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ON THE TRUNCATED TWO-DIMENSIONAL MOMENT
PROBLEM

SERGEY ZAGORODNYUK

Communicated by V. Bolotnikov

Abstract. We study the truncated two-dimensional moment problem (with
rectangular data) to find a non-negative measure µ(δ), δ ∈ B(R2), such that∫

R2 xm
1 xn

2dµ = sm,n, 0 ≤ m ≤ M, 0 ≤ n ≤ N , where {sm,n}0≤m≤M, 0≤n≤N is
a prescribed sequence of real numbers; M,N ∈ Z+. For the cases M = N = 1
and M = 1, N = 2 explicit numerical necessary and sufficient conditions for
the solvability of the moment problem are given. In the cases M = N = 2;
M = 2, N = 3; M = 3, N = 2; M = 3, N = 3 some explicit numerical sufficient
conditions for the solvability are obtained. In all the cases some solutions (not
necessarily atomic) of the moment problem can be constructed.

1. Introduction and preliminaries

In this paper we consider the truncated two-dimensional moment problem. A
general approach for this moment problem was presented by Curto and Fialkow
in their books [2] and [3]. These books entailed a series of papers by a group
of mathematicians, see recent papers [4], [6], [8] and references therein. This
approach includes an extension of the matrix of prescribed moments, which has
the same rank. While positive extensions are easy to build, the Hankel-type
structure is hard to inherit. This aim needed an involved analysis. Effective
optimization algorithms for the multidimensional moment problems were given
in the book of Lasserre [5]. Another approaches for truncated moment problems
were presented by Vasilescu in [7] and by Cichoń, Stochel and Szafraniec in [1].
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For arbitrary k, l ∈ Z we denote Zk,l := {j ∈ Z : k ≤ j ≤ l}. Consider the
following problem: find a non-negative measure µ(δ), δ ∈ B(R2), such that∫

R2

xm
1 x

n
2dµ = sm,n, m ∈ Z0,M , n ∈ Z0,N , (1.1)

where {sm,n}m∈Z0,M , n∈Z0,N
is a prescribed sequence of real numbers; M,N ∈ Z+.

This problem is said to be the truncated two-dimensional moment problem (with
rectangular data).

In the case of an arbitrary size of truncations, the approach of Curto and Fi-
alkow for the truncated two-dimensional moment problem (with triangular data)
gives some special conditions for the solvability of the moment problem, see [3, p.
51]. A more comprehensive analysis can be performed for small sizes of trunca-
tions ([3, p. 49–51]). A similar situation appears for the moment problem (1.1).

Let K be a subset of R2. The problem of finding a solution µ of the truncated
two-dimensional moment problem (1.1) such that

suppµ ⊆ K,

is said to be the truncated (two-dimensional) K-moment problem (with rectangu-
lar data). Since no other types of truncations will appear in the sequel, we shall
omit the words about rectangular data.

As a tool for the study of the truncated two-dimensional moment problem we
shall use the truncated K-moment problem on parallel lines (see Theorem 2.1).
For the case of arbitrary M,N , Theorem 2.1 allows to perform some numerical
tests for the existence of solutions of the moment problem (1.1) (see Remark 2.2).
Similar to [9], this also allows us to consider a set of Hamburger moment problems
and then to analyze the corresponding systems of non-linear inequalities. For the
cases M = N = 1 and M = 1, N = 2 this approach leads to the necessary and
sufficient conditions of the solvability of the truncated two-dimensional moment
problem. In the cases M = N = 2; M = 2, N = 3; M = 3, N = 2; M = 3, N = 3
some explicit numerical sufficient conditions for the solvability are obtained. In
all these cases a set of solutions (not necessarily atomic) can be constructed.
Notations. As usual, we denote by R,C,N,Z,Z+, the sets of real numbers,
complex numbers, positive integers, integers and non-negative integers, respec-
tively. By max{a, b} we denote the maximal number of a and b. For arbitrary
k, l ∈ Z we set

Zk,l := {j ∈ Z : k ≤ j ≤ l}.
By B(M) we denote the set of all Borel subsets of M , where M ⊆ R or M ⊆ R2.

