\left\{\mathbb{Q}_{p}\right\}_{p \in \mathcal{P}}$ by (2.15), and hence, $Y \in \sigma\left(A_{\mathbb{Q}}\right)$ if and only if there exist $N \in \mathbb{N}$ and $p_{1}, \ldots, p_{N} \in$ \mathcal{P} such that
$Y=\prod_{p \in \mathcal{P}} S_{p}$, where $S_{p} \in \sigma\left(\mathbb{Q}_{p}\right)$, with $S_{p}= \begin{cases}S_{p} \subset \mathbb{Q}_{p} & \text { if } p \in\left\{p_{1}, \ldots, p_{N}\right\}, \\ \mathbb{Z}_{p} & \text { otherwise, }\end{cases}$
for all $p \in \mathcal{P}$.
Thus, if $Y \in \sigma\left(A_{\mathbb{Q}}\right)$ satisfying (2.21), one has

$$
\begin{aligned}
\varphi\left(\chi_{Y}\right) & =\int_{A_{Q}} \chi_{Y} d \mu=\int_{A_{Q}} \chi_{p \in \mathcal{P}} S_{p} d \mu \\
= & \prod_{p \in \mathcal{P}}\left(\int_{\mathbb{Q}_{p}} \chi_{S_{p}} d \mu_{p}\right)
\end{aligned}
$$

by (2.16)

$$
=\left(\prod_{l=1}^{N} \mu_{p_{l}}\left(S_{p}\right)\right)\left(\prod_{q \in \mathcal{P} \backslash\left\{p_{1}, \ldots, p_{N}\right\}} \mu_{q}\left(\mathbb{Z}_{q}\right)\right)
$$

by (2.21)

$$
\begin{equation*}
=\prod_{l=1}^{N} \mu_{p_{l}}\left(S_{p}\right)=\prod_{l=1}^{N}\left(\varphi_{p_{l}}\left(\chi_{S_{p_{l}}}\right)\right), \tag{2.22}
\end{equation*}
$$

since $\mu_{q}\left(\mathbb{Z}_{q}\right)=1$, for all $q \in \mathcal{P}$, where φ_{p} are the p-adic integrations (2.6) for all $p \in \mathcal{P}$.

Proposition 2.5. Let $Y \in \sigma\left(A_{\mathbb{Q}}\right)$, satisfying (2.21), and let $\chi_{Y} \in\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)$. Then

$$
\begin{equation*}
\varphi\left(\chi_{Y}^{n}\right)=\prod_{l=1}^{N}\left(\sum_{j \in \Lambda_{S_{p_{l}}}} r_{j}^{S_{p_{l}}}\left(\frac{1}{p_{l}^{j}}-\frac{1}{p_{l}^{j+1}}\right)\right) \tag{2.23}
\end{equation*}
$$

for all $n \in \mathbb{N}$, where $r_{j}^{S_{p_{l}}}$ are in the sense of (2.8) for all $j \in \Lambda_{S_{p_{l}}}$ and for all $l=1, \ldots, N$.

Proof. The formula (2.23) is obtained by (2.8), (2.21), and (2.22).
Notice that, by the construction (2.17) of $\mathcal{M}_{\mathcal{P}}$, one can conclude that

$$
\begin{equation*}
\mathcal{M}_{\mathcal{P}} \stackrel{\operatorname{Alg}}{=} \prod_{p \in \mathcal{P}}^{\prime} \mathcal{M}_{p} \tag{2.24}
\end{equation*}
$$

where Π^{\prime} means the weak-direct product of $*$-algebras, where " $\stackrel{\text { Alg", means "being }}{=}$ pure-algebraic $*$-isomorphic." The isomorphism (2.24) holds because of (2.15) (and (2.21)).

Proposition 2.6. Let $\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)$ be the finite-Adelic probability space. Then

$$
\begin{equation*}
\mathcal{M}_{\mathcal{P}}=\prod_{p \in \mathcal{P}}^{\prime} \mathcal{M}_{p} \text { and } \varphi=\prod_{p \in \mathcal{P}} \varphi_{p} \tag{2.25}
\end{equation*}
$$

where \mathcal{M}_{p} and φ_{p}, respectively, are in the sense of (2.5) and (2.6) for all $p \in \mathcal{P}$. Proof. The $*$-isomorphism theorem of $\mathcal{M}_{\mathcal{P}}$ in (2.25) is obtained by (2.24). The equivalence (2.25) for φ is guaranteed by (2.16) and (2.23).

3. Analysis on $\mathcal{M}_{\mathcal{P}}$

Let $\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)$ be the finite-Adelic probability space. By abusing notation, one may / can re-write the relation (2.25) by

$$
\begin{equation*}
\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)=\prod_{p \in \mathcal{P}}^{\prime}\left(\mathcal{M}_{p}, \varphi_{p}\right) \tag{3.1}
\end{equation*}
$$

Recall that, in $[7,11]$, we call the pairs $\left(\mathcal{M}_{p}, \varphi_{p}\right)$, the p-adic probability spaces for all $p \in \mathcal{P}$.

Proposition 3.1. Let $Y_{1}, \ldots, Y_{n} \in \sigma\left(A_{\mathbb{Q}}\right)$, and let $\chi_{Y_{l}} \in\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)$ for $l=1, \ldots, n$ for some $n \in \mathbb{N}$. Then there exist a unique"finite" subset P_{o} of \mathcal{P} and $X_{p} \in \sigma\left(\mathbb{Q}_{p}\right)$, for all $p \in P_{o}$, such that

$$
\begin{equation*}
\varphi\left(\prod_{l=1}^{n} \chi_{Y_{l}}\right)=\prod_{p \in P_{o}}\left(\sum_{j \in \Lambda_{X_{p}}} r_{j}^{X_{p}}\left(\frac{1}{p^{j}}-\frac{1}{p^{j+1}}\right)\right) \tag{3.2}
\end{equation*}
$$

where $r_{j}^{X_{p}}$ are in the sense of (2.8) and $\Lambda_{X_{p}}$ are in the sense of (2.7).
Proof. The formula (3.2) is obtained by (2.23) and (3.1). See [8] for more details.

The above formula (3.2) characterizes the (free) distributions of generating elements of our finite-Adelic probability space $\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)$. As a corollary of (3.2), one obtains the following result.

Corollary 3.2. Let $Y_{l}=\prod_{p \in \mathcal{P}} S_{p}^{l} \in \sigma\left(A_{\mathbb{Q}}\right)$, for $l=1, \ldots, n$ for some $n \in \mathbb{N}$, where

$$
S_{p}^{l}= \begin{cases}\partial_{k_{p, l}}^{p_{t}} & \text { if } p_{t} \in\left\{p_{l, 1}, \ldots, p_{l, N_{l}}\right\} \tag{3.3}\\ \mathbb{Z}_{p} & \text { otherwise },\end{cases}
$$

where $\partial_{k_{p}}^{p}$ are the k_{p}-th boundaries for $k_{p} \in \mathbb{Z}$ in \mathbb{Q}_{p}, for $p \in \mathcal{P}$, and where $k_{p_{t}, 1, \ldots}, k_{p_{t}, N_{l}} \in \mathbb{Z}$, for all $l=1, \ldots$, n, all $p \in \mathcal{P}$. Now, let

$$
P_{o}=\bigcup_{l=1}^{n}\left\{p_{l, 1}, \ldots, p_{l, N_{l}}\right\} \text { in } \mathcal{P}
$$

Then one obtains that

$$
\begin{equation*}
\varphi\left(\prod_{l=1}^{n} \chi_{Y_{l}}\right)=\prod_{p \in P_{o}} \beta_{k_{p}}\left(\frac{1}{p^{k_{p}}}-\frac{1}{p^{k_{p}+1}}\right), \tag{3.4}
\end{equation*}
$$

where $p^{k_{p}}$ are in the sense of (3.3), where

$$
\beta_{k_{p}}= \begin{cases}1 & \text { if } \bigcap_{l=1}^{n} S_{p}^{l} \neq \varnothing \\ 0 & \text { otherwise }\end{cases}
$$

for all $p \in P_{o}$.
Proof. The formula (3.4) is shown by (3.2), under the condition (3.4). See [8] for details.

Let $Y_{l} \in \sigma\left(A_{\mathbb{Q}}\right)$ be in the sense of (3.3), for $l=1, \ldots, n$, and let

$$
\begin{equation*}
X=\prod_{l=1}^{n} \chi_{Y_{l}} \in\left(\mathcal{M}_{\mathcal{P}}, \varphi\right) \tag{3.5}
\end{equation*}
$$

Definition 3.3. Such elements X of (3.5) are called boundary-product elements of the finite-Adelic probability space $\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)$. Let X be a boundary-product element (3.5) of $\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)$. Assume that Y_{l} are in the sense of (3.3) and that P_{o} is in the sense of the above corollary. Assume further that, for all $p \in P_{o}$, the corresponding integers k_{p} are "non-negative"; that is,

$$
\begin{equation*}
k_{p} \geq 0 \quad \text { for all } p \in P_{o} \tag{3.6}
\end{equation*}
$$

Then this boundary-product element X is said to be a $(+)$-boundary element of $\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)$.

Let $\phi: \mathbb{N} \rightarrow \mathbb{C}$ be the Euler totient function defined by an arithmetic function,

$$
\phi(n)=\left|\left\{\begin{array}{l|l}
k \in \mathbb{N} \left\lvert\, \begin{array}{c}
1 \leq k \leq n \\
\operatorname{gcd}(n, k)=1
\end{array}\right. \tag{3.7}
\end{array}\right\}\right|,
$$

for all $n \in \mathbb{N}$, where $|S|$ mean the cardinalities of sets S, and gcd means the greatest common divisor. It is well-known that

$$
\begin{equation*}
\phi(n)=n\left(\prod_{p \in \mathcal{P}, p \mid n}\left(1-\frac{1}{p}\right)\right), \quad \text { for all } n \in \mathbb{N} \tag{3.8}
\end{equation*}
$$

where " $p \mid n$ " means " p divides n " or " n is divisible by p." For instance,

$$
\phi(p)=p-1=p\left(1-\frac{1}{p}\right)
$$

for all $p \in \mathcal{P}$, by (3.7) and (3.8).
Remark that the Euler totient function ϕ is a multiplicative arithmetic function in the sense that

$$
\begin{equation*}
\phi\left(n_{1} n_{2}\right)=\phi\left(n_{1}\right) \phi\left(n_{2}\right), \quad \text { whenever } \operatorname{gcd}\left(n_{1}, n_{2}\right)=1 \text { for all } n_{1}, n_{2} \in \mathbb{N} . \tag{3.9}
\end{equation*}
$$

Theorem 3.4. Let X be a $(+)$-boundary element (3.5) of the finite-Adelic probability space $\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)$ satisfying (3.6). Then there exist a finite subset P_{o} of \mathcal{P} and

$$
K_{o}=\left\{k_{p} \in \mathbb{N}_{0}: p \in P_{o}\right\} \text { of } \mathbb{Z}
$$

where $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, such that

$$
\begin{gather*}
n_{X}=\prod_{p \in P_{o}} p^{k_{p}} \in \mathbb{N} \\
0<r_{X}=\prod_{p \in P_{o}} \frac{1}{p^{k_{p}+1}}=\left(\frac{1}{\prod_{p \in P_{o}} p}\right)\left(\frac{1}{n_{X}}\right) \leq 1 \text { in } \mathbb{Q} \tag{3.10}
\end{gather*}
$$

and

$$
\varphi(X)=r_{X} \phi\left(n_{X}\right)
$$

Proof. Let X be a $(+)$-boundary element (3.5) in $\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)$ satisfying (3.6). Then, by (3.4), there exist the subsets P_{o} of \mathcal{P}, and K_{o} of \mathbb{Z}, such that

$$
\varphi(X)=\prod_{p \in P_{o}}\left(\frac{1}{p^{k_{p}}}-\frac{1}{p^{k_{p}+1}}\right),
$$

with $k_{p} \in K_{o}$, with $k_{p} \geq 0$ in \mathbb{Z}. Observe that

$$
\varphi(X)=\prod_{p \in P_{o}} \frac{1}{p^{k_{p}}}\left(1-\frac{1}{p}\right)=\left(\prod_{p \in P_{o}^{+}} \frac{1}{p^{k_{p}+1}}\right) \phi\left(n_{X}\right)
$$

where

$$
n_{X}=\left(\prod_{p \in P_{o}} p^{k_{p}}\right) \in \mathbb{N}
$$

by (3.7), (3.8), and (3.9).
The relations in (3.10) characterize the free distributions of $(+)$-boundary elements of the finite-Adelic probability space $\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)$, in terms of the Euler-totient-functional values.

Theorem 3.5. Let $n \in \mathbb{N}$ be prime-factorized by

$$
\begin{equation*}
n=p_{1}^{k_{p_{1}}} p_{2}^{k_{p_{2}}} \ldots p_{N}^{k_{p_{N}}} \text { in } \mathbb{N} \tag{3.11}
\end{equation*}
$$

where $k_{p_{1}}, \ldots, k_{p_{N}} \in \mathbb{N}$ for some $N \in \mathbb{N}$. Then there exists a $(+)$-boundary element X of the finite-Adelic probability space $\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)$, such that

$$
\begin{gathered}
X=\prod_{p \in \mathcal{P}} \chi_{Y_{p}} \in\left(\mathcal{M}_{\mathcal{P}}, \varphi\right), \quad \text { with } P_{o}=\left\{p_{1}, \ldots, p_{N}\right\} \subset \mathcal{P}, \\
K_{o}=\left\{k_{p_{1}}, \ldots, k_{p_{N}}\right\} \subset \mathbb{N}_{0}
\end{gathered}
$$

and

$$
Y_{p}= \begin{cases}\partial_{k_{p}}^{p} & \text { if } p \in P_{o} \\ \mathbb{Z}_{p} & \text { otherwise }\end{cases}
$$

for all $p \in \mathcal{P}$, where $k_{p} \in K_{o}$, satisfying that

$$
\begin{equation*}
\phi(n)=n_{o} n \varphi(X), \quad \text { with } n_{o}=\prod_{p \in P_{o}} p \in \mathbb{N} \tag{3.13}
\end{equation*}
$$

Proof. Let X be a $(+)$-boundary element (3.12) in $\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)$. Then

$$
\varphi(X)=\left(\frac{1}{\prod_{p \in P_{o}} p^{k p}}\right)\left(\prod_{p \in P_{o}} \frac{1}{p}\right)(\phi(n))=\left(\frac{1}{n}\right)\left(\frac{1}{\prod_{p \in P_{o}^{+}} p}\right)(\phi(n)),
$$

where n is in the sense of (3.11). So, we obtain (3.13).
The above two theorems illustrate connections between our analysis and number theory.

4. Representation of $\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)$

Let $\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)$ be the finite-Adelic probability space,

$$
\begin{align*}
\left(\mathcal{M}_{\mathcal{P}}, \varphi\right) & =\prod_{p \in \mathcal{P}}^{\prime}\left(\mathcal{M}_{p}, \varphi_{p}\right) \\
& =\left(\prod_{p \in \mathcal{P}}^{\prime} \mathcal{M}_{p}, \prod_{p \in \mathcal{P}} \varphi_{p}\right) . \tag{4.1}
\end{align*}
$$

In $[7,11]$, we established-and-studied Hilbert-space representations $\left(\mathfrak{H}_{p}, \alpha^{p}\right)$ of the p-adic probability spaces $\left(\mathcal{M}_{p}, \varphi_{p}\right)$ for $p \in \mathcal{P}$. By (4.1), one can construct a Hilbert-space representation of $\mathcal{M}_{\mathcal{P}}$ from the representations,

$$
\left\{\left(\mathfrak{H}_{p}, \alpha^{p}\right): p \in \mathcal{P}\right\}
$$

of $[7,11]$. However, instead of using them, we provide the following equivalent construction.

Define a form

$$
\begin{align*}
& {[,]: \mathcal{M}_{\mathcal{P}} \times \mathcal{M}_{\mathcal{P}} \rightarrow \mathbb{C}} \\
& {\left[f_{1}, f_{2}\right] \stackrel{\text { def }}{=} \int_{A_{\mathbb{Q}}} f_{1} f_{2}^{*} d \mu=\varphi\left(f_{1} f_{2}^{*}\right) \quad \text { for all } f_{1}, f_{2} \in \mathcal{M}_{\mathcal{P}}} \tag{4.2}
\end{align*}
$$

Proposition 4.1. The form [,] of (4.2) on the finite-Adelic $*$-algebra $\mathcal{M}_{\mathcal{P}}$ is an inner product. Equivalently, the pair $\left(\mathcal{M}_{\mathcal{P}},[],\right)$ forms an inner product space.
Proof. The form [,] of (4.2) is an inner product on $\mathcal{M}_{\mathcal{P}}$. See [9] for details.
From the inner product [,] of (4.2), one can construct the norm $\|$.$\| and the$ metric $d($,$) , canonically.$
Definition 4.2. Let d be the metric induced by the inner product [,] of (4.2). Then the maximal d-metric-topology closure $H_{\mathcal{P}}$ in $\mathcal{M}_{\mathcal{P}}$ is called the finite-Adelic Hilbert space.

By the definition of finite-Adelic Hilbert space $H_{\mathcal{P}}$, our $*$-algebra $\mathcal{M}_{\mathcal{P}}$ is acting on $H_{\mathcal{P}}$ via a linear morphism α from $\mathcal{M}_{\mathcal{P}}$ into the operator algebra $B\left(H_{\mathcal{P}}\right)$ (consisting of all bounded operators on $H_{\mathcal{P}}$ under the operator-norm);

$$
\begin{equation*}
\alpha(f)(h) \stackrel{\text { denote }}{=} \alpha_{f}(h)=f h, \quad \text { for all } h \in H_{\mathcal{P}}, \tag{4.3}
\end{equation*}
$$

for all $f \in \mathcal{M}_{\mathcal{P}}$. That is, the algebra-action α of (4.3) assigns each element f of $\mathcal{M}_{\mathcal{P}}$ to the multiplication operator $\alpha(f)=\alpha_{f}$ with its symbol f in the operator algebra $B\left(H_{\mathcal{P}}\right)$ consisting of all bounded linear operators on $H_{\mathcal{P}}$.

Notation 4.1 For convenience, we denote the multiplication operators $\alpha\left(\chi_{Y}\right)=$ $\alpha_{\chi_{Y}}$ simply by α_{Y}, for all $Y \in \sigma\left(A_{\mathbb{Q}}\right)$ from below.

Observe that, for any $f_{1}, f_{2} \in \mathcal{M}_{\mathcal{P}}$,

$$
\begin{equation*}
\alpha_{f_{1} f_{2}}=\alpha_{f_{1}} \alpha_{f_{2}} \text { on } H_{\mathcal{P}}, \tag{4.4}
\end{equation*}
$$

and, for any $f \in \mathcal{M}_{\mathcal{P}}$,

$$
\begin{equation*}
\alpha_{f}^{*}=\alpha_{f^{*}} \text { on } H_{\mathcal{P}} \tag{4.5}
\end{equation*}
$$

(e.g., [8, 10]).

Proposition 4.3. Let $H_{\mathcal{P}}$ be the finite-Adelic Hilbert space, and let α be in the sense of (4.3). Then the pair $\left(H_{\mathcal{P}}, \alpha\right)$ is a Hilbert-space representation of the finite-Adelic *-algebra $\mathcal{M}_{\mathcal{P}}$.

Proof. The linear morphism α of (4.3) is a $*$-homomorphism from $\mathcal{M}_{\mathcal{P}}$ to $B\left(H_{\mathcal{P}}\right)$, by (4.4) and (4.5).

