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PARTIAL ISOMETRIES: A SURVEY

FRANCISCO J. FERNÁNDEZ-POLO,1 and ANTONIO M. PERALTA2∗

This paper is dedicated to the memory of Professor Uffe Haagerup

Abstract. We survey the main results characterizing partial isometries in C∗-
algebras and tripotents in JB∗-triples obtained in terms of regularity, conorm,
quadratic-conorm, and the geometric structure of the underlying Banach spaces.

1. Introduction

It is known that, even in the most favorable case of two by two matrices with
complex entries, an arbitrary matrix cannot be always expressed as a complex lin-
ear combination of mutually orthogonal projections (i.e. hermitian idempotents).
If we relax our requirements and we replace projections with partial isometries,
then every square matrix can be written as a linear combination of mutually
orthogonal partial isometries with positive coefficients. This is just one of our
favorite motivations to introduce the potential readers into the notion of partial
isometries, or in a more general setting tripotents. Partial isometries have been
intensively studied since the very early stages of the theory of linear operator on
complex Hilbert spaces (see, for example, [18, 29]). These objects play a fun-
damental role in operator theory, C∗-algebras and other generalizations in more
general Jordan-Banach structures like JB∗-algebras and JB∗-triples.

But what is a partial isometry? Most of basic references and books place the
origins of partial isometries in the space B(H) of all bounded linear operators on
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a complex Hilbert space H. An element e in B(H) is a partial isometry if it acts
isometrically on the orthogonal complement of its kernel, that is, ‖e(ξ)‖ = ‖ξ‖
for every ξ ∈ (ker(e))⊥ = {ξ ∈ H : 〈ξ|η〉 = 0, ∀η ∈ ker(e)} (see [29, §127], [18,
Definition 3.8]). Applying the completeness of H and the isometric behavior of
e on (ker(e))⊥ we can easily see that ran(e) = e(H) = e((ker(e))⊥) is a closed
subspace of H. Following the standard notation, the space (ker(e))⊥ is called the
initial space of e, while ran(e) is called the final space of e.

One of the earliest results in operator theory (see, for example, [29, Problem
127 and subsequent Corollaries], or [55, §2.2.8] or [18, Exercises 9 and 10 in page
16]) establishes any of the following statements are equivalent for an element e
in B(H):

(a) e is a partial isometry;
(b) ee∗ is an idempotent (actually, ee∗ is the orthogonal projection of H onto the

final space of e);
(c) e∗e is an idempotent (actually, e∗e is the orthogonal projection of H onto the

initial space of e);
(d) ee∗e = e;
(e) e∗ is a partial isometry,

where e∗ denotes the adjoint of e in B(H).

The above equivalences are just the beginning of a long series of results seeking
for characterizations of partial isometries in several structures generalizing the
algebraic-geometric structure of B(H) in different directions.

An element e in a general C∗-algebra A is said to be a partial isometry if
ee∗e = e. It is easy to check that, in this case, ee∗ and e∗e are projections (i.e.
self-adjoint idempotents) in A. On the other hand, if ee∗ is a projection in A, it
can be easily checked that

(e− ee∗e)(e− ee∗e)∗ = (e− ee∗e)(e∗ − e∗ee∗)

= ee∗ − ee∗ee∗ − ee∗ee∗ + ee∗ee∗ee∗ = 0,

which implies, via Gelfand–Naimark axiom that e = ee∗e. Similarly, e∗e being a
projection assures that e∗ee∗ = e∗ (or equivalently, ee∗e = e).

The aim of this paper is to survey some of the most meaningful (and useful)
characterizations of partial isometries in real and complex C∗-algebras, ternary
ring of operators and real and complex JB∗-triples obtained, by different authors,
during the last forty years. For completeness reasons, and in order to offer an
unified approach, we have tried to modify and gather together some of the results
dispersed in the literature contributing, in most of cases, with an alternative
approach to the original statements and proofs. So, contrary to an orthodox
survey, we will not be limited to list results and references.

We begin section 2 with a revision of the notion of von Neumann regularity
and Moore–Penrose invertibility in the setting of C∗-algebras. In a non-unital
Banach algebra the notion of invertibility makes no sense. However, there exist
non-unital Banach algebras (respectively, C∗-algebras) containing a wide set of
idempotents (respectively, projections). The notion of von Neumann regularity
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is more appropriate in this setting. We recall that an element a in an associative
Banach algebra A is called von Neumann regular or simply regular if there exists
b ∈ A satisfying aba = a. The element b is one of the many different choices
satisfying the previous identity, it is called a generalized inverse of a. If b and a
are generalized inverses of each other, we say that b is a normalized generalized
inverse of a.

The order provided by the cone of positive elements in a C∗-algebra is the key
ingredient to define Moore–Penrose invertibility. An element a in a C∗-algebra
A is Moore–Penrose invertible if there exists b in A such that aba = a, bab = b
and ab, ba are projections (i.e. self adjoint idempotents) in A. The element b
in the definition of Moore–Penrose invertibility is unique, it is called the Moore–
Penrose inverse of a, and it is denoted by a†. In Theorem 2.3 we present the
main equivalent reformulations of regularity in the setting of C∗-algebras derived
from studies due to R. Harte and M. Mbekhta [34] and M. Mbekhta [51]. Briefly
speaking, the following statements are equivalent for every element a in a C∗-
algebra A.

(b.1) a is regular;

(b.2) 0 is an isolated point in σ(|a|) ∪ {0}, where |a| = (a∗a)
1
2 ;

(b.3) The partial isometry appearing in the polar decomposition of a lies in A
and |a| is invertible in the C∗-subalgebra generated by |a|;

(b.4) The hereditary C∗-subalgebra generated by |a| is unital and |a| is invertible
in this C∗-subalgebra;

(b.5) a is Moore–Penrose invertible.

The proofs here differ from the originals because in this note the arguments
are built around the polar decomposition of an element in a C∗-algebra.

Our list of results characterizing partial isometries begins with Theorem 2.6 ([4,
Theorem 2.1]), where it is shown that for a norm-one element e in a C∗-algebra
A, the following statements are equivalent:

(a) e is a partial isometry;
(b) e is regular and ‖e†‖ ≤ 1;
(c) e is regular and admits a generalized inverse b with ‖b‖ ≤ 1.

The second characterization of partial isometries is given in terms of the conorm
of an element in a C∗-algebra A. The notion of conorm was introduced by R.
Harte and M. Mbekhta [35] in terms of the reduced minimum modulus of the left
and right multiplication operators. We recall that the reduced minimum modulus
of a non-zero bounded linear operator T between Banach spaces X and Y , is
defined by

γ(T ) := inf{‖T (x)‖ : dist(x, ker(T )) ≥ 1},
and γ(0) = 0 (see page 86 for more details). If for each a in a Banach algebra A,
La (respectively, Ra) denotes the left (respectively, right) multiplication operator
by the element a, the left conorm (respectively, right conorm) of a in A is the
quantifier

γl(a) = γ(La) (respectively, γr(a) = γ(Ra)).
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In Theorem 2.9 we revisit the main conclusions about conorm in [35]. Concretely,
for an element a in a C∗-algebra A the following statements hold:

(a) γl(a)2 = γl(|a|)2 = γl(|a|2) = inf{t : t ∈ σ(a∗a)\{0}};
(b) γr(a)2 = γr(|a|)2 = γr(|a|2) = inf{t : t ∈ σ(a∗a)\{0}};
(c) γl(a)2 = γl(|a|)2 = γl(|a|2) = γr(a)2 = γr(|a|)2 = γr(|a|2);
(d) γl(a) = γl(a∗) = γr(a) = γr(a∗) ≤ ‖a‖;
(e) When a is regular γl(a) = γl(a∗) = γr(a) = γr(a∗) = 1

‖a†‖ .

Thanks to the above result, the conorm on a C∗-algebra A is the mapping
γ : A → R+

0 defined by

γ(a) := γl(a) = γr(a) (∀a ∈ A).

Theorem 2.10 contains a characterization of non-zero partial isometries in terms
of their conorm, which is also due to Harte and Mbekhta (see [35, (4.9)]). The
concrete result reads as follows: Let e be a norm-one element in a C∗-algebra A.
Then the following statements are equivalent:

(a) e is a partial isometry;
(b) γ(e) = 1 (equivalently, γ(e) ≥ 1).

Subsection 2.1 is dedicated to the study of regular elements and conorm in the
setting of real C∗-algebras. The characterizations of partial isometries in terms
of Moore–Penrose invertibility and in terms of the conorm are extended to the
setting of real C∗-algebras in Theorems 2.13 and 2.14.

Section 3 is devoted to survey a groundbreaking result due to C.A. Akemann
and N. Weaver (see [2]), which characterizes partial isometries of a C∗-algebra A
in terms the geometric Banach space structure of A. In this section we present a
unified approach to deal with real and complex C∗-algebras. The characterization
enjoys the additional virtue of having a simple formulation. For each norm-one
element x in a real or complex Banach space X we consider the following sets:

D
X

1 (x) :=
{

y ∈ X : there exists α > 0 with ‖x± αy‖ = 1
}

,

D
X

2 (x) := {y ∈ X : ‖x + βy‖ = max{1, ‖βy‖}, for all β ∈ R}.
Let us observe that D

X

1 (x) and D
X

2 (x) are just determined by the geometric
structure of the Banach space X. The commented characterization asserts that
a norm-one element e in a real or complex C∗-algebra A, is a partial isometry if,
and only if, D

A

1 (e) = D
A

2 (e) (see Theorem 3.2, [2, Theorem 1]).

The geometric characterization of partial isometries can be applied to rediscover
a celebrated result of R.V. Kadison characterizing the extreme points of the closed
unit ball of a C∗-algebra (see Corollary 3.4).

As it was observed during the seventies, eighties, and nineties by authors like
L.A. Harris [32], M. Koecher [46], A. Fernández López, E. Garćıa Rus, E. Sánchez
Campos, and M. Siles Molina [23], and W. Kaup [44], the notion of regularity
can be also considered in the setting of Jordan triple systems and complex JB∗-
triples (see the first paragraphs of section 4 for the concrete definitions of these
mathematical objects). We employ the first part of section 4 to revisit the main
results on this topic.
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We recall that an element a in a Jordan triple system E is (von Neumann)
regular if a belongs to Q(a)(E) (i.e. there exists b in E such that Q(a)(b) = a) and
strongly (von Neumann) regular if there exists b in E such that a = Q(a)2(b) =
{a, {a, b, a}, a}.

In Theorem 4.3 (see also Proposition 4.8) we gather together the different
characterizations of the notion of regularity in the setting of JB∗-triples borrowed
from [46], [23], [44] and [15]. Concretely, for an element a in a JB∗-triple E the
following statements are equivalent:

a) a is regular;
b) 0 is isolated in the triple spectrum of a;
c) Q(a) has closed range;
d) There exists an element b in E satisfying the following properties Q(a)(b) = a,

Q(b)(a) = b and [Q(a), Q(b)] := Q(a) Q(b)−Q(b) Q(a) = 0;
e) a is strongly regular.

For a regular element a, the element b appearing in statement (d) above is
unique and is called the generalized inverse of a (denoted by a‡).

