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ON LINEAR MAPS PRESERVING CERTAIN
PSEUDOSPECTRUM AND CONDITION SPECTRUM SUBSETS
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Abstract. We define two new types of spectrum, called the ε-left (or right)
pseudospectrum and the ε-left (or right) condition spectrum, of an element a
in a complex unital Banach algebra A. We prove some basic properties among
them the property that the ε-left (or right) condition spectrum is a particular
case of Ransford spectrum. We study also the linear preserver problem for our
defined functions and we establish the following:
(1) Let A and B be complex unital Banach algebras and ε > 0. Let φ :

A −→ B be an ε-left (or right) pseudospectrum preserving onto linear
map. Then φ preserves certain standard spectral functions.

(2) Let A and B be complex unital Banach algebras and 0 < ε < 1. Let
φ : A −→ B be a unital linear map. Then
(a) If φ is an ε-almost multiplicative map, then σl(φ(a)) ⊆ σl

ε(a) and
σr(φ(a)) ⊆ σr

ε(a), for all a ∈ A.
(b)If φ is an ε-left (or right) condition spectrum preserving, then (i) if A
is semi-simple, then φ is injective; (ii) if B is spectrally normed, then φ
is continuous.

1. Preliminaries

Let A be a complex Banach algebra with unit 1. We shall identify λ.1 with
λ. An element a ∈ A is said to be left invertible if there exists b ∈ A such that
ba = 1, while it is said right invertible if there exists b ∈ A such that ab = 1.
An invertible element of A is a right and left invertible element of A, while a
semi-invertible element of A is a right or left invertible element of A. We denote
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by Inv(A), Invl(A) and Invr(A) the sets of all invertible, left invertible and right
invertible elements of A, respectively.
Let a ∈ A, the left spectrum, the right spectrum and the spectrum of a are
defined respectively as follow:

σl(a) := {λ ∈ C : a− λ /∈ Invl(A)},

σr(a) := {λ ∈ C : a− λ /∈ Invr(A)},
and

σ(a) := {λ ∈ C : a− λ /∈ Inv(A)}.
Since Inv(A) = Invl(A) ∩ Invr(A), then σ(a) = σl(a) ∪ σr(a). Note that ∂σ(a):
the boundary of σ(a), is a subset of any one of the sets σl(a) and σr(a) (see [3]).
In particular, σl(a) and σr(a) are non empty sets.
Given ε > 0 and a ∈ A. The ε-pseudospectrum of a is denoted by Λε(a) and is
defined to be the set

Λε(a) := {λ ∈ C : ‖(a− λ)−1‖ ≥ 1

ε
},

with the convention ‖(a− λ)−1‖ = ∞ if a− λ is not invertible.
For more information about the ε-pseudospectrum, we refer the reader to [1] and
[13].

The ε-condition spectrum of a ∈ A is denoted by σε(a) and is defined by

σε(a) := {λ ∈ C : ‖(a− λ)−1‖‖a− λ‖ ≥ 1

ε
},

with the convention ‖(a− λ)−1‖‖a− λ‖ = ∞ if a− λ is not invertible.
The spectral radius r(a) and the ε-condition spectral radius rε(a) of a are

defined respectively as follow:

r(a) := sup{|λ| : λ ∈ σ(a)} and rε(a) := sup{|λ| : λ ∈ σε(a)}.

The following property is proved by Kulkarni and Sukumar in [7, Theorem 2.9]:

r(a) 6 rε(a) 6
1 + ε

1− ε
‖a‖ ; for all 0 < ε < 1. (1.1)

We may refer to [7] for more information about ε-condition spectrum and ε-
condition spectral radius.

Let A and B be unital Banach algebras over the complex field. Let φ : A −→ B
be linear map and ε > 0. We say that

• φ is a Jordan homomorphism if (φ(a))2 = (φ(a))2 for all a ∈ A.
• φ is an ε-almost Jordan multiplicative map, if ‖φ(a2) − φ(a)2‖ ≤ ε ‖a‖2

for all a ∈ A.
• φ is an ε-almost multiplicative map, if ‖φ(ab)− φ(a)φ(b)‖ ≤ ε ‖a‖‖b‖ for

all a, b ∈ A.
• φ is an ε-almost anti-multiplicative map, if ‖φ(ab)−φ(b)φ(a)‖ ≤ ε ‖a‖‖b‖

for all a, b ∈ A.
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It is obvious that ε-almost multiplicative and ε-almost anti-multiplicative maps
are ε-almost Jordan multiplicative.