By the above proposition, one can understand all elements f of $\mathcal{M}_{\mathcal{P}}$ as a Hilbert-space operator α_{f} acting on $H_{\mathcal{P}}$.

Definition 4.4. Let $\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)$ be the finite-Adelic probability space, and let $\left(H_{\mathcal{P}}, \alpha\right)$ be the Hilbert-space representation of $\mathcal{M}_{\mathcal{P}}$. Then we call $\left(H_{\mathcal{P}}, \alpha\right)$, the finite-Adelic representation of $\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)$. Define now the finite-Adelic C^{*}-algebra $M_{\mathcal{P}}$ by a C^{*}-subalgebra of $B\left(H_{\mathcal{P}}\right)$,

$$
\begin{equation*}
M_{\mathcal{P}}=C^{*}\left(\mathcal{M}_{\mathcal{P}}\right) \stackrel{\text { def }}{=} \overline{\mathbb{C}\left[\alpha\left(\mathcal{M}_{\mathcal{P}}\right)\right]} \tag{4.6}
\end{equation*}
$$

where \bar{X} means the operator-norm-topology closures of subsets X of $B\left(H_{\mathcal{P}}\right)$.

5. Functional Analysis on $M_{\mathcal{P}}$

Let $\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)$ be the finite-Adelic probability space, and let $M_{\mathcal{P}}$ be the finiteAdelic C^{*}-algebra (4.6) of $\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)$ under the finite-Adelic representation $\left(H_{\mathcal{P}}, \alpha\right)$. In this section, we will consider functional analysis on the C^{*}-algebra $M_{\mathcal{P}}$ by constructing a system $\left\{\varphi_{p, j}\right\}_{p \in \mathcal{P}, j \in \mathbb{Z}}$ of linear functionals $\varphi_{p, j}$'s (implying numbertheoretic information) on $M_{\mathcal{P}}$.

Define a linear functional $\varphi_{p, j}$ on $M_{\mathcal{P}}$ by

$$
\begin{equation*}
\varphi_{p, j}(T)=\left[T\left(\chi_{B_{j}^{p}}\right), \chi_{B_{j}^{p}}\right], \quad \text { for all } T \in M_{\mathcal{P}} \tag{5.1}
\end{equation*}
$$

for all $p \in \mathcal{P}$ and $j \in \mathbb{Z}$, where [,] is the inner product (4.2) on the finite-Adelic Hilbert space $H_{\mathcal{P}}$, and where

$$
B_{j}^{p}=\prod_{q \in \mathcal{P}} Y_{q} \text { in } \sigma\left(A_{\mathbb{Q}}\right)
$$

with

$$
Y_{q}= \begin{cases}\partial_{j}^{p} & \text { if } q=p \\ \mathbb{Z}_{q} & \text { otherwise }\end{cases}
$$

for all $q \in \mathcal{P}$; that is,

$$
\chi_{B_{j}^{p}}=\chi_{\mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \cdots \times \underset{p \text {-th position }}{ } \partial_{j}^{p} \times \ldots . . \in H_{\mathcal{P}}} .
$$

All vectors h of the finite-Adelic Hilbert space $H_{\mathcal{P}}$ have their expressions,

$$
h=\sum_{Y \in \sigma\left(A_{\mathbb{Q}}\right)} t_{Y} \chi_{Y}, \text { with } t_{Y} \in \mathbb{C}
$$

where \sum is a finite, or an infinite (a limit of finite) sum(s) under the Hilbertspace topology, while every operator T of $M_{\mathcal{P}}$ has its expression,

$$
T=\sum_{Y \in \sigma\left(A_{\mathbb{Q}}\right)} s_{Y} \alpha_{Y}, \text { with } s_{Y} \in \mathbb{C}
$$

where \sum is a finite, or an infinite (limit of finite) sum(s) under the C^{*}-topology for $M_{\mathcal{P}}$, and where α_{Y} are in the sense of Notation 4.1.

So, the linear functionals $\varphi_{p, j}$ of (5.1) are well-defined on $M_{\mathcal{P}}$, and hence, one can get the mathematical pairs,

$$
\begin{equation*}
M_{\mathcal{P}}^{p, j} \stackrel{\text { denote }}{=}\left(M_{\mathcal{P}}, \varphi_{p, j}\right) \quad \text { for all } p \in \mathcal{P} \text { and } j \in \mathbb{Z} \tag{5.2}
\end{equation*}
$$

Definition 5.1. Let $M_{\mathcal{P}}^{p, j}=\left(M_{\mathcal{P}}, \varphi_{p, j}\right)$ be a mathematical pair (5.2), where $\varphi_{p, j}$ is a linear functional (5.1), for $p \in \mathcal{P}$ and $j \in \mathbb{Z}$. Then we call this pair $M_{\mathcal{P}}^{p, j}$, the (p, j) (-finite)-Adelic C^{*}-probability space of the finite-Adelic C^{*}-algebra $M_{\mathcal{P}}$, nontraditionally.

In the rest of this section, let us fix $p \in \mathcal{P}$ and $j \in \mathbb{Z}$ and the corresponding (p, j)-Adelic C^{*}-probability space $M_{\mathcal{P}}^{p, j}$ of (5.2).

Consider that, if $\alpha_{Y}=\alpha_{\chi_{Y}} \in M_{\mathcal{P}}^{p, j}$, for $Y \in \sigma\left(A_{\mathbb{Q}}\right)$, satisfying
$Y=\prod_{p \in \mathcal{P}} S_{p}, \quad$ with $S_{p} \in \sigma\left(\mathbb{Q}_{p}\right)$, where $S_{p}= \begin{cases}S_{p} \neq \mathbb{Z}_{p} & \text { if } p \in P_{Y}, \\ \mathbb{Z}_{p} & \text { if } p \notin P_{Y},\end{cases}$
for all $p \in \mathcal{P}$, where

$$
P_{Y}=\left\{p \in \mathcal{P}: S_{p} \neq \mathbb{Z}_{p}\right\}
$$

is a finite subset in \mathcal{P}.

$$
\begin{align*}
& \text { Then we have } \\
& \qquad \begin{cases}\varphi_{p, j}\left(\alpha_{Y}\right)=\left[\alpha_{Y}\left(\chi_{B_{j}^{p}}\right), \chi_{B_{j}^{p}}\right]=\int_{A_{Q}} \chi_{Y \cap B_{j}^{p}} d \mu=\mu\left(Y \cap B_{j}^{p}\right) \\
\left(\prod_{q \in P_{Y}} \mu_{q}\left(S_{q} \cap \mathbb{Z}_{q}\right)\right)\left(\mu_{p}\left(\mathbb{Z}_{p} \cap \partial_{j}^{p}\right)\right) & \text { if } p \notin P_{Y} \\
\left(\prod_{q \in P_{Y} \backslash\{p\}} \mu_{q}\left(S_{q} \cap \mathbb{Z}_{q}\right)\right)\left(\mu_{p}\left(S_{p} \cap \partial_{j}^{p}\right)\right) & \text { if } p \in P_{Y}\end{cases}
\end{align*}
$$

Thus, one obtains the following result.
Theorem 5.2. Let α_{Y} be an element of the (p, j)-Adelic C^{*}-probability space $M_{\mathcal{P}}^{p, j}$, where $Y \in \sigma\left(A_{\mathbb{Q}}\right)$ is in the sense of (5.3). Then

$$
\begin{equation*}
\varphi\left(\alpha_{Y}^{n}\right)=\left(\prod_{q \in\left(P_{Y} \cup\{p\}\right) \backslash\{p\}} \mu_{q}\left(S_{q} \cap \mathbb{Z}_{q}\right)\right)\left(\mu_{p}\left(S_{p} \cap \partial_{j}^{p}\right)\right) \quad \text { for all } n \in \mathbb{N} \text {. } \tag{5.5}
\end{equation*}
$$

Proof. Since α_{Y} is a projection in $M_{\mathcal{P}}$, one has $\alpha_{Y}^{n}=\alpha_{Y}$ for all $n \in \mathbb{N}$. So, the formula (5.5) is obtained by (5.4). Remark that the formula (5.5) is nothing but a re-expression of conditional formulas in (5.4).

Now, let Y be in the sense of (5.3), with specific condition as follows:

$$
Y=\prod_{p \in \mathcal{P}} S_{p}, \quad \text { with } S_{p} \in \sigma\left(\mathbb{Q}_{p}\right), \text { where } S_{p}= \begin{cases}\partial_{k_{p}}^{p} & \text { if } p \in P_{Y} \tag{5.6}\\ \mathbb{Z}_{p} & \text { if } p \notin P_{Y}\end{cases}
$$

for all $p \in \mathcal{P}$, where $k_{p} \in \mathbb{Z}$ for $p \in P_{Y}$, and $P_{Y}=\left\{p_{1}, \ldots, p_{N}\right\}$ in \mathcal{P} for some $N \in \mathbb{N}$.

If Y is in the sense of (5.6), then the corresponding element α_{Y} of the (p, j) Adelic C^{*}-probability space $M_{\mathcal{P}}^{p, j}$ satisfies that

$$
\begin{gather*}
\varphi_{p, j}\left(\alpha_{Y}^{n}\right)=\left(\prod_{q \in\left(P_{Y} \cup\{p\} \backslash\{p\}\right.} \mu_{q}\left(\partial_{k_{q}}^{q} \cap \mathbb{Z}_{q}\right)\right)\left(\mu_{p}\left(S_{p} \cap \partial_{j}^{p}\right)\right) \\
\begin{cases}\left(\prod_{q \in P_{Y}} \mu_{q}\left(\partial_{k_{q}}^{q} \cap \mathbb{Z}_{q}\right)\right)\left(\mu_{p}\left(\mathbb{Z}_{p} \cap \partial_{j}^{p}\right)\right) & \text { if } p \notin P_{Y}, \\
\delta_{j, k_{p}}\left(\frac{1}{p^{j}}-\frac{1}{p^{j+1}}\right)\left(\prod_{q \in P_{Y} \backslash\{p\}} \mu_{q}\left(\partial_{k_{q}}^{q} \cap \mathbb{Z}_{q}\right)\right) & \text { if } p \in P_{Y},\end{cases} \tag{5.7}
\end{gather*}
$$

by (5.4) and (5.5), for all $n \in \mathbb{N}$, where δ is the Kronecker delta. Therefore, one obtains the following special case of (5.5) with help of (5.7).

Corollary 5.3. Let Y be in the sense of (5.6) in $\sigma\left(A_{\mathbb{Q}}\right)$, and let α_{Y} be the corresponding element of the (p, j)-Adelic C^{*}-probability space $M_{\mathcal{P}}^{p, j}$. Then

$$
\begin{equation*}
\varphi_{p, j}\left(\alpha_{Y}^{n}\right)=\delta_{j, Y}\left(\frac{1}{p^{j}}-\frac{1}{p^{j+1}}\right)\left(\prod_{q \in P_{Y} \backslash\{p\}} \mu_{q}\left(\partial_{k_{q}}^{q} \cap \mathbb{Z}_{q}\right)\right), \tag{5.8}
\end{equation*}
$$

for all $n \in \mathbb{N}$, where

$$
\delta_{j, Y}= \begin{cases}\delta_{j, k_{p}} & \text { if } p \in P_{Y} \\ 0 & \text { if } p \notin P_{Y} \text { and } j<0 \\ 1 & \text { otherwise }\end{cases}
$$

where P_{Y} is in the sense of (5.6).
Proof. The formula (5.8) is proven by (5.5) and (5.7).
Note that the operator α_{Y} of the above corollary is an operator $\alpha\left(\chi_{Y}\right)$ induced by a boundary-product element χ_{Y} of the finite-Adelic probability space $\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)$, and hence, they provide building blocks for computing (free) distributions of all operators in $M_{\mathcal{P}}$. So, as in section 3, we focus on studying (free-)distributional data of these operators α_{Y} for investigating statistical data on $M_{\mathcal{P}}$.

Definition 5.4. Let α_{Y} be the operator of the finite-Adelic C^{*}-algebra $M_{\mathcal{P}}$, generated by the μ-measurable subset Y of (5.6). Then we call such an operator α_{Y}, a boundary-product operator of $M_{\mathcal{P}}$.

Now, let Y and $P_{Y} \subset \mathcal{P}$ be in the sense of (5.6). Then P_{Y} is partitioned by

$$
\begin{equation*}
P_{Y}=P_{Y}^{+} \sqcup P_{Y}^{-} \text {in } \mathcal{P} \tag{5.9}
\end{equation*}
$$

where

$$
P_{Y}^{+}=\left\{q \in P_{Y}: k_{q} \geq 0 \text { in } \mathbb{Z}\right\}
$$

and

$$
P_{Y}^{-}=\left\{q \in P_{Y}: k_{q}<0 \text { in } \mathbb{Z}\right\} .
$$

Then the formula (5.8) can be refined as follows with help of (5.9).
Theorem 5.5. Let Y be in the sense of (5.6), inducing a finite subset $P_{Y}=$ $P_{Y}^{+} \sqcup P_{Y}^{-}$of \mathcal{P}, as in (5.9). If $\alpha_{Y} \in M_{\mathcal{P}}^{p, j}$, for $p \in \mathcal{P}$ and $j \in \mathbb{Z}$, then

$$
\varphi_{p, j}\left(\alpha_{Y}^{n}\right)= \begin{cases}\delta_{j, k_{p}}\left(\prod_{q \in P_{Y}}\left(\frac{1}{q^{k_{q}}}-\frac{1}{q^{k}+1}\right)\right) & \text { if } P_{Y}^{-}=\varnothing \tag{5.10}\\ 0 & \text { if } P_{Y}^{-} \neq \varnothing\end{cases}
$$

for all $n \in \mathbb{N}$, where \varnothing means the empty set.
Proof. The proof of (5.10) is done by (5.8) and (5.9). Indeed, if $P_{Y}^{-} \neq \varnothing$ in P_{Y}, and if $q \in P_{Y}^{-}$in P_{Y}, and hence, $k_{q}<0$ in \mathbb{Z}, then

$$
\partial_{k_{q}}^{q} \cap \mathbb{Z}_{q}=\varnothing \text { in } \mathbb{Q}_{q},
$$

implying

$$
\mu\left(Y \cap B_{j}^{p}\right)=0
$$

for "any" $p \in \mathcal{P}, j \in \mathbb{Z}$. (Also, see the definition $\delta_{j, Y}$ of (5.8), implying the above discussion.)

So, whenever $P_{Y}^{-} \neq \varnothing$, the free moments $\varphi_{p, j}\left(\alpha_{Y}^{n}\right)$ vanish.
The above distributional data (5.10) allow us to have the following result.
Theorem 5.6. Let α_{Y} be a boundary operator of the (p, j)-Adelic C^{*}-probability space $M_{\mathcal{P}}^{p, j}$ for $p \in \mathcal{P}$ and $j \in \mathbb{Z}$. If the subset P_{Y} of (5.9) satisfies $P_{Y}^{-}=\varnothing$, equivalently, if $P_{Y}=P_{Y}^{+}$in \mathcal{P}, then there exist

$$
\begin{equation*}
n_{Y}=\prod_{q \in P_{Y}^{+} \cup\{p\}} q^{k_{q}} \in \mathbb{N}_{0}, \text { such that } \varphi_{p, j}\left(\alpha_{Y}^{n}\right)=\frac{\delta_{j, k_{p}}}{n_{Y} n_{p, j}} \phi\left(n_{p, j}\right), \quad \text { for all } n \in \mathbb{N}, \tag{5.11}
\end{equation*}
$$

where

$$
n_{p, j}=\prod_{q \in P_{Y}^{+} \cup\{p\}} q \text { in } \mathbb{N} \text {, }
$$

where ϕ is the Euler totient function.
Proof. Recall that, for a fixed $p \in \mathcal{P}, j \in \mathbb{Z}$, if Y is a μ-measurable set (5.6) of $A_{\mathbb{Q}}$, satisfying $P_{Y}^{-}=\varnothing$, then the corresponding boundary-product operator α_{Y} in the finite-Adelic C^{*}-probability space $M_{\mathcal{P}}^{p, j}$ satisfies

$$
\varphi_{p, j}\left(\alpha_{Y}\right)=\delta_{j, k_{p}}\left(\prod_{q \in P_{Y} \cup\{p\}}\left(\frac{1}{q^{k q}}-\frac{1}{q^{k_{q}+1}}\right)\right)
$$

by (5.10)

$$
\begin{aligned}
& =\delta_{j, k_{p}}\left(\prod_{q \in P_{Y} \cup\{p\}} \frac{q^{k_{q}}}{q^{q_{q}+1}}\left(1-\frac{1}{q}\right)\right) \\
& =\delta_{j, k_{p}}\left(\frac{1}{n_{Y}}\right)\left(\frac{1}{n_{p, j}}\right) \phi\left(n_{p, j}\right)
\end{aligned}
$$

where

$$
n_{Y}=\prod_{q \in P_{Y, p}} q^{k_{q}}, \quad n_{p, j}=\prod_{q \in P_{Y, p}} q
$$

in \mathbb{N}, and hence, it goes to

$$
=\delta_{j, k_{p}}\left(\frac{1}{n_{Y} n_{p, j}}\right) \phi\left(n_{p, j}\right)
$$

for all $n \in \mathbb{N}$.
The above results (5.10) and (5.11) illustrate connections between our C^{*} probabilistic structures and number-theoretic information. Also, they show a relation between the $*$-distributional data of section 3 and our C^{*}-probabilistic data, whenever $P_{Y}=P_{Y}^{+}$in \mathcal{P}.

6. Projections in $M_{\mathcal{P}}^{p, j}$

Let $M_{\mathcal{P}}^{p, j}=\left(M_{\mathcal{P}}, \varphi_{p, j}\right)$ be the (p, j)-Adelic C^{*}-probability space of the finiteAdelic C^{*}-algebra $M_{\mathcal{P}}$, and a linear functional $\varphi_{p, j}$ of (5.1) for $p \in \mathcal{P}$ and $j \in$ \mathbb{Z}.

For $q \in \mathcal{P}$ and $k \in \mathbb{Z}$, let $B_{k}^{q} \in \sigma\left(A_{\mathbb{Q}}\right)$ be in the sense of (5.1); that is,

$$
\begin{equation*}
B_{k}^{q}=\mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \cdots \times \underset{q \text {-th position in } \mathcal{P}}{\partial_{k}^{q}} \times \cdots, \tag{6.1}
\end{equation*}
$$

in $A_{\mathbb{Q}}$.
For $B_{k}^{q} \in \sigma\left(A_{\mathbb{Q}}\right)$ of (6.1), let

$$
\begin{equation*}
\alpha_{q, k} \stackrel{\text { denote }}{=} \alpha_{B_{k}^{q}}=\alpha\left(\chi_{B_{k}^{q}}\right) \in M_{\mathcal{P}} \tag{6.2}
\end{equation*}
$$

as a boundary-product operator, for all $q \in \mathcal{P}, k \in \mathbb{Z}$.
Then, by (6.1) and (6.2), we obtain the following special result of (5.10).
Corollary 6.1. Let $\alpha_{q, k} \in M_{\mathcal{P}}^{p, j}$ be in the sense of (6.2) for $p, q \in \mathcal{P}$ and $j, k \in$ \mathbb{Z}. Then

$$
\varphi_{p, j}\left(\alpha_{q, k}^{n}\right)=\left\{\begin{array}{ll}
\frac{\delta_{j,\{p, q\}}}{\left.n_{\{p, q\}}\right\}_{p, j}}
\end{array} \phi\left(n_{p, j}\right) \quad \text { if } k \geq 0, ~\left(\begin{array}{ll}
& \text { if } p \neq q \text { and } k<0 \tag{6.3}
\end{array}\right.\right.
$$

with

$$
\begin{aligned}
\delta_{j,\{p, q\}}= \begin{cases}\delta_{j, k} & \text { if } p \neq q, \\
1 & \text { if } p=q,\end{cases} \\
n_{\{p, q\}}=\prod_{s \in\{p, q\}} s^{k_{s}}, \quad \text { where } k_{s}= \begin{cases}j & \text { if } s=p, \\
k & \text { if } s=q,\end{cases}
\end{aligned}
$$

and

$$
n_{p, j}=\prod_{s \in\{p, q\}} s \text { in } \mathbb{N}
$$

for all $n \in \mathbb{N}$.
Proof. The proof of (6.3) is straightforward by (5.10).

