Adv. Oper. Theory 3 (2018), no. 3, 451-458
https://doi.org/10.15352/aot.1709-1225
ISSN: 2538-225X (electronic)
https://projecteuclid.org/aot

LINEAR PRESERVERS OF TWO-SIDED RIGHT MATRIX MAJORIZATION ON \mathbb{R}_{n}

AHMAD MOHAMMADHASANI ${ }^{1 *}$ and ASMA ILKHANIZADEH MANESH ${ }^{2}$
Communicated by T. Banica

Abstract

A nonnegative real matrix $R \in \mathbf{M}_{n, m}$ with the property that all its row sums are one is said to be row stochastic. For $x, y \in \mathbb{R}_{n}$, we say x is right matrix majorized by y (denoted by $x \prec_{r} y$) if there exists an n-by- n row stochastic matrix R such that $x=y R$. The relation \sim_{r} on \mathbb{R}_{n} is defined as follows. $x \sim_{r} y$ if and only if $x \prec_{r} y \prec_{r} x$. In the present paper, we characterize the linear preservers of \sim_{r} on \mathbb{R}_{n}, and answer the question raised by F. Khalooei [Wavelet Linear Algebra 1 (2014), no. 1, 43-50].

1. Introduction and preliminaries

Let $\mathbf{M}_{n, m}$ be the set of all n-by- m real matrices. We denote by $\mathbb{R}_{n}\left(\mathbb{R}^{n}\right)$ the set of 1 -by- n (n-by- 1) real vectors. A matrix $R=\left[r_{i j}\right] \in \mathbf{M}_{n, m}$ with nonnegative entries is called a row stochastic matrix if $\sum_{j=1}^{n} r_{i j}=1$ for all i. For vectors $x, y \in \mathbb{R}_{n}$ (resp. \mathbb{R}^{n}), it is said that x is right (resp. left) matrix majorized by y (denoted by $x \prec_{r} y$ (resp. $x \prec_{l} y$)) if $x=y R($ resp. $x=R y$) for some n-by- n row stochastic matrix R. A linear function $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ preserves an order relation \prec in $\mathbf{M}_{n, m}$, if $T X \prec T Y$ whenever $X \prec Y$.

In [3] and [4], the authors obtained all linear preservers of \prec_{r} and \prec_{l} on \mathbb{R}_{n} and \mathbb{R}^{n}, respectively. Let $x, y \in \mathbb{R}_{n}\left(\right.$ resp. $\left.\mathbb{R}^{n}\right)$. We write $x \sim_{r} y$ (resp. $x \sim_{l} y$) if and only if $x \prec_{r} y \prec_{r} x$ (resp. $x \prec_{l} y \prec_{l} x$).

In [6], the author characterized all linear preservers of \sim_{l} from \mathbb{R}^{p} to \mathbb{R}^{n}. Here, by specifying linear preservers of \sim_{r} we will answer the question raised in [6]. For

[^0]more information about linear preservers of majorization, we refer the reader to $[1,2,5]$. Also, the reference [7] is precious book in this regard.

In this paper, we characterize all linear preservers of two-sided right matrix majorization on \mathbb{R}_{n}.

A nonnegative real matrix D is called doubly stochastic if the sum of entries of every row and column of D is one.