2. The truncated two-dimensional moment problems for the cases
M = N = 1 and M = 1, N = 2.

Choose an arbitrary N ∈ Z+ and arbitrary real numbers aj, j ∈ Z0,N : a0 <
a1 < a2 < ... < aN . Set

KN = KN(a0, ..., aN) =
N⋃

j=0

Lj, Lj := {(x1, x2) ∈ R2 : x2 = aj}.
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Thus, KN is a union on N + 1 parallel lines in the plane. In this case the K-
moment problem is reduced to a set of Hamburger moment problems (cf. [9,
Theorems 2 and 4]).

Theorem 2.1. Let M,N ∈ Z+ and aj, j ∈ Z0,N : a0 < a1 < a2 < ... <
aN , be arbitrary. Consider the truncated K-moment problem (1.1) with K =
KN(a0, ..., aN). Let

W = W (a0, a1, ..., aN) =

∣∣∣∣∣∣∣∣∣∣

1 1 ... 1
a0 a1 ... aN

a2
0 a2

1 ... a2
N

...
...

. . .
...

aN
0 aN

1 ... aN
N

∣∣∣∣∣∣∣∣∣∣
,

and ∆j;m be the determinant obtained from W by replacing j-th column with
sm,0

sm,1
...

sm,N

 , j ∈ Z0,N , m ∈ Z0,M .

Set

sm(j) :=
∆j;m

W
, j ∈ Z0,N , m ∈ Z0,M . (2.1)

The truncated KN(a0, a1, ..., aN)-moment problem has a solution if and only if for
each j ∈ Z0,N , the truncated Hamburger moment problem with moments sm(j):∫

R
xmdσj = sm(j), m = 0, 1, ...,M, (2.2)

is solvable. Here σj is a non-negative measure on B(R).
Moreover, if σj is a solution of the Hamburger moment problem (2.2), j ∈ Z0,N ,

then we may define a measure σ̃j by

σ̃j(δ) = σj(δ ∩ R), δ ∈ B(R2). (2.3)

Here R means the set {(x1, x2) ∈ R2 : x2 = 0}. We define

σ̃j
′(δ) = σ̃j(θ

−1
j (δ)), δ ∈ B(R2), (2.4)

where
θj((x1, x2)) = (x1, x2 + aj) : R2 → R2. (2.5)

Then we can define µ in the following way:

µ(δ) =
N∑

j=0

σ̃j
′(δ), δ ∈ B(R2), (2.6)

to get a solution µ of the truncated KN(a0, a1, ..., aN)-moment problem.

Proof. Suppose that the truncated KN(a0, a1, ..., aN)-moment problem has a so-
lution µ. For an arbitrary j ∈ Z0,N we denote:

πj((x1, x2)) = (x1, x2 − aj) : R2 → R2,
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and
µ′j(δ) = µ(π−1

j (δ)), δ ∈ B(R2).

Using the measure µ′j(δ) on B(R2), we define the measure σj as a restriction of

µ′j(δ) to B(R). Here by R we mean the set {(x1, x2) ∈ R2 : x2 = 0}. With these
notations, using the change of variables for measures and the definition of the
integral, for arbitrary m ∈ Z0,M , n ∈ Z0,N , we may write:

sm,n =

∫
R2

xm
1 x

n
2dµ =

N∑
j=0

an
j

∫
Lj

xm
1 dµ =

N∑
j=0

an
j

∫
R
xm

1 dµ
′
j =

N∑
j=0

an
j

∫
R
xmdσj.

Denote sm(j) =
∫

R x
mdσj, j ∈ Z0,N , m ∈ Z0,M . Then

sm(0) + sm(1) + sm(2) + ...+ sm(N) = sm,0,
a0sm(0) + a1sm(1) + a2sm(2) + ...+ aNsm(N) = sm,1,
a2

0sm(0) + a2
1sm(1) + a2

2sm(2) + ...+ a2
Nsm(N) = sm,2,

· · ·
aN

0 sm(0) + aN
1 sm(1) + aN

2 sm(2) + ...+ aN
Nsm(N) = sm,N ,

(m ∈ Z0,M).

(2.7)
By Cramer’s formulas numbers sm(j) coincide with numbers sm(j) from (2.1).
We conclude that the truncated Hamburger moment problems (2.2) are solvable.