The above free distribution (6.3) of the projection $\alpha_{q, k}$ in $M_{\mathcal{P}}^{p, j}$ is refined by the following four formulas (6.4), (6.5), (6.6), and (6.7): if $p=q$ and $j=k$, then

$$
\begin{equation*}
\varphi_{p, j}\left(\alpha_{p, j}^{n}\right)=\frac{1}{p^{j+1}} \phi(p)=\frac{(p-1)}{p^{j+1}}=\frac{1}{p^{j}}-\frac{1}{p^{j+1}} \tag{6.4}
\end{equation*}
$$

if $p=q$ and $j \neq k$, then

$$
\begin{equation*}
\varphi_{p, j}\left(\alpha_{p, k}^{n}\right)=\frac{\delta_{j, k}}{n_{\{p\}} n_{p, j}} \phi\left(n_{p, j}\right)=0 ; \tag{6.5}
\end{equation*}
$$

if $p \neq q$ and $j=k$, then

$$
\begin{align*}
\varphi_{p, j}\left(\alpha_{q, j}^{n}\right) & =\frac{\delta_{k \geq 0}^{\left(p^{j} q^{j}\right)(p q)}}{} \phi(p q) \\
& =\delta_{k \geq 0}\left(\frac{1}{p^{j}}-\frac{1}{p^{j+1}}\right)\left(\frac{1}{q^{j}}-\frac{1}{q^{j+1}}\right), \tag{6.6}
\end{align*}
$$

where

$$
\delta_{k \geq 0}= \begin{cases}1 & \text { if } k \geq 0 \\ 0 & \text { if } k<0\end{cases}
$$

and if $p \neq q$ and $j \neq k$, then, because $\delta_{j, k}=0$,

$$
\begin{equation*}
\varphi_{p, j}\left(\alpha_{q, k}^{n}\right)=0 \quad \text { for all } n \in \mathbb{N} . \tag{6.7}
\end{equation*}
$$

6.1. The C^{*}-Subalgebra \mathfrak{S}_{p} of $M_{\mathcal{P}}$. Let $M_{\mathcal{P}}^{p, j}=\left(M_{\mathcal{P}}, \varphi_{p, j}\right)$ be (p, j)-Adelic C^{*}-probability spaces, and let $\alpha_{q, k}=\alpha_{B_{k}^{q}}$ be projections (6.2) in the finite-Adelic C^{*}-algebra $M_{\mathcal{P}}$ for all $p, q \in \mathcal{P}$ and $j, k \in \mathbb{Z}$.
Definition 6.2. Let $M_{\mathcal{P}}$ be the finite-Adelic C^{*}-algebra. Define a C^{*}-subalgebra \mathfrak{S}_{p} of $M_{\mathcal{P}}$ by the C^{*}-algebra generated by the family

$$
\begin{equation*}
\Omega_{p}=\left\{\alpha_{p, k} \in M_{\mathcal{P}}: k \in \mathbb{Z}\right\} \tag{6.8}
\end{equation*}
$$

of projections $\alpha_{p, k}$'s of (6.2) for an arbitrarily fixed $p \in \mathcal{P}$. That is,

$$
\begin{equation*}
\mathfrak{S}_{p}=C^{*}\left(\Omega_{p}\right)=\overline{\mathbb{C}\left[\Omega_{p}\right]} \text { in } M_{\mathcal{P}}, \tag{6.9}
\end{equation*}
$$

for all $p \in \mathcal{P}$, where \bar{X} means the C^{*}-topology closures of subsets X in $M_{\mathcal{P}}$. We call \mathfrak{S}_{p} of (6.9), the p-adic projection $\left(C^{*}\right.$ - subalgebra of $M_{\mathcal{P}}$ for all $p \in \mathcal{P}$.

Let $p \in \mathcal{P}$, and let $\alpha_{p, k}$ and $\alpha_{p, j}$ be generating projections of the p-adic projection subalgebra \mathfrak{S}_{p} of $M_{\mathcal{P}}$ for $k, j \in \mathbb{Z}$. Then

$$
\begin{equation*}
\alpha_{p, k} \alpha_{p, j}=\delta_{k, j} \alpha_{p, j} \text { in } \mathfrak{S}_{p} \tag{6.10}
\end{equation*}
$$

by (2.4).
Proposition 6.3. Let \mathfrak{S}_{p} be the p-adic projection subalgebra (6.9) of the finiteAdelic C^{*}-algebra $M_{\mathcal{P}}$. Then

$$
\begin{equation*}
\mathfrak{S}_{p} \stackrel{*-\text { iso }}{=} \underset{j \in \mathbb{Z}}{ }\left(\mathbb{C} \cdot \alpha_{p, j}\right) \stackrel{*-\text { iso }}{=} \mathbb{C}^{\oplus|\mathbb{Z}|} \tag{6.11}
\end{equation*}
$$

in $M_{\mathcal{P}}$, where $\stackrel{\text { *-iso " }}{=}$ means "being $*$-isomorphic."
Proof. Since \mathfrak{S}_{p} is generated by the family Ω_{p} of (6.8), and the generators $\alpha_{p, j}$'s satisfy the orthogonality (6.10)), the $*$-isomorphic relations (6.11) hold in $M_{\mathcal{P}}$.

Let \mathfrak{S}_{p} be the p-adic projection subalgebra of the finite-Adelic C^{*}-algebra of $M_{\mathcal{P}}$. Then, by determining the restrictions $\left.\varphi_{p, j}\right|_{\mathfrak{S}_{p}}$ of the linear functionals $\varphi_{p, j}$ of (5.1), also denoted by $\varphi_{p, j}$, one can define C^{*}-probability spaces,

$$
\begin{equation*}
\mathfrak{S}_{p, j}=\left(\mathfrak{S}_{p}, \varphi_{p, j}\right), \tag{6.12}
\end{equation*}
$$

for all $j \in \mathbb{Z}$, for any fixed $p \in \mathcal{P}$.
Definition 6.4. Let \mathfrak{S}_{p} be the p-adic projection subalgebra (6.9) of the finiteAdelic C^{*}-algebra $M_{\mathcal{P}}$, and let $\mathfrak{S}_{p, j}$ be C^{*}-probability spaces (6.12) for all $j \in \mathbb{Z}$. Then we call $\mathfrak{S}_{p, j}$, the (p, j)-projection $\left(C^{*}\right.$-) probability spaces.

The free distributions of generating operators $\alpha_{p, k}$'s in the (p, j)-projection probability spaces $\mathfrak{S}_{\mathcal{P}}^{p, j}$ are characterized by (6.4), refined by (6.5) and (6.6).

Proposition 6.5. Let $\mathfrak{S}_{p, j}=\left(\mathfrak{S}_{p}, \varphi_{p, j}\right)$ be the (p, j)-projection probability space for $p \in \mathcal{P}$ and $j \in \mathbb{Z}$, and let $\alpha_{p, k}$ be generating operators of \mathfrak{S}_{p} for all $k \in \mathbb{Z}$. Then

$$
\begin{equation*}
\varphi_{p, j}\left(\alpha_{p, k}^{n}\right)=\delta_{j, k}\left(\frac{\phi(p)}{p^{j+1}}\right)=\delta_{j, k}\left(\frac{1}{p^{j}}-\frac{1}{p^{j+1}}\right) \tag{6.13}
\end{equation*}
$$

for all $n \in \mathbb{N}$.
Proof. The formula (6.13) is obtained from (6.4) (or, (6.5) and (6.6)) and (6.11).
6.2. On C^{*}-Probability Spaces $\mathfrak{S}(p)=\left(\mathfrak{S}_{p}, \varphi_{p}\right)$. Let $p \in \mathcal{P}$ be fixed, and let $\mathfrak{S}_{p, j}=\left(\mathfrak{S}_{p}, \varphi_{p, j}\right)$ be (p, j)-projection probability spaces (6.12) for all $j \in \mathbb{Z}$. Recall that the C^{*}-algebra \mathfrak{S}_{p} satisfies the structure theorem (6.11). Thus, one can define the following linear functional φ_{p} on \mathfrak{S}_{p} by

$$
\varphi_{p}=\sum_{k \in \mathbb{Z}}^{\oplus} \varphi_{p, j} \text { on } \underset{k \in \mathbb{Z}}{\oplus}\left(\mathbb{C} \cdot \alpha_{p, k}\right)=\mathfrak{S}_{p}
$$

by a linear morphism,

$$
\begin{equation*}
\varphi_{p}\left(\oplus_{j \in \mathbb{Z}} t_{j} \alpha_{p, j}\right)=\sum_{j \in \mathbb{Z}} t_{j} \varphi_{p, j}\left(\alpha_{p, j}\right) . \tag{6.14}
\end{equation*}
$$

By the definition (6.14) of φ_{p}, one has

$$
\begin{equation*}
\varphi_{p}\left(\underset{j \in \mathbb{Z}}{ } t_{j} \alpha_{p, j}\right)=\sum_{j \in \mathbb{Z}} t_{j}\left(\frac{1}{p^{j}}-\frac{1}{p^{j+1}}\right)=\sum_{j \in \mathbb{Z}} \frac{t_{j} \phi(p)}{p^{j+1}} \tag{6.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{p}\left(\alpha_{p, k}\right)=\varphi_{p, k}\left(\alpha_{p, k}\right)=\frac{1}{p^{k}}-\frac{1}{p^{k+1}}=\frac{\phi(p)}{p^{k+1}}, \tag{6.16}
\end{equation*}
$$

for all $k \in \mathbb{Z}$, by (6.13).
Note that the above linear functional φ_{p} of (6.14) is well-defined by (6.11).
Definition 6.6. Let \mathfrak{S}_{p} be the p-adic projection subalgebra of $M_{\mathcal{P}}$ for $p \in \mathcal{P}$, and let φ_{p} be the linear functional (6.14) on \mathfrak{S}_{p}. Then the pair

$$
\begin{equation*}
\mathfrak{S}(p)=\left(\mathfrak{S}_{p}, \varphi_{p}\right) \tag{6.17}
\end{equation*}
$$

is called the p-projection (free-) probability space (generated by (p, j)-projection probability spaces $\left\{\mathfrak{S}_{p, j}\right\}_{j \in \mathbb{Z}}$) for all $p \in \mathcal{P}$.

The free-distributional data on the p-projection probability spaces $\mathfrak{S}(p)$ of (6.17) are characterized by (6.16) for all $p \in \mathcal{P}$.

Proposition 6.7. Let $\mathfrak{S}(p)=\left(\mathfrak{S}_{p}, \varphi_{p}\right)$ be a p-projection probability space for p $\in \mathcal{P}$, and let $\left\{\alpha_{p, k}\right\}_{k \in \mathbb{Z}}$ be the generators of $\mathfrak{S}(p)$. Then

$$
\begin{equation*}
\varphi_{p}\left(\alpha_{p, k}^{n}\right)=\frac{\phi(p)}{p^{k+1}}=\frac{1}{p^{k}}-\frac{1}{p^{k+1}}, \quad \text { for all } k \in \mathbb{Z} \tag{6.18}
\end{equation*}
$$

for all $n \in \mathbb{N}$.
Proof. Note that the generating operators $\alpha_{p, k}$'s of $\mathfrak{S}(p)$ are projections satisfying $\alpha_{p, k}^{n}=\alpha_{p, k}$ for all $n \in \mathbb{N}$ and all $k \in \mathbb{Z}$. So, the formula (6.18) holds by (6.16).

Note that the formula (6.18) gives the full characterization of free distributions on $\mathfrak{S}(p)$ by (6.11) and (6.15).
6.3. On a C^{*}-Probability Space over \mathfrak{S}. Now, let $\mathfrak{S}(p)=\left(\mathfrak{S}_{p}, \varphi_{p}\right)$ be p projection probability spaces (6.17) for all $p \in \mathcal{P}$, where φ_{p} are the linear functionals (6.16) on the p-projection C^{*}-algebra \mathfrak{S}_{p} in the finite-Adelic C^{*}-algebra $M_{\mathcal{P}}$. By (4.1), one can construct the C^{*}-probability space

$$
\begin{equation*}
\mathfrak{S}^{\text {denote }}(\mathfrak{S}, \varphi) \tag{6.19}
\end{equation*}
$$

from $\{\mathfrak{S}(p)\}_{p \in \mathcal{P}}$ as the pair of the weak direct product algebra \mathfrak{S},

$$
\begin{equation*}
\mathfrak{S}=\prod_{p \in \mathcal{P}}^{\prime} \mathfrak{S}_{p} \tag{6.20}
\end{equation*}
$$

where Π^{\prime} means the weak direct product of C^{*}-algebras, and

$$
\begin{equation*}
\varphi=\prod_{p \in \mathcal{P}} \varphi_{p} \tag{6.21}
\end{equation*}
$$

satisfying that

$$
\varphi\left(\left(a_{p}\right)_{p \in \mathcal{P}}\right)=\prod_{p \in \mathcal{P}} \varphi_{p}\left(a_{p}\right) \quad \text { for all }\left(a_{p}\right)_{p \in \mathcal{P}}=\prod_{p \in \mathcal{P}} a_{p} \in \mathfrak{S} .
$$

That is, like in (4.1), by abusing notation, one has

$$
\begin{equation*}
\mathfrak{S}=(\mathfrak{S}, \varphi)=\prod_{p \in \mathcal{P}}^{\prime}\left(\mathfrak{S}_{p}, \varphi_{p}\right)=\prod_{p \in \mathcal{P}}^{\prime} \mathfrak{S}(p) \tag{6.22}
\end{equation*}
$$

by (6.19), (6.20), and (6.21).
By the very definition (6.19) and its characterization (6.22), the C^{*}-probability space \mathfrak{S} is a well-defined C^{*}-probabilistic sub-structures of $M_{\mathcal{P}}=\left(M_{\mathcal{P}}, \varphi\right)$.

Definition 6.8. Let $\mathfrak{S}=(\mathfrak{S}, \varphi)$ be in the sense of (6.22). Then this pair \mathfrak{S} is called "the" projection (C^{*}-) probability space (in $M_{\mathcal{P}}$).

Note that, by (6.20) or (6.22), if T is an element of the projection probability space \mathfrak{S} of (6.22), then it is generated by the generating operators $\left\{\alpha^{p, k}\right\}_{p \in \mathcal{P}, k \in \mathbb{Z}}$, formed by

$$
\alpha^{p, k}=\left(\beta_{q, k_{q}}\right)_{q \in \mathcal{P}, k_{q} \in \mathbb{Z}} \in \mathfrak{S}, \text { with } \beta_{q, k_{q}}= \begin{cases}\alpha_{[p, k]} & \text { if } q=p, \text { with } k \in \mathbb{Z} \tag{6.23}\\ \alpha_{\mathbb{Z}_{q}} & \text { if } q \neq p,\end{cases}
$$

for all $q \in \mathcal{P}$, for $k \in \mathbb{Z}$, where

$$
\begin{equation*}
\alpha_{[p, k]}=\alpha\left(\chi_{\partial_{p}^{k}}\right), \text { for } k \in \mathbb{Z}, \text { and } \alpha_{\mathbb{Z}_{q}}=\alpha\left(\chi_{\mathbb{Z}_{q}}\right), \text { for all } q \neq p \text { in } \mathcal{P}, \tag{6.24}
\end{equation*}
$$

in \mathfrak{S}. Note that

$$
\alpha^{p, k}=\alpha_{p, k} \text { in } M_{\mathcal{P}}
$$

by (6.24) where $\alpha_{p, k}$ are in the sense of (6.2).
But, the notation $\alpha_{p, k}$ is from the definition of $M_{\mathcal{P}}$ naturally, and $\alpha^{p, k}$ are obtained from the definition (6.22) of \mathfrak{S}. So, whenever we want to distinguish the origins of them, or to focus on structures where they belong, the different notations will be used below.

Theorem 6.9. Let $\alpha^{p, j}$ be a generating operator (6.23) of the projection probability space \mathfrak{S} of (6.22) for $p \in \mathcal{P}$ and $j \in \mathbb{Z}$. Then

$$
\begin{equation*}
\varphi\left(\left(\alpha^{p, j}\right)^{n}\right)=\frac{\phi(p)}{p^{j+1}}=\frac{1}{p^{j}}-\frac{1}{p^{j+1}} \tag{6.25}
\end{equation*}
$$

for all $n \in \mathbb{N}$.
Proof. Let $\alpha^{p, j}$ be a generating operator (6.23) of \mathfrak{S} for $p \in \mathcal{P}$ and $j \in \mathbb{Z}$. Then it is a projection in \mathfrak{S}, satisfying $\left(\alpha^{p, j}\right)^{n}=\alpha^{p, j}$, for all $n \in \mathbb{N}$, by (6.24). So, it suffices to consider $\varphi\left(\alpha^{p, j}\right)$ to obtain the free-distributional data (6.25). Observe that

$$
\varphi\left(\alpha^{p, j}\right)=\left(\prod_{q \in \mathcal{P}} \varphi_{q}\right)\left(\alpha^{p, j}\right)
$$

by (6.21), (6.22), (6.23), and (6.24).
by (6.14)

$$
=\varphi_{p}\left(\alpha_{p, j}\right)=\varphi_{p, j}\left(\alpha_{p, j}\right)
$$

by (6.18).

$$
=\frac{\phi(p)}{p^{j+1}}=\frac{1}{p^{j}}-\frac{1}{p^{j+1}},
$$

Therefore, the free-distributional data (6.25) holds.
Note that, by (6.22), every operator of \mathfrak{S} is a limit of linear combinations of operators T formed by

$$
\begin{equation*}
T=\left(T^{q, k_{q}}\right)_{q \in \mathcal{P}}=\prod_{q \in \mathcal{P}} T^{q, k_{q}}, \tag{6.26}
\end{equation*}
$$

for some $k_{q} \in \mathbb{Z}$, with a unique finite subset P_{T} of \mathcal{P}, such that

$$
T^{q, k_{q}}= \begin{cases}\alpha^{q, k_{q}} & \text { if } q \in P_{T}, \tag{6.27}\\ \alpha_{B_{q}^{0}} & \text { if } q \in \mathcal{P} \backslash P_{T},\end{cases}
$$

for all $q \in \mathcal{P}$.
Notation 6.1 Let T be an element (6.26) of the projection probability space \mathfrak{S} of (6.22), satisfying (6.27). Then, by abusing notation, we write T simply by

$$
\begin{equation*}
T=\prod_{p \in P_{T}}^{\prime} \alpha^{p, k_{p}} \tag{6.28}
\end{equation*}
$$

where the set P_{T} in (6.28) is a finite subset of \mathcal{P} satisfying (6.26) and (6.27) for the operator T.