Over the last decade there has been a considerable interest in the so called lin-
ear preserver problems (see the survey articles [8], [9] and [10]). The objective is
to study additive or linear maps between two Banach algebras preserving a given
class of elements of algebras. The most famous problem is Kaplansky’s problem
[5] asking whether bijective unital linear maps between semi-simple Banach alge-
bras preserving invertibility in both directions are Jordan isomorphisms. Many
other linear preserver problems have attracted many researchers. Many mathe-
maticians were interested to study certain quantities related on or extended the
concept of spectrum. In [6], Krishna Kumar and Kulkarni gave several results
about linear maps preserving pseudospectrum and condition spectrum. They
proved that if φ is an ε-pseudospectrum preserving linear onto map between two
Banach algebras A and B, then φ preserves spectrum, and if in addition, A and B
are uniform algebras, then φ is an isometric isomorphism. They proved also that
if φ : A −→ B is an ε-condition spectrum preserving linear map, then φ is injec-
tive and unital and if in addition A, B are uniform algebras, then φ is continuous
and an ε

′
-almost multiplicative map, where ε, ε

′
tend to zero simultaneously. In

this paper we will prove some similar results for linear maps preserving ε-left (or
right) pseudospectrum and condition spectrum.

2. Terminology and basic properties

In this section, we will introduce the concept of ε- left (or right) pseudospectrum
and the concept of ε-left (or right) condition spectrum. We prove that the last
one is a particular case of Ransford spectrum and that the relations connecting
pseudospectrum and condition spectrum given in [6] remain true for left (or right)
pseudospectrum and left (or right) condition spectrum.

Definition 2.1. (ε-left (or right) pseudospectrum) Let A be a complex Banach
algebra with unit 1 and let ε > 0. The ε-left pseudospectrum of an element a ∈ A
is denoted by Λl

ε(a) and is defined as

Λl
ε(a) := {λ ∈ C : inf{‖b‖ : b a left inverse of a− λ} ≥ 1

ε
},

with the convention inf{‖b‖ : b a left inverse of a − λ} = ∞, if a − λ is not left
invertible. The ε-right pseudospectrum is denoted by Λr

ε(a) and is defined in the
obvious way.

It is clear that for all a ∈ A, we have

σl(a) ⊆ Λl
ε(a) ⊆ Λε(a),

and

σr(a) ⊆ Λr
ε(a) ⊆ Λε(a).

In particular Λl
ε(a) and Λr

ε(a) are non empty sets.
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Definition 2.2. (ε-left (or right) condition spectrum) Let A be a complex Banach
algebra with unit 1 and let ε > 0. The ε-left condition spectrum of an element
a ∈ A is denoted by σl

ε(a) and is defined as

σl
ε(a) := {λ ∈ C : inf{‖b‖‖a− λ‖ : b a left inverse of a− λ} ≥ 1

ε
},

with the convention inf{‖b‖‖a − λ‖ : b a left inverse of a − λ} = ∞ if a − λ is
not left invertible.
The ε-right condition spectrum is denoted by σr

ε(a) and is defined in the obvious
way.

The following equations are immediate

σl(a) ⊆ σl
ε(a) ⊆ σε(a),

and

σr(a) ⊆ σr
ε(a) ⊆ σε(a).

In particular σl
ε(a) and σr

ε(a) are non empty sets.

Remark 2.3. The preceding inclusions are not equalities in general. Indeed, if we
consider the right shift operator

R : `2(C) −→ `2(C)
(ei)i∈N 7−→ (0, e0, e1, . . . , )

Then R ∈ B(l2(C)), the Banach algebra of all bounded linear maps on l2(C), R
is not surjective and hence 0 ∈ σε(R). But, R is left invertible and the left shift
operator

L : `2(C) −→ `2(C)
(ei)i∈N 7−→ (e1, . . . , )

is a left inverse of R. It is easy to verify that ‖R‖ = ‖L‖ = 1. Thus ‖R‖‖L‖ =
1 < 1

ε
, for all 0 < ε < 1. So 0 /∈ σl

ε(R). Hence σl
ε(R)  σε(R).