On the other hand, suppose that the truncated Hamburger moment prob-
lems (2.2) have solutions σj. We define measures σ̃j, σ̃

′
j, µ by (2.3), (2.4) and

(2.6), respectively. Observe that σ̃j(R2\R) = 0. Then σ̃′j(R2\Lj) = 0, and

suppµ ⊆
⋃N

j=0 Lj. Using the change of the variable (2.5) and the definition of µ
we see that

sm(j) =

∫
R
xm

1 dσj =

∫
Lj

xm
1 dµ, j ∈ Z0,N , m ∈ Z0,M .

Observe that sm(j) are solutions of the linear system of equations (2.7). Then

sm,n =
N∑

j=0

an
j

∫
Lj

xm
1 dµ =

∫
R2

N∑
j=0

an
j χLj

(x1, x2)x
m
1 dµ =

=

∫
R2

xm
1 x

n
2dµ, m ∈ Z0,M , n ∈ Z0,N .

Here by χLj
we denote the characteristic function of the set Lj. Thus, µ is a

solution of the truncated KN(a0, a1, ..., aN)-moment problem. �

Remark 2.2. (Numerical tests).
Consider the truncated two-dimensional moment problem (1.1) with some

{sm,n}m∈Z0,M , n∈Z0,N
(M,N ∈ Z+). How to use Theorem 2.1 in our search of

its solutions?
Firstly, we can choose arbitrary real numbers aj, j ∈ Z0,N : a0 < a1 <

a2 < ... < aN , and consider the truncated K-moment problem (1.1) with K =
KN(a0, ..., aN), and the same {sm,n}m∈Z0,M , n∈Z0,N

as above. Then we calculate
the sm(j)’s by formula (2.1). It remains to check that the corresponding truncated
Hamburger moment problems (2.2) are solvable.
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Of course, such a test is specific. It can be powered in the following way.
Choose an arbitrary real interval [−T, T ] and its partition:

−T = y0 < y1 < ... < yg = T,

with a uniform step h. Then we can choose real numbers aj, j ∈ Z0,N : a0 < a1 <
a2 < ... < aN , taking aj’s from the latter partition. For each choice of aj’s we
perform the above test.

If these tests do not help, we can increase T and/or decrease h. Finally, we
can consider more that N +1 lines by increasing the given N and by introducing
some additional moments.

Observe that the positive result of tests in Remark 2.2 is not guaranteed.
However, for small M and N there are some conditions which guarantee the
existence of a solution of the moment problem (1.1). At first we consider the case
M = 1, N = 1 of the truncated two-dimensional moment problem.

Theorem 2.3. Let the truncated two-dimensional moment problem (1.1) with
M = 1, N = 1 and some {sm,n}m,n∈Z0,1 be given. This moment problem has a
solution if and only if one of the following conditions holds:

(i) s0,0 = s0,1 = s1,0 = s1,1 = 0;
(ii) s0,0 > 0.

In the case (i) the unique solution is µ ≡ 0. In the case (ii) a solution µ can
be constructed as a solution of the truncated K1(a0, a1)-moment problem with the
same {sm,n}m,n∈Z0,1, and arbitrary a0 <

s0,1

s0,0
; a1 >

s0,1

s0,0
.

Proof. Suppose that the truncated two-dimensional moment problem with M =
N = 1 has a solution µ. Of course, s0,0 =

∫
dµ ≥ 0. If s0,0 = 0 then µ ≡ 0 and

condition (i) holds. If s0,0 > 0 then condition (ii) is true.
On the other hand, if condition (i) holds then µ ≡ 0 is a solution of the moment

problem. Of course, it is the unique solution (one can repeat the arguments at
the beginning of this Proof). If condition (ii) holds, choose arbitrary real a0, a1

such that a0 <
s0,1

s0,0
and a1 >

s0,1

s0,0
. Consider the truncated K1(a0, a1)-moment

problem with {sm,n}m,n∈Z0,1 . Let us check by Theorem 2.1 that this problem is
solvable. We have: W = a1 − a0,

s0(0) =
a1s0,0 − s0,1

a1 − a0

> 0, s0(1) =
s0,1 − a0s0,0

a1 − a0

> 0,

s1(0) =
a1s1,0 − s1,1

a1 − a0

, s1(1) =
s1,1 − a0s1,0

a1 − a0

.

The Hamburger moment problems (2.2) are solvable [10, Theorem 8]. Their
solutions can be used to construct a solution µ of the truncated two-dimensional
moment problem. �

We now turn to the case M = 1, N = 2 of the truncated two-dimensional
moment problem.