Corollary 6.10. Let $T=\underset{p \in P_{T}}{\prod^{\prime}} \alpha^{p, k_{p}} \in \mathfrak{S}$ be in the sense of Notation 6.1. Then

$$
\begin{equation*}
\varphi\left(T^{n}\right)=\prod_{p \in P_{T}} \frac{\phi(p)}{p^{k_{p}+1}}=\frac{1}{N_{T}} \phi\left(n_{T}\right) \tag{6.29}
\end{equation*}
$$

for all $n \in \mathbb{N}$, where

$$
N_{T}=\prod_{p \in P_{T}} p^{k_{p}+1} \in \mathbb{Q}, \text { and } n_{T}=\prod_{p \in P_{T}} p \in \mathbb{N} .
$$

Proof. Let $T=\prod_{p \in P_{T}}^{\prime} \alpha^{p, k_{p}} \in \mathfrak{S}$ be in the sense of (6.28). Then

$$
T^{n}=\left(\prod_{p \in P_{T}}^{\prime} \alpha^{p, k_{p}}\right)^{n}=\prod_{p \in P_{T}}^{\prime}\left(\alpha^{p, k_{p}}\right)^{n}=\prod_{p \in P_{T}}^{\prime} \alpha^{p, k_{p}}=T
$$

in \mathfrak{S} for all $n \in \mathbb{N}$. So,

$$
\begin{aligned}
\varphi\left(T^{n}\right)= & \varphi(T)=\varphi\left(\prod_{p \in P_{T}}^{\prime} \alpha^{p, k_{p}}\right) \\
& =\prod_{p \in P_{T}} \varphi_{p}\left(\alpha^{p, k_{p}}\right)=\prod_{p \in P_{T}} \varphi_{p, k_{p}}\left(\alpha_{p, k_{p}}\right) \\
& =\prod_{p \in P_{T}}\left(\frac{1}{p^{k_{p}}}-\frac{1}{p^{k_{p}+1}}\right)=\prod_{p \in P_{T}} \frac{\phi(p)}{p^{k_{p}+1}}
\end{aligned}
$$

by (6.25)

$$
=\frac{\prod_{p \in P_{T}} \phi(p)}{\prod_{p \in P_{T}} p^{k_{p}+1}}=\frac{\phi\left(\prod_{p \in P_{T}} p\right)}{\prod_{p \in P_{T}} p^{k_{p}+1}},
$$

by (3.10), for all $n \in \mathbb{N}$.

7. Semigroup C^{*}-Dynamical Systems Induced by $A_{\mathbb{Q}}$

Now, independent from the above analytic results (but to generalize those results), let us consider semigroup dynamical systems of the σ-algebra $\sigma\left(A_{\mathbb{Q}}\right)$ of the finite adele ring $A_{\mathbb{Q}}$. In this section, we regard $\sigma\left(A_{\mathbb{Q}}\right)$ as a semigroup,

$$
\begin{equation*}
\sigma\left(A_{\mathbb{Q}}\right)=\left(\sigma\left(A_{\mathbb{Q}}\right), \cap\right), \tag{7.1}
\end{equation*}
$$

where \cap is the usual intersection of sets.
Indeed, under finite intersection, $\sigma\left(A_{\mathbb{Q}}\right)$ is closed, and definitely the set-operation \cap is associative on $\sigma\left(A_{\mathbb{Q}}\right)$, and hence, the pair $\sigma\left(A_{\mathbb{Q}}\right)$ of (7.1) forms a well-defined semigroup.

Now, let (A, ψ) be an arbitrarily fixed unital C^{*}-probability space, where A is a C^{*}-algebra in the operator algebra $B(H)$ (consisting of all bounded operators on a Hilbert space H), satisfying

$$
\psi\left(1_{A}\right)=1,
$$

where 1_{A} is the unit (or the operator-multiplication-identity) in A.
Let $\mathcal{M}_{\mathcal{P}}$ be the finite-Adelic algebra (2.24) generated by $\sigma\left(A_{\mathbb{Q}}\right)$, and let $H_{\mathcal{P}}$ be the finite-Adelic Hilbert space of section 4, where the finite-Adelic C^{*}-algebra $M_{\mathcal{P}}$ induced by the finite-Adelic probability space $\left(\mathcal{M}_{\mathcal{P}}, \varphi\right)$ act.

Now, consider a new Hilbert space \mathfrak{H},

$$
\begin{equation*}
\mathfrak{H}=H \otimes H_{\mathcal{P}}, \tag{7.2}
\end{equation*}
$$

where H is the Hilbert space where a given C^{*}-algebra A acts, and $H_{\mathcal{P}}$ is the finite-Adelic Hilbert space, and let

$$
\begin{equation*}
A_{\mathcal{P}}=A \otimes_{\mathbb{C}} M_{\mathcal{P}} \tag{7.3}
\end{equation*}
$$

be the tensor product C^{*}-algebra of A and $M_{\mathcal{P}}$ acting on the Hilbert space \mathfrak{H} of (7.2).

Define now a semigroup-action π of the semigroup $\sigma\left(A_{\mathbb{Q}}\right)$ of (7.1) acting on the C^{*}-algebra $A_{\mathcal{P}}$ of (7.3) by a morphism π,

$$
S \in \sigma\left(A_{\mathbb{Q}}\right) \longmapsto \pi(S) \stackrel{\text { denote }}{=} \pi_{S} \in \operatorname{End}\left(A_{\mathcal{P}}\right),
$$

satisfying

$$
\begin{equation*}
\pi_{S}\left(a \otimes \alpha_{Y}\right)=a \otimes \alpha_{Y} \alpha_{S} \tag{7.4}
\end{equation*}
$$

for all $S, Y \in \sigma\left(A_{\mathbb{Q}}\right)$ and $a \in A$, where

$$
\operatorname{End}\left(A_{\mathcal{P}}\right)=\left\{\begin{array}{l|c}
E: A_{\mathcal{P}} \rightarrow A_{\mathcal{P}} & E \text { is a } \\
\text { *-endomorphism } \\
\text { on } A_{\mathcal{P}}
\end{array}\right\}
$$

Recall that *-endomorphisms are surjective (bounded) *-homomorphisms from a (topological) $*$-algebra onto itself.

By the definition (7.4) of the morphism π, it is not difficult to check that

$$
\begin{equation*}
\pi_{S_{1} \cap S_{2}}=\pi_{S_{1}} \pi_{S_{2}} \text { on } A_{\mathcal{P}} \tag{7.5}
\end{equation*}
$$

for all $S_{1}, S_{2} \in \sigma\left(A_{\mathbb{Q}}\right)$.

Moreover, one can check that

$$
\begin{align*}
\pi_{S}\left(\left(a \otimes \alpha_{Y}\right)^{*}\right) & =a^{*} \otimes \alpha_{Y}^{*} \alpha_{S}=a^{*} \otimes \alpha_{Y}^{*} \alpha_{S}^{*} \\
& =a^{*} \otimes\left(\alpha_{S} \alpha_{Y}\right)^{*}=a^{*} \otimes\left(\alpha_{Y} \alpha_{S}\right)^{*} \tag{7.6}\\
& =\left(a \otimes \alpha_{Y} \alpha_{S}\right)^{*}=\left(\pi_{S}\left(a \otimes \alpha_{Y}\right)\right)^{*}
\end{align*}
$$

for all $a \in A$ and $S, Y \in \sigma\left(A_{\mathbb{Q}}\right)$.
By (7.6), we have

$$
\begin{equation*}
\pi_{S}\left(T^{*}\right)=\left(\pi_{S}(T)\right)^{*}, \quad \text { for all } T \in A_{\mathcal{P}} \tag{7.7}
\end{equation*}
$$

for all $S \in \sigma\left(A_{\mathbb{Q}}\right)$.
So, indeed, the images π_{S} of our morphism π of (7.2) are well-determined $*$ endomorphisms on the C^{*}-algebra $A_{\mathcal{P}}$, for all $S \in \sigma\left(A_{\mathbb{Q}}\right)$, by (7.5) and (7.7); that is,

$$
\begin{equation*}
\pi_{S} \in \operatorname{End}\left(A_{\mathcal{P}}\right) \quad \text { for all } S \in \sigma\left(A_{\mathbb{Q}}\right) \tag{7.8}
\end{equation*}
$$

Notation 7.1 In the rest of this paper, for convenience, we denote $\pi_{S}(T)$ simply by T^{S} for all $T \in A_{\mathcal{P}}$ and for all $S \in \sigma\left(A_{\mathbb{Q}}\right)$.

Definition 7.1. Let B be an arbitrary topological $*$-algebra (C^{*}-algebra, or W^{*} algebra, or Banach $*$-algebra, etc.), and let K be a semigroup, and let

$$
\theta: K \rightarrow \operatorname{End}(B)
$$

be a morphism whose images $\theta(k) \stackrel{\text { denote }}{=} \theta_{k}$ are $*$-endomorphisms on B, for all $k \in K$, satisfying

$$
\theta_{k_{1} k_{2}}=\theta_{k_{1}} \theta_{k_{2}} \quad \text { for all } k_{1}, k_{2} \in K
$$

Then the triple (B, K, θ) is called the semigroup (topological-*-)dynamical system of K acting on B via a semigroup-action θ.

By the above definition, we obtain the following result.
Proposition 7.2. Let (A, ψ) be the fixed unital C^{*}-probability space, and let $\sigma\left(A_{\mathbb{Q}}\right)$ be the σ-algebra of the finite adele ring $A_{\mathbb{Q}}$, regarded as a semigroup (7.1). Then the triple $\left(A_{\mathcal{P}}, \sigma\left(A_{\mathbb{Q}}\right), \pi\right)$ is the well-defined semigroup C^{*}-dynamical system of the semigroup $\sigma\left(A_{\mathbb{Q}}\right)$ acting on the tensor product C^{*}-algebra $A_{\mathcal{P}}=$ $A \otimes_{\mathbb{C}} M_{\mathcal{P}}$ of (7.3) via a semigroup-action π of (7.4).
Proof. The proof is trivial by (7.4), (7.5), and (7.8).
Definition 7.3. Let $\left(A_{\mathcal{P}}, \sigma\left(A_{\mathbb{Q}}\right), \pi\right)$ be the semigroup C^{*}-dynamical system of the semigroup $\sigma\left(A_{\mathbb{Q}}\right)$ of (7.1) acting on the C^{*}-algebra $A_{\mathcal{P}}$ of (7.3) via a semigroup-action π of (7.4). Then we call it the finite-Adelic A-dynamical system.

Now, let (B, K, θ) be the semigroup C^{*}-dynamical system of a semigroup K acting on a C^{*}-algebra B via a semigroup-action θ. Then it induces a new C^{*}-algebra \mathbb{B}_{K} generated by both B and $\theta(K)$,

$$
\begin{equation*}
\mathbb{B}_{K} \stackrel{\text { denote }}{=} B \times_{\theta} K \tag{7.9}
\end{equation*}
$$

dictated by the θ-relation:

$$
\begin{equation*}
\left(b_{1}, k_{1}\right)\left(b_{2}, k_{2}\right)=\left(b_{1} \theta_{k_{1}}\left(b_{2}\right), k_{1} k_{2}\right) \text { and }(b, k)^{*}=\left(\theta_{k}\left(b^{*}\right), k\right), \tag{7.10}
\end{equation*}
$$

for all $b, b_{1}, b_{2} \in B$ and $k, k_{1}, k_{2} \in K$.
Definition 7.4. A C^{*}-algebra \mathbb{B}_{K} of (7.9) is called the crossed product C^{*} algebra of (B, K, θ), and the relations in (7.10) are called the θ-relation on \mathbb{B}_{K}.

For the finite-Adelic A-dynamical system $\left(A_{\mathcal{P}}, \sigma\left(A_{\mathbb{Q}}\right), \pi\right)$, define the corresponding crossed product C^{*}-algebra,

$$
\begin{equation*}
\mathfrak{A}_{\mathcal{P}} \stackrel{\text { denote }}{=} A_{\mathcal{P}} \times{ }_{\pi} \sigma\left(A_{\mathbb{Q}}\right), \tag{7.11}
\end{equation*}
$$

satisfying the π-relation:

$$
\begin{align*}
\left(a_{1} \otimes T_{1}, S_{1}\right)\left(a_{2} \otimes T_{2}, S_{2}\right) 7 & =\left(\left(a_{1} \otimes T_{1}\right)\left(a_{2} \otimes T_{2}\right)^{S_{1}}, S_{1} \cap S_{2}\right) \tag{7.12}\\
\text { and }(a \otimes T, S)^{*} & =\left(\left(a^{*} \otimes T^{*}\right)^{S}, S\right),
\end{align*}
$$

for all $a, a_{1}, a_{2} \in A$ and $T, T_{1}, T_{2} \in M_{\mathcal{P}}$ and $S, S_{1}, S_{2} \in \sigma\left(A_{\mathbb{Q}}\right)$, under Notation 7.1.

The definitions (7.11) and (7.12) are from (7.9) and (7.10), respectively.
Definition 7.5. Let $\left(A_{\mathcal{P}}, \sigma\left(A_{\mathbb{Q}}\right), \pi\right)$ be the finite-Adelic A-dynamical system, and let $\mathfrak{A}_{\mathcal{P}}$ be the corresponding crossed product C^{*}-algebra (7.11) with the π relation (7.12). Then we call $\mathfrak{A}_{\mathcal{P}}$, the finite-Adelic A-dynamical-(crossed-product-C^{*}-) algebra (of $\left(A_{\mathcal{P}}, \sigma\left(A_{\mathbb{Q}}\right), \pi\right)$).

By (7.4) and (7.6), the π-relation (7.12) on the finite-Adelic A-dynamical algebra $\mathfrak{A}_{\mathcal{P}}$ of (7.11) can be re-written as follows:

$$
\begin{align*}
\left(a_{1} \otimes T_{1}, S_{1}\right)\left(a_{2} \otimes T_{2}, S_{2}\right) & =\left(\left(a_{1} \otimes T_{1}\right)\left(a_{2} \otimes T_{2} \alpha_{S_{1}}\right), S_{1} \cap S_{2}\right) \\
& =\left(a_{1} a_{2} \otimes T_{1} T_{2} \alpha_{S_{1}}, S_{1} \cap S_{2}\right), \tag{7.13}\\
\text { and }(a \otimes T, S)^{*} & =\left(a^{*} \otimes T^{*} \alpha_{S}, S\right),
\end{align*}
$$

for all $a, a_{1}, a_{2} \in A$ and $T, T_{1}, T_{2} \in M_{\mathcal{P}}$ and $S, S_{1}, S_{2} \in \sigma\left(A_{\mathbb{Q}}\right)$.
Suppose that \mathbb{B}_{K} be the crossed product C^{*}-algebra (7.9) of a semigroup C^{*} dynamical system (B, K, θ), satisfying the θ-relation (7.10). Now, consider the C^{*}-algebra $\mathcal{K}=C^{*}(K)$ generated by the semigroup K,

$$
k \in K \longmapsto e_{k} \in \mathcal{K} \subset B\left(H_{K}\right),
$$

such that

$$
e_{k_{1}} e_{k_{2}}=e_{k_{1} k_{2}} \text { in } \mathcal{K}, \quad \text { for all } k_{1}, k_{2} \in K
$$

where H_{K} is a Hilbert space where \mathcal{K} acts (under a suitable representation).
Define the conditional tensor product C^{*}-algebra,

$$
\begin{equation*}
\mathbb{B}^{K}=B \otimes_{\theta} \mathcal{K} \tag{7.14}
\end{equation*}
$$

by the C^{*}-subalgebra of the usual tensor product C^{*}-algebra $B \otimes_{\mathbb{C}} \mathcal{K}$ generated by B and \mathcal{K}, satisfying the θ-condition:

$$
\begin{align*}
\left(b_{1} \otimes e_{k_{1}}\right)\left(b_{2} \otimes e_{k_{2}}\right) & =b_{1} \theta_{k_{1}}\left(b_{2}\right) \otimes e_{k_{1}} e_{k_{2}} \\
& =b_{1} \theta_{k_{1}}\left(b_{2}\right) \otimes e_{k_{1} k_{2}}, \tag{7.15}\\
\text { and }\left(b \otimes e_{k}\right)^{*} & =\theta_{k}\left(b^{*}\right) \otimes e_{k}
\end{align*}
$$

for all $b, b_{1}, b_{2} \in B$ and $k, k_{1}, k_{2} \in K$.
Proposition 7.6. Let \mathbb{B}_{K} be the crossed product C^{*}-algebra (7.9) of a semigroup C^{*}-dynamical system (B, K, θ), and let \mathbb{B}^{K} be the conditional tensor product C^{*}-algebra (7.14). Then

$$
\begin{equation*}
\mathbb{B}_{K} \stackrel{*-\text { iso }}{=} \mathbb{B}^{K} \tag{7.16}
\end{equation*}
$$

where ""-iso" in (7.16) means "being C^{*}-isomorphic."
Proof. Let \mathbb{B}_{K} and \mathbb{B}^{K} be in the sense of (7.9) and (7.14), respectively. Define a linear morphism $\Phi: \mathbb{B}_{K} \rightarrow \mathbb{B}^{K}$ by a linear transformation satisfying that

$$
\Phi((b, k))=b \otimes e_{k} \in \mathbb{B}^{K} \quad \text { for all }(b, k) \in \mathbb{B}_{K}
$$

By the above definition, the linear transformation Φ preserves the generators of \mathbb{B}_{K} to the generators of \mathbb{B}^{K}. So, it is not only bounded but also bijective.

Also, by the θ-relation (7.10) on \mathbb{B}_{K} and the θ-condition (7.15) on \mathbb{B}^{K}, one has that

$$
\begin{aligned}
\Phi\left(\left(b_{1}, k_{1}\right)\left(b_{2}, k_{2}\right)\right) & =\Phi\left(\left(b_{1} \theta_{k_{1}}\left(b_{2}\right)\right), k_{1} k_{2}\right) \\
& =b_{1} \theta_{k_{1}}\left(b_{2}\right) \otimes e_{k_{1} k_{2}}=b_{1} \theta_{k_{1}}\left(b_{2}\right) \otimes e_{k_{1}} e_{k_{2}} \\
& =\left(b_{1} \otimes e_{k_{1}}\right)\left(b_{2} \otimes e_{k_{2}}\right)
\end{aligned}
$$

in \mathbb{B}^{K} for all $\left(b_{1}, k_{1}\right),\left(b_{2}, k_{2}\right) \in \mathbb{B}_{K}$. Thus, this bounded linear transformation Φ is multiplicative.

Moreover,

$$
\begin{aligned}
\Phi\left((b, k)^{*}\right) & =\Phi\left(\left(\theta_{k}\left(b^{*}\right), k\right)\right) \\
& =\theta_{k}\left(b^{*}\right) \otimes e_{k}=\left(b \otimes e_{k}\right)^{*}
\end{aligned}
$$

in \mathbb{B}^{K}, for all $(b, k) \in \mathbb{B}_{K}$, by (7.10) and (7.15).
Thus, this multiplicative bijective bounded linear transformation Φ is a *homomorphism from \mathbb{B}_{K} onto $\mathbb{B}^{K} ;$ equivalently, it is a $*$-isomorphisms. Therefore, two C^{*}-algebras \mathbb{B}_{K} and \mathbb{B}^{K} are $*$-isomorphic.

