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CERTAIN GEOMETRIC STRUCTURES OF Λ-SEQUENCE
SPACES
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Communicated by M. C. Veraar

Abstract. The Λ-sequence spaces Λp for 1 < p ≤ ∞ and their generalized
forms Λp̂ for 1 < p̂ < ∞, p̂ = (pn), n ∈ N0 are introduced. The James
constants and strong n-th James constants of Λp for 1 < p ≤ ∞ are determined.
It is proved that the generalized Λ-sequence space Λp̂ is a closed subspace
of the Nakano sequence space lp̂(Rn+1) of finite dimensional Euclidean space
Rn+1, n ∈ N0. Hence it follows that sequence spaces Λp and Λp̂ possess the
uniform Opial property, (β)-property of Rolewicz, and weak uniform normal
structure. Moreover, it is established that Λp̂ possesses the coordinate wise
uniform Kadec–Klee property. Further, necessary and sufficient conditions for
element x ∈ S(Λp̂) to be an extreme point of B(Λp̂) are derived. Finally,
estimation of von Neumann–Jordan and James constants of two dimensional
Λ-sequence space Λ(2)

2 are carried out. Upper bound for the Hausdorff matrix
operator norm on the non-absolute type Λ-sequence spaces is also obtained.

1. Introduction

There are several important geometric constants of a Banach space such as von
Neumann–Jordan constant, James constant, Dunkl–Williams constant, Khint-
chine constant, Zbăganu, Ptolemy constant which are very useful for studying
the geometric theory of Banach spaces. The proximity (or remoteness) of the
space to a Hilbert space was measured by using von Neumann–Jordan constant
and Dunkl-Williams constant. The uniform non-squareness of a unit ball in a
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434 A. MANNA

real Banach space was measured by James constant (or sometimes called James
non-square constant). These constants, which have been investigated recently by
many researchers, occupy a prominent place in the study of geometrical proper-
ties of Banach spaces.
Maligranda et al. [17] obtained the classical James constant and the n-th James
constant for the Cesàro sequence spaces cesp, 1 < p ≤ ∞ and Cesàro-Orlicz se-
quence spaces. Further, Kamińska and Kubiak [14] obtained these constants on
Cesàro-Orlicz sequence spaces using an alternative approach. Let l0 be the space
of all real sequences and N0 be the set of all natural numbers N including 0, i.e.,
N0 = N ∪ {0} and x = (xn)n∈N0 ∈ l0. In order to avoid ambiguity x = (xn)n∈N0

will be replaced by x = (xn). The Cesàro sequence spaces cesp, 1 < p ≤ ∞
were first introduced by Shiue [27] and studied by Leibowitz [15] later. They are
defined as follows:

cesp =
{
x ∈ l0 :

( ∞∑
n=0

( 1

n+ 1

n∑
k=0

|xk|
)p) 1

p
<∞

}
for 1 < p <∞,

ces∞ =
{
x ∈ l0 : sup

n∈N0

1

n+ 1

n∑
k=0

|xk| <∞
}

.

The Cesàro sequence space cesp is generalized to cesp̂ for p̂ = (pn), pn > 1, n ∈ N0

([13]) and defined as

cesp̂ =
{
x ∈ l0 :

( ∞∑
n=0

( 1

n+ 1

n∑
k=0

|xk|
)pn
) 1

pn
<∞

}
.

Several authors ([5], [6], [10], [18], [21], [22], [25], [28]) studied geometric proper-
ties such as Opial property, Kadec–Klee property, (β) property of Rolewicz, weak
uniform normal structure etc. for the spaces cesp and cesp̂. These constants
play very important role in the study of fixed point theory. For example, Opial
property has several applications in the Banach fixed point theory, differential
equations, integral equations etc. On the other hand, Kadec–Klee property is
applied to establish certain results in the ergodic theory (see [23]).
In line with the title of this paper, we report certain geometric structures of Λ-
sequence spaces Λp, 1 < p ≤ ∞ and their generalizations Λp̂, for 1 < p̂ < ∞,
p̂ = (pn). It may be noted that the spaces Λp and Λp̂ are generalized form of
the sequence spaces cesp and cesp̂, respectively. For example, our generalization
includes the following important results:
(i) cesp and cesp̂ have the uniform Opial property (see [6] and [21], respectively),
(ii) cesp and cesp̂ have the (β) property (see [5] and [25], respectively),
(iii) Both cesp [6] and cesp̂ [25] possess the weak uniform normal structures,
(iv) cesp̂ possesses the uniform Kadec Klee property [22], and Kadec–Klee prop-
erty ([28]),
(v) The James constants are given by J(cesp) = 2, Js

n(cesp) = n for 1 < p ≤ ∞
and J(ces

(2)
2 ) =

√
2 + 2√

5
[17],

(vi) cesp and cesp̂ have extreme points.
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Therefore geometric structures of the spaces Λp and Λp̂ are unified study of geo-
metric structures for the known sequence spaces. The following subsection is
begin with the definition of Λ-sequence spaces:

1.1. Sequence spaces Λp, 1 < p ≤ ∞. The Λ-sequence spaces stem from the no-
tion of Λ-strong convergence coined by Móricz [19]. Let Λ = {λk : k = 0, 1, 2, . . .}
be a non-decreasing sequence of positive numbers tending to ∞, i.e., 0 < λ0 <
λ1 < λ2 < . . ., λk → ∞ with λk+1

λk
→ 1 as k → ∞ and x = (xk) ∈ l0. Further, it

is assumed that λ−1 = 0.
Define sequence spaces Λp, for 1 < p ≤ ∞ as

Λp =
{
x = (xk) ∈ l0 : ‖x‖p <∞

}
for 1 < p <∞,

Λ∞ =
{
x = (xk) ∈ l0 : ‖x‖∞ <∞

}
for p = ∞,

where ‖.‖p, 1 < p <∞ and ‖x‖∞ are defined by

‖x‖p =
( ∞∑

n=0

( 1

λn

n∑
k=0

(λk − λk−1)|xk|
)p) 1

p

and

‖x‖∞ = sup
n∈N0

1

λn

n∑
k=0

(λk − λk−1)|xk|.

