
Adv. Oper. Theory 3 (2018), no. 3, 655–681

https://doi.org/10.15352/aot.1710-1241

ISSN: 2538-225X (electronic)

https://projecteuclid.org/aot

C∗-ALGEBRA DISTANCE FILTERS

TRISTAN BICE,1∗ and ALESSANDRO VIGNATI2

Communicated by M. Mathieu

Abstract. We use nonsymmetric distances to give a self-contained account of
C∗-algebra filters and their corresponding compact projections, simultaneously
simplifying and extending their general theory.

1. Introduction

Quantum filters were introduced by Farah and Weaver to analyze pure states
on C∗-algebras and various conjectures concerning them, like Anderson’s conjec-
ture and the Kadison–Singer conjecture (which has since become the Marcus–
Speilman–Srivastava theorem – see [18]). They were also considered more re-
cently in [14] in relation to quantum analogs of certain large cardinals, and they
even make an appearance much earlier in [7] as faces of the positive unit ball.
While their basic theory was fleshed out in [8] (as ‘norm filters’) and [16], there
remained some fundamental questions which we aim to address in this paper.

The first such question is why they should be considered as filters at all. Filters
in the classical sense are defined from a transitive relation, as the downwards
directed upwards closed subsets, but in general there is no such relation defining
quantum filters. Indeed, it can even happen that every maximal quantum filter
in a C∗-algebra fails to be a filter in the traditional order theoretic sense – see
[8, Corollary 6.6]. While it might be intuitively clear that quantum filters are
the ‘right’ quantum analog, and their utility in analyzing states justifies their
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study, regardless of whether they are considered as filters or not, a more precise
connection to order theory would of course be desirable.

The key here is to replace classical transitive relations with ‘continuous’ ones.
These are the nonsymmetric distances, binary functions D to [0,∞] satisfying
the continuous version of transitivity, namely the triangle inequality

D(x, y) ≤ D(x, z) +D(z, y).

The first order sentence defining a classical filter also has a continuous version, as
given in (D-filter) of Definition 3.1. This is in keeping with the general philosophy
of continuous model theory (see [21]) where binary relations are replaced by binary
functions taking values in [0,∞] and the quantifiers ∀ and ∃ are replaced by
suprema and infima, respectively. Then quantum filters are indeed the continuous
filters with respect to the appropriate distance d on the positive unit ball A1

+,
namely

d(a, b) = ∥a− ab∥ .
This simple observation, which is expanded upon in Theorem 3.2, allows for a
markedly different approach to the theory.

In section 2 we start off by examining the relationship between various dis-
tances and distance-like functions. We move on to d-filters in section 3, using
these relationships to provide characterizations using the distance, order, multi-
plicative, and convex structure of A1

+. In section 4 we then show how d-filters
in A represent compact projections in A∗∗ (just as hereditary C∗-subalgebras in
A represent open projections in A∗∗). We finish by examining interior contain-
ment of compact projections and its relation to the reverse Hausdorff distance on
d-filters.

2. Distances

We will deal with a number of binary functions D from some set X to [0,∞].
We view these as ‘generalized’ or ‘continuous’ relations on X. More precisely, the
zero-set of any D : X ×X → [0,∞] defines a classical relation D0 ⊆ X ×X by

xD0y ⇔ D(x, y) = 0.

To emphasize that we are viewing D as a continuous version of D0, we say that D
quantifies D0. Conversely, every relation R ⊆ X ×X has a trivial quantification
given by its characteristic function, which we also denote by R, specifically

R(x, y) =

{
0 if xRy,

∞ otherwise.

Definition 2.1. The composition D ◦ E of D,E : X ×X → [0,∞] is given by

(D ◦ E)(x, y) = inf
z∈X

(D(x, z) + E(z, y)).

For any Z ⊆ X, we define the composition in Z by

(D ◦Z E)(x, y) = inf
z∈Z

(D(x, z) + E(z, y)).

Note we are using the standard infix notation xRy to mean (x, y) ∈ R.
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Note how taking the composition in a smaller domain can make the resulting
function larger; that is,

D ◦ E ≤ D ◦Z E.

Also note that when R and S are relations (identified with their characteristic
functions as mentioned above);

x(R ◦ S)y ⇔ ∃z ∈ X (xRzSy),

so ‘◦’ extends the usual composition of classical relations. Moreover,

D0 ◦ E0 ⊆ (D ◦ E)0.

We say thatD is E-invariant whenD = D◦E = E◦D. In particular, it is natural
to consider E-invariance for metric E. Then it suffices to verify D ≤ D◦E,E◦D,
as the reverse inequalities are immediate from the reflexivity of E0.

Definition 2.2. We call D a distance if it satisfies the triangle inequality

D ≤ D ◦D. (△)

We call D a hemimetric if D is a distance and D0 is reflexive (i.e. D(x, x) = 0).

On a C∗-algebra A, the only distance usually considered is the metric given by

e(x, y) = ∥x− y∥ .

Indeed, metrics are precisely the symmetric distances quantifying equality; that
is, the symmetric distances whose zero-sets coincide with the equality relation.
However, our thesis is that one should also consider various nonsymmetric dis-
tances on C∗-algebras which quantify other important order relations like

a ≪ b ⇔ a = ab,

a ≤ b ⇔ b− a ∈ A+.

Here A+ denotes the positive elements in A, while Asa, A
r, and A=r will denote

the self-adjoints, r-ball, and r-sphere, respectively. In particular, A1 denotes
the unit ball. We also consider A embedded canonically in its enveloping von
Neumann algebra A∗∗ and set

Ã = A+ C1.

So if A is unital then Ã = A, otherwise Ã is the unitization of A (see [13, II.1.2]).

In particular, for any a ∈ A1
+, we let a⊥ = 1− a ∈ Ã1

+.

Proposition 2.3.

d(a, b) = ∥a− ab∥ is an e-invariant distance on A1
+ quantifying ≪ . (2.1)

h(a, b) = ∥(a− b)+∥ is an e-invariant hemimetric on Asa quantifying ≤ .
(2.2)

Proof.

In other words, the category Rel of classical relations forms a wide subcategory of GRel,
the category of generalized relations – see [11, §1] for more details.
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(2.1) Fix a, b, c ∈ A1
+. Then

d(a, b) =
∥∥ab⊥∥∥ =

∥∥a(c⊥ + c)b⊥
∥∥ ≤

∥∥ac⊥∥∥∥∥b⊥∥∥+ ∥a∥
∥∥cb⊥∥∥ ≤ d(a, c) + d(c, b).

As e is a metric, the e-invariance of d on A1
+ follows from

d(a, b) = ∥a− ab∥ ≤ ∥a− c∥+ ∥c− cb∥ = e(a, c) + d(c, b).

d(a, b) = ∥a− ab∥ ≤ ∥a− ac∥+ ∥ac− ab∥ ≤ d(a, c) + e(c, b).

(2.2) Consider the space of quasistates A∗1
+ on A (i.e. positive linear functionals

in the dual unit ball), and recall that, for a ∈ Asa,

∥a+∥ = sup
ϕ∈A∗1

+

ϕ(a). (2.3)

Thus, for all a, b, c ∈ Asa, we have

h(a, b) ≤ sup
ϕ∈A∗1

+

ϕ(a− c) + sup
ϕ∈A∗1

+

ϕ(c− b) = h(a, c) + h(c, b).

Now h ≤ e, as ∥a+∥ ≤ ∥a∥, so h0 is reflexive and h ≤ h ◦h ≤ h ◦ e, e ◦h.
Again, as e is a metric, it follows that h is e-invariant. □

Basic relationships between C∗-algebra distances reveal aspects of C∗-algebraic
structure. Here are some required for our investigation of C∗-algebra filters.

Proposition 2.4. On A1
+,

h ≤ 2d, (2.4)

d2 ≤ d ◦ h, (2.5)

d2 ≤ h ◦ d. (2.6)

In (2.5) and (2.6), we can even take the composition in Asa (so ◦ becomes ◦Asa).

Proof.

(2.4) For a, b ∈ A1
+, bab ≤ b2 ≤ b; so

h(a, b) ≤ h(a, bab) + h(bab, b)

≤ ∥a− bab∥
≤ ∥a− ab∥+ ∥ab− bab∥
≤ ∥a− ab∥+ ∥a− ba∥ ∥b∥
≤ 2d(a, b).

(2.5) First note that, for any a ∈ A1 and b ∈ Asa,

∥(aba∗)+∥ = inf
aba∗≤c

∥c∥ ≤ ∥ab+a∗∥ ≤ ∥b+∥ . (2.7)

One might naively use (a+ b)+ ≤ a+ + b+ instead, but this only holds for commutative A.
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As ∥(a+ b)+∥ ≤ ∥a+∥+ ∥b+∥ (see (2.3)), for all a, b ∈ A1
+ and c ∈ Asa,

d(a, b)2 =
∥∥ab⊥2a

∥∥
≤

∥∥ab⊥a∥∥ =
∥∥(ab⊥a)+∥∥

≤
∥∥(ac⊥a)+∥∥+

∥∥(a(b⊥ − c⊥)a)+
∥∥

≤
∥∥ac⊥∥∥ ∥a∥+ ∥(c− b)+∥

≤ d(a, c) + h(c, b).

(2.6) Likewise, for a, b ∈ A1
+ and c ∈ Asa,

d(a, b)2 =
∥∥b⊥a2b⊥∥∥

≤
∥∥b⊥ab⊥∥∥ =

∥∥(b⊥ab⊥)+∥∥
≤

∥∥(b⊥(a− c)b⊥)+
∥∥+

∥∥(b⊥cb⊥)+∥∥
≤ ∥(a− c)+∥+

∥∥b⊥∥∥∥∥cb⊥∥∥
≤ h(a, c) + d(c, b). □

We can also quantify ≤ using elements above and below a and b in A1
+, defining

a(a, b) = inf
a≤c∈A1

+

∥c− b∥ ,

b(a, b) = inf
b≥c∈A1

+

∥a− c∥ .