In a JB∗-triple an element e is called tripotent if {e, e, e} = e. When a C∗-
algebra A is regarded as a JB∗-triple with respect to the product {a, b, c} =
1
2
(ab∗c + cb∗a), tripotents and partial isometries in A coincide. Therefore, char-

acterizing tripotents in JB∗-triples is a Jordan analogue of characterizing partial
isometries in C∗-algebras. The notion of regularity can be applied to get a first
characterization of tripotents; namely, a norm-one element e in a JB∗-triple E is
a tripotent if, and only if, it is regular and ‖e‡‖ ≤ 1 if, and only if, there exists b
in E with ‖b‖ ≤ 1 and Q(e)(b) = e (see Theorem 4.7, [15, Corollary 3.6]).

The quadratic-conorm in the setting of JB∗-triples was introduced by M.J.
Burgos, A. Kaidi, A. Morales, M.I. Ramírez and the second author of this note in
[15]. For an element a in a JB∗-triple E, its quadratic-conorm, γq(a), is defined
as the reduced minimum modulus of the conjugate-linear operator Q(a), that is,
γq(a) = γ(Q(a)). The fundamental property of the quadratic-conorm is revisited
in Theorem 4.9 where it is shown that the identity

γq(a) = inf{t2 : t ∈ Sp(a)\{0}}
holds for every non-zero element a in a JB∗-triple E. Consequently, ‖a‖2 ≥ γq(a),
for all a ∈ E, and

γq(a) = ‖a‡‖−2, whenever a is regular.

As in the case of C∗-algebras, the quadratic-conorm was applied by M.J. Bur-
gos, A. Kaidi, A. Morales, M.I. Ramírez and the second author of this note to
characterize tripotents. The result is presented here in Theorem 4.10, where it is
proved that a norm-one element e in a JB∗-triple E is a tripotent if, and only if,
γq(e) = 1.

We devote subsection 4.1 to explore different studies on regularity and quadratic-
conorm in the setting of real JB∗-triples.

In section 5 we deal with the geometric characterization of tripotents in real
and complex JB∗-triples obtained by J. Mart́inez and the authors of this survey
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in [24]. By generalizing the geometric characterization of partial isometries due
to Akemann and Weaver, it can be shown that a norm-one element e in a real or
complex JB∗-triple E is a tripotent if, and only if, D

E

1 (e) = D
E

2 (e) (see Theorem
5.2). We apply this characterization to rediscover the classic results by L. Harris
in [31, Theorem 11], W. Kaup and H. Upmeier [45, Proposition 3.5] and J.M.

Isidro, W. Kaup and A. Rodŕiguez [37, Lemma 3.3] describing the extreme points
of the closed unit ball of J∗-algebras, complex JB∗-triples and real JB∗-triples,
respectively.

2. First algebraic approaches: generalized inverses and conorms

Chronologically speaking, the first studies on partial isometries are related to
the notion of regular elements and Moore–Penrose inverses with contributions
conducted by R. Harte [33], R. Harte and M. Mbekhta [34, 35], M. Mbekhta [51]
and C. Badea and M. Mbekhta [6]. These results will be reviewed in this section.

We recall that an element a in an associative ring R is said to be regular or von
Neumann regular if there exists b ∈ R satisfying aba = a. The element b is called
a generalized inverse of a, but it need not be unique. If b is a generalized inverse
of a and the equality bab = b holds, we say that b is a normalized generalized
inverse of a. In a unital ring every invertible element in the usual sense is regular.
However, in non-unital rings the notion of regularity provides elements which are
“locally” invertible. For example, the algebra c0 of all null sequences does not
contain a unit element and the notion of invertibility does not make any sense.
However, it can be easily checked that the set of regular elements in c0 is precisely
the subspace c00 of all eventually null sequences.

If b is a generalized inverse of an element a in an associative ring R, then the
elements ab = abab = (ab)(ab), and ba = baba = (ba)(ba) both are idempotents
and satisfy a(ba) = (ab)a = a.

For our particular goals, an element a in a Banach algebra A will be associated
with its left and right multiplication operators defined by La, Ra : A → A, x 7→
La(x) = ax and Ra(x) = xa, respectively. The quadratic mapping Ua : A → A
is given by Ua(x) := axa (x ∈ A). If we assume that a is regular and b is any
generalized inverse of a, then the identities

La = LaLbLa, and Ra = RaRbRa,

assure that La and Ra are regular elements in B(A) the Banach algebra of all
bounded linear operators on A.

Proposition 2.1. [34, Theorem 2] Let a be a regular element in a Banach algebra
A. Then the mappings La, Ra and Ua have closed range.

Proof. Let us take b ∈ A such that aba = a. The maps P = LaLb and Q = LbLa

are idempotents in B(A) with PLa = LaQ = La. Suppose La(xn) → z in norm
with z ∈ A, (xn) ⊂ A. Then Q(xn) = LbLa(xn) → bz ∈ A and LaQ(xn) → a(bz).
Since LaQ(xn) = La(xn) → z, we deduce that a(bz) = z ∈ La(A). The statement
concerning Ra follows by similar arguments.
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Suppose now that Ua(xn) → z in norm for a suitable sequence (xn) in A.
Clearly, UbUa(xn) → Ub(z) in norm. Since UaUbUa = Uaba = Ua, we arrive at
Ua(xn) = UaUbUa(xn) → UaUb(z), which assures that UaUb(z) = z ∈ Ua(A), as
desired. �

The existence of regular elements admitting a wide set of generalized inverses
makes necessary a more restrictive definition which narrows the set of generalized
inverses. The setting of C∗-algebras is specially appropriate for this purpose. C∗-
algebras are widely known by mathematicians and there is no need to revisit
the formal definition. The reader interested in more details is referred to the
monographs [58, 55] and [59].

Let A be a C∗-algebra. An element a in A is Moore–Penrose invertible if it
admits a normalized generalized inverse b such that ab and ba are projections in
A, that is, (ab)∗ = ab and (ba)∗ = ba. In these conditions, we shall say that b is
a Moore–Penrose inverse of a.

Every partial isometry e in a C∗-algebra A is Moore–Penrose invertible because
in this case e = ee∗e, e∗ = e∗ee∗ and ee∗ and e∗e are projections in A.

Henceforth, the C∗-subalgebra generated by a symmetric element a in a C∗-
algebra A will be denoted by Aa. The symbols Asa and A+ will denote the sets
of all self-adjoint elements in A and the positive cone of A, respectively.

Continuous functional calculus and polar decompositions are useful tools in
the theory of C∗-algebras. Following standard notation, given an element a in a
C∗-algebra A, the symbol |a| will denote the element (a∗a)

1
2 ∈ A. The spectrum

of an element a ∈ A will be denoted by σ(a). It is known that σ(|a|) ∪ {0} =
σ(|a∗|) ∪ {0}, for every a ∈ A. We shall frequently regard A as a C∗-subalgebra
of its bidual A∗∗.

For each element a in A+, the range projection (also called support projection
in [58, Definition 1.10.3]) of a in A∗∗ is the least projection among all projections
p in A∗∗ such that ap = pa = a and it will be denoted by r(a) (see [55, 2.2.7] or
[53, Theorem 4.1.9]). It is also known that the sequence (( 1

n
+ a)−1a) ⊂ Aa is

monotone increasing to r(a), and in particular (( 1
n

+ a)−1a) → r(a) in the weak∗

topology of A∗∗ (see [55, 2.2.7]).

Let a = v|a| be the polar decomposition of a in A∗∗, where v is a partial isometry
in A∗∗, which, in general, does not belong to A (compare [58, Theorem 1.12.1] or
[55, Proposition 2.2.9]). It is further known that v is the unique partial isometry
in A∗∗ satisfying a = v|a| and v∗v is the range projection of |a|. Moreover, for
each h ∈ C(σ(|a|)), with h(0) = 0 the element vh(|a|) ∈ A (see [1, Lemma 2.1]).

In our next result we study the additional properties inherited by some partic-
ular generalized inverses.

Proposition 2.2. Let a be an element in a C∗-algebra A. The following state-
ments hold:

(a) If B is a C∗-subalgebra of A with a ∈ B. Then a is regular in A whenever it
is regular in B;
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(b) If a belongs to Asa and is regular, then there exists a generalized inverse of a
in Asa;

(c) If a is positive and regular in A, then there exists a positive normalized gen-
eralized inverse of a in A.

Proof. (a) Clearly, a regular in B implies the existence of b ∈ B such that aba = a
and hence a is regular in A.

(b) Suppose a = a∗ is regular in A. Then there exists b ∈ A satisfying aba = a.

Therefore ab∗a = a and hence a (b+b∗)
2

a = a.

(c) Suppose a ≥ 0 is regular in A. By (b) be can find b = b∗ in A with aba = a.
Since elements of the form x∗x are positive in A (see [58, Theorem 1.4.4]), we
know that bab is a positive element in A with

a(bab)a = (aba)ba = aba = a

and

(bab)a(bab) = babab = bab.

�

Let B be a C∗-subalgebra of a C∗-algebra A. We say that B is a hereditary
C∗-subalgebra if for a ∈ A+ and b ∈ B+ the inequality a ≤ b implies a ∈ B (see
[53, §3.2]). It is known that a B is hereditary if, and only if, BAB ⊆ B (see
[53, Theorem 3.2.2]). Furthermore, if a ∈ A+ then the hereditary C∗-subalgebra
A(a) of A generated by a coincides with the norm closure of the set aAa, that is,
A(a) = aAa (see [53, Corollary 3.2.4]). It is clear that Aa ⊆ A(a). Although r(a)
need not be in A, we know that r(a)x = xr(a) = x for every x ∈ A(a).

Let a be positive in A. For each natural number n, a ∈ Aa = Aan ⊆ A(an) and
the latter is a hereditary C∗-subalgebra of A. Thus, A(a) ⊆ A(an) ⊆ A(a), and
we have A(a) = A(an) and r(a) = r(an). When r(a) lies in A, then r(a) belongs
to A(a) and is the unit element of this algebra.

We can now revisit the main connections between regularity and Moore–Penrose
invertibility in a C∗-algebra. The next theorem gathers some of the results orig-
inally established by L.A. Harris [32] and R. Harte and M. Mbekhta [34]. Here
we present the results and we offer an alternative approach.

Theorem 2.3. ([34, Theorems 5, 6 and 7] and [32, Lemma 3.8]) The following
statements hold for every C∗-algebra A.

(a) If a is positive in A, then the following assertions are equivalent
(a.1) a is regular;
(a.2) The range projection of a in A∗∗ lies in A and a is invertible in the

C∗-algebra A(r(a)) = A(a);
(a.3) 0 is an isolated point in σ(a) ∪ {0};
(a.4) Aa is unital and a is invertible in the C∗-algebra Aa;
(a.5) a is Moore–Penrose invertible.

(b) If a is an element in A, then the following assertions are equivalent
(b.1) a is regular;
(b.2) 0 is an isolated point in σ(|a|) ∪ {0};
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(b.3) The partial isometry appearing in the polar decomposition of a lies in A
and |a| is invertible in A|a|;

(b.4) A(|a|) is unital and |a| is invertible in A(|a|);
(b.5) a is Moore–Penrose invertible.