The following conventions will be fixed throughout the paper.
We will denote by $\mathcal{P}(n)$ the collection of all n-by- n permutation matrices. The collection of all n-by- n row stochastic matrices is denoted by $\mathcal{R S}(n)$. Also, the collection of all n-by- n doubly stochastic matrices is denoted by $\mathcal{D S}(n)$. The standard basis of \mathbb{R}_{n} is denoted by $\left\{e_{1}, \ldots, e_{n}\right\}$, and $e=(1,1, \ldots, 1) \in \mathbb{R}_{n}$. Also, let A^{t} be the transpose of a given matrix A. Let $\left[X_{1} / \ldots / X_{n}\right]$ be the n-by- m matrix with rows $X_{1}, \ldots, X_{n} \in \mathbb{R}_{m}$. We denote by $|A|$ the absolute of a given matrix A.
For $u \in \mathbb{R}$, let $u^{+}=\left\{\begin{array}{ll}u & \text { if } u \geq 0 \\ 0 & \text { if } u<0\end{array} \quad\right.$, and $u^{-}=\left\{\begin{array}{lll}0 & \text { if } u \geq 0 \\ u & \text { if } u<0\end{array}\right.$.
For every $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{n}$ we set $\operatorname{Tr}(x):=\sum_{i=1}^{n} x_{i}, \operatorname{Tr}_{+}(x):=\sum_{i=1}^{n} x_{i}^{+}$, and $\operatorname{Tr}_{-}(x):=\sum_{i=1}^{n} x_{i}^{-}$.
For each $x \in \mathbb{R}_{n}$ let $x^{*}=\operatorname{Tr}_{+}(x) e_{1}+\operatorname{Tr}_{-}(x) e_{2}$, and $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$.
Let $[T]$ be the matrix representation of a linear function $T: \mathbb{R}_{n} \rightarrow \mathbb{R}_{n}$ with respect to the standard basis. In this case, $T x=x A$, where $A=[T]$.

2. Main Results

In this section, we pay attention to the two-sided right matrix majorization on \mathbb{R}_{n}. We obtain an equivalent condition for two-sided right matrix majorization on \mathbb{R}_{n}, and we characterize all of the linear functions $T: \mathbb{R}_{n} \rightarrow \mathbb{R}_{n}$ preserving \sim_{r}.

We need the following lemma for finding some equivalent conditions for twosided right matrix majorization on \mathbb{R}_{n}.

Lemma 2.1. Let $x \in \mathbb{R}_{n}$. Then $x \sim_{r} x^{*}$.
Proof. We prove that $x \sim_{r} x^{*}$, for each $x \in \mathbb{R}_{n}$. Suppose that $x=\left(x_{1}, \ldots, x_{n}\right) \in$ \mathbb{R}_{n}. We define the matrices $R=\left[R_{1}, \ldots, R_{n}\right]$ and $S=\left[S_{1}, \ldots, S_{n}\right]$ as follows.

For each $i(1 \leq i \leq n)$

$$
\begin{gathered}
R_{i}:=\left\{\begin{array}{ll}
e_{1} & x_{i} \geq 0 \\
e_{2} & x_{i}<0
\end{array}, \quad\right. \text { and } \\
S_{i}:= \begin{cases}\frac{1}{\operatorname{Tr}_{+}(x)} \sum_{x_{j}>0} x_{j} e_{j} & x_{i}>0 \\
e_{1} & x_{i}=0 \\
\frac{1}{\operatorname{Tr}_{-}(x)} \sum_{x_{j}<0} x_{j} e_{j} & x_{i}<0\end{cases}
\end{gathered}
$$

It is clear that $R, S \in \mathcal{R} \mathcal{S}(n), x^{*}=x R$, and $x=x^{*} S$. Therefore, $x \sim_{r} x^{*}$.

The following proposition gives some equivalent conditions for two-sided right matrix majorization on \mathbb{R}_{n}.

Proposition 2.2. Let $x, y \in \mathbb{R}_{n}$. Then the following conditions are equivalent. (a) $x \sim_{r} y$,
(b) $\operatorname{Tr}_{+}(x)=\operatorname{Tr}_{+}(y)$, and $\operatorname{Tr}_{-}(x)=\operatorname{Tr}_{-}(y)$,
(c) $\operatorname{Tr}(x)=\operatorname{Tr}(y)$, and $\|x\|_{1}=\|y\|_{1}$.

Proof. Let $x, y \in \mathbb{R}_{n}$. First, we prove that (a) is equivalent to (b). We use Lemma 2.1.