Equivalently, a = ≤ ◦ e while b = e ◦ ≤, where the composition ◦ is taken in A1
+

(again identifying ≤ with its characteristic function). If we took the composition
in Asa instead, then we would end up back at h – see (2.12) below. Indeed,
there are still times when h coincides with a and b, as in Proposition 2.7 and
Corollary 2.10 below. However, they do not coincide in general.

Example 2.5. For A = M2, we have a ̸= b on A1
+ and

a ̸= h ̸= b.

In fact, a and b can fail to be distances or even e-invariant on A1
+.

To see this, we consider b. As a(b⊥, a⊥) = b(a, b) and h(b⊥, a⊥) = h(a, b), the
results for a follow. For convenience, we also naturally extend b to A+, defining

b(a, b) = inf
b≥c∈A+

∥a− c∥ .

Note b is then homogeneous on A+, as is h; that is, for r ∈ R+, b(ra, rb) =
rb(a, b) and h(ra, rb) = rh(a, b); so the results for A1

+ then follow.

In M2, let a =

[
1 1
1 1

]
, and let b =

[
4 0
0 0

]
; then a− tb =

[
1− 4t 1

1 1

]
and

det((a− tb)− λ) = (1− 4t− λ)(1− λ)− 1 = λ2 + (4t− 2)λ− 4t.

So (a− tb) has eigenvalues 1− 2t±
√
4t2 + 1, and hence

∥a− tb∥ =

{
1− 2t+

√
4t2 + 1 for t ≤ 1

2
,

2t− 1 +
√
4t2 + 1 for t ≥ 1

2
.
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Thus b(a, b) = inft∈[0,1] ∥a− tb∥ =
∥∥a− 1

2
b
∥∥ =

√
2. On the other hand, h(a, b) is

the positive eigenvalue for t = 1; that is,
√
5− 1; so

h(a, b) < b(a, b).

Now let c = a + (b − a)+; so b(a, c) = 0 and b(c, b) = ∥c− b∥ = ∥(a− b)+∥ =
h(a, b), as a, b ≤ c. Thus b(a, b) > b(a, c) + b(c, b) = b(a, c) + e(c, b); so b is not
a distance and b is also not e-invariant. However, b is left e-invariant, as

b = e ◦ ≤ = e ◦ e ◦ ≤ = e ◦ b.
Likewise, a is right but not left e-invariant. In particular, a ̸= b.

However, in general a and b are still bounded by a function of h, as the following
inequalities show. Note that these are crucial to proof of (4.6) which is needed
to characterize compact projections as ‘closed and bounded’ in Corollary 4.8.
Also (2.8) is required for several of the characterizations of d-filters given in
Theorem 3.2.

Theorem 2.6. On A1
+,

h ≤ a ≤ 2
√
h, (2.8)

h ≤ b ≤ 2
√
h. (2.9)

Moreover, if B is a hereditary C∗-subalgebra of A and a, b ∈ B1
+, then

a(a, b) = inf
a≤c∈B1

+

∥c− b∥ , (2.10)

b(a, b) = inf
b≥c∈B1

+

∥a− c∥ . (2.11)

Proof. First we show that h ≤ b on A1
+. Whenever c ≤ b, (2.3) yields

h(a, b) = sup
ϕ∈A∗1

+

ϕ(a− b) ≤ sup
ϕ∈A∗1

+

ϕ(a− c) ≤ ∥a− c∥ .

Also a − b ≤ (a − b)+; so a − (a − b)+ ≤ b and h(a, b) = ∥a− (a− (a− b)+)∥;
hence

h(a, b) = inf
b≥c∈Asa

∥a− c∥ ≤ inf
b≥c∈A1

+

∥a− c∥ = b(a, b). (2.12)

For b ≤ 2
√
h, take a, b ∈ A1

+ and let z = b+(a− b)+. Then a, b ≤ z ∈ A+ and
√
a( 1

n
+ z)−

1
2

√
b → u,

for some u ∈ A, by [20, Lemma 1.4.4]. As
√
a( 1

n
+ z)−

1
2
√
z →

√
a, we have

√
a( 1

n
+ z)−

1
2 (
√
b−

√
z) → u−

√
a.

We claim that
∥∥∥√a( 1

n
+ z)−

1
2

∥∥∥ ≤ 1, for all n, and hence ∥u−
√
a∥ ≤

∥∥∥√b−
√
z
∥∥∥.

First note that a ≤ z implies a+ 1
n
≤ z+ 1

n
, and hence (z+ 1

n
)−1 ≤ (a+ 1

n
)−1, by

[20, Proposition 1.3.6]. Thus
√
a(z + 1

n
)−1

√
a ≤

√
a(a + 1

n
)−1

√
a ≤ 1, and hence∥∥∥√a( 1

n
+ z)−

1
2

∥∥∥2

≤
∥∥√a(z + 1

n
)−1

√
a
∥∥ ≤ 1.
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By the claim just proved and [17, Corollary 2] with p = ∞,∥∥u−
√
a
∥∥ ≤

∥∥∥√b−
√
z
∥∥∥ ≤

√
∥b− z∥ =

√
∥(a− b)+∥ =

√
h(a, b).

As in the proof of [20, Proposition 1.4.10], we have u∗u ≤ b, and

∥a− u∗u∥ ≤
∥∥a− u∗√a+ u∗√a− u∗u

∥∥ ≤
∥∥√a− u∗∥∥+

∥∥√a− u
∥∥ ≤ 2

√
h(a, b).

The argument for h ≤ a is a simple analog/dual to the argument for h ≤ b.

For a ≤ 2
√
h, take a, b ∈ A1

+, and argue as before with b⊥ and a⊥ replacing a
and b, respectively. Specifically, let z = a⊥ + (a− b)+; so a⊥, b⊥ ≤ z and

√
a⊥( 1

n
+ z)−

1
2

√
b⊥ → u,

for some u ∈ Ã. As before, we have u∗u ≤ a⊥ and
∥∥u∗u− b⊥

∥∥ ≤ 2
√
h(b⊥, a⊥).

Equivalently, a ≤ (u∗u)⊥ and
∥∥(u∗u)⊥ − b

∥∥ ≤ 2
√

h(a, b). Moreover, (u∗u)⊥ ∈ A

even when A is not unital, as then π(z) = 1 = π(u), and hence π((u∗u)⊥) = 0,

where π is canonical homomorphism from Ã to C with kernel A.
Next note (2.11) is immediate, as B contains all positive elements below b. For

(2.10), take c ≥ a in A1
+. As B has an approximate unit, for any ϵ > 0, we have

u ∈ B1
+ with ∥uau− a∥ , ∥ubu− b∥ < ϵ. As h is e-invariant and uau ≤ ucu ∈ B1

+,

h(a, ucu) ≤ ∥a− uau∥+ h(uau, ucu) < ϵ.

Applying a ≤ 2
√
h within B yields d ≥ a in B1

+ with ∥d− ucu∥ < 2
√
ϵ, and

hence

∥d− b∥ ≤ ∥d− ucu∥+ ∥ucu− ubu∥+ ∥ubu− b∥ ≤ 2
√
ϵ+ ∥c− b∥+ ϵ.

As ϵ > 0 was arbitrary, infa≤d∈B1
+
∥d− b∥ ≤ ∥c− b∥. As c was arbitrary,

inf
a≤d∈B1

+

∥d− b∥ ≤ inf
a≤c∈A1

+

∥c− b∥ .

The reverse in equality is immediate, thus proving (2.10). □
In the unital case, (2.8) is immediate from (2.9) and the fact that a(b⊥, a⊥) =

b(a, b) and h(b⊥, a⊥) = h(a, b). If (2.10) could somehow be proved first then the
general case would follow from passing to the unitization, as A is hereditary in

Ã. However, we could not do this above because we needed (2.8) to prove (2.10).

Question 1. Can ‘hereditary’ be deleted above? In other words, are a and b
independent of the C∗-subalgebra in which they are calculated, like d and h?

In the commutative case, we have a positive answer.

Proposition 2.7. On commutative C ⊆ A1
+,

a = b = h.

Proof. By the Gelfand representation, the C∗-algebra B generated by C is iso-
morphic to C0(X) for some locally compact X. In particular, a and b have a
supremum c = a ∨ b in B1

+ with c− b = (a− b)+; so

a(a, b) ≤ ∥c− b∥ = ∥(a− b)+∥ = h(a, b).
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Likewise, a and b have an infimum d = a ∧ b in B1
+ with a− d = (a− b)+; so

b(a, b) ≤ ∥a− d∥ = ∥(a− b)+∥ = h(a, b).

The reverse inequalities follow from Theorem 2.6. □

Next we show that the same applies to projections

P(A) = {p ∈ A : p ≪ p∗} = {p ∈ Asa : p ≪ p} ⊆ A1
+.

One way of proving a = b = d = h on P(A) would be to note that, by reverting
to a C∗-subalgebra if necessary, one can assume A is generated by p, q ∈ P(A). As
every irreducible representation of a C∗-algebra generated by a pair of projections,
is on a Hilbert space of dimension at most 2; for d = h on P(A), it suffices to
consider A = C or M2, which can be done with some elementary calculations.

Alternatively, we can use the following, adapted from [1], which strengthens the
standard result that close projections are unitarily equivalent (see [13, II.3.3.5]).

Lemma 2.8. If p, q ∈ P(A) and ∥p− q∥ < 1, then p and q can be exchanged

by a symmetry(=self-adjoint unitary); that is, we have u ∈ Ãsa with u2 = 1 and
up = qu.