It is a routine work to establish that the spaces (Λp, ‖.‖p) for 1 < p < ∞ and
(Λ∞, ‖.‖∞) are Banach spaces.

1.2. Sequence spaces Λp̂, p̂ = (pn), pn > 1. Let p̂ = (pn) be a bounded
sequence of positive real numbers such that pn > 1 for each n ∈ N0. Let x = (xk)
be a sequence of real numbers defined on N0 and define a convex modular σ(x)

as σ(x) =
∞∑

n=0

(
Λx(n)

)pn
, where Λx(n) = 1

λn

n∑
k=0

(λk − λk−1)|xk| for all n ∈ N0.

Then the following set is defined:

Λp̂ =
{
x = (xk) ∈ l0 : σ(rx) <∞ for some r > 0

}
,

which is a normed linear space equipped with the Luxemburg norm, defined as
follows:

‖x‖p̂ = inf
{
r > 0 : σ

(x
r

)
≤ 1
}
.

Indeed (Λp̂, ‖x‖p̂) becomes a Banach space.

Remark 1.1. In particular,
(i) substituting λn = n + 1, the sequence spaces Λp and Λp̂ reduce to cesp and
cesp̂, respectively ([13], [15] and [27]).

(ii) by choosing q = (qk) = (λk − λk−1) and Qn =
n∑

k=0

qk = λn, the sequence

spaces Λp and Λp̂ reduce to ces[p, q] and ces[p̂, q̂], respectively [13].
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2. James constants of Λp for 1 < p ≤ ∞

The unit ball of a normed linear space is uniformly non-square if and only if
there is a positive number δ such that there does not exist any member x and y
of the unit ball for which ‖1

2
(x+ y)‖ > 1− δ and ‖1

2
(x− y)‖ > 1− δ (see [12]).

The James constant (or measure of uniform non-squareness) of a real Banach
space (X, ‖ · ‖) with dim(X) ≥ 2 is denoted by J(X) [8] and is defined as

J(X) = sup{min(‖x+ y‖, ‖x− y‖) : x, y ∈ X, ‖x‖ = 1, ‖y‖ = 1}.
The local versions of uniform non-squareness in Cesàro sequence spaces were
studied by Cui and P luciennik [7]. Now, the determination of James constant
for the sequence spaces Λp for 1 < p ≤ ∞ will be presented next. An approach
similar to Maligranda et al. [17] is considered to prove the following results.

Theorem 2.1. The James constants of Λ-sequence spaces Λp for 1 < p ≤ ∞ is
2. Expressing by notation, J(Λp) = 2, 1 < p ≤ ∞.

Proof. First consider the case 1 < p < ∞. For each m = 0, 1, 2, . . ., and denote
em = (emk) = (0, 0, . . . , 0, 1, 0, . . .), where 1 is at the m-th position. Note that

1

λn

n∑
k=0

(λk − λk−1)emk =

{
0 if n < m,
λm−λm−1

λn
if n ≥ m.

Let xm = (xmk) and ym = (ymk), where xm = em

‖em‖p
and ym = em+1

‖em+1‖p
for each

m = 0, 1, 2, . . .. Then ‖xm‖p = 1 and ‖ym‖p = 1.
Now the value of ‖xm ± ym‖p for m = 0, 1, 2, . . . is found as follows:

‖xm ± ym‖p
p

=
∞∑

n=0

( 1

λn

n∑
k=0

(λk − λk−1)|xmk ± ymk|
)p

=
∞∑

n=0

( 1

λn

n∑
k=0

(λk − λk−1)
∣∣∣ emk

‖em‖p

±
e(m+1)k

‖em+1‖p

∣∣∣ )p

=
(λm − λm−1

λm‖em‖p

)p

+
∞∑

n=m+1

( 1

λn

(λm − λm−1

‖em‖p

+
λm+1 − λm

‖em+1‖p

))p

≥
∞∑

n=m+1

( 1

λn

(λm − λm−1

‖em‖p

+
λm+1 − λm

‖em+1‖p

))p

=
(

1 +
λm − λm−1

λm+1 − λm

.
‖em+1‖p

‖em‖p

)p

. (2.1)

Therefore by removing the power p, one gets ‖xm ± ym‖p ≥ 1 + λm−λm−1

λm+1−λm
.‖em+1‖p

‖em‖p
.

We claim that

lim
m→∞

λm − λm−1

λm+1 − λm

.
‖em+1‖p

‖em‖p

= 1.
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Since

(λm − λm−1

λm+1 − λm

)p

.
‖em+1‖p

p

‖em‖p
p

=

∞∑
n=m+1

1

λp
n

∞∑
n=m

1

λp
n

=

∞∑
n=m+1

1

λp
n

1
λp

m
+

∞∑
n=m+1

1

λp
n

=

(
1 +

1
λp

m

∞∑
n=m+1

1

λp
n

)−1

.

By the discrete version of Bernoulli-de l’ Hospital rule, it follows that

lim
m→∞

1
λp

m

∞∑
n=m+1

1

λp
n

= lim
m→∞

1
λp

m
− 1

λp
m+1

1
λp

m+1

= lim
m→∞

1
λm

p

1
λp

m+1

− 1 = lim
m→∞

(λm+1

λm

)p

− 1 = 0.

