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Abstract. We prove that the minimum attaining property of a bounded lin-
ear operator on a Hilbert space H whose minimum modulus lies in the discrete
spectrum, is stable under small compact perturbations. We also observe that
given a bounded operator with strictly positive essential minimum modulus,
the set of compact perturbations which fail to produce a minimum attaining
operator is smaller than a nowhere dense set. In fact, it is a porous set in the
ideal of all compact operators on H. Further, we try to extend these stability
results to perturbations by all bounded linear operators with small norm and
obtain subsequent results.

1. Introduction

In this article, we work on a (complex) Hilbert space of arbitrary dimension,
which is usually denoted by H. Some perturbation properties of norm attaining
operators are discussed by Kover in [14, 15]. Analogous to the norm attaining
bounded operators on H, minimum attaining operators are defined and studied
by Carvajal and Neves in [7]. Let T be a bounded linear operator on H. The
quantity

m(T ) := inf{∥Tx∥ : x ∈ H, ∥x∥ = 1}
is called the minimum modulus of T . The operator T is said to be minimum
attaining if there exists x0 ∈ H with ∥x0∥ = 1 such that m(T ) = ∥Tx0∥. Though
they have many similarities with the norm attaining operators, their characteris-
tics differ in many ways, for instance the injectivity and closed range properties
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play a major role for the class of minimum attaining operators. This leads to
significant changes in the perturbation properties of the minimum attaining op-
erators from those of the norm attaining operators. Our first goal in this article
is to study the stability of the minimum attaining property under compact per-
turbations. In other words, we try to answer the question which compact pertur-
bations of minimum attaining operators on a Hilbert space are again minimum
attaining. We also observe that for any fixed bounded linear operator T on H
with the strictly positive essential minimum modulus (that is, me(T ) > 0), the
set of compact perturbations of T which fail to produce a minimum attaining
operator is very small in size, in fact it is a porous set. Our second goal is to
extend these results to the class of general bounded operators on H using the
connection between the essential spectrum and the Fredholm operators. Much of
our work relies on Weyl’s theorem, which states that the essential spectrum of a
self-adjoint operator remains unchanged under any compact perturbation.

The article is organized as follows. Overall there are four sections. In the second
one, we fix the notations and list out some basic definitions and results which are
already there in the literature that we are going to use in the forthcoming sections.
In the third section, we discuss the main results related to the perturbation of
minimum attaining operators by compact operators, and we try to extend some
of these results to a more general setting in the fourth section.

2. Notations and Definitions

As usual, we denote the inner product and the induced norm by ⟨·, ·⟩ and ∥·∥,
respectively. The unit sphere of a Hilbert space H is denoted by SH . If N is a
subset of H, then the closed linear span of N is denoted by [N ]. The orthogonal
projection onto a closed subspace M of the Hilbert space H is denoted by PM .

The space of all bounded linear operators on H is denoted by B(H), and
the set of all minimum attaining operators on H is denoted by M(H). Let
T ∈ B(H). Then the null space and range space of T are denoted by N(T ) and
R(T ), respectively. The adjoint of T is denoted by T ∗. The operator T is called
normal if TT ∗ = T ∗T and self-adjoint if T ∗ = T . We say T to be positive if
⟨Tx, x⟩ ≥ 0 for all x ∈ H, and we denote it by T ≥ 0. The set of all self-adjoint
and positive operators on H are denoted by Bs(H) and B+(H), respectively.
Similarly, the set of all minimum attaining self-adjoint operators and positive
operators on H are denoted by Ms(H) and M+(H), respectively. Throughout
this article, dim M denotes the Hilbert dimension of the closed subspace M , that
is the cardinality of any orthonormal basis of M .

Let M be a closed subspace of H and T ∈ B(H). Then M is said to be
invariant under T if TM ⊆ M . Also, M is said to be a reducing subspace for T if
and only if both M and M⊥ are invariant under T . A pair of closed subspaces M1

and M2 is said to be completely reducing for T if both M1 and M2 are reducing
subspaces for T and H = M1 ⊕M2 (for details see [21]).

Let T ∈ B(H) and T ≥ 0. Then there exists a unique operator S ∈ B(H)

such that S ≥ 0 and T = S2. For T ∈ B(H), the operator T
1
2 := S is called
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the square root of T , and the operator |T | := (T ∗T )
1
2 is called the modulus of T .

Note that if T ≥ 0, then |T | = T . (for details, see [16, 19]).

An operator T ∈ B(H) is called compact if T (B) is compact for every bounded
subset B of H. The set of compact operators on H is denoted by K(H). The set
{en}∞n=1 denotes the standard orthonormal basis or the canonical basis of ℓ2.

The spectrum is defined by σ(T ) = {λ ∈ C : T − λI is not invertible in B(H)},
and the point spectrum is defined by σp(T ) = {λ ∈ C : T − λI is not injective}.

Definition 2.1. [8, page 30] Let {Hi}ni=1 be a family of Hilbert spaces such that

H =
n
⊕
i=1

Hi. Let {Ti}ni=1 be a family of bounded operators such that Ti ∈ B(Hi)

for all i = 1, 2, . . . , n. Then their direct sum, T =
n
⊕
i=1

Ti, is a bounded operator

from H to H defined as

(
n
⊕
i=1

Ti

)
(x1, x2, . . . , xn) = (T1x1, T2x2, . . . , Tnxn) for all

(x1, x2, . . . , xn) ∈ H.

Remark 2.2. In the above definition, we can observe that Ti = T |Hi
for all

i = 1, 2, . . . , n and ∥T∥ = max
1≤i≤n

∥Ti∥.

Definition 2.3. [11, page 184] A bounded linear operator T : H1 → H2, is called
a Fredholm operator if its range, R(T ), is closed and the numbers

n(T ) = dim N(T ), d(T ) = dimR(T )⊥

are finite. In this case ind (T ) = n(T )− d(T ) is said to be the index of T .

We will use the spectral decomposition notion from Reed and Simon [19], which
we summarize in the following theorem.