Proof. Let a = p + q − 1 ∈ Ãsa; so ap = qp = qa and aq = pq = pa. Thus
a2p = aqp = pqp = pqa = pa2. Also, a2 = pq + qp− p− q + 1 = 1− (p− q)2; so
∥1− a2∥ = ∥p− q∥2 < 1, and hence a2 is invertible. Thus we may set u = a|a|−1;
so u2 = 1, as a ∈ Asa. Also, as p commutes with a2 and hence with |a|−1,

up = a|a|−1p = ap|a|−1 = qa|a|−1 = qu. □

Corollary 2.9. If p, q ∈ P(A) and ∥p− q∥ < 1, then h(p, q) = ∥p− q∥.

Proof. if e(p, q) < 1, then Lemma 2.8 yields an automorphism a 7→ uau of A
exchanging p and q; so ∥(p− q)+∥ = ∥(q − p)+∥, and hence

∥p− q∥ = ∥(p− q)+∥ ∨ ∥(q − p)+∥ = ∥(p− q)+∥ = h(p, q). □

Corollary 2.10. On P(A), a = b = d = h.

Proof. If d(p, q) < 1, then qp is well-supported; so we have a range projection
[qp] = f(qpq) ∈ A (for continuous f on [0, 1] that is 1 on σ(qpq)). By [9, §2.3]
(specifically equation (2.3) and the sentence after it),

d(p, q) = ∥p− [qp]∥ ≥ b(p, q) ≥ h(p, q) and

0 = p(q − [qp]) = (p− [qp])(q − [qp]); so

(p− q)+ = (p− [qp])+ + ([qp]− q)+ = (p− [qp])+, and hence

h(p, q) = h(p, [qp]) = ∥p− [qp]∥ , by Corollary 2.9.

While if d(p, q) = 1, then 1 =
∥∥pq⊥p∥∥ =

∥∥(pq⊥p)+∥∥, and hence, by (2.7),

1 =
∥∥(pq⊥p)+∥∥ = ∥(p(p− q)p)+∥ ≤ ∥(p− q)+∥ = h(p, q) ≤ b(p, q) ≤ ∥p− q∥ ≤ 1.

So d = h = b on P(A). A similar argument with [p⊥q⊥]⊥ ∈ A applies to a. □
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Incidentally, there does not appear to be much room for extending Corol-
lary 2.10 to a bigger class than P(A) – Example 2.5 shows that even scalar
multiples of projections can witness a ̸= h ̸= b.

We have already seen several cases where functions defined from distances do
not coincide in general, but are still bounded by functions of each other. A similar
situation often arises in metric space theory when dealing with various distinct
but uniformly equivalent metrics. Indeed, it will be convenient to formally define
general uniform (sub)equivalence relations ≾ and ≈ as follows.

Definition 2.11. For functions F,G : X → [0,∞], we define ≾ and ≈ by

F ≾ G ⇔ 0 = lim
r→0

sup
G(x)≤r

F(x),

F ≈ G ⇔ F ≾ G ≾ F.

Equivalently, F ≾ G if and only if, for all Y ⊆ X,

inf
y∈Y

G(y) = 0 ⇒ inf
y∈Y

F(y) = 0.

By Theorem 2.6, a ≈ b ≈ h on A1
+, which is all we really need from now on.

For our characterizations of d-filters, we will also need to consider some uniformly
equivalent unary functions defined from d by fixing the left or right coordinate.

Definition 2.12. For D : X ×X → [0,∞], we define xD,Dy : X → [0,∞] by

xD(y) = D(x, y) = Dy(x).

Proposition 2.13. For any a, b ∈ A1
+ and ϵ ∈ (0, 1),

daba ≈ da + db ≈ dϵa+(1−ϵ)b.

Proof. First note daba ≤ 2da + db, and hence daba ≾ da + db, as

d(c, aba) = ∥c− caba∥
≤ ∥c− ca∥+ ∥ca− cba∥+ ∥cba− caba∥
≤ 2d(c, a) + d(c, b).

Next, as aba ≤ a2 ≤ a, d(c, a)2 ≤ d(c, aba) + h(aba, a) = d(c, aba), and

d(c, b)2 =
∥∥cb⊥2c

∥∥ ≤
∥∥cb⊥c∥∥ =

∥∥c2 − cbc
∥∥

≤
∥∥c2 − cabac

∥∥+ ∥cabac− cbac∥+ ∥cbac− cbc∥
≤ ∥c− caba∥ ∥c∥+ ∥ca− c∥ ∥bac∥+ ∥cb∥ ∥ac− c∥
≤ d(c, aba) + 2d(c, a)

≤ d(c, aba) + 2
√

d(c, aba).

Thus da + db ≾ daba, and hence da + db ≈ daba.
In particular, for any n ∈ N, setting a = b above and using (2.5) yield

da ≾ dan ≾ da3n ≾ da. (2.13)

Also supx∈[0,1](ϵx+ 1− ϵ)n(1− x) ≤ 1
nϵ
; so

da − 1
nϵ

≤ da − d((ϵa+ 1− ϵ)n, a).
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By (△), d(x, y) ≤ d(x, z) + d(z, y); so d(x, y) − d(z, y) ≤ d(x, z), and hence
dy − d(z, y) ≤ dz. Taking y = a and z = (ϵa+ 1− ϵ)n then yields

da − 1
nϵ

≤ d(ϵa+1−ϵ)n

≾ dϵa+1−ϵ by (2.13)

≾ dϵa+(1−ϵ)b by (2.5).

As n was arbitrary, da ≾ dϵa+(1−ϵ)b, and, by symmetry, db ≾ dϵa+(1−ϵ)b.
On the other hand, dϵa+(1−ϵ)b ≾ da + db follows from

d(c, ϵa+ (1− ϵ)b) = ∥c− c(ϵa+ (1− ϵ)b)∥
= ∥ϵc− ϵca+ (1− ϵ)c− (1− ϵ)cb∥
≤ ϵ ∥c− ca∥+ (1− ϵ) ∥c− cb∥
= ϵd(c, a) + (1− ϵ)d(c, b). □

A slightly better substitute for multiplication than aba might be the following.

Definition 2.14. For any a, b ∈ A1
+, define a⊙ b ∈ A1

+ by

a⊙ b =
√
ab
√
a.

Indeed, note that if ab = ba, then a⊙ b = ab and (a⊙ b)⊙ c = a⊙ (b⊙ c). In
particular, ⊙ is left alternative; that is, (a ⊙ a) ⊙ b = a ⊙ (a ⊙ b) and also right
distributive; that is, a ⊙ (b + c) = a ⊙ b + a ⊙ c. We can also quantify ≪ using
⊙ by

f(a, b) = ∥a− a⊙ b∥ .
The advantage of f over d is that it determines h in a natural way. However, f
has other disadvantages (see the discussion after the result), and so we will not
consider f in the rest of the paper, instead focusing our attention on d.

Proposition 2.15. We have d ≈ f = f ◦ h and

h(a, b) = sup
c∈A1

+

(f(c, b)− f(c, a)). (2.14)

Proof. First note that, for a, b ∈ A1
+,∥∥ab⊥∥∥2

=
∥∥b⊥a2b⊥∥∥ ≤

∥∥a2b⊥∥∥ .
Thus, as binary functions on A1

+,

d(a, b) =
∥∥ab⊥∥∥ ≈

∥∥√ab⊥
∥∥ ≈

∥∥∥√a
√
b⊥

∥∥∥ ≈
∥∥∥√a

√
b⊥

∥∥∥2

=
∥∥√ab⊥

√
a
∥∥ = f(a, b).

As in the proof of (2.5), we have

f(a, b) =
∥∥a⊙ b⊥

∥∥
=

∥∥(a⊙ b⊥)+
∥∥

≤
∥∥(a⊙ c⊥)+

∥∥+
∥∥(a⊙ (b⊥ − c⊥))+

∥∥
≤

∥∥(a⊙ c⊥)
∥∥+ ∥(c− b)+∥

= f(a, c) + h(c, b).
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Thus f = f ◦ h and h(a, b) ≥ supc∈A1
+
(f(c, b) − f(c, a)). Conversely, take a, b ∈

A1
+. If h(a, b) = 0, then the reverse inequality is immediate from h(a, b) =

f(0, b)− f(0, c). Otherwise, for any ϵ > 0, we can take a pure state ϕ on A with
h(a, b) < ϕ(a− b) + ϵ. By [6, Proposition 2.2], we have c ∈ A1

+ with

ϕ(c) = 1 and ∥c⊙ a− cϕ(a)∥ < ϵ.

Thus
∥∥c⊙ a⊥ − cϕ(a⊥)

∥∥ < ϵ; so
∥∥c⊙ a⊥

∥∥ <
∥∥cϕ(a⊥)∥∥+ ϵ = ϕ(a⊥) + ϵ and

h(a, b) < ϕ(a− b) + ϵ

= ϕ(b⊥ − a⊥) + ϵ

= ϕ(c⊙ b⊥)− ϕ(a⊥) + ϵ

<
∥∥c⊙ b⊥

∥∥−
∥∥c⊙ a⊥

∥∥+ 2ϵ.

= f(c, b)− f(c, a) + 2ϵ.

As ϵ > 0 was arbitrary, we are done. □
The drawback of f is that it may not be a distance. Indeed, by (2.14), f is a

distance if and only if h ≤ f . But by Corollary 2.10, for p, q ∈ P(A),

h(p, q) = d(p, q) =
√
∥pq⊥p∥ =

√
f(p, q).

So h ≰ f whenever we have p, q ∈ P(A) with 0 < f(p, q) < 1. For example, if
A = M2, then we can take any noncommuting rank 1 projections for p and q.

3. Filters

The main purpose of this section is to prove Theorem 3.2, characterizing the
C∗-algebra filters from [8] in various ways using the theory just developed for the
distances d and h. First we introduce some general terminology.