(c) a is regular in A if, and only if, |a| is invertible in A|a|;
(d) a is regular in A if, and only if, aa∗ (equivalently, |a∗|) is regular if, and only

if, a∗a (equivalently, |a|) is regular;
(e) If a is regular in A, then a admits a unique Moore–Penrose inverse. The

unique Moore–Penrose inverse of a regular element a will be denoted by a†,
and in such a case a† = cv∗, where v is the partial isometry in the polar
decomposition of a and c is the inverse of |a| in the hereditary C∗-subalgebra
A(|a|).

Proof. (a) (a.1) ⇒ (a.2) Suppose a is positive and regular in A. Then there exists
a positive b satisfying aba = a (see Proposition 2.2). Let us find 0 ≤ c ∈ Aa such
that c3 = a. The identity c3bc3 = c3 multiplied on the left by ( 1

n
+ c)−1 implies

that (
(
1

n
+ c)−1c

)
c2bc3 =

(
(
1

n
+ c)−1c

)
c2.

Taking weak∗-limits in n, we deduce from the separate weak∗-continuity of the
product of A∗∗ (see [58, Theorem 1.7.8]) that

c2bc3 = r(c)c2bc3 = r(c)c2 = c2. (2.1)

Now, multiplying both sides of the identity (2.1) on the right by ( 1
n

+ c)−1 and
taking weak∗-limits in n we deduce that

c2bc2 = c2bc2 r(c) = c r(c) = c. (2.2)

We set d = cbc. Clearly d ≥ 0. Applying (2.2) we get

cdc = c(cbc)c = c2bc2 = c,

and hence c is regular in A, and cd and dc are idempotents in A. Moreover,
applying (2.2) we prove that

cd = c(cbc) = (c2b)c = c2bc2bc2 = (c2bc2)bc2 = cbc2 = (cbc)c = dc.

Therefore (cd)∗ = dc = cd = (dc)∗, which proves that cd = dc is a projection
in A, and thus c is Moore–Penrose invertible. We further known that (cd)c =
c(dc) = c, and hence cd = dc ≥ r(c) = r(a) as projections in A∗∗. However,
since c, d are positive elements in the hereditary C∗-algebra A(a), we know that
r(a)cd = cd = cd r(a), which proves that r(a) = r(c) = cd ∈ A, and hence A(a)
is a unital C∗-algebra.

Additionally, by the commutativity of c and d we also know that d3a = ad3 =
c3d3 = (cd)3 = r(a), which shows that a is invertible in A(a).

(a.2) ⇒ (a.3) Let us assume that A(a) is unital and a is invertible in A(a) with
inverse c. It is known that c lies in Aa. In this case r(a) = ac ∈ Aa

∼= C0(σ(a))
and the latter is a unital abelian C∗-algebra where a is a positive and invertible
generator. Then 0 must be isolated in σ(a) ∪ {0}.

(a.3) ⇒ (a.4) is clear.
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For the implication (a.4) ⇒ (a.5) we can apply again the Gelfand theory to
guarantee that, 0 is isolated in σ(a) ∪ {0}, r(a) ∈ Aa, and Aa

∼= C(σ(a)\{0})
is a unital abelian C∗-algebra where a is a positive and invertible generator.
Therefore, there exists a positive b ∈ Aa with ab = ba = r(a) (and then aba = a
with ab = ba = r(a)).

(a.5) ⇒ (a.1) is clear.

(b) (b.1) ⇒ (b.2) Suppose a is regular. Let us take b in A such that aba = a.
Let a = v|a| be the polar decomposition of a with v a partial isometry in A∗∗.
The equality aba = a can be written in the form v |a|bv |a| = v |a|. Multiplying
on the left by v∗ we get

|a|bv |a| = r(|a|)|a|bv |a| = v∗v |a|bv |a| = v∗v |a| = r(|a|) |a| = |a|,

which shows that |a| is regular in A∗∗, and hence by (a), 0 is isolated in the set
σA∗∗(|a|) ∪ {0} = σA(|a|) ∪ {0} (see [59, Proposition I.4.8] for the last equality).

(b.2) ⇒ (b.3) Suppose that 0 is isolated in the set σA(|a|) ∪ {0}. Let a =
v|a| be the polar decomposition of a in A∗∗. The functions h, g defined by
h(t) = 1 and g(t) = 1

t
if t ∈ σ(|a|)\{0} and h(0) = g(0) = 0 if 0 ∈ σ(|a|),

both belong to C0(σ(|a|)), and hence v = vh(|a|) ∈ A (see [1, Lemma 2.1]) and
c = g(|a|) ∈ A|a|. Actually, h(|a|) = r(|a|), a = e|a|, c|a| = |a|c = r(|a|), and
e∗e = (vh(|a|))∗(vh(|a|)) = h(|a|)v∗vh(|a|) = h(|a|)r(|a|)h(|a|) = h(a)2 = h(a) =
r(|a|), witnessing that e = v ∈ A.

(b.3) ⇒ (b.4) is clear.

(b.4) ⇒ (b.5) Suppose a = v|a| is the polar decomposition of a in A∗∗ with
v ∈ A and |a| is invertible in A(|a|) with inverse c. Since v ∈ A we know that
v∗v = r(|a|) ∈ A. We further know that v∗v = r(|a|) is the unit of the C∗-algebra
A(|a|). Taking b = cv∗ we arrive to

aba = v|a|cv∗v|a| = v|a|c|a| = v|a| = a,

bab = c(v∗v)(|a|c)v∗ = cv∗vv∗ = cv∗ = b,

ab = v|a|cv∗ = vv∗vv∗ = vv∗ and ba = cv∗v|a| = v∗v, which proves that a is
Moore–Penrose invertible.

Finally, (b.5) ⇒ (b.1) is clear.

The assertion (c) is a clear consequence of (a) and (b), and statement (d)
also follows from (a) and (b) and the fact that σ(|a|)2 ∪ {0} = σ(|a|2) ∪ {0} =
σ(|a∗|2) ∪ {0} = σ(|a∗|)2 ∪ {0}.

(e) Suppose a is a regular element in A. We know from (b) and (a) that a
is Moore–Penrose invertible, 0 is an isolated point in σ(|a|) ∪ {0}, the partial
isometry v appearing in the polar decomposition of a lies in A, v∗v = r(|a|), and
|a| is invertible in A(a). Let b be any Moore–Penrose inverse of a in A, then
aba = a, bab = b, with ab, ba projections in A. Let c be the inverse of |a| in
A(|a|). We have shown above that d = cv∗ is a Moore–Penrose inverse of a. Since
ad, da, ba and ab are projections in A, the identities

ab = (ada)b = (ad)(ab) = (ab)(ad) = (aba)d = ad,
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and
ba = b(ada) = (ba)(da) = (da)(ba) = d(aba) = da,

guarantee that ad = ab and ba = da. Therefore

d = (da)d = (ba)d = b(ad) = bab = b,

that is b = d = cv∗. �

Remark 2.4. We observe that the spectrum of an element a in a C∗-algebra A
does not change when computed in any other C∗-subalgebra B of A containing
a. Therefore, by Theorem 2.3, the first statement in Proposition 2.2 is actually
an equivalence.

A regular element a in a C∗-algebra may admit many different generalized
inverses, however they are all uniquely determined in the space v∗vAvv∗, where
v is the partial isometry in the polar decomposition of a.

Proposition 2.5. Let a be a regular element in a C∗-algebra, and let b be a
generalized inverse of a (i.e. aba = a). Suppose v is the partial isometry in the
polar decomposition of a and c is the inverse of |a| in A(|a|). Then (v∗v) b (vv∗) =
cv∗ = a†.

Proof. If in the equality aba = a we replace a with v|a|, we get v|a|bv|a| = v|a|.
Multiplying by v∗ on the left we deduce that |a|bv|a| = |a|. Now, multiplying by
c from both sides it follows that c|a|bv|a|c = c|a|c, and consequently

(v∗v)bv = (v∗v)bv(v∗v) = c|a|bv|a|c = c|a|c = c.

Finally, (v∗v)b(vv∗) = (v∗vbv)v∗ = cv∗ = a†. �

It is easy to deduce that for each non-zero partial isometry e in a C∗-algebra
A we have e† = e∗. We observe that, in this case, ‖e†‖ = ‖e∗‖ = ‖e‖ ≤ 1. This is
actually a property which characterizes partial isometries.

Theorem 2.6. [4, Theorem 2.1] Let e be a norm-one element in a C∗-algebra A.
Then the following statements are equivalent:

(a) e is a partial isometry;
(b) e is regular and ‖e†‖ ≤ 1;
(c) e is regular and admits a generalized inverse b with ‖b‖ ≤ 1.

Proof. The implications (a) ⇒ (b) ⇒ (c) are clear. We shall only prove (c) ⇒ (a).
Suppose there exists b ∈ A with ‖b‖ ≤ 1 and ebe = e. Applying Proposition 2.5
we derive that (v∗v)b(vv∗) = (v∗vbv)v∗ = cv∗ = e†, where v ∈ A is the partial
isometry in the polar decomposition of e and c is the inverse of |e| in A(|e|)
(compare Theorem 2.3). By hypothesis

1 ≥ ‖b‖ ≥ ‖(v∗v)b(vv∗)‖ = ‖cv∗‖ = ‖e†‖.
In particular, 1 ≥ ‖cv∗‖2 = ‖cv∗vc‖ = ‖cr(|e|)c‖ = ‖c2‖ = ‖c‖2. Since c is the
inverse of |e| in A|e|, with ‖|e|‖ = 1 ≥ ‖c‖, we can easily deduce from the Gelfand
representation of A|e| that |e| = c is a projection, and thus e = v|e| is a partial
isometry. �
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In the particular case of A = B(H), the conclusion of the above theorem was
previously established by M. Mbekhta in [51, Theorem 3.1].

In order to revisit other characterizations of partial isometries in terms of reg-
ularity we recall the notion of reduced minimum modulus of an operator. Let
T : X → Y be a non-zero bounded (real, complex or conjugate) linear operator
between two normed spaces. The reduced minimum modulus of T is the real
number defined by

γ(T ) := inf{‖T (x)‖ : dist(x, ker(T )) ≥ 1}. (2.3)

According to [5], for T = 0 we set γ(T ) = 0 (in other references, like [41],
γ(0) = ∞). It is known that a bounded linear operator T between Banach spaces
has closed image if, and only if, γ(T ) > 0 (see [41, Theorem IV.5.2]). For T
invertible the reduced minimum modulus of T is ‖T−1‖−1.

The reduced minimum modulus of a bounded linear operator on a complex
Hilbert space is especially useful.

Lemma 2.7. ([5, page 280] and [47]) Let H be a complex Hilbert space. For each
non-zero T in B(H), the reduced minimum modulus of T satisfies the following
formula:

γ(T ) = inf{‖T (ξ)‖ : ξ ∈ ker(T )⊥, ‖ξ‖ ≥ 1}
= inf{‖T (ξ)‖ : ξ ∈ ker(T )⊥, ‖ξ‖ = 1} = inf

(
σB(H)(|T |)\{0}

)
.