Theorem 2.4. Let T ∈ B(H) be self-adjoint. Then the spectrum σ(T ) of T
decomposes as the disjoint union of the discrete spectrum σdisc(T ) of T , and the
essential spectrum σess(T ) of T . The discrete spectrum is the set of all eigenvalues
with finite multiplicity which are isolated from the rest of the spectrum of T and
the essential spectrum is the set of all λ ∈ σ(T ) that satisfy at least one of the
following:

1. λ is an eigenvalue with infinite multiplicity,
2. λ is a limit point of σp(T ),
3. λ ∈ σc(T ), the continuous spectrum of T ; that is T − λI is one to one but not

onto.

Let T ∈ B(H). By the definition, we have |T |2 = T ∗T . Then, for every x ∈ H,
we have ⟨T ∗Tx, x⟩ = ⟨|T |2x, x⟩. This implies that ∥Tx∥ = ∥|T |x∥ for all x ∈ H.
Consequently, m(T ) = m(|T |) and ∥T∥ = ∥|T |∥. We use this fact frequently in
the forthcoming sections of this article. We set Md(H) := {T ∈ B(H) : m(T ) ∈
σdisc(|T |)}. Similarly, we define M+

d (H) := {T ∈ B+(H) : m(T ) ∈ σdisc(T )} and
Ms

d(H) := {T ∈ Bs(H) : m(T ) ∈ σdisc(|T |)}.
The following version of the Weyl’s theorem will be used frequently in what

follows.
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Theorem 2.5 (Weyl’s theorem). [14, Theorem 2] Let S, T ∈ B(H) be self-adjoint.
Then

1. σess(S) = σess(T ) if and only if S − T is compact.
2. λ ∈ σ(T ) if and only if there exists a sequence of unit vectors {un}∞n=1 such

that ∥(T − λI)un∥ → 0 as n → ∞.
3. λ ∈ σess(T ) if and only if there exists an orthonormal sequence of vectors

{un}∞n=1 such that ∥(T − λI)un∥ → 0 as n → ∞.

Lemma 2.6. [14, Lemma 3] Let T ∈ B(H). Then,

λ ∈ σess(|T |) if and only if λ2 ∈ σess(|T |2).

Definition 2.7. [1] Let T ∈ B(H). Then the Weyl spectrum of T is

{λ ∈ C : T − λI is not a Fredholm operator of index 0}.

The Weyl spectrum of a linear operator is the set of elements in the spectrum
which are not eigenvalues of finite multiplicity. For self-adjoint operators the
Weyl spectrum is the remainder of the spectrum once the isolated eigenvalues of
finite multiplicity are removed (see [15], for details).

Remark 2.8. For a self-adjoint operator the Weyl spectrum and the essential
spectrum are the same.

Let T : H1 → H2 be a Fredholm operator. Then the N(T ) and R(T ) are
complemented in H1 and H2 by subspaces W1 and W2, respectively, where W2 is

finite dimensional. Then we can define a bijection T̃ : W1×W2 → H2 = R(T )×W2

by

T̃ (x0, y0) = (Tx0, y0).

This is called the bijection associated with the Fredholm operator T (For details,
see [11]).

Theorem 2.9. [11] Suppose that T : H1 → H2 is a Fredholm operator, and let T̃
be the bijection associated with T . If S : H1 → H2 is a bounded linear operator

with ∥S∥ < ∥T̃−1∥
−1
, then S + T is Fredholm and

(1) n(S + T ) ≤ n(T ),
(2) d(S + T ) ≤ d(T ),
(3) ind (S + T ) = ind(T ).

Here we list out some important results from the literature that we will use
frequently in the next coming sections.

Proposition 2.10. [9, Proposition 3.1] Let T ∈ B(H) be self-adjoint. Then
T ∈ M(H) if and only if either m(T ) or −m(T ) is an eigenvalue of T . In
particular, when T ≥ 0, we have T ∈ M(H) if and only if m(T ) is an eigenvalue
of T .

Proposition 2.11. [9, Proposition 3.2] Let T ∈ B(H). Then the following state-
ments are equivalent:

(1) T ∈ M(H);
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(2) |T | ∈ M(H);
(3) T ∗T ∈ M(H).

Lemma 2.12. [10, Lemma 2.2] Let T1, T2 ∈ B(H). Then

|m(T1)−m(T2)| ≤ ∥T1 − T2∥.

Proposition 2.13. [7, Proposition 2.2] Let T ∈ B+(H). Then

m(T ) = inf
x∈SH

∥Tx∥ = inf {⟨Tx, x⟩ : x ∈ SH}.

Proposition 2.14. [18, Proposition 2.2(1)] Let T ∈ B(H) be normal. Then

m(T ) = d(0, σ(T )) = inf {|λ| : λ ∈ σ(T )}.

Remark 2.15. If T ∈ B+(H), then, by the compactness of σ(T ), we have

m(T ) = min {λ : λ ∈ σ(T )}.

Let H be a complex separable Hilbert space, and let T ∈ B(H). For n ∈
N ∪ {0,∞} we have the following definition

ρn(T ) = inf{∥T − S∥ : S ∈ B(H), dimN(S) = n}.

Theorem 2.16. [4, Theorem 2] Assume that n < dimN(T ). We have

(1) if n ≥ ind(T ), then ρn(T ) = 0
(2) if n < ind(T ), then ρn(T ) = m(T ∗).

3. Perturbation by compact operators

We know that the norm satisfies the triangle inequality but this is not valid
for the minimum modulus, not even for the class of positive operators. For
example, let H = ℓ2,M1 = [e2n−1 : n ∈ N], and M2 = [e2n : n ∈ N], and consider
T1 = PM1 , T2 = PM2 . But the following inequality is true for the class of positive
operators B+(H).

Proposition 3.1. Let T1, T2 ∈ B+(H). Then,

m(T1 + T2) ≥ m(T1) +m(T2).

Proof. Since T1, T2 ≥ 0, we have T1+T2 ≥ 0. Now the proof follows directly from
Proposition 2.13. □

Remark 3.2. The above Proposition is not valid in general for the class of all
bounded operators B(H), for instance, consider T1 = I and T2 = −I where I is
the Identity operator on ℓ2.

The following theorem is crucial in proving the stability of minimum attaining
property under small compact perturbations.