(2.2)
Hence, Eqn (2.2) proves the above claim and from inequality (2.1), it is found
that ‖xm± ym‖p → 2 as m→∞. Since ‖xm± ym‖p ≤ 2 is always true, it implies
that J(Λp) = 2 for 1 < p <∞.
For p = ∞, xm = λm

λm−λm−1
em and ym = λm

λm+1−λm
em+1 are chosen. Then it is

easy to verify that ‖xm‖∞ = 1, ‖ym‖∞ = 1 and ‖xm ± ym‖∞ = 1 + λm

λm+1
→ 2 as

m→∞. Hence J(Λ∞) = 2. �

Corollary 2.2. (i) Choose λn = n+ 1, then J(cesp) = 2 for 1 < p ≤ ∞ ([17]).

(ii) If Qn =
n∑

k=0

qk = λn, where q = (qk) = (λk − λk−1), then J(ces[p, q]) = 2 for

1 < p ≤ ∞.

A Banach space is said to be uniformly non-l
(1)
n if there is δ ∈ (0, 1) such that

for any x0, x1, x2, . . . , xn−1 from the unit ball of X, we have min
εk=±1

∥∥ n−1∑
k=0

εkxk

∥∥ ≤
n(1− δ).
This definition leads to the notion of n-th James constant (or the measure of

uniformly non-l
(1)
n ) Jn(X), n ∈ N [8] of a Banach space X is defined as

Jn(X) = sup
{

min
εk=±1

∥∥ n−1∑
k=0

εkxk

∥∥ : xk ∈ X, ‖xk‖ ≤ 1, k = 0, 1, 2, . . . , n− 1
}
.

If restricted to unit sphere of a real Banach space X then the James constants
(or n-th strong James constants) are denoted by Js

n(X), n ∈ N and defined by

Js
n(X) = sup

{
min

εj=±1

∥∥∥ n−1∑
j=0

εjxj

∥∥∥ : ‖xj‖ = 1, j = 0, 1, 2, . . . , n− 1
}
.

It is to be noted that Js
n(X) ≤ Jn(X) ≤ n and Js

2(X) = J2(X) = J(X) [17].

Theorem 2.3. The strong n-th James constant Js
n(Λp) = n for 1 < p <∞, and

Js
n(Λ∞) = n.
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Proof. In the previous theorem, the results were established for the case where
n = 2. Now the result for n ≥ 3 is deduced hereunder. Let m ∈ N0, n ∈ N such
that n ≥ 3 and put

xj,m =
em+j

‖em+j‖p

, j = 0, 1, 2, . . . , n− 1.

With this setting, it is clear that ‖xj,m‖p = 1 for each j = 0, 1, 2, . . . , n− 1. Since
xj1,m and xj2,m have disjoint supports for j1 6= j2, it implies that

min
εj=±1

∥∥∥ n−1∑
j=0

εjxj,m

∥∥∥
p

=
∥∥∥ n−1∑

j=0

xj,m

∥∥∥
p
.

Choosing bm,l =
m+l∑
i=m

λi − λi−1

‖ei‖p

, l = 0, 1, 2, . . . , n− 1, then one gets

∥∥∥ n−1∑
j=0

xj,m

∥∥∥p

p
=
∥∥∥m+n−1∑

j=m

ej

‖ej‖p

∥∥∥p

p

=
∥∥∥(0, 0, . . . , 0,

1

‖em‖p

,
1

‖em+1‖p

, . . . ,
1

‖em+n−1‖p

, 0, 0, . . .
)∥∥∥p

p

=
(bm,0

λm

)p

+
( bm,1

λm+1

)p

+ . . .+
( bm,n−1

λm+n−1

)p

+
(bm,n−1

λm+n

)p

+ . . .

≥
∞∑

k=m+n−1

(bm,n−1

λk

)p

= (bm,n−1)
p

∞∑
k=m+n−1

( 1

λk

)p

=
(m+n−1∑

i=m

λi − λi−1

‖ei‖p

)p

.
( ‖em+n−1‖p

λm+n−1 − λm+n−2

)p

≥ np
(λm − λm−1

‖em‖p

)p

.
( ‖em+n−1‖p

λm+n−1 − λm+n−2

)p

Consequently,

n ≥
∥∥∥ n−1∑

j=0

xj,m

∥∥∥
p
≥ n

λm − λm−1

λm+n−1 − λm+n−2

‖em+n−1‖p

‖em‖p

. (2.4)
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We claim that lim
m→∞

λm − λm−1

λm+n−1 − λm+n−2

.
‖em+n−1‖p

‖em‖p

= 1.

Denote am+n−1 :=
∞∑

j=m+n−1

1

λp
j

. Then, the following holds:

( λm − λm−1

λm+n−1 − λm+n−2

)p

.
‖em+n−1‖p

p

‖em‖p
p

=

∞∑
j=m+n−1

1

λp
j

∞∑
j=m

1

λp
j

=
am+n−1

1
λp

m
+ 1

λp
m+1

+ . . .+ 1
λp

m+n−2
+ am+n−1

=
(

1 +
1

λp
mam+n−1

+
1

λp
m+1am+n−1

+ . . .+
1

λp
m+n−2am+n−1

)−1

.

Now the limits lim
m→∞

1

λp
m+iam+n−1

are found out for i = 0, 1, . . . , n− 1. Applying

Bernoulli-de l’ Hospital rule when i = 0, one gets

lim
m→∞

1
λp

m

∞∑
j=m+n−1

1

λp
j

= lim
m→∞

1
λp

m
− 1

λp
m+1

1
λp

m+n−1

= lim
m→∞

(λm+n−1

λm

)p

− lim
m→∞

(λm+n−1

λm+1

)p

= 0.