Theorem 2.4. Let the truncated two-dimensional moment problem (1.1) with
M = 1, N = 2 and some {sm,n}m∈Z0,1, n∈Z0,2 be given. This moment problem has
a solution if and only if one of the following conditions holds:
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(a) s0,0 = s0,1 = s0,2 = s1,0 = s1,1 = s1,2 = 0;
(b) s0,0 > 0, and

sm,n = αnsm,0, m = 0, 1; n = 1, 2, (2.8)

for some α ∈ R.
(c) s0,0 > 0, s0,0s0,2 − s2

0,1 > 0.

In the case (a) the unique solution is µ ≡ 0.
In the case (b) a solution µ can be constructed as a solution of the truncated

K0(α)-moment problem with moments {sm,n}m∈Z0,1, n=0.
In the case (c) a solution µ can be constructed as a solution of the truncated

K2(a0, a1, a2)-moment problem with the same {sm,n}m∈Z0,1, n∈Z0,2, arbitrary a2 >√
s0,2

s0,0
and a1 = s0,1

s0,0
, a0 = −a2.

Proof. Suppose that the truncated two-dimensional moment problem with M =
1, N = 2 has a solution µ. Choose p(x2) = b0 + b1x2, where b0, b1 are arbitrary
real numbers. Since

0 ≤
∫
p2dµ = s0,0b

2
0 + 2s0,1b0b1 + s0,2b

2
1,

then Γ1 :=

(
s0,0 s0,1

s0,1 s0,2

)
≥ 0. If s0,0 = 0 then µ ≡ 0 and condition (a) is true.

If s0,0 > 0 and s0,0s0,2− s2
0,1 = 0, then 0 is an eigenvalue of the matrix Γ1 with an

eigenvector

(
c0
c1

)
, c0, c1 ∈ R. Observe that c1 6= 0. Denote α = − c0

c1
. From the

equation Γ1

(
c0
c1

)
= 0, it follows that relation (2.8) holds for m = 0. Observe

that
∫

R2(α−x2)
2dµ = 0. Then µ({(x1, x2) ∈ R2 : x2 6= α}) = 0. For n = 1, 2, we

get s1,n =
∫

R2 x1x
n
2dµ = αns1,0. Thus, condition (b) is true. Finally, it remains

the case (c).
Conversely, if condition (a) holds then µ ≡ 0 is a solution of the moment

problem. Since s0,0 = 0, then any solution is equal to µ ≡ 0.
Suppose that condition (b) holds. Consider the truncated K0(α)-moment prob-

lem with moments {sm,n}m∈Z0,1, n=0. Let us check by Theorem 2.1 that this
problem is solvable. In fact, W = 1, ∆0;m = sm(0) = sm,0, m = 0, 1. Since
s0(0) = s0,0 > 0, then the truncated Hamburger moment problem (2.2) has a
solution. Then we may construct µ as it was described in the statement of the
theorem. Remaining moment equalities then follow from relations (2.8) and the
fact that suppµ ⊆ {(x1, x2) ∈ R2 : x2 = α}.

Suppose that condition (c) holds. Consider the truncatedK2(a0, a1, a2)-moment

problem with the same {sm,n}m∈Z0,1, n∈Z0,2 , arbitrary a2 >
√

s0,2

s0,0
and a1 = s0,1

s0,0
,

a0 = −a2. We shall check by Theorem 2.1 that this problem is solvable. Observe
that W (a0, a1, a2) = 2a2(a

2
2 − a2

1) > 0, and

s0(0) =
a2 − a1

W
(a1a2s0,0 − (a1 + a2)s0,1 + s0,2),
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s0(1) =
a2 − a0

W
(−a0a2s0,0 + (a2 + a0)s0,1 + s0,2),

s0(2) =
a1 − a0

W
(a0a1s0,0 − (a0 + a1)s0,1 + s0,2).

For the solvability of the corresponding three truncated Hamburger moment prob-
lems it is sufficient the validity of the following inequalities: s0(j) > 0, j = 0, 1, 2,
which are equivalent to

a1a2s0,0 − (a1 + a2)s0,1 + s0,2 > 0,

a2
2s0,0 − s0,2 > 0,

−a1a2s0,0 − (a1 − a2)s0,1 + s0,2 > 0.