Proof. We shall first prove

γ(T ) = inf{‖T (ξ)‖ : ξ ∈ ker(T )⊥, ‖ξ‖ ≥ 1}.
Clearly {ξ ∈ ker(T )⊥, ‖ξ‖ ≥ 1} ⊆ {ξ ∈ H, dist(ξ, ker(T )) ≥ 1}, and hence
γ(T ) ≤ inf{‖T (ξ)‖ : ξ ∈ ker(T )⊥, ‖ξ‖ ≥ 1}. To prove the reciprocal inequality,
for each ε > 0, there exists ξ ∈ H with dist(ξ, ker(T )) ≥ 1 and γ(T )+ε > ‖T (ξ)‖.
Let p be the orthogonal projection of H onto ker(T )⊥. Since (1 − p)(ξ) satisfies
‖p(ξ)‖ = ‖ξ−(1−p)(ξ)‖ = dist(ξ, ker(T )) ≥ 1, p(ξ) ∈ ker(T )⊥, and (1−p)(H) =
ker(T ), we have

γ(T ) + ε > ‖T (ξ)‖ = ‖T (p(ξ))‖ ≥ inf{‖T (η)‖ : η ∈ ker(T )⊥, ‖η‖ ≥ 1}.
The arbitrariness of ε proves the first equality. The second equality is clear.

We shall finally prove the last equality. We shall apply ideas from [47] in this
part of the proof. Let T = u|T | be the polar decomposition of T in B(H). We
observe that ker(|T |) ⊆ ker(T ) ⊆ ker(T ∗T ) = ker(|T |). Since for each (ξ ∈
ker(T )⊥ with) ‖ξ‖ = 1 we have

‖T (ξ)‖2 = 〈T (ξ)|T (ξ)〉 = 〈T ∗T (ξ)|ξ〉 = 〈|T |2(ξ)|ξ〉 = ‖|T |(ξ)‖2 ≤ ‖|T |2(ξ)‖,
we deduce that γ(T )2 = γ(|T |)2 ≤ γ(|T |2). It is known that |T |(H) = ker(|T |)⊥
(just apply that |T | is positive).

Let p = r(|T |) denote the orthogonal projection of H onto ker(|T |)⊥ = |T |(H).
The mapping |T ||p(H) : p(H) → p(H) is injective with norm-dense range. We
know that 0 < γ(T ) = γ(|T |) if, and only if, |T |(H) = |T |(p(H)) is closed if,
and only if, |T ||p(H) is bijective if, and only if, |T ||p(H) is invertible in B(p(H))
if, and only if, |T | is regular. Thus, γ(T ) = 0 if, and only if, |T | is not regular
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if, and only if, inf
(
σB(H)(|T |)\{0}

)
= 0. Moreover, supposing that T is regular,

equivalently |T ||p(H) is invertible in r(|T |)B(H)r(|T |) with inverse R, then

γ(T ) = γ(|T |) = inf{‖|T |(ξ)‖ : ξ ∈ ker(T )⊥ = p(H), ‖ξ‖ = 1}

= (since R is the inverse of |T ||p(H)) =
1

‖R‖
= inf

(
σB(H)(|T |)\{0}

)
.

�

Introduced by R. Harte and M. Mbekhta in [35], the left conorm (respectively,
right conorm) of an element a in a Banach algebra A is the quantifier

γl(a) = γ(La) (respectively, γr(a) = γ(Ra)).

We have already seen that a regular in a C∗-algebra A implies that La and Ra

both have closed ranges. It seems natural to ask wether the reciprocal implication
is also true.

Proposition 2.8. [34, Theorem 8] Let a be an element in a C∗-algebra A. Then
the following are equivalent:

(a) a is regular;
(b) La has closed range;
(c) γl(a) > 0;
(d) Ra has closed range;
(e) γr(a) > 0.

Consequently, for every a in A we have γl(a) = γl(|a|) and γr(a) = γr(|a|).

Proof. We know that an operator T between Banach spaces has closed range if,
and only if, γ(T ) > 0 (see [41, Theorem IV.5.2]), so (b) ⇔ (c), and (d) ⇔ (e)
by definition. The implications (a) ⇒ (b) and (a) ⇒ (d) follow from Proposition
2.1. We shall only prove (b) ⇒ (a) (the other implication is similar).

We begin with an observation ker(La) = ker(La∗a) = ker(L|a|). Indeed if
ax = 0, then a∗ax = 0, and since a∗a is positive we can easily check that A|a|x =
A|a|2x = {0}. In particular |a|x = 0. Conversely, Let a = v|a| be the polar
decomposition of A. If |a|x = 0, then ax = v|a|x = 0 and |a|2x = 0. Suppose
x ∈ A with dist(x, ker(La)) =dist(x, ker(L|a|)) =dist(x, ker(La∗a)) ≥ 1. By the
Gelfand-Naimark axiom

‖La(x)‖2 = ‖v|a|x‖2 = ‖x∗|a|v∗v|a|x‖ = ‖x∗|a||a|x‖ = ‖|a|x‖2 = ‖L|a|(x)‖2,

which proves that γl(a) = γl(|a|), for every a ∈ A. This proves the final state-
ment.

(b) ⇒ (a) If La has closed range (equivalently, γ(La) > 0) then L|a| has closed
range. Since |a|A is closed and contains all polynomials expressions of the form
α2|a|2 + α3|a|3 + . . . + αk|a|k, we deduce, via Stone–Weierstrass theorem, that

|a| 12 ∈ A|a| ⊆ |a|A. We can therefore find b in A such that |a|b = |a| 12 , and
thus |a|bb∗|a| = |a| witnessing that |a| is regular. Theorem 2.3 assures that a is
regular. �
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A consequence of the previous proposition shows that an element a in a C∗-
algebra A is not regular if, and only if, γl(a) = γr(a) = 0. In other words, the left
and right conorms coincide on non-regular elements of A. For regular elements
we need the following theorem from [35].

Theorem 2.9. [35, Theorems 3 and 4] Let a be a non-zero element in a C∗-
algebra A. Then the following statements hold:

(a) γl(a)2 = γl(|a|)2 = γl(|a|2) = inf{t : t ∈ σ(a∗a)\{0}};
(b) γr(a)2 = γr(|a|)2 = γr(|a|2) = inf{t : t ∈ σ(a∗a)\{0}};
(c) γl(a)2 = γl(|a|)2 = γl(|a|2) = γr(a)2 = γr(|a|)2 = γr(|a|2);
(d) γl(a) = γl(a∗) = γr(a) = γr(a∗) ≤ ‖a‖;
(e) When a is regular γl(a) = γl(a∗) = γr(a) = γr(a∗) = 1

‖a†‖ .

Before dealing with the proof of this theorem we note that, by the above
theorem, the left and right conorms coincide on every element a in a C∗-algebra
A, and both quantifiers measure the distance from σ(|a|)\{0} to zero. The conorm
function on A is defined by

γ : A → R+
0 ,

γ(a) = γl(a) = γr(a).

This notation could cause some conflict because, by the Gelfand-Naimark theo-
rem, A is a C∗-subalgebra of some B(H), where H is a complex Hilbert space,
and consequently every a ∈ A is an operator in B(H) whose reduced minimum
modulus is also denoted by the same symbol γ(a). Fortunately, the previous
Lemma 2.7 and Theorem 2.9 avoid any cumbersome conflict to the reader.

Proof of Theorem 2.9. (a) For a non-regular element a the equalities can be easily
deduced applying Theorem 2.3 and Proposition 2.8. Let us assume that a is
regular. Suppose a = v|a| is the polar decomposition of a in the conditions of
Theorem 2.3, with |a| invertible in A|a| with inverse c, and L|a| : v∗vAv∗v →
v∗vAv∗v invertible with inverse Lc.

Proposition 2.8 implies that γl(a) = γl(|a|). We have seen in the proof of the
just quoted proposition that ker(La) = ker(La∗a) = ker(L|a|). It is not hard to
see that ker(L|a|) = ker(Lv∗v).

Let x ∈ A with dist(x, ker(L|a|)) = dist(x, ker(Lv∗v)) ≥ 1. Since (1 − v∗v)x ∈
ker(Lv∗v) and v∗vx = x − (1 − v∗v)x, we have ‖v∗vx‖ ≥ dist(x, ker(Lv∗v)) ≥ 1,
therefore

γl(|a|) = inf{‖|a|x‖ : dist(x, ker(Lv∗v)) ≥ 1}
= inf{‖|a|(v∗vx)‖ : dist(x, ker(Lv∗v)) ≥ 1} ≤ inf{‖|a|y‖ : y = v∗vy, ‖y‖ ≥ 1}

≤ inf{‖L|a|(y)‖ : y = v∗vyv∗v, ‖y‖ ≥ 1} =
1

‖Lc‖
=

1

‖c‖
= inf{t : t ∈ σ(|a|)\{0}}.

Since |a| is regular inf{t : t ∈ σ(|a|)\{0}} > 0. Let us take any positive λ with
λ < inf{t : t ∈ σ(|a|)\{0}}. Then |a| − λv∗v is invertible in A|a| with inverse b.
It is easy to check that b|a| = |a|b = v∗v + λb and (v∗v + λb)∗(v∗v + λb) ≥ λ2bb.
For each x in A, by the Gelfand-Naimark axiom we have

‖|a|(bx)‖2 = ‖(|a|b)x‖2 = ‖(v∗v + λb)x‖2 = ‖x∗(v∗v + λb)∗(v∗v + λb)x‖
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≥ λ2‖x∗bbx‖ = λ2‖bx‖2,

which assures that

∥∥∥∥|a| bx

‖bx‖

∥∥∥∥ ≥ λ, for every x ∈ A. Since bA = v∗vA, we can

deduce that λ ≤ γl(|a|). The arbitrariness of λ shows that γl(|a|) ≤ inf{t : t ∈
σ(|a|)\{0}}, and thus both quantities are the same.

The rest follows from the spectral mapping theorem.

The arguments given in the proof of (a) can be easily adapted to establish (b).
The affirmations (c) and (d) follow from (a) and (b). �

An straight consequence of the above theorem gives another characterization
of (non-zero) partial isometries.

Theorem 2.10. [35, (4.9)] Let e be a norm-one element in a C∗-algebra A. Then
the following statements are equivalent:

(a) e is a partial isometry;
(b) γ(e) = 1;
(c) γ(e) ≥ 1.

Proof. (a) ⇒ (b) follows from Theorem 2.9 and e† = e∗. (b) ⇒ (c) is clear. Finally
(c) ⇒ (a) follows from Theorems 2.9 and 2.6. �

Let us remark that Theorem 2.10 was established in [51, Theorem 3.1] in the
case A = B(H).

To complete the whole picture concerning the conorm on a C∗-algebra, we note
that R. Harte and M. Mbekhta studied in [35] the continuity of this mapping.
The main conclusions are subsumed in the following result.