If $x \sim_{r} y$, then $x^{*} \sim_{r} y^{*}$, and so $x^{*}=y^{*}$. This follows that $\operatorname{Tr}_{+}(x)=\operatorname{Tr}_{+}(y)$, and $\operatorname{Tr}_{-}(x)=\operatorname{Tr}_{-}(y)$.

If $\operatorname{Tr}_{+}(x)=\operatorname{Tr}_{+}(y)$, and $\operatorname{Tr}_{-}(x)=\operatorname{Tr}_{-}(y)$, then $x^{*}=y^{*}$. Set $z=x^{*}=y^{*}$. Lemma 2.1 ensures $x \sim_{r} z$ and $y \sim_{r} z$. It implies that $\operatorname{Tr}_{+}(x)=\operatorname{Tr}_{+}(y)$, and $\operatorname{Tr}_{-}(x)=\operatorname{Tr}_{-}(y)$.
So (a) is equivalent to (b).
Now, the relations

$$
\operatorname{Tr}(x)=\operatorname{Tr}_{+}(x)+\operatorname{Tr}_{-}(x), \quad \text { and } \quad\|x\|_{1}=\operatorname{Tr}_{+}(x)-\operatorname{Tr}_{-}(x)
$$

ensure that (b) is equivalent to (c), too.
Now, we express the non-invertible linear preservers of two-sided right matrix majorization on \mathbb{R}_{n}. In the case $n=1$, any linear function can be a linear preserver of \sim_{r}.

Theorem 2.3. Let T be a non-invertible linear function on \mathbb{R}_{n}. Then T preserves \sim_{r} if and only if there exists some $\boldsymbol{a} \in \mathbb{R}_{n}$ such that $T x=\operatorname{Tr}(x) \boldsymbol{a}$ for all $x \in \mathbb{R}_{n}$.

Proof. First, assume that $x, y \in \mathbb{R}_{n}$ and $x \sim_{r} y$. Proposition 2.2 ensures that $\operatorname{Tr}(x)=\operatorname{Tr}(y)$, and hence $T x \sim_{r} T y$. It implies that T preserve \sim_{r}.

Next, let T preserve \sim_{r}. The case $n=1$ is clear. Assume that $n \geq 2$, and $[T]=A=\left[A_{1} / \ldots / A_{n}\right]$. There exists some $C \in \mathbb{R}_{n} \backslash\{0\}$ such that $T C=0$, since T is not invertible. From $C^{*} \sim_{r} C$, we see $T C^{*}=0$. We know that $C^{*}=\alpha e_{1}+\beta e_{2}$, where $\beta \leq 0 \leq \alpha$.

For $r \neq s$, it follows from $\alpha e_{r}+\beta e_{s} \sim_{r} C^{*}$ that $T\left(\alpha e_{r}+\beta e_{s}\right) \sim_{r} T C^{*}$. Hence, $T\left(\alpha e_{r}+\beta e_{s}\right)=0$. Let us consider two cases.

Case 1. Let $\alpha+\beta \neq 0$. Then

$$
2(\alpha+\beta) T e_{1}=T\left(\alpha e_{1}+\beta e_{2}\right)+T\left(\beta e_{1}+\alpha e_{2}\right)=0
$$

This shows that $T e_{1}=0$. From $T e_{i} \sim_{r} T e_{1}$, for each $i(1 \leq i \leq n)$, we conclude that $T e_{i}=0$, and so $A=0$. In this case, the vector a is zero.