Theorem 3.3. Let T ∈ B(H) and K ∈ K(H) be such that m(T +K) /∈ σess(|T |).
Then m(T +K) ∈ σdisc(|T +K|) and T +K ∈ M(H).
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Proof. Let us consider the operator,

|T +K|2 = (T +K)∗(T +K) = T ∗T + T ∗K +K∗T +K∗K = |T |2 + C,

where C = T ∗K+K∗T +K∗K ∈ K(H). Since |T +K|2 and |T |2 are self-adjoint,
by Theorem 2.5, it follows that

σess(|T +K|2) = σess(|T |2).
Now, Lemma 2.6 gives that σess(|T + K|) = σess(|T |). Hence, m(T + K) /∈
σess(|T +K|). As |T +K| ≥ 0, by Lemma 2.15, we can conclude that m(T +K) ∈
σdisc(|T +K|). Consequently, T +K ∈ M(H) by Proposition 2.10. □

The above theorem yields the following stability result.

Corollary 3.4. Let T ∈ B(H), and let m(T ) ∈ σdisc(|T |). Then there exists an
ϵ > 0 such that for all K ∈ K(H) with ∥K∥ < ϵ, we have T +K ∈ M(H).

Proof. By the definition of the discrete spectrum,

d = d (m(T ), σess(|T |)) = inf {|λ−m(T )| : λ ∈ σess (|T |)} > 0.

Now choose an ϵ ∈ (0, d). By Lemma 2.12, for any K ∈ K(H) with ∥K∥ < ϵ we
have

|m(T +K)−m(T )| ≤ ∥T +K − T∥ = ∥K∥ < ϵ.

This implies that m(T + K) /∈ σess (|T |) = σess (|T +K|). By Theorem 3.3, we
have T +K ∈ M(H). □
Remark 3.5. Note that the condition m(T ) ∈ σdisc(|T |) is necessary in Corollary
3.4. For instance, we have an example below.

Example 3.6. For every n ∈ N, let Dn : ℓ2 → ℓ2 be defined by

Dn(ek) =
ek

n+ k − 1
, ∀k ≥ 1.

Clearly, Dn ∈ K(ℓ2) and ∥Dn∥ = 1
n
for all n ∈ N. Next, we have I +Dn ≥ 0 and

I +Dn /∈ M(ℓ2) for all n ∈ N. Note that m(I) = 1 ∈ σess(I).

The following corollary will be used frequently in proving many compact per-
turbation results that come later.

Corollary 3.7. Let T ∈ B(H), and let K ∈ K(H). If m(T +K) < m(T ), then
m(T +K) ∈ σdisc(|T +K|) and T +K ∈ Md(H).

Proof. Lemma 2.15 and the spectral radius formula [2, Theorem1] imply that
σ(|T |) ⊆ [m(T ), ∥T∥] and som(T+K) /∈ σess(|T |) = σess(|T+K|). Consequently,
m(T +K) ∈ σdisc(|T +K|) and T +K ∈ Md(H). □
Remark 3.8. Note that Corollary 3.7 is meaningful only for all T ∈ B(H) with
m(T ) > 0; because m(T +K) < 0 does not hold true for any K ∈ K(H).

Remark 3.9. Let T ∈ B(H), and let K ∈ K(H). Suppose that m(T + K) ≥
m(T ); then T+K may or may not be minimum attaining. The following example
illustrates this.
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Example 3.10. Let T : ℓ2 → ℓ2 be defined by

T (en) =

{
0 if n = 1,(
1 + 1

n

)
en if n ≥ 2.

Clearly, m(T ) = 0. Let P[e1] be the orthogonal projection onto [e1]. Then,
P[e1] ∈ K(ℓ2). For every µ ∈ C, consider the operator T + µP[e1] ∈ B(H). We
have always m(T + µP[e1]) ≥ m(T ). But, T + µP[e1] ∈ M(ℓ2) whenever |µ| ≤ 1,
and in the other case, T + µP[e1] /∈ M(ℓ2).

The following lemma will be used frequently in proving the theorems coming
later and the proof is essentially contained in the proof of [17, Theorem 3.4]. We
provide the details for the sake of completeness.

Lemma 3.11. Let T ∈ B+(H), and let m(T ) > 0. Then there exists a sequence
of positive finite rank operators {Rn}n≥1 with ∥Rn∥ = 1

n
such that Tn := T−Rn ∈

M+
d (H) for all n ∈ N and Tn := T −Rn → T in norm as n → ∞.

Proof. We prove the lemma in the following two cases separately.
Case(I) T ∈ M+

d (H): In this case, the result follows trivially by taking Tn = T
and Rn = 0 for all n ∈ N.

Case(II) T /∈ M+
d (H): We have me(T ) = m(T ) > 0. By Proposition 2.13, for

every n ∈ N, there exists a xn ∈ SH such that,

m(T ) ≤ ⟨Txn, xn⟩ < m(T ) +
1

2n
. (3.1)

For a fixed n ∈ N, we set Rnx := 1
n
⟨x, xn⟩xn for all x ∈ H. Clearly, Rn is a positive

rank one operator for all n ∈ N and ∥Rn∥ = 1
n
. Without loss of generality, we

can assume that 1
n
< m(T ) for all n ∈ N. Let Tn := T − Rn for all n ∈ N. Then

for every x ∈ SH , we have

⟨Tnx, x⟩ = ⟨Tx, x⟩ − 1

n
|⟨x, xn⟩|2

≥ ⟨Tx, x⟩ − 1

n
(by Cauchy–Schwarz inequality)

≥ m(T )− 1

n
.

Consequently, Tn ∈ B+(H) for all n ∈ N. Again, by Proposition 2.13, we have

m(Tn) ≤ ⟨Tnxn, xn⟩

≤ ⟨Txn, xn⟩ −
1

n

<

(
m(T ) +

1

2n

)
− 1

n
(by Equation (3.1))

< m(T )− 1

2n
< m(T ).

Next, by Corollary 3.7, we have Tn ∈ M+
d (H) for all n ∈ N. Clearly, Tn → T

in norm as n → ∞. □
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Definition 3.12. [3, 5] Let T ∈ B(H). Then the quantity,

me(T ) = inf{λ : λ ∈ σess(|T |)},
is called the essential minimum modulus of T .