Theorem 2.11. [35, Theorems 7 and 9]

(a) The conorm of every C∗-algebra is upper semi-continuous on A\{0}. Conse-
quently, the conorm is continuous at non-regular elements (i.e. at elements
a ∈ A\{0} where γ(a) = 0);

(b) The reduced minimum modulus is always continuous on the open sets of
bounded below and of almost open operators between a pair of normed spaces X
and Y . Moreover, if T : X → Y is a bounded linear operator with γ(T ) > 0,

ker(T ) 6= {0}, and T (X) 6= Y , then T is not a continuity point of γ. �

In a recent contribution F.B. Jamjoom, H. Talawi, A.A. Siddiqui and the second
author of this survey establish a new result in this direction (see [39]).

Proposition 2.12. [39, Corollary 3.7] Let A be an extremally rich C∗-algebra in
the sense of [12]. Then the conorm of A is continuous at a point a ∈ A if, and only
if, either a is not regular (i.e. γ(a) = 0) or a is Brown-Pedersen quasi-invertible
(i.e. a is regular and the partial isometry appearing in its polar decomposition is
an extreme point of the closed unit ball of A). �

The problem of determining the continuity points of the conorm in a general
C∗-algebra remains open.
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2.1. Real C∗-algebras. The results concerning regularity in C∗-algebras also
make sense in a wider class of Banach ∗-algebras, the class of real C∗-algebras (see
[28], [48]). We recall that a real C∗-algebra is a real Banach ∗-algebra satisfying
the following axioms:

(1) ‖a∗a‖ = ‖a‖2, for every a ∈ A;
(2) For each a ∈ A the element 1 + a∗a is invertible (in A or in its unitization if

A is not unital).

A real version of the Gelfand-Naimark theorem asserts that a real Banach ∗-
algebra A is a real C∗-algebra if, and only if, it is isometrically *-isomorphic to a
norm-closed real ∗-algebra of the real C∗-algebra of all bounded linear operators
on a real Hilbert space (cf. [48, Corollary 5.2.11]).

Henceforth, C∗-algebras will be also called “complex C∗-algebras”. The class
of real C∗-algebras includes all complex C∗-algebras.

The most favorable point of view to deal with real C∗-algebras is the following
construction: The algebraic complexification Ac = A ⊕ iA, of a real C∗-algebra
A admits a C∗-norm extending the norm of A, and there exists an involutive
conjugate-linear ∗-automorphism τ on Ac such that

A = Ac
τ := {x ∈ Ac : τ(x) = x}

(see [48, Proposition 5.1.3] or [56, Lemma 4.1.13], and [28, Corollary 15.4]).

A real von Neumann algebra is a real C∗-algebra whose underlying Banach
space is a dual Banach space. Real von Neumann algebras are also called real
W∗-algebras. The bidual of a real C∗-algebra is a real von Neumann algebra [17,
Theorem 1.6]. It is known that every real von Neumann algebra admits a unique
(isometric predual) and its product is separately weak∗-continuous [38] and [50,
Proposition 2.3 and Theorem 2.11].

The complexified spectrum (or simply the spectrum) of an element a in a real
C∗-algebra A is the spectrum of a when it is regarded as an element in Ac, that
is,

σA(a) = σAc(a)

(see [48, Definition 2.14] or [28, Definition in page 75]).

As in the complex case, we shall say that an element e in a real C∗-algebra A
is a partial isometry if ee∗e = e. Let Ac be the complexification of A and let τ
be an involutive conjugate-linear ∗-automorphism on Ac such that A = Ac

τ . Let
U(A) and U(Ac) denote the sets of all partial isometries in A and Ac, respectively.
Clearly every partial isometry in A is a partial isometry in Ac. Moreover, since
τ is a ∗-automorphism, we can easily check that

U(A) = U(Ac)
τ = {e ∈ U(Ac) : τ(e) = e}.

Regular elements in A are precisely the regular elements in Ac which are
τ -symmetric. Projections, range projections, polar decompositions, modules,
Moore–Penrose invertible elements, Moore–Penrose inverses and conorms can be
literally extended to the setting of real C∗-algebras (see [28], [48] and [17]).

Let a be an element in a real C∗-algebra A whose complexification is denoted
by Ac, and let τ be an involutive conjugate-linear ∗-automorphism on Ac such
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that A = Ac
τ . It is known that τ ∗∗ : A∗∗

c → A∗∗
c is an involutive conjugate-

linear ∗-automorphism and A∗∗ = (A∗∗
c )τ∗∗ . It can be easily seen that if a = v|a|

is the polar decomposition of a in A∗∗
c , then v ∈ A∗∗ and |a| ∈ A. Actually,

A|a| =
(
(Ac)|a|

)τ
. Combining these facts with the already referred Lemma 2.1 in

[1], it follows that

vh(|a|) ∈ A for each h ∈ C(σ(|a|), R), with h(0) = 0. (2.4)

When a real C∗-algebra A is regarded as the real C∗-subalgebra of all τ -fixed
points in its complexification for a suitable period-2 ∗-automorphism τ on Ac, the
results in Theorems 2.3, 2.6, 2.9 and 2.10 remain valid for real C∗-algebras. To
save space the proofs are left to the reader. The results characterizing partial
isometries in real C∗-algebras are stated below.

Theorem 2.13. Let e be a norm-one element in a real C∗-algebra A. Then the
following statements are equivalent:

(a) e is a partial isometry;
(b) e is regular and ‖e†‖ ≤ 1;
(c) e is regular and admits a generalized inverse b with ‖b‖ ≤ 1. �

The real version of Theorem 2.10 reads as follows:

Theorem 2.14. Let e be a norm-one element in a real C∗-algebra A. Then the
following statements are equivalent:

(a) e is a partial isometry;
(b) γ(e) = 1;
(c) γ(e) ≥ 1. �

3. Geometric characterization in real and complex C∗-algebras

A deep geometric and natural question, motivated by the results by R.V. Kadi-
son in [40], asks whether the partial isometries in a C∗-algebra A can be recovered
from the geometric Banach space structure of A alone, without recourse to the
product and the adjoint operations (see [2, Introduction]). A groundbreaking
result, due to C.A. Akemann and N. Weaver, asserts that a geometric character-
ization is always possible for C∗-algebras. In this section we shall revisit their
result and arguments and we shall extend the conclusion to real C∗-algebras with
a unified approach.

Let X be a real or complex Banach space. For each x in the unit sphere of X
we consider the following sets:

D
X

1 (x) :=
{

y ∈ X : there exists α > 0 with ‖x± αy‖ = 1
}

, (3.1)

D
X

2 (x) := {y ∈ X : ‖x + βy‖ = max{1, ‖βy‖}, for all β ∈ R}.
Clearly, for each norm-one element x in a Banach space X, the inclusion

D
X

2 (x) ⊆ D
X

1 (x) holds. We shall see later that the equality of these two sets
will have important consequences in the case in which X is a real or complex
C∗-algebra.
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The following lemma seems to be explicitly uncovered by the available literature
for C∗-algebras. It should be noticed that a generalized version for JB∗-triples
appears in [26, Lemma 1.6].

Lemma 3.1. Let e be a partial isometry in a real C∗-algebra A. Suppose x is a
norm-one element in A with ee∗xe∗e = e. Then x = e + (1− ee∗)x(1− e∗e).

Proof. Since x = ee∗xe∗e + ee∗x(1 − e∗e) + (1 − ee∗)xe∗e + (1 − ee∗)x(1 − e∗e),
the desired statement will follow as soon as we show that ee∗x(1 − e∗e) = 0 =
(1− ee∗)xe∗e.

From ‖x‖ = 1 we have that ‖ee∗x‖2 ≤ 1. We recall that in a real or complex
unital C∗-algebra B, the equality 1 + ‖a‖ = ‖1 + a‖ holds for every positive
a ∈ B. Having in mind that ee∗Aee∗ is a real C∗-algebra with identity ee∗, a
double application of the Gelfand-Naimark axiom gives

1 + ‖ee∗x(1− e∗e)‖2 = 1 + ‖ee∗x(1− e∗e)(1− e∗e)x∗ee∗‖

= ‖ee∗ + ee∗x(1− e∗e)(1− e∗e)x∗ee∗‖ = ‖e + ee∗x(1− e∗e)‖2

= ‖ee∗xe∗e + ee∗x(1− e∗e)‖2 = ‖ee∗x‖2 ≤ 1,

witnessing that ee∗x(1− e∗e) = 0. The identity (1− ee∗)xe∗e = 0 can be analo-
gously obtained. �

Suppose e is a partial isometry in a real C∗-algebra A. Then e is an extreme
point of the closed unit ball of the space ee∗Ae∗e. Indeed, having in mind that
ee∗Aee∗ is a real C∗-algebra with identity ee∗, given z = ee∗ze∗e ∈ ee∗Ae∗e such
that ‖e± z‖ ≤ 1, we have zz∗ ∈ ee∗Aee∗ and thus

1 + ‖z‖2 = ‖ee∗ + zz∗‖ =

∥∥∥∥1

2
(ee∗ + ze∗ + ez∗ + zz∗) +

1

2
(ee∗ − ze∗ − ez∗ + zz∗)

∥∥∥∥
≤ 1

2
(‖e + z‖2 + ‖e− z‖2) ≤ 1,

which forces z to be zero.

We recall that elements a, b in a real or complex C∗-algebra A are said to be
orthogonal (written a ⊥ b) if ab∗ = b∗a = 0. Let a ⊥ b in A. By the (real or
complex) Gelfand-Naimark theorem, A can be regarded as a norm closed self-
adjoint subalgebra of some B(H), where H is a real Hilbert space. We can
therefore assume that a, b are operators in B(H) with ab∗ = b∗a = 0. For each
ξ, η ∈ H, we have 〈a(ξ)|b(η)〉 = 〈b∗a(ξ)|η〉 = 0, and similarly 〈a∗(ξ)|b∗(η)〉 = 0.

This shows that a(H) ⊥ b(H), a∗(H) ⊥ b∗(H) in the Hilbert sense. It can be
easily checked that

‖a + b‖ = max{‖a‖, ‖b‖}. (3.2)

We are now in position to present a geometric characterization of partial isome-
tries in real C∗-algebras. This characterization was obtained by C. Akemann and
N. Weaver in the setting of complex C∗-algebras (see [2, Theorem 1]). The proof
presented here owes so much from their original arguments.
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Theorem 3.2. [2, Theorem 1] Let e be a norm-one element in a real or complex

C∗-algebra A. Then e is a partial isometry if, and only if, D
A

1 (e) = D
A

2 (e).

Moreover, for each partial isometry e in A we have D
A

1 (e) = (1− ee∗)A(1− e∗e).

Proof. (⇒) Let e be a partial isometry. Clearly D
A

2 (e) ⊆ D
A

1 (e), so we only have
to show the reverse inclusion.

Given y ∈ D
A

1 (e) (i.e. ‖e ± αy‖ = 1 for some α > 0, and hence ‖αy‖ = 1)
we have that ‖e ± αee∗ye∗e‖ ≤ 1 and the extremality of e in ee∗Ae∗e forces to
ee∗ye∗e = 0. Since ee∗(e + αy)e∗e = e, Lemma 3.1 assures that

e + αy = e + (1− ee∗)(e + αy)(1− e∗e) = e + α(1− ee∗)y(1− e∗e),

and thus e ⊥ y = (1− ee∗)y(1− e∗e). Therefore y belongs to D
A

2 (e) (cf. (3.2)).