All these inequalities are true. Then the solution of the truncated K2(a0, a1, a2)-
moment problem exists and provides us with a solution of the truncated two-
dimensional moment problem. �

3. The truncated two-dimensional moment problems for the cases
M = N = 2; M = 2, N = 3; M = 3, N = 2; M = N = 3.

Consider arbitrary real numbers {sm,n}m,n∈Z0,3 , such that

s0,0 > 0, s0,0s0,2 − s2
0,1 > 0, s0,0s2,0 − s2

1,0 > 0. (3.1)

Let us study the truncated two-dimensional K3(a0, a1, a2, a3)-moment problem
with the moments {sm,n}m,n∈Z0,3 and with some a0 < a1 < a2 < a3:

a2 ∈
(
|s0,1|
s0,0

,

√
s0,2

s0,0

)
; (3.2)

a3 > max

{
|s0,3 − a2

2s0,1|
−a2

2s0,0 + s0,2

,

√
a2s0,2 + |s0,3|
a2s0,0 − |s0,1|

}
; (3.3)

a0 = −a3, a1 = −a2.

Observe that condition (3.1) ensures the correctness of all expressions in (3.2),
(3.3). Let us study by Theorem 2.1, when this moment problem has a solution.
We have: W =

∏
1≤j<i≤4

(ai−1 − aj−1) > 0, and for m ∈ Z0,3,

sm(0) =
2a2(a3 − a2)(a3 + a2)

W
{−a2

2a3sm,0 + a2
2sm,1 + a3sm,2 − sm,3},

sm(1) = −(a2 + a3)(a3 − a2)2a3

W
{−a2

3a2sm,0 + a2
3sm,1 + a2sm,2 − sm,3},

sm(2) =
(−a2 + a3)(a3 + a2)2a3

W
{a2a

2
3sm,0 + a2

3sm,1 − a2sm,2 − sm,3},

sm(3) = −(−a2 + a3)2a2(a2 + a3)

W
{a3a

2
2sm,0 + a2

2sm,1 − a3sm,2 − sm,3}.

Sufficient conditions for the solvability of the corresponding Hamburger moment
problems (2.2) are the following ([10, Theorem 8]):

s0(j) > 0, s0(j)s2(j)− (s1(j))
2 > 0, j = 0, 1, 2, 3. (3.4)
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The first inequality in (3.4) for j = 0, 1, 2, 3 is equivalent to the following system:
−a2

2a3s0,0 + a2
2s0,1 + a3s0,2 − s0,3 > 0

a2
3a2s0,0 − a2

3s0,1 − a2s0,2 + s0,3 > 0
a2a

2
3s0,0 + a2

3s0,1 − a2s0,2 − s0,3 > 0
−a3a

2
2s0,0 − a2

2s0,1 + a3s0,2 + s0,3 > 0

. (3.5)

The second inequality in (3.4) for j = 0, 1, 2, 3 is equivalent to the following
inequalities:

(−a2
2a3s0,0 + a2

2s0,1 + a3s0,2 − s0,3)(−a2
2a3s2,0 + a2

2s2,1 + a3s2,2 − s2,3) >

> (−a2
2a3s1,0 + a2

2s1,1 + a3s1,2 − s1,3)
2,

(a2
3a2s0,0 − a2

3s0,1 − a2s0,2 + s0,3)(a
2
3a2s2,0 − a2

3s2,1 − a2s2,2 + s2,3) >

> (a2
3a2s1,0 − a2

3s1,1 − a2s1,2 + s1,3)
2,

(a2
3a2s0,0 + a2

3s0,1 − a2s0,2 − s0,3)(a
2
3a2s2,0 + a2

3s2,1 − a2s2,2 − s2,3) >

> (a2
3a2s1,0 + a2

3s1,1 − a2s1,2 − s1,3)
2,

(−a2
2a3s0,0 − a2

2s0,1 + a3s0,2 + s0,3)(−a2
2a3s2,0 − a2

2s2,1 + a3s2,2 + s2,3) >

> (−a2
2a3s1,0 − a2

2s1,1 + a3s1,2 + s1,3)
2.