Now, we will show that the ε-left (or right) condition spectrum is a particular
case of Ransford spectrum.

Definition 2.4. (Ransford set) An open subset Ω of a complex unital Banach
algebra A satisfying the following assertions is called a Ransford set.

(1) 1 ∈ Ω.
(2) 0 /∈ Ω.
(3) ∀a ∈ Ω,∀λ ∈ C \ {0}; λa ∈ Ω.

Definition 2.5. (Ransford spectrum) Let Ω be a Ransford set of a complex unital
Banach algebra A and let a ∈ A. The Ransford spectrum of a with respect to Ω
is defined to be:

σΩ(a) := {λ ∈ C : a− λ /∈ Ω}.
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An interested reader can find basic properties and more information about the
Ransford spectrum in [11].

Let A be a unital complex Banach algebra and a ∈ A. We will call left condition
number of a, denoted by kl(a), the number

kl(a) :=

{
inf{‖a‖‖b‖ : b a left inverse of a} if a is left invertible,
+∞ if a is not left invertible.

Let 0 < ε < 1 and let Ωl
ε = {a ∈ Invl(A) : kl(a) < 1

ε
}.

Proposition 2.6. Ωl
ε is a Ransford set.

Proof. Since 0 is not left invertible, then 0 /∈ Ωl
ε. But 1 is invertible and kl(1) =

1 < 1
ε
, so 1 ∈ Ωl

ε. Let z ∈ C \ {0} and a ∈ Ωl
ε. Then for all b ∈ A, we have

ba = 1 ⇐⇒ (
1

z
b)(za) = 1,

and

‖b‖‖a‖ = ‖1

z
b‖‖za‖.

Thus kl(za) = kl(a) < 1
ε

and so za ∈ Ωl
ε. To conclude we must prove that Ωl

ε is an

open subset of A. Let a ∈ Ωl
ε. Then kl(a) < 1

ε
. Choose a scalar kl(a) < η < 1

ε
and

let b be a left inverse of a such that ‖b‖‖a‖ < η. Let c ∈ A satisfying ‖c‖ < 1
‖b‖

and satisfying an other condition given later. Since ‖bc‖ 6 ‖b‖‖c‖ < 1, then
b(a− c) = 1− bc is invertible. So (1− bc)−1b is a left inverse of a− c satisfying

‖(1− bc)−1b‖‖a− c‖ 6 ‖(1− bc)−1‖‖b‖‖a‖‖1− cb‖ 6 η‖(1− bc)−1‖‖1− cb‖.
Since ‖(1−bc)−1‖‖1−cb‖ tends to 1 as c tends to zero, then for a fixed ε′ > 0 such
that (1+ ε′)η < 1

ε
there exists δ > 0 satisfying ‖(1− bc)−1‖‖(1− bc)‖ < 1+ ε′, for

all d ∈ A with ‖d‖ < δ. If we take c such that ‖c‖ < δ, we obtain kl(a− c) < 1
ε
.

So for all c ∈ A satisfying ‖d‖ < min{ 1
‖b‖ , δ}, we have a − c ∈ Ωl

ε. Hence, Ωl
ε is

an open subset of A and so a Ransford set. �

Proposition 2.7. For all a ∈ A, σl
ε(a) is the Ransford spectrum of a with respect

to Ωl
ε. Similarly, σr

ε(a) is the Ransford spectrum of a with respect to Ωr
ε the subset

of C defined in the obvious way.

The following properties follow from generalized properties of Ransford spec-
trum (see [11]) and from the fact that ε-left and right condition spectrums are
non empty sets.

Corollary 2.8. Let A be a unital complex Banach algebra with unit 1, a ∈ A and
0 < ε < 1. Then

(1) σl
ε(0) = {0}, σl

ε(1) = {1}, σr
ε(0) = {0} and σr

ε(1) = {1}.
(2) For all a ∈ A, σl

ε(a) and σr
ε(a) are non empty compact subsets of C.

(3) The maps a 7−→ σl
ε(a) and a 7−→ σr

ε(a) are upper semicontinuous func-
tions from A to compact subsets of C.