Case 2. Let $\alpha+\beta=0$. Then $\alpha=-\beta$. Since $C \in \mathbb{R}_{n} \backslash\{0\}$, we deduce $\alpha \neq 0$. From

$$
0=T\left(\alpha e_{r}+\beta e_{s}\right)=T\left(\alpha e_{r}-\alpha e_{s}\right)=\alpha\left(A_{r}-A_{s}\right),
$$

we have $A_{r}=A_{s}$, for each $(r \neq s)$. Here, we put a $:=A_{1}=\cdots=A_{n}$.
Therefore, in any cases there exists some $\mathbf{a} \in \mathbb{R}_{n}$ such that $T x=\operatorname{Tr}(x)$ a for all $x \in \mathbb{R}_{n}$.

Theorem 2.4. Let $T: \mathbb{R}_{2} \rightarrow \mathbb{R}_{2}$ be an invertible linear function. Then T preserves \sim_{r} if and only if there exist some $\alpha \in \mathbb{R} \backslash\{0\}$, and some invertible matrix $D \in \mathcal{D S}(2)$ such that $T x=\alpha x D$ for all $x \in \mathbb{R}_{n}$.

Proof. As the sufficiency of the condition is easy to be verified, we only prove the necessity of the condition. Assume that T preserves \sim_{r}, and $[T]=A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. We know that $T x=x A$, for each $x \in \mathbb{R}_{2}$.

If $a b<0$; then

$$
\left\{\operatorname{Tr}_{+}(a, b), \operatorname{Tr}_{-}(a, b)\right\}=\{a, b\}
$$

As $e_{1} \sim_{r} e_{2}$ and T preserves \sim_{r}, we have $T e_{1} \sim_{r} T e_{2}$. This follows that

$$
\left\{\operatorname{Tr}_{+}(c, d), \operatorname{Tr}_{-}(c, d)\right\}=\{a, b\}
$$

We conclude that $a=d$ and $b=c$, since T is invertible. This means that $[T]=A=\left(\begin{array}{ll}a & b \\ b & a\end{array}\right)$.

The relation $e_{1} \sim_{r} \frac{1}{2} e$ shows that

$$
(a, b) \sim_{r}\left(\frac{a+b}{2}, \frac{a+b}{2}\right),
$$

whence

$$
\begin{aligned}
\{a, b\} & =\left\{\operatorname{Tr}_{+}(a, b), \operatorname{Tr}_{-}(a, b)\right\} \\
& =\left\{\operatorname{Tr}_{+}\left(\frac{a+b}{2}, \frac{a+b}{2}\right), \operatorname{Tr}_{-}\left(\frac{a+b}{2}, \frac{a+b}{2}\right)\right\} \\
& =\{0, a+b\}
\end{aligned}
$$

So $a=0$ or $b=0$, which is a contradiction, and thus $a b \geq 0$.
Since $-T$ preserves \sim_{r}, without loss of generality, we may assume that $a, b \geq 0$. From $e_{1} \sim_{r} e_{2}$, we observe that $T e_{1} \sim_{r} T e_{2}$, and hence $(a, b) \sim_{r}(c, d)$. This implies that

$$
\operatorname{Tr}_{-}(c, d)=\operatorname{Tr}_{-}(a, b)=0
$$

and hence $c, d \geq 0$. Thus, the entries of A are nonnegative.
If $a d=0$ and $b c=0$, then from the invertibility of T we get

$$
A=\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right), \text { or } A=\left(\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right)
$$

Now, $T e_{1} \sim_{r} T e_{2}$ ensures that $a=d$, or $b=c$, and hence,

$$
A=a\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \text { or } A=b\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

as desired.
If $a d \neq 0$ and $b c \neq 0$; since $P T$ preserves \sim_{r} for each $P \in \mathcal{P}(2)$, without loss of generality, we may assume that $b c \neq 0$. To complete the proof, we show that
$\frac{a}{c}=\frac{d}{b}$. In this case, since $a+b=c+d$, we have $a=d$ and $b=c$. Hence,

$$
A=\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)=\alpha D
$$

where

$$
D=\left(\begin{array}{cc}
\frac{a}{a+b} & \frac{b}{a+b} \\
\frac{b}{a+b} & \frac{a}{a+b}
\end{array}\right) \in \mathcal{D} \mathcal{S}(2), \text { and } \alpha=a+b \in \mathbb{R} \backslash\{0\}
$$

