

Adv. Oper. Theory 3 (2018), no. 3, 451–458 https://doi.org/10.15352/aot.1709-1225 ISSN: 2538-225X (electronic) https://projecteuclid.org/aot

LINEAR PRESERVERS OF TWO-SIDED RIGHT MATRIX MAJORIZATION ON \mathbb{R}_n

AHMAD MOHAMMADHASANI^{1*} and ASMA ILKHANIZADEH MANESH $^{\rm 2}$

Communicated by T. Banica

ABSTRACT. A nonnegative real matrix $R \in \mathbf{M}_{n,m}$ with the property that all its row sums are one is said to be row stochastic. For $x, y \in \mathbb{R}_n$, we say xis right matrix majorized by y (denoted by $x \prec_r y$) if there exists an *n*-by-nrow stochastic matrix R such that x = yR. The relation \sim_r on \mathbb{R}_n is defined as follows. $x \sim_r y$ if and only if $x \prec_r y \prec_r x$. In the present paper, we characterize the linear preservers of \sim_r on \mathbb{R}_n , and answer the question raised by F. Khalooei [Wavelet Linear Algebra **1** (2014), no. 1, 43–50].

1. INTRODUCTION AND PRELIMINARIES

Let $\mathbf{M}_{n,m}$ be the set of all *n*-by-*m* real matrices. We denote by \mathbb{R}_n (\mathbb{R}^n) the set of 1-by-*n* (*n*-by-1) real vectors. A matrix $R = [r_{ij}] \in \mathbf{M}_{n,m}$ with nonnegative entries is called a row stochastic matrix if $\sum_{j=1}^{n} r_{ij} = 1$ for all *i*. For vectors $x, y \in \mathbb{R}_n$ (resp. \mathbb{R}^n), it is said that *x* is right (resp. left) matrix majorized by *y* (denoted by $x \prec_r y$ (resp. $x \prec_l y$)) if x = yR (resp. x = Ry) for some *n*-by-*n* row stochastic matrix *R*. A linear function $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ preserves an order relation \prec in $\mathbf{M}_{n,m}$, if $TX \prec TY$ whenever $X \prec Y$.

In [3] and [4], the authors obtained all linear preservers of \prec_r and \prec_l on \mathbb{R}_n and \mathbb{R}^n , respectively. Let $x, y \in \mathbb{R}_n$ (resp. \mathbb{R}^n). We write $x \sim_r y$ (resp. $x \sim_l y$) if and only if $x \prec_r y \prec_r x$ (resp. $x \prec_l y \prec_l x$).

In [6], the author characterized all linear preservers of \sim_l from \mathbb{R}^p to \mathbb{R}^n . Here, by specifying linear preservers of \sim_r we will answer the question raised in [6]. For

Copyright 2018 by the Tusi Mathematical Research Group.

Date: Received: Sep. 6, 2017; Accepted: Dec. 3, 2017.

^{*}Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 15A04; Secondary 15A51.

Key words and phrases. Linear preserver, right matrix majorization, row stochastic matrix.

more information about linear preservers of majorization, we refer the reader to [1, 2, 5]. Also, the reference [7] is precious book in this regard.

In this paper, we characterize all linear preservers of two-sided right matrix majorization on \mathbb{R}_n .

A nonnegative real matrix D is called doubly stochastic if the sum of entries of every row and column of D is one.

The following conventions will be fixed throughout the paper.

We will denote by $\mathcal{P}(n)$ the collection of all *n*-by-*n* permutation matrices. The collection of all *n*-by-*n* row stochastic matrices is denoted by $\mathcal{RS}(n)$. Also, the collection of all *n*-by-*n* doubly stochastic matrices is denoted by $\mathcal{DS}(n)$. The standard basis of \mathbb{R}_n is denoted by $\{e_1, \ldots, e_n\}$, and $e = (1, 1, \ldots, 1) \in \mathbb{R}_n$. Also, let A^t be the transpose of a given matrix A. Let $[X_1/\ldots/X_n]$ be the *n*-by-*m* matrix with rows $X_1, \ldots, X_n \in \mathbb{R}_m$. We denote by |A| the absolute of a given matrix A.