Dividing by a3 or a2
3 we obtain that the latter inequalities are equivalent to the

following inequalities:(
−a2

2s0,0 + s0,2 +
a2

2s0,1 − s0,3

a3

) (
−a2

2s2,0 + s2,2 +
a2

2s2,1 − s2,3

a3

)
>

>

(
−a2

2s1,0 + s1,2 +
a2

2s1,1 − s1,3

a3

)2

,(
a2s0,0 − s0,1 +

−a2s0,2 + s0,3

a2
3

) (
a2s2,0 − s2,1 +

−a2s2,2 + s2,3

a2
3

)
>

>

(
a2s1,0 − s1,1 +

−a2s1,2 + s1,3

a2
3

)2

,(
a2s0,0 + s0,1 −

a2s0,2 + s0,3

a2
3

) (
a2s2,0 + s2,1 −

a2s2,2 + s2,3

a2
3

)
>

>

(
a2s1,0 + s1,1 −

a2s1,2 + s1,3

a2
3

)2

,(
−a2

2s0,0 + s0,2 +
s0,3 − a2

2s0,1

a3

) (
−a2

2s2,0 + s2,2 +
s2,3 − a2

2s2,1

a3

)
>

>

(
−a2

2s1,0 + s1,2 +
s1,3 − a2

2s1,1

a3

)2

. (3.6)

We additionally assume that

(−a2
2s0,0 + s0,2)(−a2

2s2,0 + s2,2) > (−a2
2s1,0 + s1,2)

2, (3.7)

(a2s0,0 − s0,1)(a2s2,0 − s2,1) > (a2s1,0 − s1,1)
2, (3.8)
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(a2s0,0 + s0,1)(a2s2,0 + s2,1) > (a2s1,0 + s1,1)
2. (3.9)

In this case inequalities (3.6) will be valid, if a3 is sufficiently large. In fact,
inequalities (3.6) have the following obvious structure:

(rj + ψj(a3))(lj + ξj(a3)) > (tj + ηj(a3))
2, j ∈ Z0,3,

while inequalities (3.7), (3.8), (3.9) mean that

rjlj > t2j , j ∈ Z0,3.

Since ψj(a3), ξj(a3) and ηj(a3) tend to zero as a3 → ∞, then there exists A =
A(a2) ∈ R such that inequalities (3.6) hold, if a3 > A.

System (3.5) can be written in the following form:{
±(a2

2s0,1 − s0,3) < a3(−a2
2s0,0 + s0,2)

±(a2
3s0,1 − s0,3) < a2(a

2
3s0,0 − s0,2)

. (3.10)

System (3.10) is equivalent to the following system:{
|a2

2s0,1 − s0,3| < a3(−a2
2s0,0 + s0,2)

|a2
3s0,1 − s0,3| < a2(a

2
3s0,0 − s0,2)

. (3.11)

If

a3 >
|a2

2s0,1 − s0,3|
−a2

2s0,0 + s0,2

,

and

a3 >

√
|s0,3|+ a2s0,2

a2s0,0 − |s0,1|
, (3.12)

then inequalities (3.11) are true. Observe that relation (3.12) ensures that

a2
3|s0,1|+ |s0,3| < a2(a

2
3s0,0 − s0,2).

Quadratic (with respect to a3 or a2
3) inequalities (3.7)-(3.9) can be verified by

elementary means, using their discriminants. Let us apply our considerations to
the truncated two-dimensional moment problem.

Theorem 3.1. Let the truncated two-dimensional moment problem (1.1) with
M = N = 3 and some {sm,n}m,n∈Z0,3 be given and conditions (3.1) hold. Denote
by I1, I2 and I3 the sets of positive real numbers a2 satisfying inequalities (3.7),
(3.8) and (3.9), respectively. If(

|s0,1|
s0,0

,

√
s0,2

s0,0

)
∩ I1 ∩ I2 ∩ I3 6= ∅, (3.13)

then this moment problem has a solution.
A solution µ of the moment problem can be constructed as a solution of the trun-

cated K3(−a3,−a2, a2, a3)-moment problem with the same {sm,n}m,n∈Z0,3, with ar-

bitrary a2 from the interval
(
|s0,1|
s0,0

,
√

s0,2

s0,0

)
∩ I1 ∩ I2 ∩ I3, and some positive large

a3.