Definition 3.1. Given D : X ×X → [0,∞], we define the following for Y ⊆ X.

a, b ∈ Y ⇔ inf
c∈Y

(D(c, b) +D(c, a)) = 0. (D-filter)

a, b ∈ Y ⇒ inf
c∈Y

(D(c, b) +D(c, a)) = 0. (D-directed)

b ∈ Y ⇐ inf
c∈Y

D(c, b) = 0. (D-closed)

b ∈ Y ⇒ inf
c∈Y

D(c, b) = 0. (D-initial)

b ∈ X ⇒ inf
c∈Y

D(c, b) = 0. (D-coinitial)

c ∈ X ⇒ inf
b∈Y

D(c, b) = 0. (D-cofinal)

For any operation • : Xn → X, we also call Y •-closed if •[Y n] ⊆ Y .

Note these terms extend a number of familiar concepts from metric, order, and
C∗-algebra theory. For example, d-cofinal ≥-directed subsets of A1

+ are increasing
approximate units in the usual sense, when considered as self-indexed nets.

If D is a metric, D-coinitial/cofinal means dense while D-closed means closed,
with respect to the usual ball topology defined by D. Other terms become
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trivial, for example, arbitrary subsets are D-initial, while the empty and one-
point subsets are the only D-directed subsets. In particular, for C∗-algebras,
e-closed/coinitial means norm closed/dense in the usual sense.

On the other hand, for any order relation ≤ (again identified with its charac-
teristic function), ≤-closed means upwards closed, ≤-directed means downwards
directed and ≤-cofinal means cofinal in the usual sense. In particular, ≤-filters
are the usual order-theoretic filters and, more generally,

D-filter ⇔ D-directed and D-closed.

We recall that F ⊆ A1
+ is a norm filter, according to [8, Definition 3.1], if

inf
k∈N

a1,...,ak∈F

∥∥a1a2 . . . akb⊥∥∥ = 0 ⇒ b ∈ F.

Also recall that a subset C of a vector space X is convex if ϵa + (1 − ϵ)b ∈ C
whenever a, b ∈ C and ϵ ∈ (0, 1), while F ⊆ C is a face of C if the converse also
holds; that is, if, for all a, b ∈ C and ϵ ∈ (0, 1),

a, b ∈ F ⇔ ϵa+ (1− ϵ)b ∈ F

(for faces it actually suffices to take ϵ = 1
2
or any other fixed element of (0, 1)).

Theorem 3.2. For F ⊆ A1
+, the following are equivalent.

(1) F is a d-filter.
(2) F is a d-initial h-filter.
(3) F is the norm closure of a d-initial ≤-filter.
(4) F is norm closed, ≤-closed and ⊙-closed.
(5) F is norm closed, ≤-closed, 2-closed, and convex.
(6) F is a norm closed d-cofinal face.
(7) F is a norm filter.

If A is separable or commutative, they are also equivalent to the following.

(8) F is the norm closure of a ≪-filter.

Proof.

(1)⇔(2) For any a, b ∈ A1
+, (2.4) yields

inf
c∈F

(h(c, b) + h(c, a)) ≤ inf
c∈F

(2d(c, b) + 2d(c, a)).

Conversely, if F is d-initial, then

inf
c∈F

(h(c, b) + h(c, a)) = inf
c∈F

inf
d∈F

(2d(d, c) + h(c, b) + h(c, a))

≥ inf
d∈F

(d ◦ h(d, b) + d ◦ h(d, a))

≥ inf
c∈F

(d2(c, b) + d2(c, a)),

by (2.5), so infc∈F (h(c, b) + h(c, a)) = 0 if and only if infc∈F (d(c, b) +
d(c, a)) = 0. Thus if F is a d-initial h-filter, then F is a d-filter, and,
conversely, if F is a d-filter, and hence d-initial, then F is an h-filter.

Note (4)⇒(7) eliminates the real rank zero hypothesis from [8, Proposition 3.5].
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(1)⇒(5) By (2.13), da2 ≾ da and dϵa+(1−ϵ)b ≾ da + db. So, as h ≤ e quantifies ≤,

d-filter ⇒ 2-closed and convex.

h-closed ⇒ norm closed and ≤-closed.

Thus (1)⇒(5) now follows from (1)⇒(2).
(5)⇒(1) For any a ∈ A1

+, d(a
2n , a) → 0 as

d(an, a) =
∥∥ana⊥∥∥ ≤ sup

x∈[0,1]
xn(1− x) ≤ 1/n. (3.1)

Taking a = 1
2
(b + c), (2.13) yields db + dc ≾ da. Also d(a2

n
, a) → 0 and,

by (2.8), a ≾ h so

2-closed and convex ⇒ d-directed.

norm closed and ≤-closed ⇒ h-closed.

As h ≾ d, h-closed implies d-closed.
(1)⇒(4) As (2.13) yields da⊙b ≾ d√

a + db ≾ da + db,

d-filter ⇒ ⊙-closed.

By (1)⇒(2), any d-filter is h-closed and hence norm closed and ≤-closed.
(4)⇒(1) For c = a⊙ b, da + db ≾ d√

a + db ≾ dc and d(c2
n
, c) → 0 (see (3.1)); so

⊙-closed ⇒ d-directed.

By (2.8) and (2.4), a ≾ h ≾ d; so norm closed and ≤-closed imply that
d-closed.

(7)⇒(1) We immediately see that

norm filter ⇒ d-closed.

For any a, b ∈ F ,
∥∥(aba)n(aba)⊥∥∥ → 0, by (3.1); so aba ∈ F . Thus

(aba)3
n ∈ F , too; so, as da + db ≾ daba,

norm filter ⇒ d-directed.

(1)⇒(7) Assume that F ⊆ A1
+ is a d-filter, and take b ∈ A1

+ with

inf
k∈N

a1,...,ak∈F

∥∥a1a2 . . . akb⊥∥∥ = 0.

As F is d-directed, for any a1, . . . , ak ∈ F and ϵ > 0, we can find a ∈ F
with d(a, aj) ≤ ϵ, for all j ≤ k, and hence

d(a, b) =
∥∥a(a⊥k + ak)b

⊥∥∥
≤

∥∥aa⊥k ∥∥+
∥∥aakb⊥∥∥

≤ ϵ+
∥∥a(a⊥k−1 + ak−1)akb

⊥∥∥ ≤ · · ·
≤ kϵ+

∥∥a1a2 . . . akb⊥∥∥ .
Thus infa∈F d(a, b) = 0. As F is d-closed, b ∈ F ; so F is a norm filter.
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(6)⇒(4) Assume F is a norm closed face of A1
+. We first claim that

a, b ∈ F ⇒ [a, b] ⊆ F,

where [a, b] = {c ∈ A1
+ : a ≤ c ≤ b}. For if c ∈ [a, b] ⊆ A1

+, then
d = a + b − c ∈ [a, b] ⊆ A1

+ and 1
2
(c + d) = 1

2
(a + b) ∈ F , which implies

c, d ∈ F , as F is a face of A1
+. Next we claim that

a ∈ F ⇒ f(a) ⊆ F,

for any continuous f on [0, 1] taking 0 to 0 and 1 to 1, as in [7, Lemma
2.1]. Let g(a) = (2a−1)+ and h(a) = g(a⊥)⊥. Then 1

2
(g(a)+h(a)) = a; so

g(a), h(a) ∈ F . Thus g(n)(a), h(n)(a) ∈ F , for all n (where g(n)(a) means
g composed with itself n times), and hence

f(a) ∈
∪

[g(n)(a), h(n)(a)] ⊆ F.

Now we claim F is ⊙-closed, as in the proof of [7, Theorem 2.9]. For given
a, b ∈ F and ϵ ∈ (0, 1), let cϵ = (ϵ

√
a+ (1− ϵ)b) ∈ F ; so

ϵcϵ
√
acϵ + (1− ϵ)cϵbcϵ = c3ϵ ∈ F,

and hence cϵbcϵ ∈ F . As ϵ → 1, cϵbcϵ → a⊙ b ∈ F , as required.
To see that F is ≤-closed when F is also d-cofinal, take a ∈ A1

+ with
a ≥ b ∈ F and (cn) ⊆ F with d(a, cn) → 0. Then cn ⊙ b ∈ F and
cn ⊙ b ≤ cn ⊙ a ≤ cn; so cn ⊙ a → a ∈ F , by our first claim above.

(1)⇒(6) Take a d-filter F . By (1)⇒(5), F is norm closed and convex. As F is
d-initial, d-closed, and da + db ≾ dϵa+(1−ϵ)b, F is also a face of A1

+.
As a ≾ h ≾ d on A1

+, for any ϵ > 0, we have δ > 0 such that d(b, c) < δ
implies a(b, c) < ϵ; that is, there exists c′ ≥ b with ∥c− c′∥ < ϵ. As A has
an approximate unit, for any a ∈ A1

+ and b ∈ F , we have c ∈ A1
+ with

d(a, c),d(b, c) < min(δ, ϵ). Taking c′ as above, we have c′ ≥ b, and hence
c′ ∈ F , as F is ≤-closed, as well as d(a, c′) ≤ d(a, c) + ∥c− c′∥ < 2ϵ, by
(2.1). As ϵ > 0 was arbitrary, this shows that F is d-cofinal.

(3)⇒(2) As d and h are e-invariant and a ≾ h, for any F ⊆ A1
+,

F is d-initial ⇒ F is d-initial.

F is ≤-directed ⇒ F is h-directed.

F is ≤-closed ⇒ F is h-closed.