For
$$u \in \mathbb{R}$$
, let $u^+ = \begin{cases} u & \text{if } u \ge 0 \\ 0 & \text{if } u < 0 \end{cases}$, and $u^- = \begin{cases} 0 & \text{if } u \ge 0 \\ u & \text{if } u < 0 \end{cases}$.
For every $x = (x_1, \dots, x_n) \in \mathbb{R}_n$ we set $\operatorname{Tr}(x) := \sum_{i=1}^n x_i$, $\operatorname{Tr}_+(x) := \sum_{i=1}^n x_i^+$, and $\operatorname{Tr}_-(x) := \sum_{i=1}^n x_i^-$.
For each $x \in \mathbb{R}_n$ let $x^* = \operatorname{Tr}_+(x)e_1 + \operatorname{Tr}_-(x)e_2$, and $\|x\|_1 = \sum_{i=1}^n |x_i|$.
Let $[T]$ be the matrix representation of a linear function $T : \mathbb{R}_n \to \mathbb{R}_n$ with respect to the standard basis. In this case, $Tx = xA$, where $A = [T]$.

2. Main results

In this section, we pay attention to the two-sided right matrix majorization on \mathbb{R}_n . We obtain an equivalent condition for two-sided right matrix majorization on \mathbb{R}_n , and we characterize all of the linear functions $T : \mathbb{R}_n \to \mathbb{R}_n$ preserving \sim_r .

We need the following lemma for finding some equivalent conditions for twosided right matrix majorization on \mathbb{R}_n .

Lemma 2.1. Let $x \in \mathbb{R}_n$. Then $x \sim_r x^*$.

Proof. We prove that $x \sim_r x^*$, for each $x \in \mathbb{R}_n$. Suppose that $x = (x_1, \ldots, x_n) \in \mathbb{R}_n$. We define the matrices $R = [R_1, \ldots, R_n]$ and $S = [S_1, \ldots, S_n]$ as follows. For each $i \ (1 \le i \le n)$

$$R_{i} := \begin{cases} e_{1} & x_{i} \ge 0\\ e_{2} & x_{i} < 0 \end{cases}, \text{ and}$$
$$S_{i} := \begin{cases} \frac{1}{\text{Tr}_{+}(x)} \sum_{x_{j} > 0} x_{j} e_{j} & x_{i} > 0\\ e_{1} & x_{i} = 0\\ \frac{1}{\text{Tr}_{-}(x)} \sum_{x_{j} < 0} x_{j} e_{j} & x_{i} < 0 \end{cases}$$

It is clear that $R, S \in \mathcal{RS}(n), x^* = xR$, and $x = x^*S$. Therefore, $x \sim_r x^*$. \Box

452

The following proposition gives some equivalent conditions for two-sided right matrix majorization on \mathbb{R}_n .

Proposition 2.2. Let $x, y \in \mathbb{R}_n$. Then the following conditions are equivalent.

(a) $x \sim_r y$,

- (b) $\operatorname{Tr}_{+}(x) = \operatorname{Tr}_{+}(y)$, and $\operatorname{Tr}_{-}(x) = \operatorname{Tr}_{-}(y)$,
- (c) $\operatorname{Tr}(x) = \operatorname{Tr}(y)$, and $||x||_1 = ||y||_1$.

Proof. Let $x, y \in \mathbb{R}_n$. First, we prove that (a) is equivalent to (b). We use Lemma 2.1.

If $x \sim_r y$, then $x^* \sim_r y^*$, and so $x^* = y^*$. This follows that $\operatorname{Tr}_+(x) = \operatorname{Tr}_+(y)$, and $\operatorname{Tr}_-(x) = \operatorname{Tr}_-(y)$.