The next two Propositions give some relations connecting ε-left condition spec-
trum and ε-left pseudospectrum of an element in a unital complex Banach algebra.
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Proposition 2.9. Let A be a unital complex Banach algebra with unit 1, a ∈ A
a non zero vector and 0 < ε < 1. Then

σl
ε(a) ⊆ Λl

2ε‖a‖
1−ε

(a) .

Proof. Let λ ∈ σl
ε(a). Then λ ∈ σε(a), so |λ| ≤ rε(a) ≤ (1 + ε)‖a‖

1− ε
. Hence

‖λ− a‖ ≤ |λ|+ ‖a‖ ≤ (1 + ε)‖a‖
1− ε

+ ‖a‖ =
2‖a‖
1− ε

.

Since λ ∈ σl
ε(a), then two cases occur. We can suppose first that a − λ is left

invertible. Then for every b a left inverse of a− λ, we have

‖a− λ‖‖b‖ ≥ 1

ε
,

that implies ‖b‖ ≥ 1
ε‖λ−a‖ ≥

1−ε
2ε‖a‖ . Thus, λ ∈ Λl

2ε‖a‖
1−ε

(a).

Now, if a− λ is not left invertible, then obviously λ ∈ Λl
2ε‖a‖
1−ε

(a). �

Proposition 2.10. Let A be a unital complex Banach algebra with unit 1 and
ε > 0. Suppose that a ∈ A is not a scalar multiple of 1 and let Ma := inf{‖z−a‖ :
z ∈ C}. Then Λl

ε(a) ⊆ σl
ε

Ma

(a).

Proof. Assume that λ ∈ Λl
ε(a) and suppose first that a−λ is left invertible. Then

for every b a left inverse of a− λ, we have

‖b‖ ≥ 1

ε
.

Also

‖λ− a‖ ≥ inf{‖z − a‖ : z ∈ C} = Ma > 0.

Hence

‖λ− a‖‖b‖ ≥ Ma

ε
.

So λ ∈ σl
ε

Ma

(a). Now, if a−λ is not left invertible, then obviously λ ∈ σl
ε

Ma

(a). �

Remark 2.11. (1) If a = µ.1 for some µ ∈ C, then σl
ε(a) = σε(a) = {µ} and

Λl
ε(a) = Λε(a) = D(µ, ε), the closed ball with center µ and radius ε. Thus

the condition on a, to be not a scalar multiple of 1, can not be dropped
from the above Proposition.

(2) The Proposition 2.6 and the Proposition 2.9 remain true if we replace
Λl

ε(a) with Λr
ε(a) and σl

ε(a) with σr
ε(a).

3. Main results

We begin this section by giving a sufficient condition for a map between Banach
algebras to preserve the ε-left (or right) pseudospectrum and the ε-left (or right)
condition spectrum. In the following, ∆s

ε(.) will represent any one of the four sets
Λl

ε(.), Λ
r
ε(.), σ

l
ε(.) and σr

ε(.).
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Theorem 3.1. Let A, B be unital complex Banach algebras and ε > 0. Suppose
that φ : A −→ B is a bijective linear and multiplicative isometry. Then for all
a ∈ A, we have

∆s
ε(a) = ∆s

ε(φ(a)).

Proof. Assume that ∆s
ε(.) = Λl

ε(.). Let a ∈ A. If λ ∈ Λl
ε(a), then for all b a left

inverse of a− λ we have

‖b‖ ≥ 1

ε
.

Since φ is an isometry, then

‖φ(b)‖ ≥ 1

ε
.

On the other hand, since φ is a bijective multiplicative map then it is unital.
Indeed, let u ∈ A such that φ(u) = 1 then

1 = φ(u) = φ(u.1) = φ(u)φ(1) = 1.φ(1) = φ(1).

Hence φ is a unital bijective linear and multiplicative map. Thus for every c ∈ A,
we have

c is a left inverse of a− λ ⇐⇒ φ(c) is a left inverse of φ(a)− λ.

It follows that for every d a left inverse of φ(a)− λ,

‖d‖ ≥ 1

ε
.