(⇐) Suppose now that e is not a partial isometry. Let e = u|e| be the polar
decomposition of e. Clearly |e| is not a projection, otherwise e coincides with the
partial isometry u. Let t0 ∈]0, 1[∩σ(|e|) and h : σ(|e|) → R defined by h(0) = 0,
h(1) = 0, h(t0) = 1 − t0 and affine elsewhere. Let us set y = uh(|e|). Clearly,
y ∈ A (see (2.4)). It is straightforward to check, via continuous functional calculus

at the element |e|, that ‖e ± y‖ = ‖|e| ± h(|e|)‖ = 1 (i.e. y belongs to D
A

1 (e)).

However, y does not belong to D
A

2 (e). Namely, if we take, for example, β = 1
1−t0

,

we have ‖e + βy‖ = ‖|e|+ βh(|e|)‖ = 1 + t0 > 1, ‖e‖ = 1 and ‖βy‖ = 1.

The final statement have been obtained in the first part of the proof. �

The orthogonal set of an element x in a real C∗-algebra A is defined as

{x}⊥ := {y ∈ A : x ⊥ y}.
Clearly, {x}⊥ ⊆ D

A

2 (e) (see (3.2)). We can now obtain a characterization of
partial isometries in terms of the orthogonal complement.

Theorem 3.3. Let e be a norm-one element in a real or complex C∗-algebra A.
Then e is a partial isometry if, and only if, {e}⊥ = (1− ee∗)A(1− e∗e).

Proof. (⇒) Suppose e is a partial isometry and take b ∈ {e}⊥. Since be∗ = 0 and
hence be∗e = 0, we have b = b(1− e∗e) and similarly b = (1− ee∗)b. We therefore
have b = (1− ee∗)b(1− e∗e) ∈ (1− ee∗)A(1− e∗e).

(⇐) If e is not a partial isometry, then e∗e is a positive element which is not
a projection. The element x = (1 − ee∗)e(1 − e∗e) ∈ (1 − ee∗)A(1 − e∗e), and
x∗e = (1 − e∗e)e∗(1 − ee∗)e = |e|2(1 − |e|2)2 6= 0 because e∗e = |e|2 is not a
projection. �

We can now recover the classical characterization of the extreme points of the
closed unit ball of a C∗-algebra due to R.V. Kadison (see [40, Theorem 1]).

We recall that a partial isometry e in a real C∗-algebra A is called complete if
(1− ee∗)A(1− e∗e) = {0}.

Corollary 3.4. ([40, Theorem 1], [58, Theorem 1.6.4]) The set of extreme points
of the closed unit ball of a real or complex C∗-algebra, A, are precisely the complete
partial isometries in A. More concretely, the following statements are equivalent
for every norm-one element e in a real or complex C∗-algebra A.
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(a) e is an extreme point of the closed unit ball of A;

(b) D
A

1 (e) = {0};
(c) e is a partial isometry and (1− ee∗)A(1− e∗e) = {0};
(d) (1− ee∗)A(1− e∗e) = {0}.

Proof. (a) ⇔ (b) If e is an extreme point of the closed unit ball of A, then

trivially D
A

1 (e) must be {0}. Conversely, if D
A

1 (e) = {0}, and e = 1
2
(x + y) with

‖x‖, ‖y‖ = 1, then taking z = 1
2
(x− y) we have ‖z‖ ≤ 1, ‖e + z‖ = ‖x‖ = 1 and

‖e− z‖ = ‖y‖ = 1. This implies that z ∈ D
A

1 (e) = {0}, and hence x = y = e.

(b) ⇒ (c) If D
A

1 (e) = {0}, then D
A

2 (e) = D
A

1 (e) = {0}. Theorem 3.2 gives the
desired statement.

The implication (c) ⇒ (d) is clear. Finally, for (d) ⇒ (b), we observe that
{e}⊥ ⊆ (1−ee∗)A(1−e∗e) = {0}, and hence Theorems 3.2 and 3.3 prove (b). �

In [9, 10] D.P. Blecher and M. Neal established a metric characterization of
unitaries, isometries, and coisometries in terms of the operator space structure
of C∗-algebras and TRO’s. We recall that a ternary ring of operators (a TRO in
the terminology of D.P. Blecher and M. Neal in [8] and M. Neal and B. Russo
in [54]) is a closed subspace Z of a C∗-algebra A such that ab∗c ∈ Z, for every
a, b, c ∈ Z.

For each complex Hilbert space H, and each natural number n, the symbol
Hn stands for the direct sum of n copies of H. According to this notation, the
space Mn(B(H)) of all n × n-matrices with entries in B(H) can be naturally
identified with B(Hn). The operator norm ‖.‖n is the norm of Mn(B(H)) when
the latter space is identified with B(Hn). Given an operator space Z ⊂ B(H),
the space Mn(Z) can be regarded as a subspace of Mn(B(H)), and consequently
the operator norm ‖.‖n defines a norm on Mn(Z). The operator norm, ‖.‖m,n,
on spaces Mmn(Z), of nonsquare matrices with entries in Z, is obtained from the
operator norm by completing with columns or rows of zeroes to get an square
matrix.

Let Z ⊂ B(H) and X ⊂ B(H ′) be operator spaces. A bounded linear operator
T : Z → X admits an extension to a bounded linear map Tn : Mn(Z) → Mn(X),
given by Tn((xij)) = (T (xij)). The operator T is completely bounded (respec-
tively, completely contractive, completely isometric) if supn ‖Tn‖ < ∞ (respec-
tively, ‖Tn‖ ≤ 1 for all n, Tn is an isometry for all n).

An element u is a TRO Z is a called a coisometry (respectively, an isometry)
if uu∗z = z (respectively, zu∗u = z) for all z ∈ Z. We say that u is a unitary if u
is an isometry and a coisometry. If Z is a C∗-algebra, these definitions coincide
with the usual notions of unitaries, coisometries, and isometries.

Accordingly to [9], an element v in an operator space X is called a unitary (re-
spectively, an isometry, or a coisometry) in X if there exists a complete isometry
T from X into some B(H) such that T (v) a unitary (respectively, an isometry
or a coisometry). It is known that when C∗-algebras and TROs are regarded as
operator spaces these definitions are perfectly compatible with those given in the
previous paragraph (see [9, Lemma 2.3 ]).
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Given an element u in an operator space X, the symbol un ∈ Mn(X) will stand
for the diagonal matrix with value u at every diagonal entry.

After recalling the basic notation on operator spaces, we can revisit the metric
characterization obtained by D.P. Blecher and M. Neal.

Theorem 3.5. [9, Theorem 2.4] An element u in an operator space X is a unitary

in X if, and only if,
∥∥(

un x
)∥∥2

n,2n
= 1+‖x‖2

n and
∥∥∥(

un x
)t

∥∥∥2

2n,n
= 1+‖x‖2

n,

for all x ∈ Mn(X) and n ∈ N. Indeed, it suffices to consider norm one matrices x
here. Similarly, u is a coisometry (respectively, isometry) in X if, and only if, the
first (respectively, the second) of these norm conditions holds for all x ∈ Mn(X).
�

4. A Jordan approach: von Neumann regularity in JB∗-triples,
triple spectrum, Quadratic conorm

One of the most successful generalizations of C∗-algebras appears in the study of
the theory of holomorphic functions on arbitrary complex Banach spaces and the
extension of the Riemann mapping theorem to arbitrary dimensions. The studies
to classify bounded symmetric domains in arbitrary complex Banach spaces led
W. Kaup to introduce the notion of JB∗-triple in [43].

A complex (respectively, real) Jordan triple system is a complex (respectively,
real) linear space E where there exists a triple product

{., ., .} : E × E × E → E

(x, y, z) 7→ {x, y, z}
which is bilinear and symmetric in the outer variables and conjugate linear in the
middle one (respectively, trilinear) and satisfies the so-called Jordan identity

L(x, y) {a, b, c} = {L(x, y)a, b, c} − {a, L(y, x)b, c}+ {a, b, L(x, y)c} , (4.1)

for all x, y, a, b, c ∈ E, where L(x, y) : E → E is the linear mapping given by
L(x, y)z = {x, y, z}. For every couple of element a, b in a complex (respectively,
real) Jordan triple system E, Q(a, b) will stand for the conjugate (respectively,
real) linear operator defined by Q(a, b)(x) := {a, x, b}. By the above axioms we
have Q(a, b) = Q(b, a) for every a, b ∈ E. The mapping Q(a, a) will be simply
denoted by Q(a). It follows from [?] that the identities

Q(a)Q(b)Q(a) = Q(Q(a)b), (4.2)

and
Q(a, Q(a)(b)) = Q(a)L(b, a) = L(a, b)Q(a), (4.3)

hold for every a, b ∈ E (see [49, Appendix A1]).

Accordingly to the definition introduced by W. Kaup in [43], a (complex) JB*-
triple is a complex Jordan triple system which is also a Banach space satisfying
the following axioms:

(1) For each x in E the map L(x, x) is an hermitian operator with non-negative
spectrum;

(2) ‖ {x, x, x} ‖ = ‖x‖3, for all x ∈ E.
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Every C∗-algebra is a JB∗-triple with respect to the product

{x, y, z} :=
1

2
(xy∗z + zy∗x), (4.4)

and the Banach space B(H, K) of all bounded linear operators between two
complex Hilbert spaces H, K is a JB∗-triple with the product given in (4.4).
In the setting of Jordan algebras, every JB∗-algebra is a JB∗-triple with triple
product

{a, b, c} := (a ◦ b∗) ◦ c + (c ◦ b∗) ◦ a− (a ◦ c) ◦ b∗.

By a JC∗-triple we mean a JB∗-subtriple of B(H). In [31, 32] L. Harris employs
the term J∗-algebra instead of JC∗-triple. The class of TRO’s considered in the
previous section is strictly contained in the class of JB∗-triples.

One of the consequences of the Gelfand-Naimark representation theorem for
JB∗-triples established by Y. Friedman and B. Russo in [27] implies that the triple
product of a JB∗-triple E is always contractive, that is,

‖{x, y, z}‖ ≤ ‖x‖ ‖y‖ ‖z‖, (4.5)

for all x, y, z ∈ E (see [27, Corollary 3]).

Surjective isometries between JB∗-triples are triple isomorphisms, and recip-
rocally, triple isomorphisms are surjective isometries (see [43, Proposition 5.5]).
Actually, it is relatively easy to see that a continuous linear triple homomorphism
Φ between JB∗-triples E and F is contractive. Namely, take x in E, then

‖Φ(x)‖3 = ‖{Φ(x), Φ(x), Φ(x)}‖ = ‖Φ({x, x, x})‖ ≤ ‖Φ‖‖x‖3,

which proves that ‖Φ‖3 ≤ ‖Φ‖.
Let us observe that from (4.5) ‖Q(a)‖ ≤ ‖a‖2. Since for a non-zero a, ‖a‖3 =

‖Q(a)(a)‖ ≤ ‖Q(a)‖ ‖a‖, we have that ‖Q(a)‖ = ‖a‖2.