(2.5)

Hence, Eqn (2.5) proves the aforementioned claim. Similarly, lim
m→∞

1

λp
m+iam+n−1

=

0 for i = 1, . . . , n − 1. Hence by inequality (2.4), we get
∥∥∥ n−1∑

j=0

xj,m

∥∥∥
p
→ n as

m→∞.

Since
∥∥∥ n−1∑

j=0

xj,m

∥∥∥
p
≤ n, so by definition Js

n(Λp) = n for 1 < p <∞.

For the case p = ∞, the following is chosen

xj,m =
λm+j

λm+j − λm+j−1

em+j, for j = 0, 1, . . . , n− 1.

It is easy to find that ‖xj,m‖∞ = 1 and for any fixed n ∈ N∥∥∥ n−1∑
j=0

εjxj,m

∥∥∥
∞

=
∥∥∥ n−1∑

j=0

xj,m

∥∥∥
∞

= 1 +
λm

λm+n−1

+
λm+1

λm+n−1

+ . . .+
λm+n−2

λm+n−1

→ n as m→∞

(Since lim
m→∞

λm+i

λm+n−1

= 1 for each i = 0, 1, 2, . . . , n− 2).
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Again by definition of n-th strong James constant, Js
n(Λ∞) = n and thus the

theorem is proved. �

Corollary 2.4. (i) Choose λn = n+ 1, then Js
n(cesp) = n for 1 < p ≤ ∞ ([17]).

(ii) If Qn =
n∑

k=0

qk = λn, where q = (qk) = (λk − λk−1), then Js
n(ces[p, q]) = n for

1 < p ≤ ∞.

3. Geometric properties of Λp̂

Let (X, ‖.‖) be a Banach space which is a subspace of l0. As usual, S(X) and
B(X) are denoted for the unit sphere and closed unit ball of X, respectively. A
point x ∈ S(X) is said to be an extreme point of B(X) if there does not exist
two distinct points y, z ∈ B(X) such that 2x = y + z. The concept of extreme
point plays an important role in the study of Krein–Milman theorem, Choquet
integral representation theorem etc.
Foralewski [9] introduced the notion of coordinatewise Kadec–Klee property of a
Banach space which is denoted by (Hc). X is said to possess the property (Hc),
if x ∈ X and every sequence (xl) ⊂ X such that

‖xl‖ → ‖x‖ and xil → xi as l→∞ for each i, then ‖xl − x‖ → 0.

If for every ε > 0 there exists a δ > 0 such that

(xl) ⊂ B(X), sep(xl) ≥ ε, ‖xl‖ → ‖x‖ and xli → xi for each i implies
‖x‖ ≤ 1− δ,

where sep(xl) = inf{‖xl−xm‖ : l 6= m}, then X is said to have the coordinatewise
uniformly Kadec–Klee property and is denoted by X ∈ (UKKc) [29]. For any
Banach space X, (UKKc) ⇒ (Hc).
X is said to have the uniform Opial property (abbreviated as (UOP )) if for each
ε > 0 there exists µ > 0 such that

1 + µ ≤ lim inf
l→∞

‖xl + x‖

for any weakly null sequence (xl) in S(X) and x ∈ X with ‖x‖ ≥ ε [23].
A Banach space X has the property (β) if and only if, there exists δ > 0 for every
ε > 0 such that, for each element x ∈ B(X) and each sequence (xl) ∈ B(X) with
sep(xl) ≥ ε, there is an index k such that∥∥∥x+xk

2

∥∥∥ ≤ 1− δ [5].

The weakly uniform normal structure of a Banach space X (abbreviated as
WUNS(X)) is determined by the weakly convergent sequence coefficient of X
(abbreviated as WCS(X)) ([1], [3]) is defined as

WCS(X) = inf
{ lim

k
sup

n,m≥k
‖xn − xm‖

inf{lim sup
n

‖xn − y‖ : y ∈ Conv( xn)}
}

,

where infimum is taken over all weakly convergent sequence (xn) which is not
norm convergent. If WCS(X) > 1 then Banach space X has WUNS. A Banach
space X has WUNS if it possesses (UOP ) [16].
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Let (Xn, ‖.‖n) be Banach spaces for each n ∈ N0. Then the Nakano sequence
spaces lp̂(Xn) is defined as

lp̂(Xn) =
{
x : xn ∈ Xn for each n ∈ N0 and ρ(rx) <∞ for some r > 0

}
,

where convex modular ρ is defined as ρ(x) =
∞∑

n=0

‖xn‖pn
n . It is easy to show that

the sequence space lp̂(Xn) is a Banach space equipped with the Luxemburg norm

‖x‖ = inf
{
r > 0 : ρ(

x

r
) ≤ 1

}
. (3.1)

In particular, the Nakano sequence space lp̂(Rn+1), n ∈ N0, defined as

lp̂(Rn+1) =
{
x : ρ(rx) =

∞∑
n=0

‖rxn‖pn

Rn+1 <∞ for some r > 0
}

is a Banach space equipped with the norm defined in Eqn. (3.1) and Rn+1, n ∈ N0

is a (n+ 1)-dimensional Euclidean space equipped with the following norm:

‖(α0, α1, . . . , αn)‖ =
n∑

i=0

|αi| for (α0, α1, . . . , αn) ∈ Rn+1.

Saejung [25] proved that Cesàro sequence spaces cesp for 1 < p <∞ are isometri-
cally embedded in the infinite lp-sum lp(Rn) of finite dimensional spaces Rn. Here
similar result for the sequence space Λp̂ is presented below:

Lemma 3.1. The sequence space Λp̂ is a closed subspace in the Nakano sequence
space lp̂(Rn+1), n ∈ N0.