Now, let $\mathfrak{A}_{\mathcal{P}}=A_{\mathcal{P}} \times_{\pi} \sigma\left(A_{\mathbb{Q}}\right)$ be our finite-Adelic A-dynamical algebra, and let $M_{\mathcal{P}}$ be the finite-Adelic C^{*}-algebra. Define a conditional tensor product C^{*} algebra

$$
\begin{equation*}
\mathfrak{A}_{\mathcal{P}}^{o}=A_{\mathcal{P}} \otimes_{\pi} M_{\mathcal{P}}=\left(A \otimes_{\mathbb{C}} M_{\mathcal{P}}\right) \otimes_{\pi} M_{\mathcal{P}} \tag{7.17}
\end{equation*}
$$

by the C^{*}-subalgebra of the usual tensor product C^{*}-algebra $A_{\mathcal{P}} \otimes_{\mathbb{C}} M_{\mathcal{P}}$, satisfying the π-condition:

$$
\begin{aligned}
\left(\left(a_{1} \otimes T_{1}\right) \otimes \alpha_{S_{1}}\right)\left(\left(a_{2} \otimes T_{2}\right) \otimes \alpha_{S_{2}}\right) & =\left(\left(a_{1} \otimes T_{1}\right)\left(a_{2} \otimes T_{2}\right)^{S_{1}}\right) \otimes \alpha_{S_{1} \cap S_{2}} \\
& =\left(a_{1} a_{2} \otimes T_{1} T_{2} \alpha_{S_{1}}\right) \otimes \alpha_{S_{1} \cap S_{2}}
\end{aligned}
$$

and

$$
\begin{align*}
\left((a \otimes T) \otimes \alpha_{S}\right)^{*} & =\left(a^{*} \otimes T^{*}\right)^{S} \otimes \alpha_{S} \tag{7.18}\\
& =\left(a^{*} \otimes T^{*} \alpha_{S}\right) \otimes \alpha_{S}
\end{align*}
$$

for all $a_{1}, a_{2}, a \in A$ and $T_{1}, T_{2}, T \in M_{\mathcal{P}}$ and $S_{1}, S_{2}, S \in \sigma\left(A_{\mathbb{Q}}\right)$.
Corollary 7.7. Let $\mathfrak{A}_{\mathcal{P}}$ be the finite-Adelic A-dynamical algebra, and let $\mathfrak{A}_{\mathcal{P}}^{o}$ be the conditional tensor product C^{*}-algebra (7.17) satisfying the π-condition (7.18). Then

$$
\begin{equation*}
\mathfrak{A}_{\mathcal{P}} \stackrel{* \text { iso }}{=} \mathfrak{A}_{\mathcal{P}}^{o} \tag{7.19}
\end{equation*}
$$

Proof. The isomorphism theorem (7.19) is a special case of (7.16).

Assumption and Notation 7.2 (in short, AN 7.2 from below) By the above isomorphism theorem (7.19), in the following text, we use $\mathfrak{A}_{\mathcal{P}}$ and $\mathfrak{A}_{\mathcal{P}}^{o}$ alternatively, case-by-case. Also, we use the notation $\mathfrak{A}_{\mathcal{P}}$ for both $\mathfrak{A}_{\mathcal{P}}$ and $\mathfrak{A}_{\mathcal{P}}^{o}$, and we call them, the finite-Adelic A-dynamical algebra. Also, we use π-relation of (7.12) (or (7.13)) and the π-condition (7.18) alternatively, under the identified term, the π-relation.

Let $\mathfrak{A}_{\mathcal{P}}$ be the finite-Adelic A-dynamical algebra. Then, by (7.19), one can understand it as a C^{*}-subalgebra of the usual tensor product C^{*}-algebra $A_{\mathcal{P}} \otimes_{\mathbb{C}}$ $M_{\mathcal{P}}$; more precisely, it is a C^{*}-subalgebra of

$$
\left(A \otimes_{\mathbb{C}} M_{\mathcal{P}}\right) \otimes_{\mathbb{C}} M_{\mathcal{P}}
$$

by (7.3) and (7.17).
Define now a $*$-endomorphism

$$
\Psi: A \otimes_{\mathbb{C}} M_{\mathcal{P}} \otimes_{\mathbb{C}} M_{\mathcal{P}} \rightarrow A \otimes_{\mathbb{C}} M_{\mathcal{P}}=A_{\mathcal{P}}
$$

by a multiplicative surjective bounded linear transformation satisfying

$$
\begin{equation*}
\Psi\left(a \otimes T_{1} \otimes T_{2}\right)=a \otimes T_{1} T_{2} \tag{7.20}
\end{equation*}
$$

for all $a \in A$ and $T_{1}, T_{2} \in M_{\mathcal{P}}$.
Then, by the commutativity on $M_{\mathcal{P}}$, this morphism Ψ of (7.20) is indeed a well-defined $*$-endomorphism. Since our finite-Adelic A-dynamical algebra $\mathfrak{A}_{\mathcal{P}}$ is a C^{*}-subalgebra,

$$
\left(A \otimes_{\mathbb{C}} M_{\mathcal{P}}\right) \otimes_{\pi} M_{\mathcal{P}} \text { in } A_{\mathcal{P}} \otimes_{\mathbb{C}} M_{\mathcal{P}}
$$

the $*$-endomorphism Ψ is naturally inherited to

$$
\begin{equation*}
\Psi=\left.\Psi\right|_{\mathfrak{A}_{\mathcal{P}}}: \mathfrak{A}_{\mathcal{P}} \rightarrow A_{\mathcal{P}} \tag{7.21}
\end{equation*}
$$

under π-relation.
Now, since a C^{*}-algebra A is from our fixed unital C^{*}-probability space (A, ψ) and the finite-Adelic C^{*}-algebra $M_{\mathcal{P}}$ have a system of linear functionals $\left\{\varphi_{p, j}\right\}_{p \in \mathcal{P}, j \in \mathbb{Z}}$ of (5.1), one can determine linear functionals $\left\{\psi_{p, j}\right\}_{p \in \mathcal{P}, j \in \mathbb{Z}}$ on the C^{*}-algebra $A_{\mathcal{P}}=A \otimes_{\mathbb{C}} M_{\mathcal{P}}$ by linear morphisms satisfying that

$$
\begin{equation*}
\psi_{p, j}(a \otimes T)=\varphi_{p, j}(\psi(a) T)=\varphi_{p, j}(T) \psi(a) \tag{7.22}
\end{equation*}
$$

for all $a \in A$ and $T \in M_{\mathcal{P}}$, for all $p \in \mathcal{P}$ and $j \in \mathbb{Z}$.
Let $\mathfrak{A}_{\mathcal{P}}$ be the finite-Adelic A-dynamical algebra. Define linear functionals $\varphi_{p, j}^{A}$ on $\mathfrak{A}_{\mathcal{P}}$ by the linear morphisms,

$$
\begin{equation*}
\varphi_{p, j}^{A} \stackrel{\text { def }}{=} \psi_{p, j} \circ \Psi \text { on } \mathfrak{A}_{\mathcal{P}}, \tag{7.23}
\end{equation*}
$$

for all $p \in \mathcal{P}, j \in \mathbb{Z}$, where $\psi_{p, j}$ are in sense of (7.22), and Ψ is in the sense of (7.21). By the linearity of $\psi_{p, j}$'s and Ψ, the morphisms $\varphi_{p, j}^{A}$ of (7.23) are indeed well-defined linear functionals on $\mathfrak{A}_{\mathcal{p}}$.

Note that, by the definition (7.23), one can get that

$$
\begin{align*}
\varphi_{p, j}^{A}\left(\left(a \otimes \alpha_{Y}\right) \otimes \alpha_{S}\right) & =\psi_{p, j}\left(a \otimes \alpha_{Y \cap S}\right) \tag{7.24}\\
& =\varphi_{p, j}\left(\alpha_{Y \cap S}\right) \psi(a)
\end{align*}
$$

for all $a \in A$ and $Y, S \in \sigma\left(A_{\mathbb{Q}}\right)$.
Definition 7.8. Let $\left(\mathfrak{A}_{\mathcal{P}}, \varphi_{p, j}^{A}\right)$ be the (traditional) C^{*}-probability spaces of the finite-Adelic A-dynamical C^{*}-algebra $\mathfrak{A}_{\mathcal{P}}$ and the linear functionals $\varphi_{p, j}^{A}$ of (7.23) for all $p \in \mathcal{P}$ and $j \in \mathbb{Z}$. Then they are said to be the A-dynamical (p, j)-(finite-Adelic-) C^{*}-probability spaces over $M_{\mathcal{P}}$ for all $p \in \mathcal{P}$ and $j \in \mathbb{Z}$.

As we have seen in sections 5 and 6 , one can construct free-probabilistic substructures of the A-dynamical (p, j) - C^{*}-probability spaces $\left(\mathfrak{A}_{\mathcal{P}}, \varphi_{p, j}^{A}\right)$, because of the structure theorem (7.19).

Let $\mathfrak{S}_{A, p}$ be C^{*}-subalgebras of $\mathfrak{A}_{\mathcal{P}}$ defined by

$$
\begin{equation*}
\mathfrak{S}_{A, p}=A \otimes_{\pi} \mathfrak{S}_{p}, \quad \text { for all } p \in \mathcal{P} \tag{7.25}
\end{equation*}
$$

where \otimes_{π} is the conditional tensor product in the sense of (7.25) satisfying the π-relation (7.18), where \mathfrak{S}_{p} is the p-adic projection subalgebra (6.9) of the finite-Adelic C^{*}-algebra $M_{\mathcal{P}}$. Note that the above sub-structures (7.25) of $\mathfrak{A}_{\mathcal{P}}$ are well-determined by (7.19).

By understanding \mathfrak{S}_{p} as the p-projection probability spaces $\mathfrak{S}(p)$ of (6.17), one can construct new C^{*}-probability spaces,

$$
\begin{equation*}
\mathfrak{S}_{A, p} \stackrel{\text { denote }}{=}\left(\mathfrak{S}_{A, p}, \varphi_{A, p}\right), \quad \text { for all } p \in \mathcal{P} \tag{7.26}
\end{equation*}
$$

where $\varphi_{A, p}$ are the linear functionals satisfying that

$$
\begin{align*}
\varphi_{A, p}\left((a \otimes T) \otimes \alpha_{S}\right) & =\varphi_{A, p}\left(a \otimes T \alpha_{S}\right) \tag{7.27}\\
& =\varphi_{p}\left(T \alpha_{S}\right) \psi(a)
\end{align*}
$$

for all $S \in \sigma\left(A_{\mathbb{Q}}\right)$ and $a \in(A, \psi)$, where φ_{p} are the linear functionals (6.14) on \mathfrak{S}_{p}, for all $p \in \mathcal{P}$.

These linear functionals $\varphi_{A, p}$ of (7.27) are well-determined in $\mathfrak{S}_{A, p}$ of (7.25) because of the well-definedness of the linear functionals φ_{p} of (6.14), by (7.24).

Remark that the projection probability space \mathfrak{S} of (6.19) is constructed by

$$
\mathfrak{S}=(\mathfrak{S}, \varphi)=\prod_{p \in \mathcal{P}}^{\prime} \mathfrak{S}(p)
$$

Hence, motivated by (6.19) and (7.26), one can construct a new C^{*}-probability space,

$$
\begin{equation*}
\mathfrak{S}_{A}=A_{\mathcal{P}} \otimes_{\pi} \mathfrak{S} \subset A_{\mathcal{P}} \otimes_{\pi} M_{\mathcal{P}} \tag{7.28}
\end{equation*}
$$

equipped with the linear functional φ_{A} defined by the linear morphism satisfying that

$$
\begin{equation*}
\varphi_{A}\left(\left(a \otimes T_{1}\right) \otimes T_{2}\right)=\varphi\left(T_{1} T_{2}\right) \psi(a) \tag{7.29}
\end{equation*}
$$

as in (7.27), for all $a \in(A, \psi)$ and $T_{1} \in M_{\mathcal{P}}$ and $T_{2} \in \mathfrak{S}=\prod_{p \in \mathcal{P}}^{\prime} \mathfrak{S}_{p}$, where φ is in the sense of (6.19).
Definition 7.9. Let $\mathfrak{S}_{A}=\left(\mathfrak{S}_{A}, \varphi_{A}\right)$ be the C^{*}-probability space (7.28). We call it the A-dynamical-projection $\left(C^{*}\right.$-) probability space. We call the C^{*}-algebra \mathfrak{S}_{A}, the A-dynamical-projection C^{*}-algebra.

Let \mathfrak{S}_{A} be the A-dynamical-projection probability space (7.28). If

$$
\begin{equation*}
T_{a}^{p, k}=\left(a \otimes \alpha^{p, k}\right) \otimes \alpha^{p, k} \in \mathfrak{S}_{A}, \tag{7.30}
\end{equation*}
$$

then

$$
\begin{aligned}
\left(T_{a}^{p, k}\right)^{n} & =\left(\left(a \otimes \alpha^{p, k}\right) \otimes \alpha^{p, k}\right) \cdots\left(\left(a \otimes \alpha^{p, k}\right) \otimes \alpha^{p, k}\right) \\
& =\binom{\overbrace{B_{p}^{k} \cap \cdots \cap B_{p}^{k}}^{(n-1)-\text { times }}}{a_{p, k} a_{p, k}^{B_{p}^{k}} a_{p, k}^{B_{p}^{k} \cap B_{p}^{k}} \ldots a_{p, k}} \otimes\left(\alpha^{p, k}\right)^{n} ;
\end{aligned}
$$

by (7.28) and by the induction on (7.18), where B_{p}^{k} are in the sense of (6.1) and

$$
a_{p, k} \stackrel{\text { denote }}{=} a \otimes \alpha^{p, k} \text { in } A_{\mathcal{P}}
$$

then it goes to

$$
=\left(a_{p, k} a_{p, k}^{B_{p}^{k}} a_{p, k}^{B_{p}^{k}} \ldots a_{p, k}^{B_{p}^{k}}\right) \otimes \alpha^{p, k}
$$

because $B_{p}^{k} \cap \ldots \cap B_{p}^{k}=B_{p}^{k}$ in $\sigma\left(A_{\mathbb{Q}}\right)$, for all $p \in \mathcal{P}$ and $k \in \mathbb{Z}$, by (6.23)

$$
\begin{equation*}
=a_{p, k}\left(a_{p, k}^{B_{p}^{k}}\right)^{n-1} \otimes \alpha^{p, k} \tag{7.31}
\end{equation*}
$$

with axiomatization

$$
\left(a_{p, k}^{B_{p}^{k}}\right)^{0}=1_{A} \otimes \alpha^{p, k} \quad \text { for all } n \in \mathbb{N} .
$$

But, in this case where $T_{a}^{p, k}$ is in the sense of (7.30), one can verify that

$$
\left(T_{a}^{p, k}\right)^{n}=a_{p, k}\left(a_{p, k}^{B_{p}^{k}}\right)^{n-1} \otimes \alpha^{p, k}
$$

$$
\begin{equation*}
=\left(\left(a \otimes \alpha^{p, k}\right)\left(a \otimes \alpha^{p, k} \alpha^{p, k}\right)^{n-1}\right) \otimes \alpha^{p, k} \tag{7.31}
\end{equation*}
$$

by (7.24), (7.27), and (7.29)

$$
\begin{aligned}
& =\left(\left(a \otimes \alpha^{p, k}\right)\left(a \otimes \alpha^{p, k}\right)^{n-1}\right) \otimes \alpha^{p, k} \\
& =\left(a \otimes \alpha^{p, k}\right)^{n} \otimes \alpha^{p, k} \\
& =\left(a^{n} \otimes \alpha^{p, k}\right) \otimes \alpha^{p, k} ;
\end{aligned}
$$

that is,

$$
\begin{equation*}
\left(T_{a}^{p, k}\right)^{n}=\left(a^{n} \otimes \alpha^{p, k}\right) \otimes \alpha^{p, k}=T_{a^{n}}^{p, k}, \tag{7.32}
\end{equation*}
$$

in the sense of (7.30).
Thus, one can have that

$$
\varphi_{A}\left(\left(T_{a}^{p, k}\right)^{n}\right)=\varphi\left(\alpha^{p, k} \alpha^{p, k}\right) \psi\left(a^{n}\right)
$$

by (7.27), (7.28), and (7.32)

$$
\begin{gather*}
=\varphi_{p}\left(\alpha_{p, k}\right) \psi\left(a^{n}\right)=\left(\frac{\phi(p)}{p^{k+1}}\right) \psi\left(a^{n}\right) \\
=\left(\frac{1}{p^{k}}-\frac{1}{p^{k+1}}\right) \psi\left(a^{n}\right) \tag{7.33}
\end{gather*}
$$

for all $n \in \mathbb{N}$.
Proposition 7.10. Let $T_{a}^{p, j}=\left(a \otimes \alpha^{p, j}\right) \otimes \alpha^{p, j}$ be a free random variable (7.30) in the A-dynamical-projection probability space \mathfrak{S}_{A} of (7.28). Then

$$
\begin{align*}
\varphi_{A}\left(\left(T_{a}^{p, j}\right)^{n}\right) & =\frac{\phi(p)}{p^{j+1}} \psi\left(a^{n}\right) \\
& =\left(\frac{1}{p^{j}}-\frac{1}{p^{j+1}}\right) \psi\left(a^{n}\right) \tag{7.34}
\end{align*}
$$

for all $n \in \mathbb{N}$.
Proof. The free-distributional data (7.34) is obtained by (7.33).
More general to (7.30), let

$$
\begin{equation*}
T_{a, q, l}^{p, k}=\left(a \otimes \alpha^{q, l}\right) \otimes \alpha^{p, k} \in \mathfrak{S}_{A}, \tag{7.35}
\end{equation*}
$$

for $a \in(A, \psi), p, q \in \mathcal{P}$ and $k, l \in \mathbb{Z}$.
Assumption In the rest of the paper, whenever operators $T_{a, q, l}^{p, k}$ of (7.35) are considered in \mathfrak{S}_{A}, we automatically assume that

$$
a \neq 0_{A} \text { and that } \psi(a) \neq 0 \text { in } \mathbb{C},
$$

where 0_{A} is the zero element of (A, ψ). Remark that the operators $T_{a}^{p, k}$ of (7.30) are regarded as $T_{a, p, k}^{p, k}$ of (7.35) in \mathfrak{S}_{A}, and hence, the above conditions will be automatically assumed for $T_{a}^{p, k}$, from below.

Then, similar to (7.33) and (7.34), one can get the following free-distributional data.

Theorem 7.11. Let $T_{a, q, l}^{p, j}$ be a free random variable (7.35) of the A-dynamicalprojection probability space \mathfrak{S}_{A}. Then

$$
\varphi_{A}\left(\left(T_{a, q, l}^{p, j}\right)^{n}\right)= \begin{cases}\psi\left(a^{n}\right)\left(\frac{1}{p^{j}}-\frac{1}{p^{j+1}}\right) & \text { if }(p, j)=(q, l) \tag{7.36}\\ \psi\left(a^{n}\right)\left(\frac{1}{p^{j}}-\frac{1}{p^{j+1}}\right)\left(\frac{1}{q^{l}}-\frac{1}{q^{l+1}}\right) & \text { if }(p, j) \neq(q, l)\end{cases}
$$

for all $n \in \mathbb{N}$.
Proof. Suppose that $(p, j)=(q, l)$ in $\mathcal{P} \times \mathbb{Z}$. Then the operator $T_{a, p, j}^{p, j}$ of (7.35) is identical to the operator $T_{a}^{p, j}$ of (7.30). Therefore, the first formula in (7.36) holds.

Assume now that $(p, j) \neq(q, l)$ in $\mathcal{P} \times \mathbb{Z}$. Then, one can get the second formula of (7.36) by (6.13), (6.18), (6.25), (6.29), (7.27), and (7.28).

Therefore, the free-distributional data (7.36) on the A-dynamical-projection probability space \mathfrak{S}_{A}.