If $\operatorname{Tr}_+(x) = \operatorname{Tr}_+(y)$, and $\operatorname{Tr}_-(x) = \operatorname{Tr}_-(y)$, then $x^* = y^*$. Set $z = x^* = y^*$. Lemma 2.1 ensures $x \sim_r z$ and $y \sim_r z$. It implies that $\operatorname{Tr}_+(x) = \operatorname{Tr}_+(y)$, and $\operatorname{Tr}_-(x) = \operatorname{Tr}_-(y)$.

So (a) is equivalent to (b).

Now, the relations

$$Tr(x) = Tr_{+}(x) + Tr_{-}(x)$$
, and $||x||_{1} = Tr_{+}(x) - Tr_{-}(x)$

ensure that (b) is equivalent to (c), too.

Now, we express the non-invertible linear preservers of two-sided right matrix majorization on \mathbb{R}_n . In the case n = 1, any linear function can be a linear preserver of \sim_r .

Theorem 2.3. Let T be a non-invertible linear function on \mathbb{R}_n . Then T preserves \sim_r if and only if there exists some $\mathbf{a} \in \mathbb{R}_n$ such that $Tx = \text{Tr}(x)\mathbf{a}$ for all $x \in \mathbb{R}_n$.

Proof. First, assume that $x, y \in \mathbb{R}_n$ and $x \sim_r y$. Proposition 2.2 ensures that $\operatorname{Tr}(x) = \operatorname{Tr}(y)$, and hence $Tx \sim_r Ty$. It implies that T preserve \sim_r .

Next, let T preserve \sim_r . The case n = 1 is clear. Assume that $n \geq 2$, and $[T] = A = [A_1/\ldots/A_n]$. There exists some $C \in \mathbb{R}_n \setminus \{0\}$ such that TC = 0, since T is not invertible. From $C^* \sim_r C$, we see $TC^* = 0$. We know that $C^* = \alpha e_1 + \beta e_2$, where $\beta \leq 0 \leq \alpha$.

For $r \neq s$, it follows from $\alpha e_r + \beta e_s \sim_r C^*$ that $T(\alpha e_r + \beta e_s) \sim_r TC^*$. Hence, $T(\alpha e_r + \beta e_s) = 0$. Let us consider two cases.

Case 1. Let $\alpha + \beta \neq 0$. Then

$$2(\alpha + \beta)Te_1 = T(\alpha e_1 + \beta e_2) + T(\beta e_1 + \alpha e_2) = 0.$$

This shows that $Te_1 = 0$. From $Te_i \sim_r Te_1$, for each $i \ (1 \le i \le n)$, we conclude that $Te_i = 0$, and so A = 0. In this case, the vector **a** is zero.

Case 2. Let $\alpha + \beta = 0$. Then $\alpha = -\beta$. Since $C \in \mathbb{R}_n \setminus \{0\}$, we deduce $\alpha \neq 0$. From

$$0 = T(\alpha e_r + \beta e_s) = T(\alpha e_r - \alpha e_s) = \alpha (A_r - A_s),$$

we have $A_r = A_s$, for each $(r \neq s)$. Here, we put $\mathbf{a} := A_1 = \cdots = A_n$.

Therefore, in any cases there exists some $\mathbf{a} \in \mathbb{R}_n$ such that $Tx = \text{Tr}(x)\mathbf{a}$ for all $x \in \mathbb{R}_n$.

Theorem 2.4. Let $T : \mathbb{R}_2 \to \mathbb{R}_2$ be an invertible linear function. Then T preserves \sim_r if and only if there exist some $\alpha \in \mathbb{R} \setminus \{0\}$, and some invertible matrix $D \in \mathcal{DS}(2)$ such that $Tx = \alpha xD$ for all $x \in \mathbb{R}_n$.