Proof. For all x = (xi) ∈ Λp̂, the following linear isometry T : Λp̂ → lp̂(Rn+1) is
defined by

T ((xi)) =
(
x0,
(

λ0

λ1
x0,

(λ1−λ0)
λ1

x1

)
, . . . ,

(
λ0

λn
x0,

(λ1−λ0)
λn

x1, . . . ,
(λn−λn−1)

λn
xn

)
, . . .

)
.

Then

‖T ((xi))‖
= ‖T (x0, x1, . . . , xi, . . .)‖

=
∥∥∥(x0,

(λ0

λ1

x0,
(λ1 − λ0)

λ1

x1

)
, . . . ,

(λ0

λn

x0, . . . ,
(λn − λn−1)

λn

xn

)
, . . .

)∥∥∥
= inf

{
r > 0 :

∞∑
n=0

( 1

rλn

n∑
k=0

(λk − λk−1)|xk|
)pn

≤ 1
}

= inf
{
r > 0 : σ

(x
r

)
≤ 1
}

= ‖(xi)‖p̂

Therefore Λp̂ is a closed subspace in lp̂(Rn+1), n ∈ N0. �

Instead of studying geometric properties of Λp̂ it is enough to study geometric
properties of lp̂(Rn+1). If such geometric properties are inherited by subspaces
then Λp̂ will have the same properties. Certain geometric structure of lp(Xn),
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p > 1 of finite dimensional spaces Xn has also been investigated by Rolewicz [24].
Saejung in his recent work ([25], Theorem 11 (2), p.535) established the following
important result.

Proposition 3.2. Suppose each Xn is finite dimensional. Then the space lp̂(Xn)
has property (β) and uniform Opial property if and only if lim sup

n→∞
pn <∞.

Now we proceed for the following new result:

Theorem 3.3. The sequence space Λp̂ has property (β) and uniform Opial prop-
erty if and only if lim sup

n→∞
pn <∞.

Proof. Since Rn+1, n ∈ N0 is finite dimensional, proposition 3.2 implies that the
space lp̂(Rn+1) possesses the property (β) and uniform Opial property if and
only if lim sup

n→∞
pn < ∞. Since the property (β) and uniform Opial property are

inherited by subspaces [25], it follows from Lemma 3.1 that the sequence space
Λp̂ has property (β) and uniform Opial property. �

Corollary 3.4. (i) The space Λp̂ has WUNS if lim sup
n→∞

pn <∞.

(ii) If lim sup
n→∞

pn < ∞, and λn = n + 1, then cesp̂ has property (β) and uniform

Opial property ([25], Theorem 11 (2)).

Theorem 3.5. Suppose p∗ = sup
n
pn <∞. Then the sequence space Λp̂ possesses

coordinate-wise uniform Kadec–Klee property.

Proof. Let ε ∈ (0, 1) and take η = ( ε
4
)p∗ , where p∗ <∞ as (pn) is bounded. The

δ ∈ (0, 1) is chosen such that (1−δ)p∗ > 1−η. Suppose (xl) ⊂ B(Λp̂), sep(xl) ≥ ε,
‖xl‖p̂ → ‖x‖p̂, xil → xi as l→∞ and for all i ∈ N0. It is shown that there exists
a δ > 0 such that ‖x‖p̂ ≤ 1− δ. In a hypothetical situation, suppose ‖x‖p̂ > 1− δ
is true for all δ > 0. Then one can select a finite set I = {0, 1, 2, . . . , N − 1} on
which ‖xχI‖p̂ > 1− δ, where xχI = xi for i ∈ I and = 0 for i 6∈ I. Since xil → xi

for each i ∈ N0, therefore xl → x uniformly on I. Since ‖xl‖p̂ → ‖x‖p̂, there
exists dN ∈ N such that

‖xlχI‖p̂ > 1− δ and ‖(xl − xm)χI‖p̂ ≤ ε
2

for all l,m ≥ dN .

The first inequality implies that σ(xlχI) ≥ ‖xlχI‖p∗

p̂ > (1 − δ)p∗ > 1 − η for
l ≥ dN . Since sep(xl) ≥ ε, i.e., ‖xl − xm‖p̂ ≥ ε, the second inequality implies
that ‖(xl − xm)χN−I‖p̂ ≥ ε

2
for l,m ≥ dN , l 6= m. Hence, for N ∈ N there exists a

dN such that ‖xlNχN−I‖p̂ ≥ ε
4
. It may be assumed without losing generality that

‖xlχN−I‖p̂ ≥ ε
4

for all l, N ∈ N. Therefore from the relation between norm and

modular, one obtains σ(xlχN−I) ≥ ‖xlχN−I‖p∗

p̂ ≥ ( ε
4
)p∗ = η.

The convexity of the function f(t) = |t|pn for each n ∈ N0 affords f(γu) = f(γu+
(1 − γ)0) ≤ γf(u) for any γ ∈ [0, 1] and u ∈ R. Therefore, if 0 ≤ u < v < ∞,

then f(u) = f(u
v
v) ≤ u

v
f(v), which means that f(u)

u
≤ f(v)

v
. Assuming now that

0 ≤ u, v <∞, u+ v > 0, one gets

f(u+ v) = uf(u+v)
u+v

+ v f(u+v)
u+v

≥ uf(u)
u

+ v f(v)
v

= f(u) + f(v).
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Since xl = xlχI+xlχN−I , one gets σ(xlχI)+σ(xlχN−I) ≤ σ(xl) ≤ 1 by applying the
above mentioned fact. It implies that σ(xlχN−I) ≤ 1−σ(xlχI) < 1− (1− η) = η,
i.e., σ(xlχN−I) < η, which contradicts the inequality σΦ(xlχN−I) ≥ η and this
contradiction completes the proof. �

Theorem 3.6. Let lim sup
n→∞

pn <∞. Then a point x ∈ S(Λp̂) is an extreme point

of B(Λp̂) if and only if σ(x) = 1.