(1)⇒(3) Take a d-filter F , and assume first that A is unital. Consider the invertible
elements G of F . For every a ∈ F and ϵ > 0, (1− ϵ)a+ ϵ ∈ G so G = F .
As F is ≤-closed and d-initial, so is G. It only remains to show that G
is ≤-directed. So take a, b ∈ G. For some ϵ > 0 and a′, b′ ∈ A1

+, we have
a = ϵ+ (1− ϵ)a′ and b = ϵ+ (1− ϵ)b′. As F is a face of A1

+ containing 1,
a′, b′ ∈ F . As F is h-directed, we have c′ ∈ F with h(c′, a′),h(c′, b′) < ϵ/2.
Letting c = ϵ + (1 − ϵ)c′ ∈ F , we thus have h(c, a),h(c, b) < ϵ/2. Thus
d = c − (c − a)+ − (c − b)+ is an invertible element of A1

+ (as c ≥ ϵ and
∥c− d∥ < ϵ), and we further claim that d ∈ F , and hence d ∈ G. Indeed,
for any δ > 0, we have e ∈ F with d(e, a),d(e, b),d(e, c) < δ. Thus
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∥e(c− a)+∥ ≤ ∥e(c− a)∥ < 2δ and ∥e(c− b)+∥ < 2δ; so d(e, d) < 5δ. As
δ > 0 was arbitrary and F is d-closed, we have d ∈ F , as required.

If A is not unital, then first extend F to a d-filter F ′ in Ã1
+ by taking

the (upwards) ≤-closure. By what we just proved, the invertible elements
G′ of F ′ are a ≤-filter with G′ = F ′. In particular, G′ is d-coinitial in F ′.
Thus, for any a ∈ F , aG′a is d-coinitial in F . Hence the ≤-closure G of
aG′a in A1

+ is a d-initial ≤-filter in A1
+ with G = F , as a ≾ h ≾ d, by

(2.4) and Theorem 2.6.
(1)⇒(8) If A is separable, then we can take dense (an) ⊆ F and let a =

∑
2−nan ∈

F . As noted above, f(a) ∈ F , for any continuous f on [0, 1] taking 0
to 0 and 1 to 1. Thus by choosing such (fn) converging pointwise to
0 everywhere except at 1 and satisfying f1 ≫ f2 ≫ . . ., the (upwards)
≪-closure G of (fn(a)) is a ≪-filter with F = G.
Now take

G = {a ∈ F : a ≫ b ∈ F}.

Again, if a ∈ F , then f(a) ∈ F , for any continuous f on [0, 1] taking 0 to
0 and 1 to 1. In particular, for any ϵ > 0 we can take f(x) = (1 + ϵ)x ∧ 1
and g(x) = (ϵ−1(x − 1) + 1)+; so f(a) ≫ g(a) ∈ F , and hence f(a) ∈ G.
As ϵ → 0, f(a) → a; so F = G. Likewise, if a ≫ b ∈ F , then a ≫ f(b) ≫
g(b) ∈ F ; so

G = {a ∈ F : a ≫ b ≫ c ∈ F}.

If A is commutative, a ≫ b and a′ ≫ b′ imply aa′ ≫ bb′. For a, a′ ∈ G,
we have b, b′, c, c′ ∈ F with a ≫ b ≫ c and a′ ≫ b′ ≫ c′; so bb′ ≫ cc′ ∈ F ,
and hence a, a′ ≫ bb′ ∈ G; that is, G is ≪-directed, and hence a ≪-filter.

(8)⇒(3) As d quantifies ≪ and ≪ ◦ ≤ ⊆ ≪ ⊆ ≤,

≪-initial ⇒ d-initial.

≪-closed and ≪-initial ⇒ ≤-closed.

≪-directed ⇒ ≤-directed. □

In (4) and (5), we could not replace ‘≤-closed’ with ‘≪-closed’. For example,
the norm closure C of the convex combinations of the functions xn in C([0, 1]),
for n ∈ N, satisfies these conditions – as every f ∈ C is positive on (0, 1], C
is vacuously ≪-closed – however C is not ≤-closed, being bounded above by
x. Although we could replace ‘norm closed and ≤-closed’ with ‘h-closed’ or ‘d-
closed’.

Furthermore, not every d-filter is the norm closure of a ≪-filter. Indeed, if

this was the case, then, for any nonunital A, the d-filter {1− a : a ∈ A1
+} in Ã1

+

would be the norm closure of a ≪-filter F . Then 1−F would be a ≪-increasing
approximate unit of A. However, a C∗-algebra was recently constructed in [12,
Theorem 1.4] that does not possess such an approximate unit. But all ω1-unital
C∗-algebras have ≪-increasing approximate units, by [12, Corollary 4.3]; so (8)
could be extended to any A with a dense subset of size ≤ ω1.

We can at least say a bit more in the commutative case.
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Proposition 3.3. If A is commutative and F ⊆ A1
+ is a d-filter, then

G = {a ∈ F : a ≫ b ∈ F}
is the unique ≪-filter with F = G.

Proof. The only thing left to show is uniqueness. By the Gelfand represtentation,
we may assume that A = C0(X) for some locally compact Hausdorff X; so

f ≪ g ⇔ X \ f−1{0} ⊆ g−1{1}.
Take a d-filter F ⊆ A1

+, and let

C =
∩
f∈F

f−1{1}.

For any ≪-filter G with G = F , we must also have C =
∩

g∈G g−1{1}. Otherwise,

we could pick some x ∈
∩

g∈G g−1{1} \ C and f ∈ F with f(x) ̸= 1, and then

∥f − g∥ ≥ g(x)− f(x) = 1− f(x) > 0, for all g ∈ G, contradicting G = F .
Take f ∈ A1

+ with C ⊆ f−1{1}◦. For every x ∈ X \ f−1{1}◦, we have gx ∈ G
with gx(x) ̸= 1. Thus we can pick arbitrary g ∈ G and cover the compact set
g−1[1

2
, 1] \ f−1{1}◦ with finitely many open sets X \ g−1

x1
{1}, . . . , X \ g−1

xk
{1}. As

G is ≪-directed, we have some h ∈ G with h ≪ g, gx1 , . . . , gxk
, and hence

X \ h−1{0} ⊆ g−1{1} ∩ g−1
x1
{1} ∩ . . . ∩ g−1

xk
{1} ⊆ f−1{1}◦ ⊆ f−1{1};

that is, h ≪ f . Thus f ∈ G, as G is ≪-closed, so

{f ∈ F : f ≫ g ∈ F} ⊆ {f ∈ A1
+ : C ⊆ f−1{1}◦} ⊆ G.

Conversely, G ⊆ {f ∈ F : f ≫ g ∈ F}, as G is a ≪-filter contained in F . □
This does not extend to noncommutative A; that is,

G = {a ∈ F : a ≫ b ∈ F}
may fail to be a ≪-filter and F may contain various dense ≪-filters. For example,
consider A = C([0, 1],M2), and take everywhere rank 1 projections p, q ∈ A with
p(0) = P = q(0) but p(x) ̸= q(x), for all x > 0. Also take continuous fn on [0, 1]
with f1 ≫ f2 ≫ . . . and

∩
n f

−1{1} = {0}. Then the ≪-closures F,G ⊆ A1
+ of

(fnp) and (fnq) are distinct ≪-filters with F = G = {a ∈ A1
+ : a(0) ≥ P}.

Definition 3.4. We say Y generates aD-filter F ⊆ X if F is the smallestD-filter
containing Y . We call X a D-semilattice if every Y ⊆ X generates a D-filter.

For posets, ≤-semilattices are precisely the meet semilattices in the usual sense.

Proposition 3.5. If ≤ is a partial order on X, then

X is a ≤-semilattice ⇔ every x, y ∈ X has an infimum x ∧ y ∈ X.

Proof. If every x, y ∈ X has an infimum x ∧ y ∈ X, then the ≤-closure of the
∧-closure of any Y ⊆ X is the ≤-filter generated by Y ; so X is a ≤-semilattice.
If some x, y ∈ X have no infimum, then∩

z≤x,y

{w ∈ X : z ≤ w}
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is an intersection of ≤-filters containing x and y but no lower bound of x and y.
Thus {x, y} does not generate a ≤-filter, and hence X is not a ≤-semilattice. □
Proposition 3.6. A1

+ is a d-semilattice.

Proof. For any B ⊆ A1
+, let D be the ⊙-closure of B; so D is d-directed and

every d-filter containing B must contain D. Let F be the d-closure of D; so F is
a d-filter and every d-filter containing B, and hence D contains F ; that is, F is
the d-filter generated by B. □
Definition 3.7. We call Y ⊆ X D-centered if, for all y1, . . . , yk ⊆ Y ,

inf
x∈X

D(x, y1) + . . .+D(x, yk) = 0.

If ≤ is a partial order on X, then Y ⊆ X is ≤-centered if and only if every
finite subset of Y has a lower bound in X; that is, if and only if Y is centered in
the usual order theoretic sense.

As with filters, we see that the centered subset analogs for C∗-algebras con-
sidered in [8] are precisely the d-centered subsets, this time in the positive unit
sphere A=1

+ rather than the positive unit ball A1
+. Specifically, recall that C ⊆ A=1

+

is norm centered, according to [8, Definition 2.1], if the multiplicative closure of
C is contained in the unit sphere.

Proposition 3.8. For C ⊆ A=1
+ , the following are equivalent.

(1) C is d-centered in A=1
+ .

(2) C is h-centered in A=1
+ .

(3) C is norm centered.
(4) C generates a proper d-filter in A1

+.

Proof.

(1)⇒(2) Immediate from (2.4).
(2)⇒(1) If ∥a∥ = 1, then ∥an∥ = 1 and, for any b ∈ A1

+, (2.6) yields

d(an, b)2 ≤ d(an, a) + h(a, b) → h(a, b).

(1)⇒(3) If C is d-centered, then, for any a1, . . . , ak ∈ C and ϵ > 0, we have b ∈ A=1
+

with d(b, a1) + . . .+ d(b, ak) < ϵ so

1 =
∥∥b(a1 + a⊥1 )

∥∥
≤

∥∥b(a2 + a⊥2 )a1
∥∥+ d(b, a1)

≤
∥∥b(a3 + a⊥3 )a2a1

∥∥+ d(b, a2) + d(b, a1) ≤ . . .

≤ ∥bak . . . a1∥+ ϵ

≤ ∥ak . . . a1∥+ ϵ.