Hence λ ∈ Λl
ε(φ(a)) and so Λl

ε(a) ⊆ Λl
ε(φ(a)). The same argument shows that

Λl
ε(φ(a)) ⊆ Λε

l (a), so Λl
ε(φ(a)) = Λl

ε(a). Similarly we can prove the result if ∆s
ε(.)

takes any one of the other sets. �

In the next two Theorems, we prove that if a surjective linear map between
Banach algebras preserves ε-left or (respectively right) pseudospectrum, then it
preserves left (respectively right) spectrum and norms of all invertible elements.

Theorem 3.2. Let A, B be complex unital Banach algebras and ε > 0. Let
φ : A −→ B be an ε-left (respectively right) pseudospectrum preserving linear
onto map. Then φ preserves left (respectively right) spectra of elements.

Proof. Suppose that Λl
ε(a) = Λl

ε(φ(a)), for all a ∈ A. Let a ∈ A and λ ∈ C\σl(a).
Choose t > ε‖b‖, where b is a left inverse of a− λ. Then

‖1

t
b‖ <

1

ε
.

Since 1
t
b is a left inverse of ta− tλ, then

tλ /∈ Λl
ε(ta) = Λl

ε(φ(ta)) ⊇ σl(φ(ta)) = tσl(φ(a)).

So

λ /∈ σl(φ(a)).

Therefore

σl(φ(a)) ⊆ σl(a).
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In a similar way we can prove that

σl(a) ⊆ σl(φ(a)).

Hence
σl(φ(a)) = σl(a).

�

Theorem 3.3. Let A, B be complex unital Banach algebras and ε > 0. let
φ : A −→ B be an ε-left (or right) pseudospectrum preserving linear onto map.
Suppose that φ is multiplicative or anti-multiplicative. Then φ preserves norms
of all invertible elements of A.

Proof. Suppose that φ preserves ε-left pseudospectrum and suppose that there
exists a ∈ Inv(A) such that ‖φ(a−1)‖ 6= ‖a−1‖, for example ‖φ(a−1)‖ > ‖a−1‖.
Let t > 0 such that ε‖φ(a−1)‖ < t < ε‖a−1‖. Then ‖(ta)−1‖ ≥ 1

ε
. But, (ta)−1

is the unique left inverse of ta, so 0 ∈ Λl
ε(ta). On the other hand, since φ is an

onto multiplicative or anti-multiplicative map, then it is unital. So φ preserves
invertibility. Hence, (φ(ta))−1 is the inverse of φ(ta) and so a left inverse of
φ(ta). But ‖(φ(ta))−1‖ < 1

ε
, then 0 /∈ Λl

ε(φ(ta)) = Λl
ε(ta), this is a contradiction.

So φ preserves norms of all invertible elements of A. Similarly, we prove that
if φ preserves ε-right pseudospectrum, then φ preserves norms of all invertible
elements of A. �

Corollary 3.4. Let X and Y be complex Banach spaces. Let φ : B(X) −→ B(Y )
be a unital bijective linear map. Then, the following assertions are equivalent:

(1) φ preserves ε-left pseudospectrum for some ε > 0.
(2) φ preserves ε-right pseudospectrum for some ε > 0.
(3) φ preserves ε-pseudospectrum for some ε > 0.
(4) φ preserves ε-left pseudospectrum for every ε > 0.
(5) φ preserves ε-right pseudospectrum for every ε > 0.
(6) φ preserves ε-pseudospectrum for every ε > 0.
(7) Either there exists an isometry U ∈ B(X,Y ) such that φ(T ) = UTU−1,

for every T ∈ B(X), or there exists an isometry V ∈ B(X∗, Y ) such that
φ(T ) = V T ∗V −1, for every T ∈ B(X). The last case can not occur if X
or Y is not reflexive, or if there exists a semi-invertible but not invertible
element in B(X).

Proof. • Assume that (7) hold. Suppose first that there exists an isometry U ∈
B(X, Y ) such that φ(T ) = UTU−1, for every T ∈ B(X). Then φ verify the
hypothesis of 3.1 and so (1), (2), (3), (4), (5) and (6) hold. Now, suppose that
there exists an isometry V ∈ B(X∗, Y ) such that φ(T ) = V T ∗V −1, for every
T ∈ B(X). Then X and Y are reflexive and every semi-invertible element of
B(X) is invertible. Let ε > 0, then

Λl
ε(T ) = Λr

ε(T ) = Λε(T ) = Λε(T
∗) = Λε(φ(T )) = Λl

ε(φ(T )) = Λr
ε(φ(T )).