Proof. Necessity: Let x ∈ S(Λp̂) be an extreme point and n0 be a natural number.
Assume that σ(x) 6= 1. Putting ε = 1 − σ(x) > 0 and considering the following
two sequences:

y = (yk) = (x0, x1, . . . , xn0 , 0, 0, . . .),

z = (zk) = (x0, x1, . . . , xn0 , 2xn0+1, 2xn0+2, . . .).

It is clear that 2x = y + z and y 6= z. But

σ(y) =

n0∑
n=0

( 1

λn

n∑
k=0

(λk − λk−1)|xk|
)pn

≤ σ(x) = 1− ε < 1, and

σ(z) ≤
n0∑

n=0

( 1

λn

n∑
k=0

(λk − λk−1)|xk|
)pn

+
∞∑

n=n0+1

2pn

( 1

λn

n∑
k=0

(λk − λk−1)|xk|
)pn

(3.2)

Since lim sup
n→∞

pn < ∞ and x ∈ Λp̂, there exists a natural number n0 and a con-

stant M > 0 such that one has 2pn ≤ 2M for all n > n0 and for every ε > 0,
∞∑

n=n0+1

( 1

λn

n∑
k=0

(λk − λk−1)|xk|
)pn

<
ε

2M
. Hence from inequality (3.2), one ob-

tains σ(z) < σ(x) + ε = 1. The relation between norm and modular implies that
‖y‖p̂ < 1 and ‖z‖p̂ < 1, which contradict the assumption that x is an extreme
point. Therefore σ(x) = 1 must holds.
Sufficiency: Let it be assumed that x satisfies condition σ(x) = 1. Suppose
2x = y + z for some y, z ∈ B(Λp̂). Then convexity of modular σ implies that

1 = σ(x) = σ
(y + z

2

)
≤ 1

2

(
σ(y) + σ(z)

)
≤ 1.

Therefore σ(y) = 1 and σ(z) = 1 and for each n ∈ N0, one gets( 1

λn

n∑
k=0

(λk − λk−1)
∣∣∣yk + zk

2

∣∣∣)pn

=
1

2

( 1

λn

n∑
k=0

(λk − λk−1)|yk|
)pn

+
1

2

( 1

λn

n∑
k=0

(λk − λk−1)|zk|
)pn

. (3.3)

Since the functions f(t) = |t|pn , pn > 1, n ∈ N0 are strictly convex so from Eqn.
(3.3) it follows that Λx(n) = Λy(n) = Λz(n) for each n ∈ N0, which in turn,
implies that
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|xk| = |yk| = |zk| for each k ∈ N0.

If there exists i0 ∈ N0 such that yi0 + zi0 = 0, then one gets

1 = σ(x) = σ
(y + z

2

)
=

∞∑
n=0

( 1

λn

n∑
k=0

(λk − λk−1)
∣∣∣yk + zk

2

∣∣∣)pn

=
∞∑

n=0

( 1

λn

∑
k∈N0\{i0}

(λk − λk−1)
∣∣∣yk + zk

2

∣∣∣)pn

≤ 1

2

∞∑
n=0

( 1

λn

∑
k∈N0\{i0}

(λk − λk−1)
∣∣yk

∣∣)pn

+
1

2

∞∑
n=0

( 1

λn

∑
k∈N0 \{i0}

(λk − λk−1)
∣∣zk

∣∣)pn

<
1

2
σ(y) +

1

2
σ(z) = 1,

which leads to a contradiction. This means xk = yk = zk for every k ∈ N0, i.e.,
x = y = z. �

Remark 3.7. The statement of the Theorem 3.6 also says that the space Λp̂ is

strictly convex, i.e., if ‖y‖p̂ = 1, ‖z‖p̂ = 1 and y 6= z implies that
∥∥∥y+z

2

∥∥∥
p̂
< 1.

The result is evident from the proof (sufficiency) of the last theorem. Indeed,
if σ(x) = 1 then we have σ(y) = 1 and σ(z) = 1 which gives ‖y‖p̂ = 1 and
‖z‖p̂ = 1, respectively. Further, assume that ‖y + z‖p̂ = 2. Then proceeds
similarly as above, one gets |yk| = |zk| for each k ∈ N0. We show that this implies
yk = zk for each k ∈ N0. Assume on the contrary that y 6= z. Then there exists
i0 ∈ N0 such that yi0 + zi0 = 0. Using the similar steps as above, we arrived at a
contradiction. Hence y = z. Therefore the space Λp̂ is strictly convex.

4. Von Neumann–Jordan constant of Λ
(2)
2

For two dimensional sequence space Λ
(2)
p , norm ‖(u, v)‖p is given by

‖(u, v)‖p =
(
|u|p +

(λ0|u|+ (λ1 − λ0)|v|
λ1

)p) 1
p
.

The von Neumann–Jordan constant CNJ(X) of a Banach space X was introduced
by Clarkson [4], which is defined as follows:

CNJ(X) = sup
{
‖x+y‖2+‖x−y‖2

2(‖x‖2+‖y‖2)
: x, y ∈ X and ‖x‖+ ‖y‖ 6= 0

}
.

Now the following theorem is taken as the starting point:

Theorem 4.1. The von Neumann–Jordan constant is given by: CNJ(Λ
(2)
2 ) =

1 + λ0√
λ2
0+λ2

1

.
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Proof. Choose (a, b), (c, d) ∈ Λ
(2)
2 . Then

‖(a, b)± (c, d)‖2

= ‖(a± c, b± d)‖2

=
(
|a± c|2 +

(λ0|a± c|+ (λ1 − λ0)|b± d|
λ1

)2)
=
(

1 +
λ2

0

λ2
1

)
|a± c|2 +

2λ0(λ1 − λ0)

λ2
1

|a± c||b± d|+ (λ1 − λ0)
2

λ2
1

|b± d|2.