As ϵ > 0 was arbitrary, C is norm centered.
(3)⇒(4) If the multiplicative closure of C is contained in the unit sphere, then the

same goes for the closure D of C under the operation (a, b) 7→ aba. The
same then applies to the d-closure F of D; so, in particular, F is proper.
As in the proof of Proposition 3.6, F is the d-filter generated by C.
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(4)⇒(1) First note that a d-filter F in A1
+ is a proper subset of A1

+ if and only if it
is contained in the positive unit sphere A=1

+ . If a ∈ F and ∥a∥ < 1, then
an ∈ F for all n. Thus, for any b ∈ A1

+,

d(an, b) ≤ ∥an∥ = ∥a∥n → 0,

and hence b ∈ F , as F is d-closed; that is, F = A1
+, contradicting proper-

ness.
If C is contained in such a d-filter F , then, for any c1, . . . , cn ∈ C,

inf
a∈A=1

+

d(a, c1) + . . .+ d(a, ck) ≤ inf
a∈F

d(a, c1) + . . .+ d(a, ck) = 0,

as F is d-directed; that is, C is d-centered in A=1
+ . □

In particular, the maximal d-centered subsets of A=1
+ are precisely the maximal

proper d-filters in A1
+. These were the original quantum filters defined by Farah

and Weaver to study pure states. Pure states correspond to minimal projections
in A∗∗, and, more generally, d-filters correspond to the compact projections in
A∗∗ introduced by Akemann (which was touched on briefly in [8, Corollary 3.4]).
This is the connection we explore next.

4. Compact Projections

Let ↑p denote the upper set in A1
+ defined by any projection p ∈ A∗∗; that is,

↑p = {a ∈ A1
+ : p ≤ a}.

Also let
∧

below denote the infimum with respect to ≤ on A∗∗
sa .

Definition 4.1. A projection p ∈ A∗∗ is compact if p =
∧

↑p.

Note for p to be compact it is implicit that ↑p is nonempty (and actually has
an infimum in A∗∗

sa – as A∗∗
sa is not a complete lattice, not all subsets have infima).

Theorem 4.2. We have mutually inverse bijections

p 7→ ↑p and F 7→
∧

F

between compact projections p ∈ A∗∗ and d-filters F ⊆ A1
+. Moreover, for com-

pact projections p, q ∈ A∗∗ and corresponding d-filters F,G ⊆ A1
+,

d(p, q) = sup
b∈G

inf
a∈F

d(a, b). (4.1)

Proof. Take a projection p ∈ A∗∗, and consider ↑p. If p = pa, then pa2 = pa = p;
that is, p ≪ a implies p ≪ a2; so ↑p is 2-closed. Likewise, if p = pa, p = pb, and
ϵ ∈ (0, 1), then p(ϵa+ (1− ϵ)b) = ϵp+ (1− ϵ)p = p; that is, p ≪ (ϵa+ (1− ϵ)b);
so ↑ p is convex. Also p ≪ a ≤ b ∈ A1

+ implies p ≪ b, as d2 ≤ d ◦ h on A1
+,

so ↑ p is ≤-closed. Finally, if an → a and p ≪ an, for all n, then d(p, a) ≤
limn(d(p, an) + e(an, a)) = 0, as d is e-invariant; that is, p ≪ a; so ↑ p is norm
closed, and thus a d-filter, by Theorem 3.2.

Conversely, take a d-filter F ⊆ A1
+ which, by (3.2), contains a dense ≤-filter

F ′. The pointwise infimum of F ′ on A∗1
+ is an affine function and thus defines an
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element p ∈ A∗∗. As ≤ on A∗∗
sa is determined by A∗1

+ , p =
∧

F ′ =
∧

F =
∧

↑ p.
As p takes A∗1

+ to [0, 1], p is positive and has norm at most 1; that is, p ∈ A∗∗1
+ .

As F is d-initial,

sup
a∈F

d(p, a)2 ≤ sup
a∈F

inf
b∈F

(h(p, b) + d(b, a)) = 0;

that is, for all a ∈ F , p ≪ a; so
√
p ≪ a. Thus

√
p ≤

∧
F = p; so p is a

projection.
Now take another d-filter G containing a dense ≤-filter G′ and defining a

compact projection q =
∧
G which is a pointwise infimum of G on A∗1

+ . Then
pG′p is also ≤-directed; so pqp =

∧
pG′p =

∧
pGp is also a pointwise infimum on

A∗1
+ , and hence

d(p, q)2 =
∥∥pq⊥p∥∥ = sup

ϕ∈A∗1
+

ϕ(pq⊥p)

= ϕ(p)− inf
ϕ∈A∗1

+

ϕ(pqp)

= ϕ(p)− inf
ϕ∈A∗1

+ ,b∈G
ϕ(pbp)

= sup
ϕ∈A∗1

+ ,b∈G
ϕ(pb⊥p)

= sup
ϕ∈A∗1

+ ,b∈G
ϕ(pb⊥2p) (4.2)

= sup
b∈G

∥∥pb⊥2p
∥∥

= sup
b∈G

d(p, b)2.

For (4.2), note that
∥∥ab⊥∥∥2

=
∥∥ab⊥2a

∥∥ ≤
∥∥ab⊥2

∥∥ ≤
∥∥ab⊥∥∥; so db ≈ db⊥2⊥ . Thus,

as G is d-initial and d-closed, b ∈ G if and only if b⊥2⊥ ∈ G; that is,

{b⊥ : b ∈ G} = {b⊥2 : b ∈ G}.

Fix b ∈ G, and define weak* continuous fa : A
∗1
+ → [0, 1] by

fa(ϕ) = (ϕ(b⊥ab⊥)−
∥∥b⊥pb⊥∥∥)+.

Then (fa)a∈F ′ is a decreasing net in [0, 1]A
∗1
+ (with the product ordering) and

converges to 0 pointwise. As A∗1
+ is weak* compact, Dini’s theorem says (fa)a∈F ′

must actually converge uniformly to 0 on A∗1
+ , and hence

inf
a∈F ′

∥∥b⊥ab⊥∥∥ ≤
∥∥b⊥pb⊥∥∥ ≤ inf

a∈F

∥∥b⊥ab⊥∥∥ .
As F is 2-closed and

√
-closed (as F is ≤-closed),

inf
a∈F

d(a, b)2 = inf
a∈F

∥∥b⊥a2b⊥∥∥ = inf
a∈F

∥∥b⊥ab⊥∥∥ = inf
a∈F ′

∥∥b⊥ab⊥∥∥ =
∥∥b⊥pb⊥∥∥ = d(p, b)2.

Thus, together with the above we have

d(p, q) = sup
b∈G

d(p, b) = sup
b∈G

inf
a∈F

d(a, b). (4.3)
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Now note that

sup
b∈G

inf
a∈F

d(a, b) = 0 ⇔ G ⊆ F. (4.4)

Indeed, the d-initiality of F yields ⇐, while the fact F is d-closed yields ⇒.
Combined with (4.3), this shows that p = q implies F = G; that is, the map F 7→∧

F is injective on d-filters. Thus the given maps are bijections, as required. □

In the above proof, we used dense ≤-filter subsets of d-filters in a couple of
places, but this was not absolutely necessary. Indeed, one could verify directly
that pointwise infimums on A∗1

+ of h-directed subsets are affine and hence define
elements of A∗∗. Likewise, Dini’s theorem can be generalized to h-directed subsets
and even h-Cauchy nets – see [10, Theorem 1].

The gist of Theorem 4.2 is that compact projections in A∗∗ can be more con-
cretely represented by d-filters in A, and this extends to various relations or func-
tions one might consider. For example, from (4.1) and (4.4) we immediately see
that, for compact projections p, q ∈ A∗∗ and corresponding d-filters F,G ⊆ A1

+,

p ≤ q ⇔ F ⊇ G.

Likewise, as ∥p− q∥ = max{
∥∥pq⊥∥∥ ,∥∥qp⊥∥∥}, (4.1) yields

∥p− q∥ = max(sup
b∈G

inf
a∈F

d(a, b), sup
a∈F

inf
b∈G

d(b, a));

that is, the metric on compact projections corresponds to the Hausdorff metric
on d-filters. We can also show that the natural quantification of orthogonality
on compact projections is determined by the corresponding d-filters.

Theorem 4.3. For compact p, q ∈ A∗∗ and d-filters F = ↑p and G = ↑q,

∥pq∥ = inf
a∈F,b∈G

∥ab∥ .

Proof. Let r = infa∈F,b∈G ∥ab∥. As F ⊆ ↑p and G ⊆ ↑q, we immediately have

∥pq∥2 = ∥qpq∥ ≤ inf
a∈F

∥∥qa2q∥∥ = inf
a∈F

∥aqa∥ ≤ inf
a∈F,b∈G

∥∥ab2a∥∥ = r2.

Conversely, take a dense ≤-filter F ′ ⊆ F , and, for any a ∈ F ′, consider

A∗1
+a = {ϕ ∈ A∗1

+ : ϕ[G] = {1} and ϕ(a) ≥ r2}.

By [8, Theorem 2.2], each A∗1
+a is nonempty. So

∩
a∈F ′ A∗1

+a is a directed intersec-
tion of nonempty weak* compact subsets and we thus have some ϕ ∈

∩
a∈F A∗1

+a.

As ϕ[G] = {1}, ϕ(q) = 1 and hence ∥pq∥2 = ∥qpq∥ ≥ ϕ(qpq) = ϕ(p) ≥ r2, as p is
the pointwise infimum of F ′ on A∗1

+ (see the proof of Theorem 4.2). □

A natural question to ask is if the infimum above is actually a minimum.

Question 2 ([2]). Do we always have a ∈ F and b ∈ G with ∥pq∥ = ∥ab∥?