Proof. As the sufficiency of the condition is easy to be verified, we only prove the necessity of the condition. Assume that T preserves \sim_r , and $[T] = A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. We know that Tx = xA, for each $x \in \mathbb{R}_2$.

If ab < 0; then

$${\operatorname{Tr}}_{+}(a,b), {\operatorname{Tr}}_{-}(a,b) = \{a,b\}$$

As $e_1 \sim_r e_2$ and T preserves \sim_r , we have $Te_1 \sim_r Te_2$. This follows that

$${\operatorname{Tr}}_+(c,d), {\operatorname{Tr}}_-(c,d) = \{a,b\}.$$

We conclude that a = d and b = c, since T is invertible. This means that $[T] = A = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$.

The relation $e_1 \sim_r \frac{1}{2}e$ shows that

$$(a,b)\sim_r (\frac{a+b}{2},\frac{a+b}{2}),$$

whence

$$\{a, b\} = \{ \operatorname{Tr}_{+}(a, b), \operatorname{Tr}_{-}(a, b) \}$$

= $\{ \operatorname{Tr}_{+}(\frac{a+b}{2}, \frac{a+b}{2}), \operatorname{Tr}_{-}(\frac{a+b}{2}, \frac{a+b}{2}) \}$
= $\{0, a+b\}.$

So a = 0 or b = 0, which is a contradiction, and thus $ab \ge 0$.

Since -T preserves \sim_r , without loss of generality, we may assume that $a, b \geq 0$. From $e_1 \sim_r e_2$, we observe that $Te_1 \sim_r Te_2$, and hence $(a, b) \sim_r (c, d)$. This implies that

$$\operatorname{Tr}_{-}(c,d) = \operatorname{Tr}_{-}(a,b) = 0,$$

and hence $c, d \ge 0$. Thus, the entries of A are nonnegative.

If ad = 0 and bc = 0, then from the invertibility of T we get

$$A = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}, \text{ or } A = \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix}.$$

Now, $Te_1 \sim_r Te_2$ ensures that a = d, or b = c, and hence,

$$A = a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \text{ or } A = b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

as desired.

If $ad \neq 0$ and $bc \neq 0$; since *PT* preserves \sim_r for each $P \in \mathcal{P}(2)$, without loss of generality, we may assume that $bc \neq 0$. To complete the proof, we show that

 $\frac{a}{c} = \frac{d}{b}$. In this case, since a + b = c + d, we have a = d and b = c. Hence,

$$A = \begin{pmatrix} a & b \\ b & a \end{pmatrix} = \alpha D,$$

where

$$D = \begin{pmatrix} \frac{a}{a+b} & \frac{b}{a+b} \\ \frac{b}{a+b} & \frac{a}{a+b} \end{pmatrix} \in \mathcal{DS}(2), \text{ and } \alpha = a+b \in \mathbb{R} \setminus \{0\}.$$

We observe that D is invertible, since T is invertible.

If $\frac{a}{c} < \frac{d}{b}$; we conclude that $\frac{d}{b} < 1$, since a + b = c + d. So for each $x \in \mathbb{R}$ that $\frac{a}{c} < x < \frac{d}{b}$ we have

$$0 = \{ \operatorname{Tr}_+(T(x, -1)) \} = \{ \operatorname{Tr}_+(T(-1, x)) \} = cx - a > 0,$$

a contradiction.

Similarly, by assuming $\frac{a}{c} > \frac{d}{b}$ we will be contradictory, and it completes this proof.

Now, we state the previous theorem for $n \geq 3$.

Theorem 2.5. Let $T : \mathbb{R}_n \to \mathbb{R}_n$ $(n \geq 3)$ be an invertible linear function. Then T preserves \sim_r if and only if there exist some $\alpha \in \mathbb{R} \setminus \{0\}$ and a permutation matrix $P \in \mathcal{P}(n)$ such that $Tx = \alpha x P$, $\forall x \in \mathbb{R}_n$.