Hence (1), (2), (3), (4), (5) and (6) hold.
• ”(1) =⇒ (7)” Let ε > 0 such that Λl

ε(T ) = Λl
ε(φ(T )), for every T ∈ B(X). Then

by Theorem 3.2, φ preserves left spectrum. It follows, by [3, Corollary 4.5], that
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either there exists an invertible operator A ∈ B(X, Y ) such that φ(T ) = ATA−1,
for every T ∈ B(X) or there exists an invertible operator C ∈ B(X∗, Y ) such
that φ(T ) = CT ∗C−1, for every T ∈ B(X), and the last case can not occur
if X or Y is not reflexive, or if there exists a semi-invertible but not invertible
element in B(X). But, by Theorem 3.3, φ preserves the norm of all invertible
elements of B(X). Hence, by [12, Theorem 3.1, p 141], there exists a bijective
isometry U ∈ B(X, Y ) or a bijective isometry V ∈ B(X∗, Y ), and λ ∈ C∗ such
that A = λU or C = λV . So φ has the desired forms.
The other implications can be proved similarly. �

In the following, we give some results about the ε-left (or right) condition
spectrum preserver.

Definition 3.5. (Spectrally normed algebra) Let A be a complex Banach algebra
with unit 1. A is said to be a spectrally normed algebra, if there exists a scalar
k ≥ 1 such that ‖a‖ ≤ k r(a), for all a ∈ A.

Theorem 3.6. Let A, B be unital Banach algebras and 0 < ε < 1. Let φ : A −→
B be a unital linear map. Then

(1) If φ is an ε-almost multiplicative map, then σl(φ(a)) ⊆ σl
ε(a) and σr(φ(a)) ⊆

σr
ε(a), for all a ∈ A.

(2) If φ is an ε-left (or right) condition spectrum preserving map, then
(a) If A is semi-simple then φ is injective.

(b) if B is spectrally normed, then φ is continuous and ‖φ‖ ≤ k
1 + ε

1− ε
for

some constant k > 0. In particular if B is a uniform algebra, then φ

is continuous and ‖φ‖ ≤ 1 + ε

1− ε
.

Proof. (1) Let λ /∈ σl
ε(a). Then λ − a is left invertible and there exists b a left

inverse of λ− a such that

‖(λ− a)‖‖b‖ <
1

ε
.

Thus,

‖1− φ(b)φ(λ− a)‖ = ‖φ(1)− φ(b)φ(λ− a)‖
= ‖φ(b(λ− a))− φ(b)φ(λ− a)‖
≤ ε‖λ− a‖‖b‖
< 1.

Hence φ(b)φ(λ−a) is invertible and therefore, φ(λ−a) = λ−φ(a) is left invertible,
this implies that λ /∈ σl(φ(a)). Hence σl(φ(a)) ⊆ σl

ε(a). Similarly, we prove
σr(φ(a)) ⊆ σr

ε(a).
(2) Suppose that φ preserves ε-left condition spectrum, then

σl(φ(a)) ⊆ σl
ε(φ(a)) = σl

ε(a), for all a ∈ A.

In particular,

r(φ(a)) ≤ rε(a) ≤ 1 + ε

1− ε
‖a‖ for all a ∈ A.
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(a) Suppose that A is semi-simple and let a ∈ N(φ), the kernel of φ, then for all
x ∈ A we have:

σl(x) ⊆ σl
ε(x) = σl

ε(φ(x)) = σl
ε(φ(x− a)) = σl

ε(x− a).

So

r(x) ≤ rε(x− a) ≤ 1 + ε

1− ε
‖x− a‖

Hence, by J. Zemánek Theorem (see [2, Theorem 5.31, p 95]), we get a ∈ Rad(A).
But A is semi-simple, so a = 0 and thus φ is injective.
(b) If B is spectrally normed, then for some k > 0 we get

‖φ(a)‖ ≤ kr(φ(a)) ≤ k
1 + ε

1− ε
‖a‖, ∀ a ∈ A.

So φ is continuous and ‖φ‖ ≤ k
1 + ε

1− ε
. Similarly we get similar results if φ preserves

ε-right condition spectrum. �
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