For a fixed T ∈ B(H), let us define AT = {K ∈ K(H) : T +K /∈ M(H)} and
ST = {K ∈ K(H) : m(T +K) = me(T )}.

The next lemma gives the relationship between these two sets.

Lemma 3.13. Let T ∈ B(H). Then AT ⊆ ST .

Proof. First, note that σess(|T +K|) = σess(|T |). Therefore,
me(T ) = inf{λ : λ ∈ σess(|T +K|)} for all K ∈ K(H);

That is, for a fixed T , me(T ) is constant under all compact perturbations of T .
Suppose AT = ∅, the result is trivial. Assume AT ̸= ∅. Let K ∈ AT . Since

T +K /∈ M(H) we know that m(T +K) /∈ σdisc(|T +K|). Since, m(|T +K|) =
m(T + K) and |T + K| ≥ 0, we have m(T + K) ∈ σ(|T + K|). It follows that
m(T +K) ∈ σess(|T +K|) = σess(|T |). By Remark 2.15, we can conclude that
me(T ) = m(T +K) and AT ⊆ ST . □
Remark 3.14. Note that for T ∈ B(H) such that m(T ) ∈ σess(|T |), we have
AT ⊆ ST .

Recall that a subset of a topological space is nowhere dense if its closure has
empty interior. Equivalently, a subset is nowhere dense if and only if the com-
plement of its closure is dense (see, [7, page 132]).

We are now ready to prove a theorem, which is one of our main goals of this
article. We use the previous lemma to characterize the size of AT .

Theorem 3.15. Let T ∈ B(H), and let me(T ) > 0. Then AT is nowhere dense
in K(H).

Proof. By Lemma 3.13, we have AT ⊆ ST . To conclude that AT is nowhere dense,
it is sufficient to show that ST is nowhere dense or equivalently it suffices to prove
that ST

c
= K(H) \ST is dense in K(H). Using Lemma 2.12, it is easy to observe

that ST = ST .
Suppose ST = ∅, the result is trivial. Assume ST ̸= ∅. Let K ∈ ST . Then

m(T +K) = me(T ). Let T +K = V |T +K| be the Polar decomposition of T +K.
Note that V is an isometry because m(T +K) > 0. Since, |T +K| ∈ B+(H) and
m(|T +K|) = m(T +K) > 0, by Lemma 3.11, there exists a sequence of positive
rank one operators {Rn}n≥1 such that Sn := |T+K|−Rn ∈ M+

d (H) for all n ∈ N
and Sn → |T +K| in norm as n → ∞. Denote by Tn := V Sn and Kn := K−V Rn

for all n ∈ N. Then, we have Tn = T + Kn and |Tn| = (SnV
∗V Sn)

1
2 = Sn for

all n ∈ N. Consequently, Tn ∈ Md(H) and m(T + Kn) /∈ σess(|T + Kn|) for
all n ∈ N. By Lemma 2.6, we have σess(|T + Kn|) = σess(|T |). Therefore,
m(T + Kn) /∈ σess(|T |) and m(T + Kn) < me(T ) for all n ∈ N. Consequently,
Kn /∈ ST for all n ∈ N.
Next, we have Kn → K, since Rn → 0 as n → ∞. Therefore, we can conclude
that Sc

T = K(H) \ ST is dense and ST is nowhere dense in K(H). □
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Remark 3.16. In case me(T ) = 0, we have ST = K(H) and it cannot be nowhere
dense. But AT may be nowhere dense or may not be. Below we illustrate this.

Firstly, by the spectral theorem it is easy to observe that every compact op-
erator on a nonseparable Hilbert space has nontrivial kernel and hence is not
injective.

Example 3.17. Let H be a nonseparable complex Hilbert space and T ≡ 0.
Then, A0 = {K ∈ K(H) : K is injective} = ∅ and hence nowhere dense in K(H).

We need to prove the following basic tools to provide an example for T ∈ B(H)
such that me(T ) = 0 and AT is not nowhere dense.

Lemma 3.18. Let H be separable, and let F ∈ K+(H) be a finite rank operator.
Then there exists a sequence {Kn} ⊆ K(H) such that Kn is injective for all n ∈ N
and Kn → F in norm as n → ∞.

Proof. Note that N(F ) is an infinite dimensional Hilbert space. Let {ei : i ∈ N}
be an orthonormal set such that N(F ) = [ej : j ∈ N]. Let {fj : 1 ≤ j ≤ n} be
another orthormal set such that R(F ) = [fj : 1 ≤ j ≤ n]. From the projection
theorem, F is positive. Hence H = N(F ) ⊕ R(F ). Let us define the linear map
D : H → H by Dei :=

ei
i
for all i ∈ N and Dfj = 0 for all 1 ≤ j ≤ n. Now, it is

easy to verify that Kn := F + D
n
is an injective compact operator for all n ∈ N

and Kn → F as n → ∞ in norm. □

The above lemma leads to the following result on the denseness of injective
compact operators.

Theorem 3.19. Let H be separable. Then the set of all injective compact oper-
ators is dense in K(H).

Proof. Since the set of finite rank operators is dense in K(H), it is enough to prove
that given any finite rank operator F , there exists a sequence {Cn} ⊆ K(H) such
that Cn is injective for all n ∈ N and Cn → F in norm as n → ∞.

Both the subspaces N(F ) and N(F ∗) are infinite dimensional and separable.
Therefore, dim N(F )= dim N(F ∗). Consequently, there exists an isometry V
such that F = V |F | (For details, see [12, Problem 135]). Since |F | is a positive
finite rank operator, by Lemma 3.18, there exists a sequence {Kn} ⊆ K(H) such
that Kn is injective for all n ∈ N and Kn → |F | in norm as n → ∞. Now,
consider Cn := V Kn for all n ∈ N. Since V is an isometry, Cn is injective for all
n ∈ N and Cn → F in norm as n → ∞. □

Now, we are in a position to construct many examples of T such that the set
AT is not nowhere dense.