8. On the A-Dynamical-Projection Probability $\operatorname{Space}\left(\mathfrak{S}_{A}, \varphi_{A}\right)$

In this section, we use same concepts and notations from previous sections.
Let $\mathfrak{S}_{A}=\left(\mathfrak{S}_{A}, \varphi_{A}\right)$ be the A-dynamical-projection probability space (7.28), and let

$$
\begin{equation*}
T_{a, q, l}^{p, j}=\left(a \otimes \alpha^{q, l}\right) \otimes \alpha^{p, j} \operatorname{and} T_{a}^{p, j}=T_{a, p, j}^{p, j} \tag{8.1}
\end{equation*}
$$

respectively, be the simplest generating operators (7.35) and (7.30) of the A -dynamical-projection C^{*}-algebra \mathfrak{S}_{A} for all $a \in(A, \psi), p, q \in \mathcal{P}$, and $j, l \in$ \mathbb{Z}.

Recall that, if $T_{a, q, l}^{p, j}$ is in the sense of (8.1) in \mathfrak{S}_{A}, then

$$
\begin{align*}
\left(T_{a, q, l}^{p, j}\right)^{n} & =\left(a^{n} \otimes \alpha^{q, l} \alpha^{p, j}\right) \otimes \alpha^{p, j}, \text { in } \mathfrak{S}_{A}, \\
\text { and } \varphi_{A}\left(\left(T_{a, q, l}^{p, j}\right)^{n}\right) & =\left(\frac{\phi(p q)}{p^{j+1} q^{l+1}}\right) \psi\left(a^{n}\right), \tag{8.2}
\end{align*}
$$

for all $n \in \mathbb{N}$, by (7.36).
As special cases of (8.2),

$$
\begin{align*}
\left(T_{a}^{p, j}\right)^{n} & =\left(a^{n} \otimes \alpha^{p, j} \alpha^{p, j}\right) \otimes \alpha^{p, j}=T_{a^{n}}^{p, j}, \text { in } \mathfrak{S}_{A}, \\
\text { and } \varphi_{A}\left(\left(T_{a}^{p, j}\right)^{n}\right) & =\left(\frac{\phi(p)}{p^{j+1}}\right) \psi\left(a^{n}\right), \tag{8.3}
\end{align*}
$$

for all $n \in \mathbb{N}$, by (7.34).
Now, we focus on the A-dynamical-projection C^{*}-algebra \mathfrak{S}_{A}. Define linear morphisms c_{A} and a_{A} acting on \mathfrak{S}_{A} by the bounded linear transformations satisfying

$$
\begin{equation*}
c_{A}\left(T_{a, q, l}^{p, j}\right)=T_{a, q, l}^{p, j+1} \text { and } a_{A}\left(T_{a, q, l}^{p, j}\right)=T_{a, q, l}^{p, j-1}, \tag{8.4}
\end{equation*}
$$

in \mathfrak{S}_{A}, for all $a \in(A, \psi), p, q \in \mathcal{P}$, and $j, l \in \mathbb{Z}$, where $T_{a, q, l}^{p, j}$ are generating operators (8.1) of \mathfrak{S}_{A}.

Thus, by (8.4), one has

$$
\begin{equation*}
c_{A}\left(T_{a}^{p, j}\right)=T_{a}^{p, j+1} \text { and } a_{A}\left(T_{a}^{p, j}\right)=T_{a}^{p, j-1} \tag{8.5}
\end{equation*}
$$

in \mathfrak{S}_{A}, where $T_{a}^{p, j}=T_{a, p, j}^{p, j}$ are in the sense of (8.1).
By definition, one can understand the linear transformations c_{A} and a_{A} of (8.4) as elements of the operator space $B\left(\mathfrak{S}_{A}\right)$ (in the sense of [12]), consisting of all bounded linear transformations "on \mathfrak{S}_{A}." That is, by regarding our A-dynamicalprojection algebra \mathfrak{S}_{A} as a Banach space, the morphisms c_{A} and a_{A} of (8.4) are well-determined Banach-space operators on \mathfrak{S}_{A}.

Definition 8.1. Let c_{A} and a_{A} be in the sense of (8.4) in the operator space $B\left(\mathfrak{S}_{A}\right)$. Then we call c_{A} and a_{A}, the A-dynamical (Adelic-)creation and the A dynamical (Adelic-)annihilation on the A-dynamical-projection C^{*}-algebra \mathfrak{S}_{A}, respectively. Define a new element $l_{A} \in B\left(\mathfrak{S}_{A}\right)$ by

$$
\begin{equation*}
l_{A}=c_{A}+a_{A} . \tag{8.6}
\end{equation*}
$$

Then we call l_{A}, the A-dynamical (Adelic-)radial operator on \mathfrak{S}_{A}.
For any generating operator $T_{a, q, l}^{p, j} \in \mathfrak{S}_{A}$ of (8.1), one obtains that

$$
\begin{align*}
c_{A} a_{A}\left(T_{a, q, l}^{p, j}\right) & =c_{A}\left(T_{a, q, l}^{p, j-1}\right)=T_{a, q, l}^{p, j} \tag{8.7}\\
\text { and } a_{A} c_{A}\left(T_{a, q, l}^{p, j}\right) & =a_{A}\left(T_{a, q, l}^{p, j+1}\right)=T_{a, q, l}^{p, l},
\end{align*}
$$

and hence,

$$
\begin{equation*}
c_{A} a_{A}=1_{\mathfrak{S}_{A}}=a_{A} c_{A} \text { on } \mathfrak{S}_{A}, \tag{8.8}
\end{equation*}
$$

by (8.7), where $1_{\mathfrak{S}_{A}} \in B\left(\mathfrak{S}_{A}\right)$ is the identity operator,

$$
1_{\mathfrak{S}_{A}}(T)=T \quad \text { for all } T \in \mathfrak{S}_{A} .
$$

By the relation (8.8), the following result is obtained.
Lemma 8.2. Let c_{A} and a_{A}, respectively, be the A-dynamical creation and the A-dynamical annihilation (8.4) on \mathfrak{S}_{A}. Then

$$
\begin{equation*}
c_{A}^{n_{1}} a_{A}^{n_{2}}=a_{A}^{n_{2}} c_{A}^{n_{1}} \text { on } \mathfrak{S}_{A}, \tag{8.9}
\end{equation*}
$$

for all $n_{1}, n_{2} \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, with axiomatization

$$
c_{A}^{0}=1_{\mathfrak{S}_{A}}=a_{A}^{0} \text { on } \mathfrak{S}_{A} .
$$

Proof. The equality (8.9) holds for all $n_{1}, n_{2} \in \mathbb{N}$, by induction on (8.8). Moreover, under the above axiomatization, the relation (8.9) holds for all $n_{1}, n_{2} \in \mathbb{N}_{0}$, too.

Let l_{A} be the A-dynamical radial operator (8.6) on \mathfrak{S}_{A}. Then, by (8.9), one has that

$$
\begin{equation*}
l_{A}^{n}=\sum_{k=0}^{n}\binom{n}{k} c_{A}^{k} a_{A}^{n-k} \text { on } \mathfrak{S}_{A}, \quad \text { for all } n \in \mathbb{N} \tag{8.10}
\end{equation*}
$$

where

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} \quad \text { for all } k \leq n \in \mathbb{N}_{0}
$$

Define now a cyclic Banach algebra \mathfrak{L}_{A} by

$$
\begin{equation*}
\mathfrak{L}_{A}=\overline{\mathbb{C}\left[\left\{l_{A}\right\}\right]} \text { in } B\left(\mathfrak{S}_{A}\right) \tag{8.11}
\end{equation*}
$$

where \bar{Y} means the operator-norm-topology closures of subsets Y of the operator space $B\left(\mathfrak{S}_{A}\right)$, where the operator-norm $\|$.$\| on B\left(\mathfrak{S}_{A}\right)$ is defined to be

$$
\|T\|=\sup \left\{\begin{array}{l|l}
\|T x\|_{\mathfrak{S}_{A}} & \begin{array}{c}
x \in \mathfrak{S}_{A}, \text { where } \\
\|x\|_{\mathfrak{S}_{A}}=1
\end{array}
\end{array}\right\}
$$

where $\|\cdot\|_{\mathfrak{S}_{A}}$ is the C^{*}-norm on \mathfrak{S}_{A} (e.g., [13]).
From the construction (8.11), it is a well-defined Banach "algebra," embedded in the Banach space $B\left(\mathfrak{S}_{A}\right)$. Moreover, by the cyclicity of \mathfrak{L}_{A}, one can define the adjoint $(*)$ on it by

$$
\left(\sum_{k=0}^{n} t_{k} l_{A}^{n_{k}}\right)^{*}=\sum_{k=0}^{n} \overline{t_{k}} l_{A}^{n_{k}},
$$

where $t_{k} \in \mathbb{C}$ with their conjugates $\overline{t_{k}}$ in \mathbb{C}. Then it is a well-defined adjoint on \mathfrak{L}_{A} (i.e., all elements are adjointable under $(*)$ in $B\left(\mathfrak{S}_{A}\right)$, in the sense of [12]), and hence, \mathfrak{L}_{A} forms a Banach $*$-algebra. We call the Banach $*$-algebra \mathfrak{L}_{A} of (8.11), the A-dynamical radial (Banach-*-) algebra.

Now, define the tensor product Banach *-algebra $\mathfrak{L S}_{A}$ by

$$
\begin{align*}
\mathfrak{L S}_{A} & \stackrel{\text { def }}{=} \mathfrak{L}_{A} \otimes_{\mathbb{C}} \mathfrak{S}_{A} \tag{8.12}\\
& =\mathfrak{L}_{A} \otimes_{\mathbb{C}}\left(\left(A \otimes_{\mathbb{C}} M_{\mathcal{P}}\right) \otimes_{\pi} \mathfrak{S}\right)
\end{align*}
$$

where the first tensor product $\otimes_{\mathbb{C}}$ in the second equality of (8.12) means the (usual) tensor product of Banach *-algebras, and the second tensor product $\otimes_{\mathbb{C}}$ is the tensor product of C^{*}-algebras, where \otimes_{π} is the conditional tensor product under the π-relation.

Definition 8.3. Let $\mathfrak{L S}_{A}$ be the tensor product Banach *-algebra (8.12) of the A-dynamical radial algebra \mathfrak{L}_{A} of (8.11) and the A-dynamical projection algebra \mathfrak{S}_{A}. We call it the A-dynamical radial-projection (Banach-*-)algebra.

9. On the A-Dynamical Radial-Projection Algebra $\mathfrak{L S}_{A}$

Let $\mathfrak{L S}_{A}=\mathfrak{L}_{A} \otimes_{\mathbb{C}} \mathfrak{S}_{A}$ be the A-dynamical radial-projection algebra (8.12), where (A, ψ) is a fixed unital C^{*}-probability space and \mathfrak{S}_{A} is the A-dynamical projection algebra (7.30) induced by our finite-Adelic C^{*}-algebra $M_{\mathcal{P}}$, and where \mathfrak{L}_{A} is in the sense of (8.11).

Define a linear morphism $E_{A}: \mathfrak{L S}_{A} \rightarrow \mathfrak{S}_{A}$ by a surjective bounded linear transformation satisfying that

$$
\begin{align*}
& E_{A}\left(l_{A}^{n} l \otimes\right.\left(\begin{array}{ll}
\left.\left.\prod_{p \in P, q \in Q}^{\prime} T_{a, q, k_{q}}^{p, k_{p}}\right)\right) \\
& \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
\frac{\left(\prod_{p \in P}\left(p^{k_{p}+1}\right)^{n+1}\right)\left(\prod_{q \in Q^{k}}{ }^{k_{q}+1}\right)^{n+1}}{\left(\prod_{p \in P} \phi(p)\right)\left({ }_{q \in P} \phi(q)\right)\left(\left[\frac{n}{2}\right]+1\right)} l_{A}^{n}\left(T_{a, q, k_{q}}^{p, k_{p}}\right) & \text { if }\left(p, k_{p}\right) \neq\left(q, k_{q}\right), \\
\prod_{p \in P}\left(p^{k_{p}+1}\right)^{n+1} \\
\left(\prod_{p \in P}^{\Pi} \phi(p)\right)\left(\left[\frac{n}{2}\right]+1\right)
\end{array} l_{A}^{n}\left(T_{a}^{p, k_{p}}\right)\right.
\end{array}\right. \\
& \text { if }\left(p, k_{p}\right)=\left(q, k_{q}\right), \tag{9.1}
\end{align*}
$$

for all generating operators $l_{A} \otimes\left(T_{a, q, k_{q}}^{p, k_{p}}\right)$, satisfying that

$$
\begin{align*}
\quad\left(l_{A} \otimes\left(T_{a, q, k_{q}}^{p, k_{p}}\right)\right)^{n} & =l_{A}^{n} \otimes\left(\left(a^{n} \otimes \alpha^{q, k_{q}} \alpha^{p, k_{p}}\right) \otimes \alpha^{p, k_{p}}\right) \tag{9.2}\\
\text { and }\left(l_{A} \otimes\left(T_{a}^{p, k_{p}}\right)\right)^{n} & =l_{A}^{n} \otimes\left(T_{a^{n}}^{p, k_{p}}\right),
\end{align*}
$$

for all $n \in \mathbb{N}_{0}, a \in(A, \psi)$, and for all finite subsets P and Q of \mathcal{P}, for $k_{r} \in \mathbb{Z}$ and $r \in P$, where $\left[\frac{n}{2}\right]$ mean the minimal integers greater than or equal to $\frac{n}{2}$ for all $n \in \mathbb{N}$; for instance,

$$
\left[\frac{3}{2}\right]=2=\left[\frac{4}{2}\right] .
$$

Recall that the tensor factors $T_{a, q, k_{q}}^{p, k_{p}}$ and $T_{a}^{p, k_{p}}=T_{a, p, k_{p}}^{p, k_{p}}$ in (9.2) are the generating operators (8.1) of \mathfrak{S}_{A}.

This morphism E_{A} of (9.1) is indeed a well-defined bounded linear transformation from $\mathfrak{L} \mathfrak{S}_{A}$ "onto" \mathfrak{S}_{A} because of (8.11), (8.12), (7.30), and (6.20).

Now, on $\mathfrak{L G _ { A }}$, define linear functionals $\tau_{p, j}^{A}$ by the bounded linear morphism satisfying

$$
\begin{equation*}
\tau_{p, j}^{A}=\varphi_{p, j}^{A} \circ E_{A} \text { on } \mathfrak{L} \mathfrak{S}_{A}, \tag{9.3}
\end{equation*}
$$

where $\varphi_{p, j}^{A}$ are in the sense of (7.23) satisfying (7.27) for all $p \in \mathcal{P}$ and $j \in$ \mathbb{Z}. Note that, by the well-definedness of the linear functional φ_{A} of (7.29), these linear functionals (9.3) are well-defined.

Definition 9.1. The well-defined Banach *-probability spaces

$$
\begin{equation*}
\mathfrak{L} \mathfrak{S}_{A}(p, j) \stackrel{\text { denote }}{=}\left(\mathfrak{L S}_{A}, \tau_{p, j}^{A}\right) \tag{9.4}
\end{equation*}
$$

are called the A-dynamical (radial-projection-) (p, j)-filterization of the finiteAdelic C^{*}-algebra $M_{\mathcal{P}}$ for all $p \in \mathcal{P}$ and $j \in \mathbb{Z}$.

Let $\mathfrak{L} \mathfrak{S}_{A}(p, j)$ be the A-dynamical (p, j)-filterization (9.4) of $M_{\mathcal{P}}$. Then one can get the following free-distributional data.
Theorem 9.2. Let $\mathfrak{L} \mathfrak{S}_{A}(p, j)=\left(\mathfrak{L S}_{A}, \tau_{p, j}^{A}\right)$ be the A-dynamical (p, j)-filterization of the finite-Adelic C^{*}-algebra $M_{\mathcal{P}}$ for $p \in \mathcal{P}$ and $j \in \mathbb{Z}$. Let $a \in(A, \psi)$, and let

$$
\begin{equation*}
U_{a}^{p, j}=l_{A} \otimes\left(T_{a}^{p, j}\right) \in \mathfrak{L S}_{A}(p, j) \tag{9.5}
\end{equation*}
$$

where $T_{a}^{p, j}=T_{a, p, j}^{p, j} \in \mathfrak{S}_{A}$ is in the sense of (8.1). Then

$$
\begin{align*}
\tau_{p, j}^{A}\left(\left(T_{a}^{p, j}\right)^{n}\right) & =\left(\omega_{n}\left(p^{2(j+1)}\right)^{\frac{n}{2}} c_{\frac{n}{2}}\right)\left(\psi\left(a^{n}\right)\right), \\
\text { where } \omega_{n} & = \begin{cases}1 & \text { if } n \text { is even }, \\
0 & \text { if } n \text { is odd, }\end{cases} \tag{9.6}
\end{align*}
$$

for all $n \in \mathbb{N}$, and where

$$
c_{m}=\frac{1}{m+1}\binom{2 m}{m}=\frac{(2 m)!}{m!(m+1)!}
$$

are the m-th Catalan numbers for all $m \in \mathbb{N}_{0}$.
Proof. Let $U_{a}^{p, j}$ be in the sense of (9.5) in the A-dynamical (p, j)-filterization $\mathfrak{L} \mathfrak{S}_{A}(p, j)$, for $p \in \mathcal{P}$ and $j \in \mathbb{Z}$. Then

$$
\begin{equation*}
\left(U_{a}^{p, j}\right)^{n}=\left(l_{A} \otimes\left(T_{a}^{p, j}\right)\right)^{n}=l_{A}^{n} \otimes\left(T_{a^{n}}^{p, j}\right), \tag{9.7}
\end{equation*}
$$

by (9.2) with identity $a^{0}=1_{A}$ (for all $p \in \mathcal{P}$ and $j \in \mathbb{Z}$).
So, one can get that:
by (9.7)

$$
\tau_{p, j}^{A}\left(\left(U_{a}^{p, j}\right)^{n}\right)=\tau_{p, j}^{A}\left(l_{A}^{n} \otimes\left(T_{a^{n}}^{p, j}\right)\right)
$$

$$
\begin{align*}
& =\varphi_{p, j}^{A}\left(E_{A}\left(l_{A}^{n} \otimes T_{a^{n}}^{p, j}\right)\right) \\
& =\left(\varphi_{p, j}^{A}\right)\left(\frac{\left(p^{j+1}\right)^{n+1}}{\left[\frac{n}{2}\right]+1} l_{A}^{n}\left(T_{a^{n}}^{p, j}\right)\right) \\
& =\frac{\left(p^{j+1}\right)^{n+1}}{\left[\frac{n}{2}\right]+1} \varphi_{p, j}^{A}\left(l_{A}^{n}\left(\left(a^{n} \otimes \alpha^{p, j}\right) \otimes \alpha^{p, j}\right)\right) \tag{9.8}
\end{align*}
$$

for all $n \in \mathbb{N}$.

Observe now that, for any $n \in \mathbb{N}$,

$$
\begin{align*}
l_{A}^{2 n-1} & =\sum_{k=0}^{2 n-1}\binom{2 n-1}{k} c_{A}^{k} a_{A}^{2 n-k-1} \\
\text { and } l_{A}^{2 n} & =\sum_{k=0}^{2 n}\binom{2 n}{k} c_{A}^{k} a_{A}^{2 n-k}, \tag{9.9}
\end{align*}
$$

by (8.10), where c_{A} and a_{A} are the A-dynamical creation and A-dynamical annihilation on \mathfrak{S}_{A}, respectively.