Proof. We only need to prove the necessity of the condition. Assume that T is invertible and T preserves \sim_r for $n \geq 3$. First, we prove that the linear function |T| which is defined as [|T|] = |A| preserves \sim_r . We show that each column of A is either nonnegative or non-positive. For this purpose, we prove

$$|a_{rj} + a_{sj}| = |a_{rj}| + |a_{sj}|$$
, for each r, s, j $(1 \le r, s, j \le n)$.

Let $1 \leq r, s \leq n$. From $e_r \sim_r e_s$, as T preserves \sim_r , we have $Te_r \sim_r Te_s$, and so $||Te_r||_1 = ||Te_s||_1$. Since $2e_r \sim_r e_r + e_s$, this follows that $T(2e_r) \sim_r T(e_r + e_s)$. Therefore, $2||Te_r||_1 = ||Te_r + Te_s||_1$. We observe that

$$Tr(|T|(x)) = Tr(x)Tr(A), \qquad (2.1)$$

and

$$|| | T | (x) ||_1 = ||T(x)||_1.$$
(2.2)

Observe that

$$2\|Te_r\|_1 = \|Te_r + Te_s\|_1$$

= $\sum_{j=1}^n |a_{rj} + a_{sj}|$
 $\leq \sum_{j=1}^n |a_{rj}| + \sum_{j=1}^n |a_{sj}|$
= $\|Te_r\|_1 + \|Te_s\|_1$
= $2\|Te_r\|_1$.

This implies that

$$\sum_{j=1}^{n} |a_{rj} + a_{sj}| = \sum_{j=1}^{n} |a_{rj}| + \sum_{j=1}^{n} |a_{sj}|,$$

and hence for each $j~(1\leq j\leq n)$

$$|a_{rj} + a_{sj}| = |a_{rj}| + |a_{sj}|.$$

Fix

$$C^{+} = \{ 1 \le j \le n \mid e_j A^t \ge 0 \},\$$

and

$$C^{-} = \{ 1 \le j \le n \mid e_j A^t \le 0 \}$$

Also, as $Te_r \sim_r Te_s$, we see that $\operatorname{Tr}_+(Te_r) = \operatorname{Tr}_+(Te_s)$, $\operatorname{Tr}_-(Te_r) = \operatorname{Tr}_-(Te_s)$, and $\operatorname{Tr}(Te_r) = \operatorname{Tr}(Te_s)$. So we can choose $\operatorname{Tr}_+(A) = \operatorname{Tr}_+(Te_1)$, $\operatorname{Tr}_-(A) = \operatorname{Tr}_-(Te_1)$, and $\operatorname{Tr}(A) = \operatorname{Tr}(Te_1)$. Now, we show that for each $x \in \mathbb{R}_n$ we have

$$Tr(|T|(x)) = Tr(x)Tr(A), \qquad (2.3)$$

and

$$|| | T | (x)||_1 = ||T(x)||_1.$$
(2.4)

Observe that

$$Tr(|T|(x)) = \sum_{j=1}^{n} x. |e_j A^t|$$

$$= \sum_{j \in C^+(A)} x. |e_j A^t| + \sum_{j \in C^-(A)} x. |e_j A^t|$$

$$= \sum_{j \in C^+(A)} x. e_j A^t - \sum_{j \in C^-(A)} x. e_j A^t$$

$$= x. \sum_{j \in C^+(A)} e_j A^t - x. \sum_{j \in C^-(A)} e_j A^t$$

$$= (\sum_{i=1}^{n} x_i) \sum_{j \in C^+(A)} a_{ij} - (\sum_{i=1}^{n} x_i) \sum_{j \in C^-(A)} a_{ij}$$

$$= Tr(x) (Tr_+(A) - Tr_-(A))$$

$$= Tr(x) Tr(A),$$

and this proves the relation (2.3).