Example 3.20. Let H be separable, and let T ≡ 0. Then, from Theorem 3.19,
A0 = {K ∈ K(H)/Kis injective} is a dense set, and so it cannot be a nowhere
dense set. In fact, for every C ∈ K(H), we have AC = {K ∈ K(H)/C +
Kis injective} is a dense set and, so it cannot be a nowhere dense set. This is
because −C + A0 ⊆ AC . Note that me(C) = 0 for every C ∈ K(H).
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From many equivalent definitions of porosity that can be found in the literature
(See, [22, 14, 13]), we choose the following one which is used by Kover in [14].

Let X be a Banach space. An open ball with center x and radius r will be
denoted by B(x, r); that is, B(x, r) = {y ∈ X : ∥y − x∥ < r}.

Definition 3.21. [14, Definition 11] A set E in a Banach space X is called porous
if there is a number 0 < λ < 1 with the following property: For every x ∈ E and
for every r > 0 there is a y ∈ B(x, r) such that B(y, λ∥x− y∥) ∩ E = ∅.

It is easy to observe that every porous set is nowhere dense. Zaj́ıček [22] showed
that a porous set is smaller than a nowhere dense set. He proved that even in Rn

there exists a closed nowhere dense set which is not porous.
Now, we prove that the set AT is porous in K(H).

Theorem 3.22. Let T ∈ B(H), and let me(T ) > 0. Then, AT is porous in K(H).

Proof. Let X = K(H) and E = AT be as in the definition of porous set. We
prove that λ = 1

2
is one such scalar that satisfies all the requirements for AT to

be porous. Let K ∈ AT . From Lemma 2.6, we have m(T + K) = me(T ). Let
T + K = V |T + K| be the Polar decomposition of T + K. Note that V is an
isometry because m(T +K) > 0.

Let r > 0 be arbitrary. We can choose n ∈ N such that 1
n
< min {me(T ),

r
2
}.

Since |T + K| ∈ B+(H) and m(|T + K|) > 0, by proceeding similarly like in
Lemma 3.11, we can find a positive rank one operator Rn with ∥Rn∥ = 1

n
such

that

m(|T +K| −Rn) ≤ me(T )−
1

2n
. (3.2)

Let Kn := K − V Rn. Then, ∥K −Kn∥ = 1
n
. Hence, Kn ∈ B(K, r). It remains to

prove that B(Kn,
1
2n
) ∩ AT = ∅. Let C ∈ B(Kn,

1
2n
). Then, by Lemma 2.12, we

have |m(T + C)−m(T +Kn)| ≤ ∥T + C − T −Kn∥ < 1
2n
. It follows that

m(T + C) < m(T +Kn) +
1

2n

< m(V |T +K| − V Rn)) +
1

2n

< m(|T +K| −Rn) +
1

2n
(since V is an isometry)

< me(T )−
1

2n
+

1

2n
(from Equation (3.2))

< me(T ).

Therefore, C /∈ ST . It follows that C /∈ AT because AT ⊆ ST . Consequently,
B(Kn,

1
2n
) ∩ AT = ∅. □

4. Perturbation by minimum attaining operators

After proving the compact perturbation results in the previous section, it is
natural to ask to what extent those results can be generalized. In this section,
answering this question will be our main concern. For this purpose, we build
upon the ideas of compact perturbations used in the last section.
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Firstly, we will try to extend the stability results for minimum attaining oper-
ators under compact perturbations to a more general setting, by making use of
the connection between Fredholm operators and the essential spectrum.

Theorem 4.1. Let m(T ) ∈ σdisc(|T |). Then there exists an ϵ > 0 such that for
all S ∈ B(H) if ∥S − T∥ < ϵ, then m(S) ∈ σdisc(|S|). In particular, if A ∈ B(H)
with ∥A∥ < ϵ then m(A+ T ) ∈ σdisc(|A+ T |).

Proof. Suppose this is not true. Then there exists {Tn} ⊆ B(H) such that Tn → T
and m(Tn) /∈ σdisc(|Tn|) for all n ∈ N. Now m(T ) ∈ σdisc(|T |), so m(T )I − |T |
must be a Fredholm operator of index 0, by the definition of the Weyl spectrum.

Let T̃ be the bijection associated with the Fredholm operator m(T )I − |T |. Let

ϵ = ∥T̃−1∥
−1
. Since Tn → T we know that |Tn| → |T | [19, Problem 15(a), page

217]. Fix n0 large enough so that ∥|Tn| − |T |∥ < ϵ
2
and ∥Tn − T∥ < ϵ

2
for all

n ≥ n0. By using Lemma 2.12,

∥(m(Tn)I − |Tn|)− (m(T )I − |T |)∥ ≤ |m(Tn)−m(T )|+ ∥|Tn| − |T |∥
≤ ∥Tn − T∥+ ∥|Tn| − |T |∥

<
ϵ

2
+

ϵ

2
< ϵ.

Now, by Theorem 2.9, it follows that m(Tn)I − |Tn| is a Fredholm operator of
index 0 for all n ≥ n0. Since, Weyl’s spectrum and essential spectrum are same
for the case of self-adjoint operators, we have m(Tn) /∈ σess(|Tn|) for all n ≥
n0. Consequently, m(Tn) ∈ σdisc(|Tn|) for all n ≥ n0. This contradicts our
assumption, and hence the theorem is true. The particular case holds true if we
consider S := A+ T in the main theorem. □
Remark 4.2. Note that for T ∈ B(H) and ϵ as above in the Theorem 4.1, we
have B(T, ϵ) ∩ K(H) = ∅.

The following result extends the Corollary 3.4 from small compact perturba-
tions to perturbations by all bounded linear operators of small norm.

Corollary 4.3. Let m(T ) ∈ σdisc(|T |). Then there exists an ϵ > 0 such that for
all S ∈ B(H) if ∥S − T∥ < ϵ then S ∈ M(H). In particular, if ∥A∥ < ϵ, then
T + A ∈ M(H).

Proof. The proof follows directly from Theorem 4.1; once we observe that for any
S ∈ B(H) we have σdisc(|S|) ⊆ σpt(|S|), and |S| ∈ M(H) implies S ∈ M(H). □

Next, we measure the size of the set M+
d (H) in B+(H).

Theorem 4.4. Let T ∈ B+(H). Then there exists a sequence {Tn}n≥1 such that
Tn ∈ M+

d (H) for all n ∈ N and Tn → T in norm as n → ∞. In particular,

M+
d (H) = B+(H).