Thus, by (9.9), one can realize that $l_{A}^{2 n-1}$ does not contain $1_{\mathfrak{S}_{A}}$-terms, and $l_{A}^{2 n}$ contains its $1_{\mathfrak{S}_{A}}$-term,

$$
\binom{2 n}{n} c_{A}^{n} a_{A}^{n}=\binom{2 n}{n}\left(c_{A} a_{A}\right)^{n}=\binom{2 n}{n} 1_{\mathfrak{S}_{A}},
$$

for all $n \in \mathbb{N}$, with help of (8.8) and (8.9).
So, the formula (9.8) goes to

$$
\begin{aligned}
\tau_{p, j}^{A}\left(\left(T_{a}^{p, j}\right)^{n}\right) & =\frac{\left(p^{j+1}\right)^{n+1}}{\phi(p)\left(\left[\frac{n}{2}\right]+1\right)} \varphi_{p, j}^{A}\left(l_{A}^{n}\left(T_{a^{n}}^{p, j}\right)\right) \\
& =\omega_{n}\left(\frac{\left(p^{j+1}\right)^{n+1}}{\phi(p)\left(\frac{n}{2}+1\right)}\right) \varphi_{p, j}^{A}\left(l_{A}^{n}\left(T_{a^{n}}^{p, j}\right)\right)
\end{aligned}
$$

where

$$
\omega_{n}= \begin{cases}1 & \text { if } n \text { is even } \tag{9.10}\\ 0 & \text { if } n \text { is odd }\end{cases}
$$

by (9.9), and hence,

$$
=\omega_{n}\left(\frac{\left(p^{j+1}\right)^{n+1}}{\phi(p)\left(\frac{n}{2}+1\right)}\right) \varphi_{p, j}^{A}\left(\binom{n}{\frac{n}{2}} T_{a^{n}}^{p, j}+[\text { Rest terms }]\right)
$$

by (8.10)

$$
=\omega_{n}\left(\frac{\left(p^{j+1}\right)^{n+1}}{\phi(p)\left(\frac{n}{2}+1\right)}\right) \varphi_{p, j}^{A}\left(\binom{n}{\frac{n}{2}} T_{a^{n}}^{p, j}\right)
$$

by (9.3)

$$
=\omega_{n}\left(\frac{\left(p^{j+1}\right)^{n+1}}{\phi(p)\left(\frac{n}{2}+1\right)}\right)\binom{n}{\frac{n}{2}} \varphi_{p, j}\left(\alpha^{p, j}\right) \psi\left(a^{n}\right)
$$

by (9.2)

$$
=\omega_{n}\left(\frac{\left(p^{j+1}\right)^{n+1}}{\phi(p)\left(\frac{n}{2}+1\right)}\right)\left(\begin{array}{c}
\frac{n}{2}+1 \\
\frac{2}{2}+1
\end{array}\binom{n}{\frac{n}{2}}\right)\left(\frac{\phi(p)}{p^{j+1}}\right) \psi\left(a^{n}\right)
$$

by (6.13)

$$
=\left(\omega_{n}\left(p^{j+1}\right)^{n} c_{\frac{n}{2}}\right) \psi\left(a^{n}\right)
$$

for all $n \in \mathbb{N}$, where

$$
c_{m}=\frac{1}{m+1}\binom{2 m}{m}=\frac{(2 m)!}{m!(m+1)!}
$$

are the m-th Catalan numbers for all $m \in \mathbb{N}_{0}$.
Therefore, if $U_{a}^{p, j}$ is a free random variable (9.5) in the A-dynamical (p, j) filterization $\mathfrak{L S}_{A}(p, j)$ of (9.4), then

$$
\tau_{p, j}^{A}\left(\left(U_{a}^{p, j}\right)^{n}\right)=\left(\omega_{n}\left(p^{2(j+1)}\right)^{\frac{n}{2}} c_{\frac{n}{2}}\right)\left(\psi\left(a^{n}\right)\right),
$$

for all $n \in \mathbb{N}$, where ω_{n} are in the sense of (9.10). Therefore, the freedistributional data (9.6) holds.

In the above theorem, if $a \in(A, \psi)$ is self-adjoint, then a generating operator $U_{a}^{p, j}$ of (9.5) is self-adjoint in $\mathfrak{L S}_{A}$, too. Indeed,

$$
\begin{aligned}
\left(U_{a}^{p, j}\right)^{*} & =\left(l_{A} \otimes T_{a}^{p, j}\right)^{*} \\
& =l_{A} \otimes\left(\left(a^{*} \otimes \alpha^{p, j}\right) \otimes \alpha^{p, j}\right)=U_{a}^{p, j}
\end{aligned}
$$

in $\mathfrak{L S}_{A}$, since $a^{*}=a$ in A, under the π-relation on tensor-factor \mathfrak{S}_{A} of $\mathfrak{L} \mathfrak{S}_{A}$.
Therefore, if a is self-adjoint in (A, ψ), then, by the self-adjointness of $U_{a}^{p, j}$, the above formula (9.6) fully characterizes the free distribution of $U_{a}^{p, j}$ in the A-dynamical (p, j)-filterization $\mathfrak{L S}_{A}(p, j)$ for $p \in \mathcal{P}$ and $j \in \mathbb{Z}$.
Corollary 9.3. Let $T_{1_{A}}^{p, j}=l_{A} \otimes\left(T_{1_{A}}^{p, j}\right)$ be in the sense of (9.5) in $\mathfrak{L S}_{A}(p, j)$, for $p \in \mathcal{P}$ and $j \in \mathbb{Z}$, where 1_{A} is the unit of A. Then

$$
\begin{equation*}
\tau_{p, j}^{A}\left(\left(U_{1_{A}}^{p, j}\right)^{n}\right)=\omega_{n}\left(p^{2(j+1)}\right)^{\frac{n}{2}} c_{\frac{n}{2}}, \tag{9.11}
\end{equation*}
$$

for all $n \in \mathbb{N}$, where ω_{n} are in the sense of (9.6) and $c_{\frac{n}{2}}$ are the $\left(\frac{n}{2}\right)$-th Catalan numbers.

Proof. Since (A, ψ) is assumed to be a unital C^{*}-probability space, we have

$$
\psi\left(1_{A}^{n}\right)=\psi\left(1_{A}\right)=1 \quad \text { for all } n \in \mathbb{N}
$$

Thus, one can get that

$$
\begin{equation*}
\tau_{p, j}^{A}\left(\left(U_{1_{A}}^{p, j}\right)^{n}\right)=\left(\omega_{n}\left(p^{2(j+1)}\right)^{\frac{n}{2}} c_{\frac{n}{2}}\right) \cdot \psi\left(1_{A}^{n}\right), \tag{9.12}
\end{equation*}
$$

by (9.6), for all $n \in \mathbb{N}$. So, the free distribution (9.11) holds for $U_{1_{A}}^{p, j}$ in $\mathfrak{L S}_{A}(p, j)$ by (9.12).

Also, one can get the following corollary, too.
Corollary 9.4. Let $U_{a}^{p, j}=l_{A} \otimes T_{a}^{p, j}$ be in the sense of (9.5) in the A-dynamical (p, j)-filterization $\mathfrak{L S}_{A}(p, j)$ of $M_{\mathcal{P}}$ for $p \in \mathcal{P}$ and $j \in \mathbb{Z}$. Assume that a is selfadjoint and that

$$
\begin{equation*}
\psi\left(a^{n}\right)=\psi(a)^{n} \quad \text { for all } n \in \mathbb{N} \tag{9.13}
\end{equation*}
$$

Then

$$
\begin{equation*}
\tau_{p, j}^{A}\left(\left(U_{a}^{p, j}\right)^{n}\right)=\omega_{n}\left(p^{2(j+1)} \psi(a)^{2}\right)^{\frac{n}{2}} c_{\frac{n}{2}} \tag{9.14}
\end{equation*}
$$

for all $n \in \mathbb{N}$.
Proof. Let $U_{a}^{p, j}$ be in the sense of (9.5) in $\mathfrak{L S}_{A}(p, j)$, for $p \in \mathcal{P}$ and $j \in \mathbb{Z}$, where a given self-adjoint operator a satisfies the additional conditions (9.13) in (A, ψ). Then

$$
\tau_{p, j}^{A}\left(\left(U_{a}^{p, j}\right)^{n}\right)=\left(\omega_{n}\left(p^{2(j+1)}\right)^{\frac{n}{2}} c_{\frac{n}{2}}\right)\left(\psi\left(a^{n}\right)\right)
$$

by (9.6)

$$
=\left(\omega_{n}\left(p^{2(j+1)}\right)^{\frac{n}{2}} c_{\frac{n}{2}}\right)(\psi(a))^{n}
$$

by (9.13)

$$
=\omega_{n}\left(p^{2(j+1)} \psi(a)^{2}\right)^{\frac{n}{2}} c_{\frac{n}{2}},
$$

for all $n \in \mathbb{N}$. So, the free-distributional data (9.14) holds for $U_{a}^{p, j}$ in $\mathfrak{L S}_{A}(p, j)$, under (9.13).

The above free-probabilistic results, expressed by (9.6), (9.11), and (9.14), not only generalize the main results of [10], but also universalize the main results of [7, 11].

10. Weighted-Semicircular Elements in $\mathfrak{L S}_{A}$

In this section, we use same concepts and notations in previous sections. Let $\mathfrak{L S}{ }_{A}$ be the A-dynamical radial-projection algebra, and let

$$
\mathfrak{L S}_{A}(p, j)=\left(\mathfrak{L S}_{A}, \tau_{p, j}^{A}\right)
$$

be the A-dynamical (p, j)-filterizations, for all $p \in \mathcal{P}$ and $j \in \mathbb{Z}$.
For fixed $p \in \mathcal{P}$ and $j \in \mathbb{Z}$, and a self-adjoint $a \in(A, \psi)$, the operator $U_{a}^{p, j}$,

$$
\begin{equation*}
U_{a}^{p, j}=l_{A} \otimes\left(T_{a}^{p, j}\right) \in \mathfrak{L S}_{A} \tag{10.1}
\end{equation*}
$$

has its free distribution determined by

$$
\begin{equation*}
\tau_{p, j}^{A}\left(\left(U_{a}^{p, j}\right)^{n}\right)=\left(\omega_{n}\left(p^{2(j+1)}\right)^{\frac{n}{2}} c_{\frac{n}{2}}\right)\left(\psi\left(a^{n}\right)\right) \tag{10.2}
\end{equation*}
$$

for all $n \in \mathbb{N}$, by (9.6).
Moreover, if the fixed self-adjoint operator $a \in A$ satisfies

$$
\begin{equation*}
\psi\left(a^{n}\right)=(\psi(a))^{n} \quad \text { for all } n \in \mathbb{N} \text {; } \tag{10.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\tau_{p, j}^{A}\left(\left(U_{a}^{p, j}\right)^{n}\right)=\omega_{n}\left(p^{2(j+1)} \psi(a)^{2}\right)^{\frac{n}{2}} c_{\frac{n}{2}} \tag{10.4}
\end{equation*}
$$

for all $n \in \mathbb{N}$, by (9.14).
10.1. Weighted-Semicircular and Semicircular Elements. Let $\left(B, \varphi_{B}\right)$ be an arbitrary topological $*$-probability space, where B is a topological $*$-algebra and φ_{B} is a (bounded, or unbounded) linear functional on B.
Definition 10.1. A self-adjoint free random variable b is said to be weightedsemicircular in $\left(B, \varphi_{B}\right)$ with weight $t_{0} \in \mathbb{C}$, (or in short, t_{0}-semicircular in (B, $\left.\varphi_{B}\right)$), if b satisfies the free-cumulant computation,

$$
k_{n}^{B}(b, \ldots, b)= \begin{cases}k_{2}^{B}(b, b)=t_{0} & \text { if } n=2 \tag{10.5}\\ 0 & \text { otherwise }\end{cases}
$$

for all $n \in \mathbb{N}$, where $k_{n}^{B}(\ldots)$ is the free cumulant on B (in the sense of [31]) with respect to φ_{B} under the Möbius inversion of [31].

A self-adjoint free random variable b is semicircular in (B, φ), if b is 1 -semicircular in the sense of (10.5); that is,

$$
k_{n}^{B}(b, \ldots, b)= \begin{cases}1 & \text { if } n=2 \tag{10.6}\\ 0 & \text { otherwise }\end{cases}
$$

for all $n \in \mathbb{N}$.
By the Möbius inversion of [31], one can characterize the weighted-semicircularity (10.5) as follows: a self-adjoint element b is t_{0}-semicircular in $\left(B, \varphi_{B}\right)$ if and only if

$$
\begin{equation*}
\varphi_{B}\left(b^{n}\right)=\omega_{n}\left(t_{0}^{\frac{n}{2}} c_{\frac{n}{2}}\right), \tag{10.7}
\end{equation*}
$$

where ω_{n} are in the sense of (9.6) for all $n \in \mathbb{N}$, and c_{k} are the k-th Catalan numbers for all $k \in \mathbb{N}_{0}$.

Similarly, a free random variable b is semicircular in $\left(B, \varphi_{B}\right)$ if and only if b is 1-semicircular in (B, φ_{B}), if and only if

$$
\begin{equation*}
\varphi_{B}\left(b^{n}\right)=\omega_{n} c_{\frac{n}{2}}, \tag{10.8}
\end{equation*}
$$

by (10.6) for all $n \in \mathbb{N}$.
So, we use the t_{0}-semicircularity (10.5) (resp., the semicircularity (10.6)) and its characterization (10.7) (resp., (10.8)) alternatively.
10.2. Weighted-Semicircular Elements in $\mathfrak{L S}_{A}(p, j)$. For $p \in \mathcal{P}$ and $j \in \mathbb{Z}$, let $\mathfrak{L S}{ }_{A}(p, j)$ be the A-dynamical (p, j)-filterization, and let

$$
U_{a}^{p, j}=l_{A} \otimes T_{a}^{p, j}=l_{A} \otimes\left(\left(a \otimes \alpha^{p, j}\right) \otimes \alpha^{p, j}\right)
$$

be in the sense of (10.1) in $\mathfrak{L S}_{A}(p, j)$, where a is self-adjoint in (A, ψ), and hence, having its free distribution (10.2).

By (10.5) and (10.7), one can obtain the following weighted-semicircular elements in $\mathfrak{L S}_{A}(p, j)$ for $p \in \mathcal{P}$ and $j \in \mathbb{Z}$.

Theorem 10.2. Let $U_{a}^{p, j}$ be in the sense of (10.1) in the A-dynamical (p, j) filterization $\mathfrak{L} \mathfrak{S}_{A}(p, j)$ of $M_{\mathcal{P}}$, for $p \in \mathcal{P}$ and $j \in \mathbb{Z}$, where a self-adjoint operator a satisfies the following additional condition (10.3) in (A, ψ); that is,

$$
\psi\left(a^{n}\right)=(\psi(a))^{n} \quad \text { for all } n \in \mathbb{N}
$$

Then $U_{a}^{p, j}$ is $\left(p^{j+1} \psi(a)\right)^{2}$-semicircular in $\mathfrak{L} \mathfrak{S}_{A}(p, j)$. That is,

$$
\begin{equation*}
\text { a satisfies }(10.3) \Rightarrow U_{a}^{p, j} \text { is }\left(p^{j+1} \psi(a)\right)^{2} \text {-semicircular, } \tag{10.9}
\end{equation*}
$$

for $p \in \mathcal{P}$ and $j \in \mathbb{Z}$.
Proof. Suppose a self-adjoint free random variable a satisfies the additional condition (10.3) in a fixed unital C^{*}-probability space (A, ψ). Then, by (10.2) and (10.4), one obtains the free distribution of the operator $U_{a}^{p, j}$ of (10.1), determined by the free moments,

$$
\tau_{p, j}^{A}\left(\left(U_{a}^{p, j}\right)^{n}\right)=\omega_{n}\left(\left(p^{j+1} \psi(a)\right)^{2}\right)^{\frac{n}{2}} c_{\frac{n}{2}}
$$

for all $n \in \mathbb{N}$.
So, by (10.7), this operator $U_{a}^{p, j}$ is $\left(p^{j+1} \psi(a)\right)^{2}$-semicircular in $\mathfrak{L} \mathfrak{S}_{A}(p, j)$, since it is self-adjoint in the A-dynamical radial-projection algebra $\mathfrak{L S}_{A}$. Therefore, the statement (10.9) holds true.

As a corollary of the weighted-semicircularity (10.9) on $\mathfrak{L S}_{A}(p, j)$, we have the following result.

Corollary 10.3. Let $U_{1_{A}}^{p, j}$ be in the sense of (10.1) in the A-dynamical (p, j) filterization $\mathfrak{L S} \mathfrak{S}_{A}(p, j)$, for $p \in \mathcal{P}$ and $j \in \mathbb{Z}$, where 1_{A} is the unit of A. Then this operator $U_{1_{A}}^{p, j}$ is $p^{2(j+1)}$-semicircular in $\mathfrak{L} \mathfrak{S}_{A}(p, j)$.

$$
\begin{equation*}
U_{1_{A}}^{p, j} \text { is } p^{2(j+1)} \text {-semicircular in } \mathfrak{L S}_{A}(p, j) \text {, } \tag{10.10}
\end{equation*}
$$

for $p \in \mathcal{P}$ and $j \in \mathbb{Z}$.
Proof. First of all, this operator $U_{1_{A}}^{p, j}$ is self-adjoint in $\mathfrak{L} \mathfrak{S}_{A}$,, and the free distribution of it is determined by the free-moments,

$$
\tau_{p, j}^{A}\left(\left(T_{1_{A}}^{p, j}\right)^{n}\right)=\omega_{n}\left(p^{2(j+1)}\right)^{\frac{n}{2}} c_{\frac{n}{2}}, \quad \text { for all } n \in \mathbb{N}
$$

by (9.11). Therefore, one can conclude that $U_{a}^{p, j}$ is $p^{2(j+1)}$-semicircular in $\mathfrak{L} \mathfrak{S}_{A}(p, j)$.

Alternatively, the weighted-semicircularity (10.9) directly allows the $p^{2(j+1)}$ semicircularity of $U_{1_{A}}^{p, j}$, because 1_{A} is a self-adjoint element of (A, ψ) satisfying the condition (10.3).

The main results (10.9) and (10.10) of this section show that, starting from the finite-Adelic C^{*}-algebra $M_{\mathcal{P}}$, and the semigroup-dynamical systems of $\sigma\left(A_{\mathbb{Q}}\right)$, one can construct weighted-semicircular elements. Therefore, they generalize
(operator-theoretically) and globalize (number-theoretically) the weighted-semicircularity of $[7,10,11]$.

11. Semicircular Elements in $\mathfrak{L S}_{A}(p, j)$

Let $\mathfrak{L S}_{A}(p, j)$ be the A-dynamical (p, j)-filterization, for $p \in \mathcal{P}$ and $j \in \mathbb{Z}$. In section 10.2 , we considered weighted-semicircular elements in $\mathfrak{L} \mathfrak{S}_{A}(p, j)$. In particular, if an operator $U_{a}^{p, j}$ of (10.1) satisfies the condition (10.3), then it is $\left(p^{2(j+1)} \psi(a)^{2}\right)$-semicircular in $\mathfrak{L S}_{A}(p, j)$, by (10.9).