An element e in a JB∗-triple E is called a tripotent if {e, e, e} = e. If a C∗-
algebra is regarded as a JB∗-triple with the product defined in (4.4), an element
e in A is a tripotent if, and only if, it is a partial isometry.

Suppose e is a tripotent in a JB∗-triple E. Then the operator L(e, e) : E →
E has eigenvalues {0, 1

2
, 1} and the corresponding eigenspaces induce a Peirce

decomposition of E in the form

E = E2(e)⊕ E1(e)⊕ E0(e),

where for j = 0, 1, 2, Ej(e) = {x ∈ E : L(e, e)(x) = j
2
x}. Given j ∈ {0, 1, 2},

the symbol Pj(e) will stand for the natural projection of E onto Ej(e), which is
called the Peirce j-projection associated with e. It is known that

P2(e) = Q(e)2, P1(e) = 2(L(e, e)−Q(e)2), and P0(e) = IdE − 2L(e, e) + Q(e)2,

and ‖Pj(e)‖ ≤ 1, for all j ∈ {0, 1, 2} (see [26, Corollary 1.2]).

The Peirce arithmetic assures that the following multiplication rules hold:

{Ei(e), Ej(e), Ek(e)} ⊆ Ei−j+k(e),

if i− j + k ∈ {0, 1, 2} and is zero otherwise, and

{E2(e), E0(e), E} = {E0(e), E2(e), E} = 0.
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It is also known that the Peirce-2 subspace E2(e) is a unital JB∗-algebra with
unit e, product a ◦e b = {a, e, b} and involution a]e = {e, a, e} (cf. [11, Theorem
2.2] and [45, Theorem 3.7]).

The Jordan version of the geometric property presented in (3.2) assures that

‖x0 + x2‖ = max{‖x0‖, ‖x2‖}, (4.6)

for all x0 ∈ E0(e) and x2 ∈ E2(e) (cf. [26, Lemma 1.3]).

In order to have a substitute for the polar decomposition in a C∗-algebra,
the JB∗-triple theory offers the continuous functional calculus as an alternative.
More precisely, the odd powers of an element a in a JB∗-triple E are defined as
follows: a[1] := a, a[3] := {a, a, a}, and a[2n+1] :=

{
a, a[2n−1], a

}
= {a, a, a[2n−1]}

(n ∈ N). Let us recall that by the Jordan identity, Jordan triple systems are
power associative, that is,

{
a[k], a[l], a[m]

}
= a[k+l+m] (k, l, m ∈ 2N + 1). The

JB∗-subtriple generated by the element a (i.e. the norm closure in E of all odd
polynomials in a) is denoted by the symbol Ea.

The local Gelfand theory for JB∗-triples assures the existence of a unique lo-
cally compact Hausdorff space Λa contained in [0, ‖a‖] satisfying that Λa ∪ {0}
is compact and there exists a JB∗-triple isomorphism (and hence an isometry)
Φ : Ea → C0(Λa) such that Φ(a)(t) = t for all t ∈ Λa, where C0(Λa) denotes the
commutative C∗-algebra of all complex-valued continuous functions on Λa ∪ {0}
vanishing at 0 (cf. [42, Corollary 4.8], [43, Corollary 1.15] see also [61] and [16]).
The set Sp(a) = Λa∪{0} will be called the triple spectrum of a. Accordingly to the
above definition 0, ‖a‖ ∈ Sp(a) and Sp(0) = {0}. We shall also write C0(Sp(a))
instead of C0(Λa). Let us note that if 0 is isolated in the triple spectrum of a
then Ea

∼= C0(Sp(a)) ∼= C(Sp(a)\{0}) the unital and commutative C∗-algebra of
all complex-valued continuous functions on the compact set Sp(a)\{0} = Λa.

The triple spectrum of an element a does not change when computed with
respect to any JB∗-triple containing the element a. For each odd polynomial
p(ζ) = α1ζ + α3ζ

3 + . . . + α2n+1ζ
(2n+1) the symbol pt(a) will denote the element

α1a+α3a
[3]+. . .+α2n+1a

[2n+1]. Consequently, for each odd polynomial p(ζ), since
pt(a) lies in Ea, and we conclude that the identity Sp(pt(a)) = p(Sp(a)) holds for
every a ∈ E. Actually if f ∈ C0(Sp(a)), the element ft(a) = Φ−1(f) ∈ Ea and

Sp(ft(a)) = f(Sp(a)). (4.7)

The previous identity can be considered as a triple spectral mapping. We use
the notation ft(a) to avoid confusions with the usual functional calculus. A
germinal triple continuous functional calculus was established by L.A. Harris in
[31, Proposition 1] and [32, §3].

A JBW∗-triple is a JB∗-triple which is also a dual Banach space. Every JBW∗-
triple admits a unique (isometric) predual and its triple product is separately
weak∗ continuous (see [7]). It is also known that the bidual space E∗∗ of a JB∗-
triple is a JBW∗-triple with a triple product and norm which are extensions of the
triple product and norm of E, respectively (cf. [19]). The set of tripotents in a
general JB∗-triple may be empty. However, since the extreme points of the closed
unit ball of a JB∗-triple are all tripotents (see [11, Lemma 4.1] or Corollary 5.4
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below), the Krein–Milman theorem guarantees that every JBW∗-triple contains
an abundant set of tripotents. There is a perfect analogy between the categories
“C∗-algebras — von Neumann algebras” and “JB∗-triples — JBW∗-triples”.

One of the consequences of the above Gelfand theory implies that every element
a in a JB∗-triple E admits a cubic root (or more generally an odd root), that is
there exists b ∈ Ea such that {b, b, b} = a (more generally, for each natural number
n, there exists (a unique) a[1/(2n−1)] in Ea satisfying (a[1/(2n−1)])[2n−1] = a). In these
conditions, the sequence (a[1/(2n−1)]) converges in the weak∗-topology of E∗∗ to a
tripotent, denoted by r(a), which is called the range tripotent of a. Actually, r(a)
is the smallest tripotent e in E∗∗ satisfying that a is positive in the JBW∗-algebra
E∗∗

2 (e). When ‖x‖ = 1, by replacing odd roots with odd powers we get another
sequence, (x[2n−1]), converging in the weak∗-topology of E∗∗ to a tripotent (called
the support tripotent of x) u(x) in E∗∗, which satisfies u(x) ≤ x ≤ r(x) in the
natural order of the JBW∗-algebra E∗∗

2 (r(x)) (compare [21, Lemma 3.3], see also
[20, Lemma 3.2]).

For a non-zero element a in a JB∗-triple E, the operator L(a, a) maps Ea into
itself, and hence L(a, a)|Ea is an element in the complex Banach algebra B(Ea)
whose spectrum is precisely

σB(Ea)(L(a, a)|Ea) = {t ∈ R : (L(a, a)− tIdE)|Ea is not invertible in B(Ea)} .

Another laborious application of the Gelfand theory assures that

Sp(a) = {t ∈ R+
0 : t2 ∈ σB(Ea)(L(a, a)|Ea)} ∪ {0} (4.8)

(cf. [44, Corollary 3.4], see also [16, §3]).

Let a, b be two elements in a real or complex JB∗-triple E. Following standard
notation, we shall say that a and b are orthogonal (and we write a ⊥ b) if
L(a, b) = 0 (or equivalently L(b, a) = 0) holds. By the rules contained in Peirce
arithmetic, a ⊥ b whenever a ∈ E2(e) and b ∈ E0(e) for a tripotent e ∈ E.
We refer to [14, Lemma 1] for different reformulations of the property “being
orthogonal”. Among the different reformulations in the just quoted reference, we
highlight that a ⊥ b in E if, and only if, r(a) ⊥ r(b) in E∗∗, and in such a case
b ∈ E∗∗

0 (r(b)) and a ∈ E∗∗
0 (r(b)), which implies that

‖a± b‖ = max{‖a‖, ‖b‖} (see (4.6)). (4.9)

Back to the notion of regular elements, a generalization of this concept in
the setting of Jordan triple systems was conducted by M. Koecher [46] and A.
Fernández López, E. Garćıa Rus, E. Sánchez Campos, and M. Siles Molina [23].
We recall that an element a in a JB∗-triple E is (von Neumann) regular if a
belongs to Q(a)(E) (i.e. there exists b in E such that Q(a)(b) = a) and strongly
(von Neumann) regular if a ∈ Q(a)2(E).

We begin our study on regularity in JB∗-triples with a generalization of Propo-
sition 2.1 to the triple setting.

Proposition 4.1. [15] Let a be a regular element in a JB∗-triple E. Then the
operator Q(a) has closed range.
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Proof. Let b be an element in E such that Q(a)(b) = a. Applying (4.2) we get

Q(a)Q(b)Q(a) = Q(Q(a)(b)) = Q(a).

Therefore, Q(a)Q(b) and Q(b)Q(a) are idempotents elements in the Banach al-
gebra B(E) with (Q(a)Q(b))Q(a) = Q(a) = Q(a)(Q(b)Q(a)).

Let us assume that Q(a)(xn) → z in norm for a suitable sequence (xn) in
E. Clearly, Q(b)Q(a)(xn) → Q(b)(z) in norm. Since Q(a)Q(b)Q(a) = Q(a),
we obtain Q(a)(xn) = Q(a)Q(b)Q(a)(xn) → Q(a)Q(b)(z), which assures that
Q(a)Q(b)(z) = z ∈ Q(a)(E), as desired. �

Suppose F is a JB∗-subtriple of a JB∗-triple E. Let a be an element in F .
Clearly, a regular in F implies that a is regular in E. The other implication is a
non-trivial question.

For completeness reasons we explore next when an element a in a JB∗-triple is
regular in the JB∗-subtriple Ea.

Lemma 4.2. Let a be an element in a JB∗-triple E. Then a is regular in Ea if,
and only if, 0 is an isolated point in Sp(a) if, and only if, a is invertible in the
commutative C∗-algebra Ea

∼= C0(Sp(a)) ∼= C(Sp(a)\{0}).

Proof. We shall identify Ea with C0(Sp(a)) and a with the function t 7→ t for
all t ∈ Sp(a). We shall only prove the first equivalence, the second one can be
derived with the same arguments.

(⇐) If 0 is an isolated point in Sp(a). The function b : t 7→ 1
t

(t ∈ Sp(a)) is an
element in Ea and Q(a)(b) = a.

(⇒) Suppose a is regular in Ea. Then there exists a continuous function b ∈
C0(Sp(a)) such that Q(a)(b) = a. Therefore, b(t)t2 = t for all t ∈ Sp(a). The
condition b ∈ C0(Sp(a)) implies that 0 must be isolated in Sp(a). �

Regular elements are intrinsically related to inner ideals. We recall that a closed
subspace I of a JB∗-triple E is called an inner ideal of E if {I, E, I} ⊆ I. For each
element a in E, E(a) will denote the norm-closure of {a, E, a} = Q(a)(E) in E.
It is known that E(a) coincides with the norm-closed inner ideal of E generated
by a (see [13, Proposition 2.1 and comments prior to it]). Obviously Ea ⊆ E(a).
The inner ideal E(a) has additional properties, namely, L.J. Bunce, Ch.-H. Chu
and B. Zalar show in [13, Proposition 2.1] that E(a) is a JB∗-subalgebra of the

JBW∗-algebra E(a)∗∗ = E(a)
w∗

= E∗∗
2 (r(a)) and contains a as a positive element.