Proof. We prove the result in two cases separately.
Case(I) m(T ) > 0: In this case, the result follows directly from Lemma 3.11.
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Case(II) m(T ) = 0: For each n ∈ N, let us consider Sn = T + 1
n
I. Clearly,

m(Sn) > 0 for all n ∈ N. Then, by Lemma 3.11, there exists a Tn ∈ M+
d (H) such

that ∥Sn − Tn∥ < 1
n
.

Next, for every n ∈ N, we have

∥Tn − T∥ ≤ ∥Tn − Sn∥+ ∥Sn − T∥ ≤ 2

n
.

Therefore, Tn → T in norm as n → ∞.

Combining both the cases, we can conclude that M+
d (H) = B+(H). □

The following result is an easy consequence of the above theorem.

Corollary 4.5. Let T ∈ B+(H). Then, the set of minimum attaining positive

operators is dense in B+(H); that is, M+(H) = B+(H).

Proof. SinceM+
d (H) ⊆ M+(H), the proof follows directly from Theorem 4.4. □

To prove similar results for the class of self-adjoint operators, we need the
following lemma.

Lemma 4.6. Let (M1,M2) be a completely reducing pair for T ∈ B(H). Let
T1 = T |M1, and let T2 = T |M2, and let m(T1) < m(T2). Then T ∈ Md(H) if and
only if T1 ∈ Md(M1).

Proof. We have T = T1⊕T2. Then T ∗ = T ∗
1 ⊕T ∗

2 . It follows that |T | = |T1|⊕|T2|.
From [21, Theorem 5.4, page 289], we have

σ(|T |) = σ(|T1|) ∪ σ(|T2|). (4.1)

Using Remark 2.15, we can conclude that

m(T ) = min{m(T1),m(T2)}. (4.2)

Therefore, m(T ) = m(T1). Let T ∈ Md(H). Then m(T ) ∈ σdisc(|T |). That
means, m(T ) is an eigenvalue for |T | with finite multiplicity, which is also an
isolated point of σ(|T |). By Remark 2.15, m(T ) /∈ σ(|T2|). From [21, Theorem
5.4, page 289], we have

σp(|T |) = σp(|T1|) ∪ σp(|T2|). (4.3)

Therefore, we can conclude that m(T1) = m(T ) ∈ σp(|T1|). Clearly, m(T1) is an
isolated point of σ(|T1|), since it is isolated in a bigger set σ(|T |).
Next, the multiplicity of m(T1) is finite because M2 does not contribute anything
to the multiplicity of m(T1) as m(T1) /∈ σp(|T2|). So, we can conclude that
m(T1) ∈ σdisc(|T1|). Consequently, T1 ∈ Md(M1).

Conversely, let T1 ∈ Md(M1). Then, m(T1) is an eigenvalue for |T1| with
finite multiplicity, which is also an isolated point of σ(|T1|). Now, Equation (4.2)
implies that m(T ) = m(T1). From Equation (4.3), we have m(T ) ∈ σp(|T |). By
Remark 2.15, m(T ) /∈ σ(|T2|). Now, the fact that σ(|T2|) is a closed set implies
that m(T ) is not a limit point of σ(|T2|). Already, it is not a limit point of σ(|T1|).
Consequently, it is an isolated point of σ(|T |). Its multiplicity is finite, because
m(T ) /∈ σp(|T2|). Therefore, m(T ) ∈ σdisc(|T |) and T ∈ Md(H). □
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Remark 4.7. Suppose m(T2) < m(T1) in Lemma 4.6; then it still holds true
with the roles of T1 and T2 interchanged.

Remark 4.8. Suppose m(T1) = m(T2) in Lemma 4.6, then it need not hold true.
For instance, we have an example below.

Example 4.9. LetM1 = [en : 1 ≤ n ≤ 5, n ∈ N], and letM2 = [en : n > 5, n ∈ N].
Let T ∈ B(ℓ2) be defined by

T (en) =

{
(n− 1)en if 1 ≤ n ≤ 5,
en
n

if n > 5.

Clearly, (M1,M2) is a completely reducing pair for T . Let T1 = T |M1 , and let
T2 = T |M2 . We have T1 ∈ Md(M1) but T /∈ Md(H). Notice that m(T1) =
m(T2) = 0.

The following theorem proves that Ms
d(H) is a very large set in Bs(H); in fact

it is dense.

Theorem 4.10. Let T ∈ Bs(H). Then there exists a sequence {Tn}n≥1 such that
Tn ∈ Ms

d(H) for all n ∈ N and Tn → T in norm as n → ∞. In particular,

Ms
d(H) = Bs(H).

Proof. We prove the result in two cases separately.
Case(I): m(T ) > 0: Let T = V |T | be the polar decomposition of T . Since

T ∗ = T , we have V ∗ = V . The Hilbert space H has the decomposition

H = H+ ⊕H−,

where H+ = N(I − V ) and H− = N(I + V ). Also, (H+, H−) is a completely
reducing pair for T and |T |. Let T1 = T |H+ = |T |

∣∣
H+

, and let T2 = T |H− =

−|T |
∣∣
H−

. Then we have

T = T1 ⊕ T2. (4.4)

Moreover, T1 is strictly positive and T2 is strictly negative (for details, see [20,
Example 7.1, page 139]).

First we consider, the case m(T1) ≤ m(T2). Then Equation (4.2) gives that
m(T ) = m(T1). So, m(T1) > 0. Since T1 ∈ B+(H), from Lemma 3.11, there
exists a sequence {Sn}n≥1 such that Sn ∈ M+

d (H) for all n ∈ N and Sn → T1 in
norm as n → ∞. Moreover, m(Sn) < m(T1) for all n ∈ N.
Now, consider the sequence of operators {Tn}n≥1 where Tn := Sn ⊕ T2 for all
n ∈ N. Being the direct sum of two self-adjoint operators implies that Tn is self-
adjoint for all n ∈ N. By applying Lemma 4.6, we can conclude that Tn ∈ M+

d (H)
for all n ∈ N. Clearly, Tn → T in norm as n → ∞.