To prove the relation (2.4) we have

$$\| | T | (x) \|_{1} = \sum_{j=1}^{n} | x. | e_{j}A^{t} | |$$

=
$$\sum_{j \in C^{+}(A)} | x.e_{j}A^{t} | + \sum_{j \in C^{-}(A)} | -x.e_{j}A^{t} |$$

=
$$\sum_{j \in C^{+}(A)} | x.e_{j}A^{t} | + \sum_{j \in C^{-}(A)} | x.e_{j}A^{t} |$$

=
$$\sum_{j=1}^{n} | x.e_{j}A^{t} |$$

=
$$\| T(x) \|,$$

456

as desired.

Now, let $x, y \in \mathbb{R}_n$, and let $x \sim_r y$. In this case, $\operatorname{Tr}(x) = \operatorname{Tr}(y)$, and since T preserves \sim_r , we deduce $Tx \sim_r Ty$. Therefore, $||T(x)||_1 = ||T(y)||_1$. We conclude from (2.3) and (2.4) that $\operatorname{Tr}(|T|(x)) = \operatorname{Tr}(|T|(y))$ and $|||T|(x)||_1 = |||T|(y)||_1$, hence $|T|(x) \sim_r |T|(y)$, and finally that |T| preserves \sim_r . So, without loss of generality, we can assume that entries of [T] are nonnegative.

Now, we claim that in each column of A there exists at most a nonzero entry. Since T is invertible, if in a column, for example the j^{th} column, there exists more than a nonzero entry, then without loss of generality, we may assume $a_{1j} \neq a_{2j}$ and $a_{3j} \neq 0$. Let us consider

$$\alpha^* = \min\{\frac{a_{3k}}{a_{1k} + a_{2k}} \mid a_{1k} \neq a_{2k}, \ a_{3k} \neq 0, \ \forall 1 \le k \le n\},\$$

and suppose j_0 $(1 \le j_0 \le n)$ is such that $\alpha^* = \frac{a_{3j_0}}{a_{1j_0} + a_{2j_0}}$. We set the vectors $\mathbf{c}, \mathbf{d} \in \mathbb{R}_n$ as follows.

$$\mathbf{c}: = \begin{cases} 2\alpha^* e_2 - e_3 & \text{if } a_{1j_0} < a_{2j_0} \\ 2\alpha^* e_1 - e_3 & \text{if } a_{1j_0} > a_{2j_0} \end{cases}, \text{ and} \\ \mathbf{d}: = \alpha^* (e_1 + e_2) - e_3. \end{cases}$$

From $\mathbf{c} \sim_r \mathbf{d}$, we deduce $T\mathbf{c} \sim_r T\mathbf{d}$, then $\operatorname{Tr}_+(T\mathbf{c}) = \operatorname{Tr}_+(T\mathbf{d})$. For each $x \in \mathbb{R}$, we have $xe_1 - e_3 \sim_r xe_2 - e_3$. This gives

$$T(xe_1 - e_3) \sim_r T(xe_2 - e_3),$$

and consequently,

$$\operatorname{Tr}_{+}T(xe_{1}-e_{3})\sim_{r} \operatorname{Tr}_{+}T(xe_{2}-e_{3}).$$

We choose x small enough such that

$$\operatorname{Tr}_{+}T(xe_1 - e_3) = x \sum_{a_{3j}=0} a_{1j},$$

and

$$\operatorname{Tr}_{+}T(xe_{2}-e_{3}) = x \sum_{a_{3j}=0} a_{2j},$$

and so

(i)
$$\sum_{a_{3j}=0} a_{1j} = \sum_{a_{3j}=0} a_{2j}.$$

We also have the following statements.