We observe that D is invertible, since T is invertible.
If $\frac{a}{c}<\frac{d}{b}$; we conclude that $\frac{d}{b}<1$, since $a+b=c+d$. So for each $x \in \mathbb{R}$ that $\frac{a}{c}<x<\frac{d}{b}$ we have

$$
0=\left\{\operatorname{Tr}_{+}(T(x,-1))\right\}=\left\{\operatorname{Tr}_{+}(T(-1, x))\right\}=c x-a>0
$$

a contradiction.
Similarly, by assuming $\frac{a}{c}>\frac{d}{b}$ we will be contradictory, and it completes this proof.

Now, we state the previous theorem for $n \geq 3$.
Theorem 2.5. Let $T: \mathbb{R}_{n} \rightarrow \mathbb{R}_{n}(n \geq 3)$ be an invertible linear function. Then T preserves \sim_{r} if and only if there exist some $\alpha \in \mathbb{R} \backslash\{0\}$ and a permutation matrix $P \in \mathcal{P}(n)$ such that $T x=\alpha x P, \forall x \in \mathbb{R}_{n}$.

Proof. We only need to prove the necessity of the condition. Assume that T is invertible and T preserves \sim_{r} for $n \geq 3$. First, we prove that the linear function $|T|$ which is defined as $[|T|]=|A|$ preserves \sim_{r}. We show that each column of A is either nonnegative or non-positive. For this purpose, we prove

$$
\left|a_{r j}+a_{s j}\right|=\left|a_{r j}\right|+\left|a_{s j}\right|, \text { for each } r, s, j \quad(1 \leq r, s, j \leq n)
$$

Let $1 \leq r, s \leq n$. From $e_{r} \sim_{r} e_{s}$, as T preserves \sim_{r}, we have $T e_{r} \sim_{r} T e_{s}$, and so $\left\|T e_{r}\right\|_{1}=\left\|T e_{s}\right\|_{1}$. Since $2 e_{r} \sim_{r} e_{r}+e_{s}$, this follows that $T\left(2 e_{r}\right) \sim_{r} T\left(e_{r}+e_{s}\right)$. Therefore, $2\left\|T e_{r}\right\|_{1}=\left\|T e_{r}+T e_{s}\right\|_{1}$. We observe that

$$
\begin{equation*}
\operatorname{Tr}(|T|(x))=\operatorname{Tr}(x) \operatorname{Tr}(A) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\||T|(x)\|_{1}=\|T(x)\|_{1} \tag{2.2}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
2\left\|T e_{r}\right\|_{1} & =\left\|T e_{r}+T e_{s}\right\|_{1} \\
& =\sum_{j=1}^{n}\left|a_{r j}+a_{s j}\right| \\
& \leq \sum_{j=1}^{n}\left|a_{r j}\right|+\sum_{j=1}^{n}\left|a_{s j}\right| \\
& =\left\|T e_{r}\right\|_{1}+\left\|T e_{s}\right\|_{1} \\
& =2\left\|T e_{r}\right\|_{1} .
\end{aligned}
$$

This implies that

$$
\sum_{j=1}^{n}\left|a_{r j}+a_{s j}\right|=\sum_{j=1}^{n}\left|a_{r j}\right|+\sum_{j=1}^{n}\left|a_{s j}\right|
$$