Next consider the case m(T2) < m(T1). Then, m(T ) = m(T2) > 0. Now,the
fact that T2 is strictly negative implies −T2 is strictly positive. Also, we have
m(−T2) = m(T2) > 0. From Lemma 3.11, there exists a sequence {Sn}n≥1 such
that Sn ∈ M+

d (H) for all n ∈ N and Sn → −T2 in norm as n → ∞. Moreover,
m(Sn) < m(−T2) for all n ∈ N. Let us consider the sequence of operators
{Tn}n≥1, where Tn := T1 ⊕ −Sn for all n ∈ N. The rest of the proof is same as
above.



486 J. GANESH, G. RAMESH, D. SUKUMAR

Case(II) m(T ) = 0: For each n ∈ N, let us consider Sn = T + 1
n
PN(T ). Then,

m(Sn) > 0 for all n ∈ N. By the Case (I) above, there exists a Tn ∈ Ms
d(H) such

that ∥Sn − Tn∥ < 1
n
. Next, for every n ∈ N, we have

∥Tn − T∥ ≤ ∥Tn − Sn∥+ ∥Sn − T∥ ≤ 2

n
.

Therefore, Tn → T in norm as n → ∞.
Combining both the cases, we can conclude that Ms

d(H) = Bs(H). □

Corollary 4.11. Let T ∈ Bs(H). Then, the set of minimum attaining self-adjoint

operators is dense in Bs(H). That is, Ms(H) = Bs(H).

Proof. SinceMs
d(H) ⊆ Ms(H), the proof follows directly from Theorem 4.10. □

It follows from [17, Theorem 3.5] that M(H) is dense in B(H). Along the

similar lines, one expects Md(H) = B(H). But it is not the case. We will
observe this in the following results.

First we prove that specific operators in B(H) can be approximated by the
operators in Md(H).

Theorem 4.12. Let T ∈ B(H), and let me(T ) > 0. Then there exists a sequence
{Tn}n≥1 such that Tn ∈ Md(H) for all n ∈ N and Tn → T in norm as n → ∞.

Proof. We prove the theorem in the following two cases separately.
Case(I) m(T ) = 0: Since me(T ) > 0, we have m(T ) = m(|T |) = 0 ∈ σdisc(|T |)

and T ∈ Md(H). Now, the result follows trivially by taking Tn = T for all n ∈ N.
Case (II) m(T ) > 0: Let T = V |T | be the Polar decomposition of T . Since

m(T ) > 0, we have T is injective and V is an isometry. We have |T | ∈ B+(H) and
m(|T |) = m(T ) > 0. By Lemma 3.11, there exists a sequence {Sn}n≥1 such that
Sn ∈ M+

d (H) for all n ∈ N and Sn → |T | in norm as n → ∞. Put Tn := V Sn for
all n ∈ N.
Next, |Tn| = (SnV

∗V Sn)
1
2 = Sn implies that Tn ∈ Md(H) for all n ∈ N. Clearly,

Tn → T in norm as n → ∞. □

The lemma below is an important tool in proving the next theorem.

Lemma 4.13. Let T ∈ B(H). Then there exists a sequence of closed range
operators {Tn}n≥1 ⊆ B(H) such that N(Tn) = N(T ) for all n ∈ N and Tn → T
in norm as n → ∞. In particular, the set of all closed range operators are dense
in B(H).
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Proof. Let T = V |T | be the Polar decomposition of T . Put Tn := V (|T |+ 1
n
PR(|T |))

for all n ∈ N. Then, for every x ∈ H we have

∥Tnx∥2 =
∥∥∥∥V (

|T |+ 1

n
PR(T )

)
x

∥∥∥∥2

=

⟨
V

(
|T |x+

1

n
PR(|T |)

)
x, V

(
|T |x+

1

n
PR(|T |)x

)⟩
=

⟨(
|T |x+

1

n
PR(|T |)

)
x,

(
|T |x+

1

n
PR(|T |)x

)⟩
(since V ∗V = I)

= ∥Tx∥2 + 2

n
⟨|T |x, x⟩+ 1

n2

∥∥∥PR(|T |)x
∥∥∥2

.

From this equation it follows that N(Tn) = N(T ) for all n ∈ N.
For every x ∈ N(Tn)

⊥ = N(T )⊥ = N(|T |)⊥ = R(|T |), we have

∥Tnx∥ ≥ 1

n
∥x∥. (4.5)

Therefore, the reduced minimum modulus γ(Tn) = inf{∥Tnx∥ : x ∈ N(Tn)
⊥} > 0,

and hence R(Tn) is closed [8, page 363, Proposition 6.1] for all n ∈ N. □
The next result is again about approximation of specific kind of operators on

a separable Hilbert space by the operators in Md(H).

Theorem 4.14. Let H be a separable infinite dimensional complex Hilbert space,
and let T ∈ B(H) be such that me(T ) = me(T

∗) = 0. Then there exists a sequence
{Tn}n≥1 such that Tn ∈ Md(H) for all n ∈ N and Tn → T in norm as n → ∞.

Proof. We prove the theorem in the following three cases separately.
Case(I) dim N(T ) = 0: Since, me(T ) = 0, we havem(T ) = 0 and T is injective.

Let T = V |T | be the Polar decomposition of T . Now, T is injective implies V
is an isometry. We have |T | ∈ B+(H) and m(|T |) = m(T ) = 0. By Case(II)
of Theorem 4.4, there exists a sequence {Sn}n≥1 such that Sn ∈ M+

d (H) for all
n ∈ N and Sn → |T | in norm as n → ∞. Let us set Tn := V Sn for all n ∈ N.
We see that |Tn| = (SnV

∗V Sn)
1
2 = Sn implies that Tn ∈ Md(H) for all n ∈ N.

Clearly, Tn → T in norm as n → ∞.
Case(II) 0 < dimN(T ) < ∞: We have N(T ) ̸= 0. Since me(T ) = 0, R(|T |) is

not closed. From Lemma 4.13, there exists a sequence of closed range operators
{Tn}n≥1 ⊆ B(H) such that N(Tn) = N(T ) ̸= 0 and Tn → T in norm as n →
∞. Now, R(Tn) is closed implies that R(|Tn|) is closed and dim N(|Tn|)= dim
N(Tn) < ∞. Therefore, |Tn| is a Fredholm operator of index ‘0’. By Remark 2.8,
0 /∈ σess(|Tn|). But 0 ∈ σp(|Tn|) ⊆ σ(|Tn|). So, 0 ∈ σdisc(|Tn|). Since m(|Tn|) = 0,
we have Tn ∈ Md(H) for all n ∈ N.