Now

2λ0(λ1 − λ0)

λ2
1

|a± c||b± d| =
λ0√
λ2

0 + λ2
1

{
2

√
λ2

0 + λ2
1

λ1

|a± c|(λ1 − λ0)

λ1

|b± d|
}

≤ λ0√
λ2

0 + λ2
1

{λ2
0 + λ2

1

λ2
1

|a± c|2 +
(λ1 − λ0)

2

λ2
1

|b± d|2
}
.

Therefore

‖(a, b) + (c, d)‖2 + ‖(a, b)− (c, d)‖2

≤
(

1 +
λ0√
λ2

0 + λ2
1

){λ2
0 + λ2

1

λ2
1

(|a+ c|2 + |a− c|2) +
(λ1 − λ0)

2

λ2
1

(|b+ d|2 + |b− d|2)
}

= 2
(

1 +
λ0√
λ2

0 + λ2
1

){λ2
0 + λ2

1

λ2
1

(|a|2 + |c|2) +
(λ1 − λ0)

2

λ2
1

(|b|2 + |d|2)
}

≤ 2
(

1 +
λ0√
λ2

0 + λ2
1

){λ2
0 + λ2

1

λ2
1

|a|2 +
2λ0(λ1 − λ0)

λ2
1

|a||b|+ (λ1 − λ0)
2

λ2
1

|b|2

+
λ2

0 + λ2
1

λ2
1

|c|2 +
2λ0(λ1 − λ0)

λ2
1

|c||d|+ (λ1 − λ0)
2

λ2
1

|d|2
}

=
(

1 +
λ0√
λ2

0 + λ2
1

){
2(‖(a, b)‖2 + ‖(c, d)‖2)

}
.

Hence CNJ(Λ
(2)
2 ) ≤ 1 + λ0√

λ2
0+λ2

1

.

Consider (a, b) = (λ1− λ0, 0) and (c, d) = (0,
√
λ2

0 + λ2
1). Then by definition, one

gets

CNJ(Λ
(2)
2 ) ≥ ‖(a, b) + (c, d)‖2 + ‖(a, b)− (c, d)‖2

2(‖(a, b)‖2 + ‖(c, d)‖2)
= 1 +

λ0√
λ2

0 + λ2
1

.

Combining the last two inequalities, one gets CNJ(Λ
(2)
2 ) = 1 + λ0√

λ2
0+λ2

1

. �

Corollary 4.2. The James constant is given by: J(Λ
(2)
2 ) =

√
2 + 2λ0√

λ2
0+λ2

1

.
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Proof. It is well-known that 1
2

(
J(Λ

(2)
2 )
)2 ≤ CNJ(Λ

(2)
2 ) = 1 + λ0√

λ2
0+λ2

1

. There-

fore J(Λ
(2)
2 ) ≤

√
2 + 2λ0√

λ2
0+λ2

1

. Equality occurs when x =
(

λ1√
λ2
0+λ2

1

, 0
)

and

y =
(

0, λ1

λ1−λ0

)
. �

Corollary 4.3. If λ0 = 1 and λ1 = 2, then CNJ(ces
(2)
2 ) = 1 + 1√

5
and J(ces

(2)
2 ) =√

2 + 2√
5

(see [17], [25]).

Corollary 4.4. If λ0 = q0 and λ1 = q0 + q1, then CNJ(ces[2, q](2)) = 1 +
q0√

2q2
0+2q0q1+q2

1

and J(ces[2, q](2)) =
√

2 + 2q0√
2q2

0+2q0q1+q2
1

.

The following theorem is the counter part of a theorem presented by Saejung

([25], Theorem 15, p.536) for the sequence space Λ
(2)
p . We repeat a similar treat-

ment here for the sake of completeness.

Theorem 4.5. The von Neumann–Jordan constant CNJ(Λ
(2)
p ) =

(
sup

0≤t≤1

ψ(t)

ψ2(t)

)2

,

1 < p ≤ 2 where

ψ(t) =
(

λp
1(1−t)p

λp
0+λp

1
+
(

λ0(1−t)

(λp
0+λp

1)1/p + t
)p) 1

p
and ψ2(t) =

√{
(1− t)2 + t2

}
.

Proof. For (x, y) ∈ R2, a norm on R2 is defined as

|(x, y)| =
∥∥∥( λ1x

(λp
0+λp

1)1/p ,
λ1y

(λ1−λ0)

)∥∥∥
Λ

(2)
p

.

It may be easily verified that |(x, y)| = |(|x|, |y|)| and |(1, 0)| = 1 = |(0, 1)|. In
other words, |(x, y)| defines an absolute and normalized norm. Additionally, a

map T : (R2, |(, )|) → Λ
(2)
p is chosen which is defined as

T
(
(x, y)

)
=
(

λ1x
(λp

0+λp
1)1/p ,

λ1y
(λ1−λ0)

)
.

Again, it may be easily shown that T is an isometric isomorphism, i.e., sequence

spaces Λ
(2)
p are isometrically isomorphic to (R2, |(, )|). It suffices to prove that

ψ ≥ ψ2 by using derivation by Saito et al. ([26], Theorem 1, p. 521) and deduce
that (

λ0(1−t)

(λp
0+λp

1)1/p + t
)p

≥ λp
0(1−t)p

λp
0+λp

1
+ tp,

which implies that ψ(t) ≥
{

(1 − t)p + tp
} 1

p ≥
{

(1 − t)2 + t2
} 1

2 = ψ2(t). Hence,
the result. �

5. Upper bounds for Hausdorff matrix operators

As usual, lp for 1 < p < ∞ denotes the p-summable sequence spaces. Denote

Λ̃x =
(
Λ̃x(n)

)
, where Λ̃x(n) =

∣∣∣ 1
λn

n∑
k=0

(λk − λk−1)xk

∣∣∣. Then the non-absolute
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type Λ-sequence spaces Λ̃p, 1 < p ≤ ∞ are introduced which were studied by
Mursaleen and Noman [20] who defined them as

Λ̃p =
{
x = (xk) ∈ l0 :

∞∑
n=0

(
Λ̃x(n)

)p
<∞

}
.