and hence for each $j(1 \leq j \leq n)$

$$
\left|a_{r j}+a_{s j}\right|=\left|a_{r j}\right|+\left|a_{s j}\right| .
$$

Fix

$$
C^{+}=\left\{1 \leq j \leq n \mid e_{j} A^{t} \geq 0\right\}
$$

and

$$
C^{-}=\left\{1 \leq j \leq n \mid e_{j} A^{t} \leq 0\right\}
$$

Also, as $T e_{r} \sim_{r} T e_{s}$, we see that $\operatorname{Tr}_{+}\left(T e_{r}\right)=\operatorname{Tr}_{+}\left(T e_{s}\right), \operatorname{Tr}_{-}\left(T e_{r}\right)=\operatorname{Tr}_{-}\left(T e_{s}\right)$, and $\operatorname{Tr}\left(T e_{r}\right)=\operatorname{Tr}\left(T e_{s}\right)$. So we can choose $\operatorname{Tr}_{+}(A)=\operatorname{Tr}_{+}\left(T e_{1}\right), \operatorname{Tr}_{-}(A)=$ $\operatorname{Tr}_{-}\left(T e_{1}\right)$, and $\operatorname{Tr}(A)=\operatorname{Tr}\left(T e_{1}\right)$. Now, we show that for each $x \in \mathbb{R}_{n}$ we have

$$
\begin{equation*}
\operatorname{Tr}(|T|(x))=\operatorname{Tr}(x) \operatorname{Tr}(A) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\||T|(x)\|_{1}=\|T(x)\|_{1} \tag{2.4}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
\operatorname{Tr}(|T|(x)) & =\sum_{j=1}^{n} x .\left|e_{j} A^{t}\right| \\
& =\sum_{j \in C^{+}(A)} x \cdot\left|e_{j} A^{t}\right|+\sum_{j \in C^{-}(A)} x .\left|e_{j} A^{t}\right| \\
& =\sum_{j \in C^{+}(A)} x \cdot e_{j} A^{t}-\sum_{j \in C^{-}(A)} x \cdot e_{j} A^{t} \\
& =x \cdot \sum_{j \in C^{+}(A)} e_{j} A^{t}-x \cdot \sum_{j \in C^{-}(A)} e_{j} A^{t} \\
& =\left(\sum_{i=1}^{n} x_{i}\right) \sum_{j \in C^{+}(A)} a_{i j}-\left(\sum_{i=1}^{n} x_{i}\right) \sum_{j \in C^{-}(A)} a_{i j} \\
& =\operatorname{Tr}(x)\left(\operatorname{Tr}_{+}(A)-\operatorname{Tr}_{-}(A)\right) \\
& =\operatorname{Tr}(x) \operatorname{Tr}(A),
\end{aligned}
$$

and this proves the relation (2.3).
To prove the relation (2.4) we have

$$
\begin{aligned}
\||T|(x)\|_{1} & =\sum_{j=1}^{n}\left|x .\left|e_{j} A^{t}\right|\right| \\
& =\sum_{j \in C^{+}(A)}\left|x \cdot e_{j} A^{t}\right|+\sum_{j \in C^{-}(A)}\left|-x \cdot e_{j} A^{t}\right| \\
& =\sum_{j \in C^{+}(A)}\left|x \cdot e_{j} A^{t}\right|+\sum_{j \in C^{-}(A)}\left|x \cdot e_{j} A^{t}\right| \\
& =\sum_{j=1}^{n}\left|x \cdot e_{j} A^{t}\right| \\
& =\|T(x)\|
\end{aligned}
$$

as desired.
Now, let $x, y \in \mathbb{R}_{n}$, and let $x \sim_{r} y$. In this case, $\operatorname{Tr}(x)=\operatorname{Tr}(y)$, and since T preserves \sim_{r}, we deduce $T x \sim_{r} T y$. Therefore, $\|T(x)\|_{1}=\|T(y)\|_{1}$. We conclude from (2.3) and (2.4) that $\operatorname{Tr}(|T|(x))=\operatorname{Tr}(|T|(y))$ and $\||T|(x)\|_{1}=\||T|$ $(y) \|_{1}$, hence $|T|(x) \sim_{r}|T|(y)$, and finally that $|T|$ preserves \sim_{r}. So, without loss of generality, we can assume that entries of $[T]$ are nonnegative.