Proof. The proof follows from the preceding considerations. �
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Let the truncated two-dimensional moment problem (1.1) with M,N ∈ Z2,3

and some {sm,n}m∈Z0,M , n∈Z0,N
be given, and conditions (3.1) hold. Notice that

conditions (3.1), (3.7), (3.8), (3.9) and the first interval in (3.13) do not depend on
sm,n with indices m = 3 or n = 3. Thus, we can check conditions of Theorem 3.1
for this moment problem (keeping undefined moments as parameters).

Example 3.2. Consider the truncated two-dimensional moment problem (1.1)
with M = N = 2, and

s0,0 = 4ab, s0,1 = 0, s0,2 =
4

3
ab3, s1,0 = s1,1 = s1,2 = 0,

s2,0 =
4

3
a3b, s2,1 = 0, s2,2 =

4

9
a3b3,

where a, b are arbitrary positive numbers. In this case, condition (3.1) holds.
Moreover, we have:

I1 = (0,+∞)\
{

1√
3
b

}
, I2 = I3 = (0,+∞);(

|s0,1|
s0,0

,

√
s0,2

s0,0

)
=

(
0,

1√
3
b

)
.

By Theorem 3.1 we conclude that this moment problem has a solution.
Let us construct a solution of the moment problem. For simplicity we set

a = 1, b = 3. Thus, we have the following moments:

s0,0 = 12, s0,1 = 0, s0,2 = 36, s1,0 = s1,1 = s1,2 = 0,

s2,0 = 4, s2,1 = 0, s2,2 = 12.

We consider the truncated two-dimensional moment problem (1.1) with M =
N = 3 and with {sm,n}m,n∈Z0,3 , where new moments (with indices m = 3 or
n = 3) are zeros. According to Theorem 3.1 we choose a2 = 1, and consider the
truncated K3(−a3,−1, 1, a3)-moment problem with {sm,n}m,n∈Z0,3 . The value of
a3 (> 1) will be specified later.

We next calculate W , ∆j;m and sm(j) from Theorem 2.1. A direct calculation
of the determinants gives the following formulas for sm(j):

sm(0) =
1

2a3(a2
3 − 1)

(−a3sm,0 + sm,1 + a3sm,2) ,

sm(1) =
−1

2(a2
3 − 1)

(
−a2

3sm,0 + a2
3sm,1 + sm,2

)
,

sm(2) =
1

2(a2
3 − 1)

(
a2

3sm,0 + a2
3sm,1 − sm,2

)
,

sm(3) =
−1

2a3(a2
3 − 1)

(a3sm,0 + sm,1 − a3sm,2) .

Then

s0(0) =
12

a2
3 − 1

, s1(0) = 0, s2(0) =
4

a2
3 − 1

, s3(0) = 0;

s0(1) =
6a2

3 − 18

a2
3 − 1

, s1(1) = 0, s2(1) =
2a2

3 − 6

a2
3 − 1

, s3(1) = 0;
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s0(2) =
6a2

3 − 18

a2
3 − 1

, s1(2) = 0, s2(2) =
2a2

3 − 6

a2
3 − 1

, s3(2) = 0;

s0(3) =
12

a2
3 − 1

, s1(3) = 0, s2(3) =
4

a2
3 − 1

, s3(3) = 0.

We set a3 = 2 to get

s0(0) = 4, s1(0) = 0, s2(0) =
4

3
, s3(0) = 0;

s0(1) = 2, s1(1) = 0, s2(1) =
2

3
, s3(1) = 0;

s0(2) = 2, s1(2) = 0, s2(2) =
2

3
, s3(2) = 0;

s0(3) = 4, s1(3) = 0, s2(3) =
4

3
, s3(3) = 0.

Of course, the latter truncated Hamburger moment problems are solvable. As
σ0 = σ3 (see Theorem 2.1) we can take the two-atomic measure with atoms at
points ± 1√

3
and masses equal to 2. As σ1 = σ2 we take the two-atomic measure

with atoms at points ± 1√
3

and masses equal to 1. By the construction in the

formulation of Theorem 2.1 we get a solution µ of the moment problem. The

measure µ is 8-atomic with atoms at points
(
± 1√

3
,±2

)
,
(
± 1√

3
,±1

)
. The masses

at points
(
± 1√

3
,±2

)
are equal to 2, while the masses at points

(
± 1√

3
,±1

)
are

equal to 1.
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