Case(III) dim N(T ) = ∞: Suppose that dim N(T ∗) = ∞. Then, ind T =
dimN(T )−dimN(T ∗) = 0. From Theorem 2.16(i), we have ρ1(T ) = inf{∥T−S∥ :
S ∈ B(H) and dimN(S) = 1} = 0. Then for every n ∈ N, we can find a Sn with
dim N(Sn) = 1 such that ∥T −Sn∥ ≤ 1

n
and using Lemma 4.13, there exists a Tn

such that ∥Sn − Tn∥ ≤ 1
n
. We have, dimN(|Tn|) = dim N(Sn) = 1 and R(|Tn|)

is closed. Therefore, |Tn| is a Fredholm operator of index ’0’. By Remark 2.8,
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0 /∈ σess(|Tn|). But 0 ∈ σp(|Tn|) ⊆ σ(|Tn|). So, 0 ∈ σdisc(|Tn|). Since m(|Tn|) = 0,
we have Tn ∈ Md(H) for all n ∈ N. Obviously, Tn → T in norm as n → ∞.

In the case, if dim N(T ∗) < ∞, then ind T = dimN(T ) − dimN(T ∗) = ∞.
From Theorem 2.16(ii), we have ρ1(T ) = inf{∥T−S∥ : S ∈ B(H) and dimN(S) =
1} = 0. Rest of the proof is same as above, when dim N(T ∗) = ∞. □

Now, we observe that the set Md(H) is not dense in B(H), for the case of
separable infinite dimensional complex Hilbert space H.

Remark 4.15. Let H be a separable infinite dimensional complex Hilbert space,
and let T ∈ B(H) be such that me(T ) = 0 and me(T

∗) > 0. Then, R(T ) is
closed and dim N(T ) = ∞. Denote put r := m(T ∗). From Theorem 2.16(ii), we
have dim N(S) = ∞ for all S ∈ B(T, r) and Md(H) ∩ B(T, r) = ∅. Therefore,
Theorem 4.12 is not valid in this case.

We pose the following question.

Question 4.16. Are Theorem 4.14 and Remark 4.15 still valid, if H is a non
separable complex Hilbert space?

For a fixed T ∈ B(H), set

Bd
T := {S ∈ Md(H) : S + T ∈ M(H)}.

Next theorem measures the size of the set Bd
T in Md(H).

Theorem 4.17. Let T ∈ B(H). Then Bd
T is dense in Md(H).

Proof. Let S ∈ Md(H), and let S /∈ Bd
T . From Theorem 3.5 of [17], there exists a

sequence of bounded operators {Rn}n≥1 such that Tn := S+T +Rn ∈ M(H) for
all n ∈ N and Tn := S+T +Rn → S+T in norm as n → ∞. Since S ∈ Md(H),
by Theorem 4.1, it follows that S + Rn ∈ Md(H) for all large n. Therefore,
S +Rn ∈ Bd

T and Bd
T is dense in Md(H). □

We know that the set of minimum attaining operators is dense in B(H). On
the other hand we observe that the set of not minimum attaining operators is
very small in B(H).

Theorem 4.18. Let H be a separable Hilbert space. Then the set of all non
minimum attaining operators is nowhere dense in B(H).

Proof. Let E = {T ∈ B(H) : T /∈ M(H)}, and let S := {T ∈ B(H) : m(T ) ∈
σess(|T |)}. Let {An} be a Cauchy sequence in S. Then by the completeness of
B(H), there exists a A ∈ B(H) such that An → A in norm. Suppose that m(A) /∈
σess(|A|). Then m(A) ∈ σdisc(|A|). Now, by Theorem 4.1, m(An) ∈ σdisc(|A|) for
large n. This contradicts {An} ⊆ S. Therefore, A ∈ S and S is a closed set.

To prove E is nowhere dense, it is enough to prove that E
∁
is dense in B(H). If

m(T ) = m(|T |) /∈ σess(|T |), then m(T ) ∈ σdisc(|T |), and Proposition 2.11 implies
that T ∈ M(H). Consequently, E ⊆ S and so E ⊆ S. In view of Remark 4.15,
we also have E ⊆ B(H) \ {T ∈ B(H) : m(T ) = 0 andm(T ∗) > 0}. It follows that
Md(H) ∪ {T ∈ B(H) : m(T ) = 0 andm(T ∗) > 0} ⊆ E

∁
. Applying Theorem 4.12
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and Theorem 4.14, we can conclude that E
∁
is dense in B(H). Hence the result

holds. □
Now, we pose the following question.

Question 4.19. Is Theorem 4.18 still valid, if H is a non separable complex
Hilbert space?

For a fixed T ∈ B(H), put

Cd
T := {S ∈ Md(H) : S + T /∈ M(H)}.

The following theorem measures the size of the set Cd
T in Md(H).

Theorem 4.20. Let T ∈ B(H). Then Cd
T is nowhere dense in Md(H).

Proof. Let us define the set F by F := {S ∈ B(H) : S + T /∈ M(H)} and the set
R by R := {S ∈ B(H) : m(S + T ) ∈ σess(|S + T |)}. Note that we can prove R is
closed by the similar arguments as given in Theorem 4.18.

We observe that F ⊆ R. Let m(S + T ) = m(|S + T |) /∈ σess(|S + T |)}. Then,
m(S + T ) ∈ σdisc(|S + T |)} and Proposition 2.11 implies that S + T ∈ M(H).
Consequently, F ⊆ R and so F ⊆ R. From Theorem 4.17, we have R∁ = Bd

T is
dense in Md(H). It follows that R is nowhere dense in Md(H). Since F ⊆ R,
we can conclude that F is also nowhere dense in Md(H). □

Finally, we pose the following question.

Question 4.21. Let T ∈ B(H). Then, is the set Cd
T porous in Md(H)?
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