In this section, we fix $p \in \mathcal{P}, j \in \mathbb{Z}$, and the corresponding A-dynamical (p, j) filterization $\mathfrak{L} \mathfrak{S}_{A}(p, j)$. Also, define an operator,

$$
\begin{equation*}
S_{a}^{p, j}=\frac{1}{p^{j+1}} U_{a}^{p, j} \in \mathfrak{L S}_{A}(p, j) \tag{11.1}
\end{equation*}
$$

where $U_{a}^{p, j}$ is in the sense of (10.1), and where a is self-adjoint in (A, ψ).
Theorem 11.1. Let $S_{a}^{p, j}=\frac{1}{p^{j+1}} U_{a}^{p, j}$ be in the sense of (11.1) in the A-dynamical (p, j)-filterization $\mathfrak{L S}_{A}(p, j)$, where a is self-adjoint in (A, ψ). Assume further that a satisfies the condition (10.3); that is,

$$
\psi\left(a^{n}\right)=(\psi(a))^{n} \quad \text { for all } n \in \mathbb{N}
$$

Then the operator $S_{a}^{p, j}$ is $\psi(a)^{2}$-semicircular in $\mathfrak{L S}_{A}(p, j)$. That is,

$$
\begin{equation*}
\text { a satisfies }(10.3) \Rightarrow S_{a}^{p, j} \text { is } \psi(a)^{2} \text {-semicircular. } \tag{11.2}
\end{equation*}
$$

Proof. Let $a \in(A, \psi)$ be a self-adjoint free random variable satisfying the condition (10.3). Now, let $k_{n}^{A, p, j}(\ldots)$ be the free cumulant (in the sense of [31]) on the A-dynamical radial-projection algebra $\mathfrak{L} \mathfrak{S}_{A}$ in terms of the linear functional $\tau_{p, j}^{A}$. Then

$$
k_{n}^{A, p, j}(\underbrace{S_{a}^{p, j}, S_{a}^{p, j}, \ldots, S_{a}^{p, j}}_{n \text {-times }})=k_{n}^{A, p, j}\left(\frac{1}{p^{j+1}} U_{a}^{p, j}, \ldots, \frac{1}{p^{j+1}} U_{a}^{p, j}\right)
$$

by (11.1)

$$
=\left(\frac{1}{p^{j+1}}\right)^{n} k_{n}^{A, p, j}\left(U_{a}^{p, j}, U_{a}^{p, j}, \ldots, U_{a}^{p, j}\right)
$$

by the bimodule map property of free cumulants (e.g., [31])

$$
= \begin{cases}\left(\frac{1}{p^{j+1}}\right)^{2} k_{2}^{A, p, j}\left(U_{a}^{p, j}, U_{a}^{p, j}\right) & \text { if } n=2 \\ 0 & \text { otherwise }\end{cases}
$$

by the weighted-semicircularity (10.9) of $U_{a}^{p, j}$

$$
= \begin{cases}\left(\frac{1}{p^{j+1}}\right)^{2}\left(p^{2(j+1)} \psi(a)^{2}\right) & \text { if } n=2 \\ 0 & \text { otherwise }\end{cases}
$$

by (10.9)

$$
= \begin{cases}\psi(a)^{2} & \text { if } n=2 \\ 0 & \text { otherwise }\end{cases}
$$

for all $n \in \mathbb{N}$. Therefore, by the weighted-semicircularity (10.5), this operator $S_{a}^{p, j}$ is $\psi(a)^{2}$-semicircular in $\mathfrak{L S}_{A}(p, j)$.

By the weighted-semicircularity (11.2), we have the following semicircularity on $\mathfrak{L} \mathfrak{S}_{A}(p, j)$. Recall first that we automatically assume $\psi(a) \neq 0$ from section 8 .

Theorem 11.2. Let $S_{a}^{p, j} \in \mathfrak{L S}_{A}(p, j)$ be in the sense of (11.1). Now, suppose a self-adjoint $a \in(A, \psi)$ satisfies (10.3), and let

$$
X_{a}^{p, j}=\frac{1}{\psi(a)} S_{a}^{p, j}=\frac{1}{p^{j+1} \psi(a)} U_{a}^{p, j} \in \mathfrak{L} \mathfrak{S}_{A}(p, j) .
$$

Then this free random variable $X_{a}^{p, j}$ is semicircular in $\mathfrak{L} \mathfrak{S}_{A}(p, j)$; that is,

$$
\begin{equation*}
\text { a satisfies }(10.3) \Rightarrow \frac{1}{p^{j+1} \psi(a)} U_{a}^{p, j} \text { is semicircular in } \mathfrak{L S}_{A}(p, j) \tag{11.3}
\end{equation*}
$$

Proof. The proof of (11.3) is similar to that of (11.2). But, here, we provide a different type of proofs. Let $X_{a}^{p, j}$ be as above, where a satisfies the condition (10.3) in (A, ψ). Then

$$
\begin{aligned}
\tau_{p, j}^{A}\left(\left(X_{a}^{p, j}\right)^{n}\right) & =\tau_{p, j}^{A}\left(\left(\frac{1}{p^{j+1} \psi(a)} U_{a}^{p, j}\right)^{n}\right) \\
& =\left(\frac{1}{p^{j+1} \psi(a)}\right)^{n} \tau_{p, j}^{A}\left(\left(U_{a}^{p, j}\right)^{n}\right) \\
& =\left(\frac{1}{p^{j+1} \psi(a)}\right)^{n}\left(\omega_{n}\left(p^{j+1} \psi(a)\right)^{n} c_{\frac{n}{2}}\right)
\end{aligned}
$$

by the $\left(p^{j+1} \psi(a)\right)^{2}$-semicircularity of $U_{a}^{p, j}$ under (10.3)

$$
=\omega_{n} c_{n}
$$

for all $n \in \mathbb{N}$. Therefore, by (10.8), this free random variable $X_{a}^{p, j}$ is semicircular in $\mathfrak{L} \mathfrak{S}_{A}(p, j)$. So, the statement (11.3) holds.

The main result (11.3) of this section generalize and globalize the semicircularity of $[7,10,11]$.

By the weighted-semicircularity (11.2), one also obtains the following semicircularity on $\mathfrak{L S}_{A}(p, j)$ independent from (11.3).

Corollary 11.3. Let $S_{1_{A}}^{p, j}=\frac{1}{p^{j+1}} U_{1_{A}}^{p, j}$ be in the sense of (11.1) in $\mathfrak{L S}_{A}(p, j)$. Then it is semicircular in $\mathfrak{L} \mathfrak{S}_{A}(p, j)$. That is,

$$
\begin{equation*}
S_{1_{A}}^{p, j} \text { is semicircular in } \mathfrak{L} \mathfrak{S}_{A}(p, j) \text {. } \tag{11.4}
\end{equation*}
$$

Proof. Since the unit 1_{A} of (A, ψ) satisfies the self-adjointness and

$$
\psi\left(1_{A}^{n}\right)=\psi\left(1_{A}\right)=1=\psi\left(1_{A}\right)^{n}
$$

for all $n \in \mathbb{N}$, the operator $S_{1_{A}}^{p, j}$ is semicircular in $\mathfrak{L S}_{A}(p, j)$, by (11.3). Therefore, the statement (11.4) holds.

12. Weighted-Semicircularity and Semicircularity on $\mathfrak{L S}_{A}$

In this section, we globalize the main results of sections 9 and 10 . Let (A, ψ) be a fixed unital C^{*}-probability space as above, and let

$$
\begin{aligned}
\mathfrak{L} \mathfrak{S}_{A} & =\mathfrak{L}_{A} \otimes_{\mathbb{C}} \mathfrak{S}_{A} \\
& =\mathfrak{L}_{A} \otimes_{\mathbb{C}}\left(\left(A \otimes_{\mathbb{C}} M_{\mathcal{P}}\right) \otimes_{\pi} \mathfrak{S}\right)
\end{aligned}
$$

be the A-dynamical radial-projection algebra.
By defining linear functionals $\tau_{p, j}^{A}=\varphi_{p, j}^{A} \circ E_{A}$ of (9.3) on $\mathfrak{L} \mathfrak{S}_{A}$, one obtains the corresponding A-dynamical (p, j)-filterizations (9.4),

$$
\begin{equation*}
\mathfrak{L S}_{A}(p, j)=\left(\mathfrak{L S}_{A}, \tau_{p, j}^{A}\right) \tag{12.1}
\end{equation*}
$$

for all $p \in \mathcal{P}$ and $j \in \mathbb{Z}$.
Define now a new linear functional τ_{A} on $\mathfrak{L} \mathfrak{S}_{A}$ by a linear transformation,

$$
\begin{equation*}
\tau_{A}=\varphi_{A} \circ E_{A}=\left(\prod_{p \in \mathcal{P}}\left(\sum_{j \in \mathbb{Z}}^{\oplus} \varphi_{p, j}^{A}\right)\right) \circ E_{A}, \tag{12.2}
\end{equation*}
$$

where φ_{A} is in the sense of (7.28) and (7.29) and E_{A} is in the sense of (9.1). Then this linear functional τ_{A} of (12.2) is well-defined, and it globalize our linear functionals $\left\{\tau_{p, j}^{A}\right\}_{p \in \mathcal{P}, j \in \mathbb{Z}}$ on $\mathfrak{L} \mathfrak{S}_{A}$. So, the pair $\left(\mathfrak{L} \mathfrak{S}_{A}, \tau_{A}\right)$ forms a well-defined Banach *-probability space.

Definition 12.1. The Banach *-probability space

$$
\begin{equation*}
\mathfrak{L \mathfrak { S } _ { A }} \stackrel{\text { denote }}{=}\left(\mathfrak{L S}_{A}, \tau_{A}\right) \tag{12.3}
\end{equation*}
$$

is called the A-dynamical filterization of the finite-Adelic C^{*}-algebra $M_{\mathcal{P}}$, where τ_{A} is the linear functional (12.2) on the A-dynamical radial-projection algebra $\mathfrak{L} \mathfrak{S}_{A}$.

On the A-dynamical filterization $\mathfrak{L S}_{A}$ of (12.3), we obtain the following weightedsemicircularity.

Theorem 12.2. Let $\mathfrak{L} \mathfrak{S}_{A}=\left(\mathfrak{L S}_{A}, \tau_{A}\right)$ be the A-dynamical filterization (12.3). Suppose that $a \in(A, \psi)$ is a self-adjoint free random variable satisfying that

$$
\begin{equation*}
\psi\left(a^{n}\right)=\psi(a)^{n} \text { in } \mathbb{C}^{\times}=\mathbb{C} \backslash\{0\} \tag{12.4}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Then the operator $U_{a}^{p, j}$ of (10.1) is $\left(p^{j+1} \psi(a)\right)^{2}$-semicircular in $\mathfrak{L S}_{A}$ for all $p \in \mathcal{P}$ and $j \in \mathbb{Z}$. That is,

$$
\begin{equation*}
\text { a satisfies }(12.4) \Rightarrow U_{a}^{p, j} \text { is }\left(p^{j+1} \psi(a)\right)^{2} \text {-semicircular, } \tag{12.5}
\end{equation*}
$$

in $\mathfrak{L} \mathfrak{S}_{A}^{0}$ for all $p \in \mathcal{P}$ and $j \in \mathbb{Z}$.
Proof. Let $U_{a}^{p, j}$ be in the sense of (10.1) in the A-dynamical radial-projection algebra $\mathfrak{L S}_{A}$, where a self-adjoint free random variable $a \in(A, \psi)$ satisfies the additional condition (12.4). Then $U_{a}^{p, j}$ is self-adjoint in $\mathfrak{L} \mathfrak{S}_{A}$, and it satisfies that

$$
\tau_{A}\left(\left(U_{p, j}^{a}\right)^{n}\right)=\tau_{p, j}^{A}\left(\left(U_{p, j}^{a}\right)^{n}\right)
$$

by (12.2)

$$
=\omega_{n}\left(p^{2(j+1)} \psi(a)^{2}\right)^{n} c_{\frac{n}{2}},
$$

by (10.9), for all $n \in \mathbb{N}$.
Therefore, this operator $U_{a}^{p, j} \in \mathfrak{L S}_{A}$ is $\left(p^{j+1} \psi(a)\right)^{2}$-semicircular in the A dynamical filterization $\mathfrak{L S}{ }_{A}$. It proves the statement (12.5) holds under condition (12.4).

By the above weighted-semicircularity (12.5), one obtains the following corollary.

Corollary 12.3. Let $U_{a}^{p, j}$ be in the sense of (10.1) in the A-dynamical filterization $\mathfrak{L S}_{A}$, where a self-adjoint free random variable $a \in(A, \psi)$ satisfies (12.4).

$$
\begin{gather*}
\frac{1}{p^{j+1}} U_{a}^{p, j} \text { is } \psi(a)^{2} \text {-semicircular in } \mathfrak{L} \mathfrak{S}_{A} . \tag{12.6}\\
\frac{1}{p^{j+1} \psi(a)} U_{a}^{p, j} \text { is semicircular in } \mathfrak{L} \mathfrak{S}_{A} . \tag{12.7}\\
U_{1_{A}}^{p, j} \text { is } p^{2(j+1)} \text {-semicircular in } \mathfrak{L} \mathfrak{S}_{A} . \tag{12.8}\\
\frac{1}{p^{j+1}} U_{1 A}^{p, j} \text { is semicircular in } \mathfrak{L} \mathfrak{S}_{A} . \tag{12.9}
\end{gather*}
$$

Proof. The proofs of (12.6), (12.7), (12.8), and (12.9) are done by (12.5), with help of the main results of sections 10.2 and 10.3.

The weighted-semicircularity (12.4) and its special cases (12.6), (12.7), (12.8), and (12.9) not only generalize the main results of $[7,10,11]$ (operator-theoretically), but also globalize those (number-theoretically).

References

1. S. Albeverio, P. E. T. Jorgensen, and A. M. Paolucci, On fractional Brownian motion and wavelets, Complex Anal. Oper. Theory 6 (2012), no. 1, 33-63.
2. S. Albeverio, P. E. T. Jorgensen, and A. M. Paolucci, Multiresolution wavelet analysis of integer scale Bessel functions, J. Math. Phys. 48 (2007), no. 7, 073516, 24 pp.
3. D. Alpay and P. E. T. Jorgensen, Spectral theory for Gaussian processes: reproducing kernels, boundaries, and L^{2}-wavelet generators with fractional scales, Numer. Funct. Anal. Optim. 36 (2015), no. 10, 1239-1285.
4. D. Alpay, P. E. T. Jorgensen, and D. Kimsey, Moment problems in an infinite number of variables, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 18 (2015), no. 4, 1550024, 14 pp.
5. D. Alpay, P. E. T. Jorgensen, and G. Salomon, On free stochastic processes and their derivatives, Stochastic Process. Appl. 124 (2014), no. 10, 3392-3411.
6. J.-B. Bost and A. Connes, Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory Selecta Math. (N.S.) 1 (1995), no. 3, 411-457.
7. I. Cho, Free semicircular families in free product Banach *-algebras induced by p-adic number fields over primes p, Complex Anal. Oper. Theory 11 (2017), no. 3, 507-565.
8. I. Cho, Adelic analysis and functional analysis on the finite adele ring, Opuscula Math. 38 (2017), no. 2, 139-185.
9. I. Cho, Free probability on Hecke algebras and certain group C^{*}-algebras induced by Hecke algebras, Opuscula Math. 36 (2016), no. 2, 153-187
10. I. Cho and P. E. T. Jorgensen, Semicircular-like and semicircular laws induced by certain C^{*}-probability spaces and the finite adele ring, in Indefinite inner product spaces, Schur analysis, and differential equations pp 237-280, Operator theory: Advances and applications, vol. 263, Springer International Publishing, 2018.
11. I. Cho and P. E. T. Jorgensen, Semicircular elements induced by p-adic number fields, Opuscula Math. 37 (2017), no. 5, 665-703.
12. A. Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.
13. A. Connes, Trace formula in noncommutative geometry and the zeroes of the Riemann zeta functions, http://www.alainconnes.org/.
14. B. Dragovich, A. Khennikov, and D. Mihajiovic, Linear fractional p-adic and adelic dynamical systems, Rep. Math. Phy. 60 (2007), no. 1, 55-68.
15. B. Dragovich, Ya. Radyno, and A. Khennikov, Distributions on adeles, J. Math. Sci. (New York) 142 (2007), no. 3, 2105-2112.
16. T. Gillespie, Prime number theorems for Rankin-Selberg L-functions over number fields, Sci. China Math. 54 (2011), no. 1, 35-46.
17. T. Gillespie, Superposition of zeroes of automorphic L-functions and functoriality, Univ. of Iowa, PhD Thesis, 2010.
18. U. Haagerup and F. Larsen, Brown's spectral distribution measure for R-diagonal elements in finite von Neumann algebras, J. Funct. Anal. 176 (2000), no. 2, 331-367.
19. P. E. T. Jorgensen, Operators and representation theory: Canonical models for algebras of operators arising in quantum mechanics, Second Ed., Dover Publications, 2008.
20. P. E. T. Jorgensen and A. M. Paolucci, q-frames and Bessel functions, Numer. Funct. Anal. Optim. 33 (2012), no. 7-9, 1063-1069.
21. P. E. T. Jorgensen and A. M. Paolucci, Markov measures and extended zeta functions, J. Appl. Math. Comput. 38 (2012), no. 1-2, 305-323.
22. P. E. T. Jorgensen and A. M. Paolucci, States on the Cuntz algebras and p-adic random walks, J. Aust. Math. Soc. 90 (2011), no. 2, 197-211.
23. P. E. T. Jorgensen and A. M. Paolucci, Wavelets in mathematical physics: q-oscillators, J. Phys. A 36 (2003), no. 23, 6483-6494.
24. T. Kemp and R. Speicher, Strong Haagerup inequalities for free R-diagonal elements, J. Funct. Anal. 251 (2007), no. 1, 141-173.
25. A. Khennikov, V. M. Shelkovich, and J. H. Van Der Walt, Adelic multiresolution analysis, construction of wavelet bases and pseudo-differential operators, J. Fourier Anal. Appl. 19 (2013), no. 6, 1323-1358.
26. A. V. Kosyak, A. Khennikov, and V. M. Shelkovich, Wavelet bases on adele rings, Doklady Math. 85 (2012), no. 1, 75-79.
27. F. Radulescu, Free group factors and Hecke operators, The varied landscape of operator theory, 241-257, Theta Ser. Adv. Math., 17, Theta, Bucharest, 2014.
28. F. Radulescu, Conditional expectations, traces, angles between spaces and representations of the Hecke algebras, Lib. Math. (N.S.) 33 (2013), no. 2, 65-95
29. F. Radulescu, Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free group of noninteger index, Invent. Math. 115 (1994), no. 2, 347-389.
30. R. Speicher, A conceptual proof of a basic result in the combinatorial approach to freeness, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000), no. 2, 213-222.
31. R. Speicher, Combinatorial theory of the free product with amalgamation and operatorvalued free probability theory, Mem. Amer. Math. Soc. 132 (1998), no. 627.
32. V. S. Vladimirov and I. V. Volovich, p-adic quantum mechanics, Comm. Math. Phys. 123 (1989), no. 4, 659-676.
33. V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-adic analysis and mathematical physics, Series on Soviet and East European Mathematics, 1. World Scientific Publishing Co., Inc., River Edge, NJ, 1994.
34. D. Voiculescu, Aspects of free analysis Jpn. J. Math. 3 (2008), no. 2, 163-183.
35. D. Voiculescu, Symmetries arising from free probability theory: Frontiers in number theory, physics, and geometry, Vol I, 231-243, Springer, Berlin, 2006.
36. D. Voiculescu, Free probability and the von Neumann algebras of free groups, Rep. Math. Phys. 55 (2005), no. 1, 127-133.
37. D. Voiculescu, K. Dykemma, and A. Nica, Free random variables: A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups, CRM Monograph Series, 1. American Mathematical Society, Providence, RI, 1992.

421 Ambrose Hall, Saint Ambrose Univ., Dept. of Math. \& Stat., 518 W. Locust St., Davenport, Iowa, 52803, U. S. A.

E-mail address: choilwoo@sau.edu

[^0]: Copyright 2019 by the Tusi Mathematical Research Group.
 Date: Received: Feb. 16, 2018; Accepted: Mar. 12, 2018.
 2010 Mathematics Subject Classification. Primary 47L30; Secondary 47L55, 11R47, 11R56, 46L54.

 Key words and phrases. Free probability, representation, finite adele ring, semigroup dynamical system, weighted-semicircular element.