Now, we claim that in each column of A there exists at most a nonzero entry. Since T is invertible, if in a column, for example the $j^{t h}$ column, there exists more than a nonzero entry, then without loss of generality, we may assume $a_{1 j} \neq a_{2 j}$ and $a_{3 j} \neq 0$. Let us consider

$$
\alpha^{*}=\min \left\{\left.\frac{a_{3 k}}{a_{1 k}++a_{2 k}} \right\rvert\, a_{1 k} \neq a_{2 k}, \quad a_{3 k} \neq 0, \quad \forall 1 \leq k \leq n\right\}
$$

and suppose $j_{0}\left(1 \leq j_{0} \leq n\right)$ is such that $\alpha^{*}=\frac{a_{3 j_{0}}}{a_{1 j_{0}}++a_{2 j_{0}}}$. We set the vectors $\mathbf{c}, \mathbf{d} \in \mathbb{R}_{n}$ as follows.

$$
\begin{aligned}
& \mathbf{c}:=\left\{\begin{array}{ll}
2 \alpha^{*} e_{2}-e_{3} & \text { if } a_{1 j_{0}}<a_{2 j_{0}} \\
2 \alpha^{*} e_{1}-e_{3} & \text { if } a_{1 j_{0}}>a_{2 j_{0}}
\end{array},\right. \text { and } \\
& \mathbf{d}:=\alpha^{*}\left(e_{1}+e_{2}\right)-e_{3} .
\end{aligned}
$$

From $\mathbf{c} \sim_{r} \mathbf{d}$, we deduce $T \mathbf{c} \sim_{r} T \mathbf{d}$, then $\operatorname{Tr}_{+}(T \mathbf{c})=\operatorname{Tr}_{+}(T \mathbf{d})$. For each $x \in \mathbb{R}$, we have $x e_{1}-e_{3} \sim_{r} x e_{2}-e_{3}$. This gives

$$
T\left(x e_{1}-e_{3}\right) \sim_{r} T\left(x e_{2}-e_{3}\right),
$$

and consequently,

$$
\operatorname{Tr}_{+} T\left(x e_{1}-e_{3}\right) \sim_{r} \operatorname{Tr}_{+} T\left(x e_{2}-e_{3}\right) .
$$

We choose x small enough such that

$$
\operatorname{Tr}_{+} T\left(x e_{1}-e_{3}\right)=x \sum_{a_{3 j}=0} a_{1 j}
$$

and

$$
\operatorname{Tr}_{+} T\left(x e_{2}-e_{3}\right)=x \sum_{a_{3 j}=0} a_{2 j},
$$

and so
(i) $\sum_{a_{3 j}=0} a_{1 j}=\sum_{a_{3 j}=0} a_{2 j}$.

We also have the following statements.
(ii) If $a_{1 j}=a_{2 j}$, then $(T \mathbf{c})_{j}=(T \mathbf{d})_{j}=2 \alpha a_{1 j}-a_{3 j}$,
(iii) If $a_{1 j} \neq a_{2 j}$, and $a_{3 j} \neq 0$, then $(T \mathbf{d})_{j} \leq 0$. Because

$$
\alpha^{*}\left(a_{1 j}+a_{2 j}\right)-a_{3 j} \leq \frac{a_{3 j}}{a_{1 j}+a_{2 j}}\left(a_{1 j}+a_{2 j}\right)-a_{3 j}=0 .
$$

On the other hand, $(T \mathbf{c})_{j_{0}}>0$. From $(i),(i i)$, and (iii) we conclude $\operatorname{Tr}_{+}(T \mathbf{c})-$ $\operatorname{Tr}_{+}(T \mathbf{d})>0$, which is a contradiction. Therefore, in each column of A there is at most one nonzero entry. As A is invertible, this implies that each column of A has exactly one nonzero entry. Also, in each row of A, there should be exactly
one nonzero entry. Suppose a_{i} is the only nonzero entry (positive) in the $i^{\text {th }}$ row, where $i(1 \leq i \leq n)$.