When pq = 0 the answer is yes, by Akemann’s noncommutative Urysohn lemma
– see [3, Lemma III.1]. However, we feel that a truly noncommutative Urysohn
lemma should apply to compact projections that do not commute.
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Speaking of commutativity, note that commuting a ∈ A1
+ and p ∈ P(A∗∗)

always satisfy the following (taking composition in A1
+)

(≪ ◦ e)(p, a) = d(p, a). (4.5)

Indeed, if d(p, a) = r < 1, then p ≪ f(a) ∈ A1
+, for any continuous function f on

[0, 1] taking 0 to 0 and [1− r, 1] to 1. Thus infp≪b∈A1
+
∥a− b∥ = r as required. In

particular, for any projection p ∈ A∗∗, infa∈A1
+,ap=pa d(p, a) must either be 0 or 1.

However, the commutativity of p and a here is crucial.

Example 4.4. Take a rank one projection Q ∈ M2, and consider the C∗-algebra

A = {a ∈ C([0, 1],M2) : a(0) ∈ CQ}.

Take any other rank one projection P ∈ M2, and define p on [0, 1] by p(0) = Q
and p(x) = P otherwise. This represents a closed projection in A∗∗ (as the atomic
representation is faithful on closed projections – see [20, Theorem 4.3.15]) with
infa∈A1

+
d(p, a) = ∥P −Q∥, which can be anywhere between 0 and 1.

However, even when a and p do not commute, we can still prove a weaker
uniform substitute for (4.5) for certain ‘closed’ projections.

First, dual to compact projections, we define open projections. Specifically, let
↓p denote the lower set in A1

+ defined by any projection p ∈ A∗∗; that is,

↓p = {a ∈ A1
+ : a ≤ p}.

Also let
∨

below denote the supremum with respect to ≤ on A∗∗
sa .

Definition 4.5. A projection p ∈ A∗∗ is open if p =
∨

↓p.

Definition 4.6. A projection p ∈ A∗∗ is closed if p⊥ is open.

Note the following proof is inspired by interpolation arguments by Brown – see
[15] – and adapted by Akemann and Pedersen – see [7] (although the distance-like
functions they used were never formalized as such).

Theorem 4.7. Assume that p ∈ A∗∗ is a closed projection. On A1
+, we have

p(≪ ◦ e) ≾ pd (4.6)

Proof. If infa∈A1
+
d(p, a) > 0, then (4.6) holds vacuously on A1

+. So assume that

inf
a∈A1

+

d(p, a) = 0. (4.7)

We first claim a weakened form of (4.6) on A1
+, namely,

∀ϵ > 0 ∃δ > 0 ∀a ∈ A1
+ (4.8)

d(p, a) < δ ⇒ ∀γ > 0 ∃b ∈ A1
+ (d(p, b) < γ and ∥a− b∥ < ϵ).

Indeed, we claim that we can take δ = 1
32
ϵ2. To see this, take ϵ > 0 and a ∈ A1

+

with d(p, a) < 1
32
ϵ2. For any γ > 0, we have u ∈ A1

+ with d(p, u) < 1
2
γ2, by
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(4.7). As A has an approximate unit, we have v ∈ A1
+ with d(a, v) < 1

32
γ4 and

d(u, v) < 1
2
γ2 − d(p, u). Thus d(p, v) ≤ d(p, u) + d(u, v) < 1

2
γ2 and, by (2.8),

a(a, v) ≤ 2
√
h(a, v) ≤ 2

√
2d(a, v) < 1

2
γ2.

Hence we have w ∈ A1
+ with a ≤ w and ∥w − v∥ < 1

2
γ2. Thus

d(p, w) ≤ d(p, v) + e(v, w) < γ2 (4.9)

and h(w − a, p⊥) ≤ h(a⊥, p⊥) = h(p, a) ≤ 2d(p, a) < 1
16
ϵ2. As w − a − p⊥ is

the pointwise infimum on A∗1
+ of (w− a− c)p⊥≥c∈A1

+
, Dini’s theorem again yields

c ∈ A1
+ with c ≤ p⊥ and h(w − a, c) < 1

16
ϵ2. By (2.9), b(w − a, c) < 1

2
ϵ; that is,

we have d ∈ A1
+ with d ≤ c and ∥w − a− d∥ < 1

2
ϵ. Setting b = (w − d)+,

∥w − d− b∥ = ∥(d− w)+∥ ≤ ∥(d+ a− w)+∥ ≤ ∥d+ a− w∥ < 1
2
ϵ;

so ∥a− b∥ ≤ ∥a+ d− w∥+ ∥w − d− b∥ < ϵ. As pd = 0 and w − d ≤ b,

d(p, b)2 ≤ d(p, w − d) + h(w − d, b) = d(p, w) < γ2,

by (4.9); thus proving (4.8).
Now (4.6) is saying the same thing as (4.8), just with d(p, b) < γ strengthened

to p ≪ b. To prove this, we iterate (4.8). First take positive (δn) satisfying (4.8)
with ϵ replaced by ϵ/2n, for any fixed ϵ > 0. For any a1 ∈ A1

+ with d(p, a1) < δ1,
we can then recursively take an+1 ∈ A1

+ with d(p, an+1) < δn+1 and ∥an − an+1∥ <
ϵ/2n. Thus (an) has a limit b ∈ A1

+ with d(p, b) ≤ d(p, an) + e(an, b) → 0; that
is, p ≪ b. Also ∥a1 − b∥ <

∑
ϵ/2n = ϵ, thus proving (4.6). □

Now we can show that ‘compact’ is the same as ‘closed and bounded’. Indeed,
this is usually taken as the definition; that is, compact projections are usually
defined as closed projections satisfying some notion of boundedness, like p ≤ a ∈
A+ (see [3, Definition II.1]) or p ≪ a ∈ A1

+ (see [19, §3.5]). However, these
definitions make it difficult to appreciate that ‘compact’ and ‘open’ are dual to
each other in a natural order theoretic way. To make this duality clear, and to
avoid any debate about the most appropriate notion of boundedness, we opted to
define compact and open projections independently via ↑ p and ↓ p, respectively
and save the discussion of boundedness until now.

Note that when A is commutative, (4.10) below actually holds for an arbitrary
p ∈ P(A∗∗) (see (4.5)). But in the noncommutative case, it is crucial for p to be
closed, as we show in Example 4.9 below.

Corollary 4.8. A projection p ∈ A∗∗ is compact if and only if p is closed and

inf
a∈A1

+

d(p, a) = 0.

Proof. If p is compact, then ↑p is nonempty; so certainly infa∈A1
+
d(p, a) = 0. To

see that p is closed, consider

B = {a ∈ A : ap = 0 = pa},
which is immediately seen to be a hereditary C∗-subalgebra of A. In particular,
B has an approximate unit; so B1

+ is d-directed, and hence has a supremum
p′ =

∨
B1

+ in A∗∗, which is a projection and also a pointwise supremum on A∗1
+ .
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As bp = 0, for all b ∈ B, we also have p′p = 0 and we claim that in fact p′ = p⊥. If
not, then, identifying A∗∗ with A

′′
in the universal representation of A, we would

have a unit vector v with pv + p′v = 0. Then v defines a state ϕ(a) = ⟨av, v⟩ in
A∗1

+ . As ϕ(p) = 0 and p is compact, we have an ∈ ↑p with ϕ(an) → 0, and hence
anv → 0. As ϕ(1) = 1, we have (un) ⊆ A1

+ with ϕ(un) → 1, and hence unv → v.
Thus bn = a⊥nuna

⊥
n ∈ B1

+ satisfies bnv → v; so ϕ(bn) → 1. But ϕ(bn) ≤ ϕ(p′) = 0,
a contradiction. Thus p′ = p⊥ is open; so p is closed.

If p is closed, then, by (4.6),

inf
a∈A1

+

d(p, a) = 0 ⇒ ∃a ∈ A1
+ (p ≪ a). (4.10)

So we can take a ∈ ↑p. For all b ∈ ↓ p⊥, we then have ab⊥a ∈ ↑p. Also, as p is
closed; that is, p⊥ is open, we have p = p⊥⊥ = (

∨
↓p⊥)⊥ =

∧
(↓p⊥)⊥; so

p = apa =
∧

a(↓p⊥)⊥a =
∧

{ab⊥a : b ∈ ↓p⊥} ≥
∧

↑p ≥ p.

(For the second equality note that, as ϕ(a · a) ∈ A∗1
+ whenever a ∈ A1

+ and
ϕ ∈ A∗1

+ , infc∈C ϕ(c) = ϕ(d), for all ϕ ∈ A∗1
+ , implies infc∈C ϕ(aca) = ϕ(ada), for

all ϕ ∈ A∗1
+ ). Thus p is compact. □

Example 4.9. It is possible to have open p ∈ A∗∗ with

inf
a∈A1

+

d(p, a) = 0 but ∄a ∈ A1
+ (p ≪ a).

To see this, we consider a C∗-subalgebra of C([0, 1],B(H)); that is, the con-
tinuous functions from [0, 1] to B(H) for a separable infinite dimensional Hilbert
space H. First let (en) be an orthonormal basis for H, and let (Pn) be the
rank 1 projections onto (Cen). Take (rn) ⊆ (0, 1) with infn rn = 0, and define
pn : [0, 1] → B(H) by

pn(x) =

{
Pn if x > rn

0 if x ≤ rn.