This is a Banach space equipped with the norm ‖x‖eΛp
= ‖Λ̃x‖lp . The inclusion

relation between lp and Λ̃p is given in the following lemma:

Lemma 5.1. ([20], Corollary 4.11. & 4.13.) If 1
λ

=
(

1
λn

)
∈ l1, then supk

{
(λk −

λk−1)
∞∑

n=k

1

λn

}
<∞ and the inclusion lp ⊂ Λ̃p holds for 1 ≤ p <∞.

In this section, it is contemplated to establish a Hardy’s type formula as an

upper bound for ‖Hθ‖lp,eΛp
, whereHθ : lp → Λ̃p. Firstly, the definition of Hausdorff

matrix [2] is recalled for the sake of convenience. Hausdorff matrix is denoted by
Hθ = (hn,k), n, k = 0, 1, 2, . . . and is defined by

hn,k =

{
0 if k > n,(

n
k

)
∆n−kµk if k ≤ n,

where ∆ is the difference operator defined by ∆µk = µk−µk+1 and µ = (µ0, µ1, . . .)
is a sequence of real numbers with µ0 = 1 and

µk =

∫ 1

0

θkdµ(θ),

where dµ(θ) is a Borel probability measure on [0, 1]. Therefore the equivalent
form of the matrix Hθ = (hn,k) is

hn,k =


0 if k > n,(

n
k

) ∫ 1

0

θk(1− θ)n−kdµ(θ) if k ≤ n.

If dθ is chosen as the Lebesgue measure, then the Hausdorff matrix includes four
famous classes of matrices as given below:
(a) By putting dµ(θ) = α(1 − θ)α−1dθ, Hθ leads to (C, α), the Cesàro matrix of
order α;

(b) By putting dµ(θ) = | log θ|α−1

Γ(α)
dθ, Hθ reduces to (H,α), the Hölder matrix of

order α;
(c) By putting dµ(θ) = point evaluation at θ = α, Hθ reduces to (E,α), the Euler
matrices of order α;
(d) By putting dµ(θ) = αθα−1dθ, Hθ becomes (Γ, α), the Gamma matrices of
order α. The following lemma is required to establish the desired result.

Lemma 5.2. ([11], Theorem 216) Consider two non-negative sequences x = (xk)
and µ = (µk) of real numbers with µ0 = 1. Then for 1 < p <∞

∞∑
n=0

(
n∑

k=0

hn,kxk

)p

<

(∫ 1

0

θ−1/pdµ(θ)

)p ∞∑
k=0

xp
k.
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Theorem 5.3. Suppose 1 < p < ∞, 1
λ
∈ l1 and x = (xk) be a non-negative

sequence of real numbers. Then for the Hausdorff matrix Hθ : lp → Λ̃p, one gets

‖Hθ‖lp,eΛp
≤

(
sup

k

{
(λk − λk−1)

∞∑
n=k

1

λn

})1/p ∫ 1

0

θ−1/pdµ(θ).

Proof. Let x = (xk) be a non-negative sequence of real numbers in lp and q =
p

p−1
. Applying the Hölder inequality and the Lemma 5.2, the following result is

obtained:

‖Hθx‖p
eΛp

=
∞∑

n=0

(
1

λn

n∑
k=0

(λk − λk−1)
k∑

j=0

hk,jxj

)p

≤
∞∑

n=0

1

λn

n∑
k=0

(λk − λk−1)

(
k∑

j=0

hk,jxj

)p(
1

λn

n∑
k=0

(λk − λk−1)

)p/q

=
∞∑

n=0

1

λn

n∑
k=0

(λk − λk−1)

(
k∑

j=0

hk,jxj

)p

=
∞∑

k=0

(λk − λk−1)

(
k∑

j=0

hk,jxj

)p ∞∑
n=k

1

λn

≤ sup
k

{
(λk − λk−1)

∞∑
n=k

1

λn

} ∞∑
k=0

(
k∑

j=0

hk,jxj

)p

≤

(
sup

k

{
(λk − λk−1)

∞∑
n=k

1

λn

})(∫ 1

0

θ−1/pdµ(θ)

)p

‖x‖p
lp
.

Hence, we have

‖Hθ‖lp,eΛp
≤

(
sup

k

{
(λk − λk−1)

∞∑
n=k

1

λn

})1/p ∫ 1

0

θ−1/pdµ(θ),

and this completes the proof. �

Corollary 5.4. By denoting M = sup
k

{
(λk−λk−1)

∞∑
n=k

1

λn

}
and imposing similar

assumptions as those of Theorem 5.3, the following results are obtained:

(a) ‖(C, α)‖lp,eΛp
≤M1/p Γ(α+1)Γ(1/q)

Γ(α+1/q)
, α > 0;

(b) ‖(H,α)‖lp,eΛp
≤M1/p 1

Γ(α)

∫ 1

0

θ−1/p| log θ|α−1dθ, α > 0;

(c) ‖(E,α)‖lp,eΛp
≤M1/pα−1/p, 0 < α < 1;

(d) ‖(Γ, α)‖lp,eΛp
≤M1/p αp

αp−1
, αp > 1.
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