For each $i, j(1 \leq i, j \leq n)$ from $T e_{i} \sim_{r} T e_{j}$ it may be conclude that

$$
\operatorname{Tr}_{+}\left(T e_{i}\right)=\operatorname{Tr}_{+}\left(T e_{j}\right),
$$

and so

$$
a_{i}=\operatorname{Tr}_{+}\left(T e_{i}\right)=\operatorname{Tr}_{+}\left(T e_{j}\right)=a_{j} .
$$

Set $\alpha:=a_{1}=\cdots=a_{n}$. Therefore, there exists some $P \in \mathcal{P}(n)$ such that $A=\alpha P$, as required.

We can summarize the theorems below. Remember that for $n=1$ any linear function can be a linear preserver of \sim_{r}.

Theorem 2.6. Let $T: \mathbb{R}_{n} \rightarrow \mathbb{R}_{n}(n \geq 2)$ be a linear function. Then T preserves \sim_{r} if and only if one of the following conditions occur.
(a) T is non-invertible and there exists some $\boldsymbol{a} \in \mathbb{R}_{n}$ such that $T x=\operatorname{Tr}(x) \boldsymbol{a}$ for all $x \in \mathbb{R}_{n}$.
(b) T is invertible and $T x=\alpha x D$, for some $\alpha \in \mathbb{R} \backslash\{0\}$, and some invertible doubly stochastic matrix $D \in \mathcal{D S}(2)$, whenever $n=2$.
(c) T is invertible and there exist some $\alpha \in \mathbb{R} \backslash\{0\}$ and a permutation matrix $P \in \mathcal{P}(n)$ such that $T x=\alpha x P, \forall x \in \mathbb{R}_{n}$, whenever $n \geq 3$.

The question that comes up here is getting the linear preservers of this relation on matrices.

References

1. T. Ando, Majorization, doubly stochastic matrices, and comparision of eigenvalues, Linear Algebra Appl. 118 (1989), 163-248.
2. H. Chiang and C.-K. Li, Generalized doubly stochastic matrices and linear preservers, Linear Multilinear Algebra 53 (2005), 1-11.
3. A. M. Hasani and M. Radjabalipour, The structure of linear operators strongly preserving majorizations of matrices, Electron. J. Linear Algebra 15 (2006), 260-268.
4. A. M. Hasani and M. Radjabalipour, On linear preservers of (right) matrix majorization, Linear Algebra Appl 423 (2007), 255-261.
5. A. Ilkhanizadeh Manesh, Right gut-Majorization on $\boldsymbol{M}_{n, m}$, Electron. J. Linear Algebra 31 (2016), no. 1, 13-26.
6. F. Khalooei, Linear preservers of two-sided matrix majorization, Wavelet Linear Algebra 1 (2014), no. 1, 43-50.
7. A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: theory of majorization and its applications, Second edition. Springer Series in Statistics, Springer, New York, 2011.
[^1]
[^0]: Copyright 2018 by the Tusi Mathematical Research Group.
 Date: Received: Sep. 6, 2017; Accepted: Dec. 3, 2017.
 *Corresponding author.
 2010 Mathematics Subject Classification. Primary 15A04; Secondary 15A51.
 Key words and phrases. Linear preserver, right matrix majorization, row stochastic matrix.

[^1]: 1 Assistant Professor, Department of Mathematics and Computer Sciences, Sirjan University of technology, Sirjan, Iran.

 E-mail address: a.mohammadhasani53@gmail.com, a.mohammadhasani@sirjantech.ac.ir
 ${ }^{2}$ Assistant Professor, Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box: 7713936417, Rafsanjan, Iran.

 E-mail address: a.ilkhani@vru.ac.ir