(*ii*) If $a_{1j} = a_{2j}$, then $(T\mathbf{c})_j = (T\mathbf{d})_j = 2\alpha a_{1j} - a_{3j}$,

(*iii*) If $a_{1j} \neq a_{2j}$, and $a_{3j} \neq 0$, then $(T\mathbf{d})_j \leq 0$. Because

$$\alpha^*(a_{1j} + a_{2j}) - a_{3j} \le \frac{a_{3j}}{a_{1j} + a_{2j}}(a_{1j} + a_{2j}) - a_{3j} = 0.$$

On the other hand, $(T\mathbf{c})_{j_0} > 0$. From (i), (ii), and (iii) we conclude $\operatorname{Tr}_+(T\mathbf{c}) - \operatorname{Tr}_+(T\mathbf{d}) > 0$, which is a contradiction. Therefore, in each column of A there is at most one nonzero entry. As A is invertible, this implies that each column of A has exactly one nonzero entry. Also, in each row of A, there should be exactly

one nonzero entry. Suppose a_i is the only nonzero entry (positive) in the i^{th} row, where i $(1 \le i \le n)$.

For each $i, j \ (1 \le i, j \le n)$ from $Te_i \sim_r Te_j$ it may be conclude that

$$\operatorname{Tr}_+(Te_i) = \operatorname{Tr}_+(Te_j),$$

and so

 $a_i = \operatorname{Tr}_+(Te_i) = \operatorname{Tr}_+(Te_j) = a_j.$

Set $\alpha := a_1 = \cdots = a_n$. Therefore, there exists some $P \in \mathcal{P}(n)$ such that $A = \alpha P$, as required.

We can summarize the theorems below. Remember that for n = 1 any linear function can be a linear preserver of \sim_r .

Theorem 2.6. Let $T : \mathbb{R}_n \to \mathbb{R}_n$ $(n \ge 2)$ be a linear function. Then T preserves \sim_r if and only if one of the following conditions occur.

(a) T is non-invertible and there exists some $\mathbf{a} \in \mathbb{R}_n$ such that $Tx = \text{Tr}(x)\mathbf{a}$ for all $x \in \mathbb{R}_n$.

(b) T is invertible and $Tx = \alpha xD$, for some $\alpha \in \mathbb{R} \setminus \{0\}$, and some invertible doubly stochastic matrix $D \in \mathcal{DS}(2)$, whenever n = 2.

(c) T is invertible and there exist some $\alpha \in \mathbb{R} \setminus \{0\}$ and a permutation matrix $P \in \mathcal{P}(n)$ such that $Tx = \alpha x P$, $\forall x \in \mathbb{R}_n$, whenever $n \geq 3$.

The question that comes up here is getting the linear preservers of this relation on matrices.

References

- T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra Appl. 118 (1989), 163–248.
- H. Chiang and C.-K. Li, Generalized doubly stochastic matrices and linear preservers, Linear Multilinear Algebra 53 (2005), 1–11.
- A. M. Hasani and M. Radjabalipour, The structure of linear operators strongly preserving majorizations of matrices, Electron. J. Linear Algebra 15 (2006), 260–268.
- A. M. Hasani and M. Radjabalipour, On linear preservers of (right) matrix majorization, Linear Algebra Appl 423 (2007), 255–261.
- A. Ilkhanizadeh Manesh, Right gut-Majorization on M_{n,m}, Electron. J. Linear Algebra 31 (2016), no. 1, 13–26.
- F. Khalooei, Linear preservers of two-sided matrix majorization, Wavelet Linear Algebra 1 (2014), no. 1, 43–50.
- A. W. Marshall, I. Olkin, and B. C. Arnold, *Inequalities: theory of majorization and its applications*, Second edition. Springer Series in Statistics, Springer, New York, 2011.

¹ Assistant Professor, Department of Mathematics and Computer Sciences, Sirjan University of technology, Sirjan, Iran.

E-mail address: a.mohammadhasani53@gmail.com, a.mohammadhasani@sirjantech.ac.ir

²Assistant Professor, Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box: 7713936417, Rafsanjan, Iran.

E-mail address: a.ilkhani@vru.ac.ir