Define p on [0, 1] by letting p(x) =
∨

n pn(x) (taking the supremum in the pro-
jection lattice of B(H)). Also let K = C([0, 1],K(H)) and B = pKp ∩ K. Let
Q be the projection onto Cv, for v =

∑
2−nen, and let A be the C∗-subalgebra

of C([0, 1],B(H)) generated by B and the constant projection Q⊥. As p =
∨

B1
+

pointwise on [0, 1], we may identify p with the open projection in A∗∗ defined
by B. For any n ∈ N and continuous function fn on [0, 1] with fn(0) = 0 and
fn(x) = 1, for all x ∈ [ 1

n
, 1], an = Q⊥ + fnQ is an element of A. Moreover,

d(p, an) = ∥p(1− fn)Q∥ → 0;

that is, infa∈A1
+
d(p, a) = 0. However, for each x ∈ (0, 1),

{a(x) : a ∈ A} = C1 +K(p′(x)Hp′(x)),

Alternatively, note infa∈A1
+
d(p, a) = 0 implies that the facial support of p is given by

{ϕ ∈ A∗1
+ : ϕ(p) = 1} =

∩
a∈A1

+

{ϕ ∈ A∗1
+ : ϕ(a) ≥ 1− d(p, a)},

which is weak* closed in A∗1
+ , so [5, Lemma 2.4] yields (4.10).
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where p′(x) = p(x) ∨ Q. Thus if p ≤ a ∈ A1
+, then, for all x ∈ (0, 1), we must

have a(x) = 1 − f(x)q′(x), where q′ = p′ − p and f is some function on [0, 1].
But for each n ∈ N, q′ is discontinuous at rn, and so the only way a could be
continuous is if f(rn) = 0 and hence a(rn) = 1. But then continuity yields
a(0) = 1, contradicting the fact that a(0) ≤ Q⊥. Thus there is no a ∈ A1

+ with
p ≪ a.

Incidentally, there are several other boundedness conditions on p that one might
consider. However, they are all equivalent, even in a more general context.

Recall that Br denotes the r-ball of B; that is, B = {b ∈ B : ||b|| ≤ r}.

Proposition 4.10. For any a ∈ A1
+, r > 1 and C∗-subalgebra B ⊆ A, the

following are equivalent .

(1) ∃b ∈ Br
+ (a ≤ b).

(2) infb∈Bsa h(a, b) = 0.
(3) infb∈B1

+
d(a, b) = 0.

(4) infb∈B d(a, b) = 0.

Proof. We immediately have (1)⇒(2) and (3)⇒(4).

(2)⇒(3) By (2.6) (and the existence of an approximate unit for B in B1
+),

inf
b∈B1

+

d(a, b)2 ≤ inf
c∈Bsa

inf
b∈B1

+

(h(a, c) + d(c, b)) = inf
c∈Bsa

h(a, c).

(4)⇒(2) If d(a, bn) → 0; that is, abn → a, and hence b∗nabn → a; then

h(a, b∗nbn) ≤ h(a, b∗nabn) ≤ e(a, b∗nabn) → 0.

(3)⇒(1) See [4, Theorem 1.2]. □
Another relation on compact projections one might like to quantify is ‘interior

containment’. Specifically, define the interior p◦ of any projection p ∈ A∗∗ to be
the largest open projection below p; that is,

p◦ =
∨

↓p.

We quantify the interior containment relation p ≤ q◦ by

c(p, q) = d(p, q◦).

Note d(p, q◦) ≤ d(p, r◦) + d(r◦, r) + d(r, q◦) = d(p, r◦) + d(r, q◦); so c is also a
distance. Another closely related function on compact projections comes from
the ‘reverse Hausdorff distance’ on the corresponding d-filters defined by

g(p, q) = inf
a∈↑p

sup
b∈↑q

d(a, b),

Proposition 4.11. If A is commutative, then c = g on compact projections in
A∗∗.

Proof. We may assume that A = C0(X), for some locally compactX, and identify
p and q with characteristic functions of compact subsets of X; that is, {0, 1}-
valued functions such that p−1{1} and q−1{1} are compact. First note that

p ≤ q◦ ⇔ ∃a ∈ A1
+ (p ≤ a ≤ q). (4.11)
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If p ≤ a ≤ q, then p−1{1} ⊆ a−1(0, 1] ⊆ q−1{1} and hence p−1{1} ⊆ q−1{1}◦;
that is, p ≤ q◦. Conversely, if p ≤ q◦, then Urysohn’s lemma yields a ∈ C0(X)

with q−1{0} ⊆ a−1{0} and p−1{1} ⊆ a−1{1}; so p ≤ a ≤ q. And if p ≤ a ≤ q,
then

inf
f∈F

sup
g∈G

d(f, g) ≤ sup
g∈G

d(a, g) ≤ d(a, q) = 0.

Thus g(p, q) = 0 = c(p, q) when p ≤ q◦.
Conversely, say p ≰ q◦, and hence c(p, q) = 1. For any a ∈ F and r ∈ (0, 1),

a−1(r, 1] ⊆ q−1{1} would imply p−1{1} ⊆ q−1{1}◦, a contradiction. Thus we have
x ∈ a−1(r, 1] \ q−1{1} and again Urysohn’s lemma (or the complete regularity of
X) yields b ∈ C0(X) with b(x) = 0 and q−1{1} ⊆ b−1{1}. Thus b ∈ G and
d(a, b) ≥ a(x)(1 − b(x)) > r. As r was arbitrary, supb∈G d(a, b) = 1, and, as
a was arbitrary, infa∈F supb∈G d(a, b) = 1. Thus g(p, q) = 1 = c(p, q) when
p ≰ q◦. □

In fact, (4.11) holds for any C∗-algebra A, by Akemann’s noncommutative
Urysohn lemma (see [3, Lemma III.1]). However, this is not true for c = g.

Example 4.12. There can be compact p, q ∈ A∗∗ with g(p, q) = 0 but c(p, q) = 1.
To see this, we follow Example 4.9 where we defined A and B satisfying

inf
a∈A1

+

sup
b∈B1

+

d(b, a) = 0. (4.12)

Moreover, any a ∈ A1
+ with ab = 0, for all b ∈ B, would have to be of the

form fq′ for some function f on [0, 1]. Again, as q′ is discontinuous at rn, the
continuity of a would imply f ′(rn) = 0. As long as we chose (rn) ⊆ (0, 1) to
be dense in [0, 1], the continuity of a would then imply a = 0. This remains

true in the unitization, for if we had nonzero a ∈ Ã1
+ with ab = 0, then, as A

is essential in Ã, we would have c ∈ A1
+ with ca ̸= 0; so 0 ̸= ac2a ∈ A1

+ even
though ac2ab = 0, a contradiction. Hence, for the nonzero compact projections

p = (
∨

A1
+)

⊥ ∈ Ã∗∗ and q = (
∨

B1
+)

⊥ ∈ Ã∗∗, we have ↓ q = {0}; that is,
q◦ = 0 so c(p, q) = d(p, 0) = ∥p∥ = 1. But (4.12) implies that g(p, q) = 0, as
d(b, a) = d(a⊥, b⊥).

In general, c can also fail to be e-invariant, even in a weak uniform sense.

Example 4.13. It is possible to have c ̸≾ e ◦ c on compact projections.
To see this, let A = ([0, 1],M2), and let Pθ be the projection onto C(sin θ, cos θ),

Pθ =

[
sin2 θ sin θ cos θ

sin θ cos θ cos2 θ

]
.

For ϵ ≥ 0, consider the compact projections pϵ represented by

pϵ(x) =

{
Pϵ sin(1/x) if x > 0,

1 if x = 0

(this is a projection in the atomic representation of A rather than the universal
representation A∗∗ but again this does not matter as the atomic representation
is faithful on open and closed projections, by [20, Theorem 4.3.15]). So p(x) is a
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rank 1 projection which ‘wiggles’ with amplitude ϵ and increasing frequency as
x → 0. This means, for ϵ > 0, any a ∈ A with a ≤ pϵ must satisfy a(0) = 0; so

p◦ϵ(x) =

{
Pϵ sin(1/θ) if x > 0,

0 if x = 0.

Also let p be the compact projection defined by p(x) = P0, for all x ∈ [0, 1]; so
p◦0 = p. For all ϵ > 0, c(p, pϵ) ≥ ∥p(0)− p(0)p◦ϵ(0)∥ = ∥P0∥ = 1 even though

(c ◦ e)(p, pϵ) ≤ c(p, p0) + e(p0, pϵ) = e(p0, pϵ) = ∥P0 − Pϵ∥ → 0, as ϵ → 0.

This contrasts with g, which is e-invariant and even h-invariant. Moreover, g
can also be calculated from h instead of d. These facts suggest g may actually be
the more natural extension of interior containment to noncommutative A. This
is especially so if one is to consider d-filters in a domain theoretic way – see [11].

Theorem 4.14. g is an h-invariant distance on compact projections satisfying

g(p, q) = inf
a∈↑p

sup
b∈↑q

h(a, b). (4.13)

Proof. By (4.1) and the general relationships between classical and reverse Haus-
dorff distances given in [11, Proposition 10.2], we have

g ≤ d ◦ g,g ◦ d ≤ g ◦ g.
By Corollary 2.10, d = h on (compact) projections. As h0 is reflexive, the relevant
reverse inequalities are immediate so g is an h-invariant distance.

For (4.13), take compact projections p, q ∈ A∗∗ with corresponding d-filters
F = ↑p and G = ↑q. As in the proof of Theorem 4.2,

inf
a∈F

sup
b∈G

d(a, b) = inf
a∈F

d(a, q) and inf
a∈F

sup
b∈G

h(a, b) = inf
a∈F

h(a, q),

Let aS ∈ A∗∗ denote the spectral projection of a ∈ A1
+ corresponding to S ⊆ [0, 1],

and consider
P = {a[1−ϵ,1] : a ∈ F and ϵ > 0}.

Note P and F are coinitial in each other, with respect to both d and h; that is,

0 = sup
a∈F

inf
p∈P

d(p, a) = sup
p∈P

inf
a∈F

d(p, a) = sup
a∈F

inf
p∈P

h(p, a) = sup
p∈P

inf
a∈F

h(a, p).

Thus

inf
a∈F

d(a, q) ≤ inf
a∈F,p∈P

(d(a, p) + d(p, q)) = inf
p∈P

d(p, q)

≤ inf
p∈P,a∈F

d(p, a) + d(a, q) = inf
a∈F

d(a, q).

Likewise inf
a∈F

h(a, q) = inf
p∈P

h(p, q). Now simply note that, by Corollary 2.10,

inf
p∈P

d(p, q) = inf
p∈P

h(p, q). □
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