In order to provide a JB∗-triple analogue of Theorem 2.3 we gather, in the next
theorem, some results borrowed from [23] and [44].

Theorem 4.3. ([32], [23] and [44]) Let a be an element in a JB∗-triple E. The
following are equivalent:

a) a is regular;
b) The cubic root of a in Ea is strongly regular in E;
c) 0 is isolated in the triple spectrum of the cubic root of a in Ea;
d) 0 is isolated in Sp(a);
e) 0 is isolated in σB(Ea)(L(a, a)|Ea) ∪ {0};
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f) The range tripotent r(a) lies in E and a is an invertible element in the com-
mutative C∗-algebra Ea;

g) The range tripotent r(a) lies in E and there exists an element b in E2(r(a)) sat-
isfying the following properties Q(a)(b) = a, Q(b)(a) = b and L(b, a)P2(r(a)) =
L(a, b)P2(r(a)) = P2(r(a));

h) There exists an element b in E satisfying the following properties Q(a)(b) = a,
Q(b)(a) = b and [Q(a), Q(b)] := Q(a) Q(b)−Q(b) Q(a) = 0;

i) a is strongly regular;

Proof. We can assume that a and all the other elements in the statement are
non-zero, otherwise the equivalences are clear.

(a) ⇒ (b) Suppose a is regular in E, then there exists b ∈ E such that a =
Q(a)(b). Take c ∈ Ea such that c[3] = a. Set z = c−Q(c)2(b) = c−Q(c)Q(c)(b).
We observe that Q(c)(z) = Q(c)(c−Q(c)2(b)) = Q(c)(c)−Q(c)3(b) = (by (4.2))
= c[3] − Q(c[3])(b) = a − Q(a)(b) = 0. Now, applying (4.2), (4.3) and the above
equality, we deduce that

{z, z, z} = Q(z)(z) = Q(c−Q(c)2(b))(z) = Q(c)(z) + Q(Q(c)2(b))(z)

−2Q(c, Q(c)Q(c)(b))(z) = 0+Q(c)Q(Q(c)(b))Q(c)(z)+L(c, Q(c)(b))Q(c)(z) = 0,

which shows that 0 = z = c−Q(c)2(b), witnessing that c is strongly regular.

(b) ⇒ (c) Let us take c ∈ Ea such that c[3] = a and c is strongly regular in E.
We can therefore find b ∈ E such that Q(c)2(b) = c. We set d = Q(c)(b). It is
easy to check that Q(c)(d) = Q(c)2(b) = c, and applying (4.2) we get

Q(c)(d[3]) = Q(c)Q(d)d = Q(c)Q(Q(c)(b))Q(c)b

= Q(Q(c)2(b))(b) = Q(c)(b) = d.

Under these circumstances

Q(d) = Q(Q(c)(d[3])) = Q(c)Q(d[3])Q(c) = Q(c)Q(d)3Q(c),

which gives

Q(c)Q(d)2 = Q(c)Q(c)Q(d)3Q(c)Q(c)Q(d)3Q(c) = Q(c)2Q(d[3])Q(c)2Q(d[3])Q(c)

= Q(c)Q(Q(c)(d[3]))Q(c)Q(d[3])Q(c) = Q(c)Q(d)Q(c)Q(d[3])Q(c)

= Q(Q(c)(d))Q(d[3])Q(c) = Q(c)Q(d[3])Q(c) = Q(Q(c)(d[3])) = Q(d).

Combining the above identities, we have

Q(c)Q(d) = Q(c)Q(c)Q(d)3Q(c) = Q(c)(Q(c)Q(d)2)Q(d)Q(c) (4.10)

= Q(c)Q(d)2Q(c) = Q(d)Q(c).

We observe that Q(c)Q(d)Q(c)(x) = Q(Q(c)(d))(x) = Q(c)(x), for every x ∈
E. This proves that

(Q(d)Q(c))Q(c)(x) = (by (4.10)) = (Q(c)Q(d))Q(c)(x) = Q(c)(x),

for every x in E. Since E(c) is the norm closure of Q(c)(E), we deduce, from the
continuity of Q(c) and Q(d), that

Q(c)Q(d)(z) = Q(d)Q(c)(z) = z, (4.11)
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for all z ∈ E(c). Clearly, Q(c)(E(c)) ⊆ E(c). The identity in (4.11) implies that

‖z‖ ≤ ‖Q(d)‖‖Q(c)(z)‖, (4.12)

for all z ∈ E(c). If 0 were non-isolated in Sp(c), we could consider the following
sequence (xn) ⊂ Ec

∼= C0(Sp(c)) ⊆ E(c) defined by

xn(t) =

 0, if t ∈ [0, 1
2n

] ∩ (Sp(c)),
affine, if t ∈ [ 1

2n
, 1

n
] ∩ Sp(c),

1
t
, if t ∈ [ 1

n
,∞) ∩ Sp(c).

We note that ‖Q(c)(xn)‖ = 1. Then, it would follow from (4.12) that

n = ‖xn‖ ≤ ‖Q(d)‖‖Q(c)(xn)‖ = ‖Q(d)‖,
for every natural number n, which is impossible.

The implication (c) ⇒ (d) follows from the triple spectral mapping theorem
(see (4.7)), which in particular asserts that Sp(a) = Sp(c[3]) = Sp(a)3.

The equivalence (d) ⇔ (e) is a consequence of (4.8), and (d) ⇔ (f) was proved
in Lemma 4.2.

(f) ⇒ (g) Let a be an invertible element in the commutative C∗-algebra Ea
∼=

C0(Sp(a)). Let us denote the commutative product of C0(Sp(a)) by juxtaposition
and the involution by ∗. By assumptions, we can find b ∈ Ea such that ab∗ =
b∗a = r(a), where r(a) is the range tripotent of a, which lies in Ea, and the unit of
Ea. In this case E(a) = E2(r(a)). It is clear that the restriction of the product of
E to Ea is given by the identity {x, y, z} = xy∗z = zy∗x (x, y, z ∈ Ea). We shall
now check that b satisfies the desired statement. It is easy to check from the above
properties that Q(a)(b) = ab∗a = r(a)a = a and Q(b)(a) = ba∗b = br(a) = b.

Now, for each x ∈ E we have Q(a)Q(b)(Q(a)(x)) = Q(a)(x), and since E(a) =

Q(a)(E), we can deduce that Q(a)Q(b)(z) = z for all z ∈ E(a) = E2(r(a)). By
the Jordan identity and (4.3) we have

L(a, b)Q(a) = 2Q(Q(a)(b), a)−Q(a)L(b, a)

= 2Q(a)−Q(a)L(b, a) = 2Q(a)− L(a, b)Q(a),

and thus L(a, b)Q(a)(x) = Q(a)(x), for all x ∈ E, which shows by continuity
of L(a, b) and norm density of Q(a)(E) in E(a), that L(a, b)(z) = z for all z ∈
E2(r(a)) = E(a), and by Peirce arithmetic we derive

L(a, b)P2(r(a)) = P2(r(a)) = P2(r(a))L(a, b)P2(r(a)). (4.13)

On the other hand, by applying the Jordan identity, the Peirce arithmetic and
(4.13), we have

L(b, a)Q(r(a))(x) = 2Q(r(a))(x)−Q(r(a))L(a, b)(x)

= 2Q(r(a))(x)−Q(r(a))L(a, b)P2(r(a))(x)

= 2Q(r(a))(x)−Q(r(a))(x) = Q(r(a))(x),

for all x ∈ E, which proves that

L(b, a)P2(r(a)) = P2(r(a)) = P2(r(a))L(b, a)P2(r(a)). (4.14)
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(g) ⇒ (h) Let us assume that statement (g) holds for a suitable b ∈ E2(r(a)). In
order to prove (h) we only have to show that Q(a) and Q(b) commute. Applying
our assumptions and the Jordan identity we obtain

Q(a)Q(b) = 2L(a, b)L(a, b)− L({a, b, a}, b) = 2L(a, b)L(a, b)− L(a, b)

Q(b)Q(a) = 2L(b, a)L(b, a)− L({b, a, b}, a) = 2L(b, a)L(b, a)− L(b, a).

Since, by Peirce arithmetic, Q(a) = Q(a)P2(r(a)) and Q(b) = Q(b)P2(r(a)), it
follows from the above identities and the assumptions that

Q(a)Q(b) = (2L(a, b)L(a, b)− L(a, b))P2(r(a)) = P2(r(a))

= (2L(b, a)L(b, a)− L(b, a))P2(r(a)) = Q(b)Q(a).

(h) ⇒ (i) If Q(a)(b) = a, Q(b)(a) = b and Q(a)Q(b) = Q(b)Q(a). Then
Q(a)Q(b) = Q(b)Q(a) is an idempotent in the Banach algebra B(E). Let us
observe that Q(a)(E(a)) ⊆ E(a), and

Q(b)(E(a)) = Q(b)Q(a)Q(b)(E(a)) = Q(a)Q(b)Q(b)(E(a)) ⊆ E(a).

Therefore Q(a)|E(a), Q(b)|E(a) ∈ BR(E(a)), where the latter symbol denotes the
space of all real linear operators on E(a). Moreover, since for each x ∈ E we have
Q(a)Q(b)(Q(a)(x)) = Q(a)(x), we deduce, as in previous cases, that

Q(a)Q(b)(z) = z,

for all z ∈ E(a). This means that Q(a)|E(a) and Q(b)|E(a) are invertible maps in
BR(E(a)) with Q(a)|−1

E(a) = Q(b)|E(a). By the bijectivity of Q(a)|E(a) we can find

c ∈ E(a) such that Q(a)(c) = a, and then

Q(a)2Q(b)(c) = Q(a)Q(b)Q(a)(c) = Q(a)(c) = a,

which shows that a is strongly regular.

(i) ⇒ (a) is clear. �

Let a be a regular element in a JB∗-triple E. By Theorem 4.3(a) ⇔ (f) the
range tripotent r(a) lies in E and a is an invertible element in the commutative
C∗-algebra Ea. The unique inverse of a in Ea is called the generalized inverse of
a, and it will be denoted by a‡. Clearly, every tripotent e in E is regular and
e‡ = e. We have shown in the proof of Theorem 4.3 that

L(a, a‡)P2(r(a)) = P2(r(a)) = L(a‡, a)P2(r(a)), (4.15)

and
Q(a)Q(a‡) = P2(r(a)) = Q(a‡)Q(a). (4.16)

In a paper ahead of time, L.A. Harris established that statements (a) and (d)
in Theorem 4.3 are equivalent in the case of J∗-algebras (see [32, Lemma 3.8]).

A triple version of Proposition 2.5 reads as follows.

Proposition 4.4. Let a be a regular element in a JB∗-triple E. Suppose b is an
element in E with Q(a)(b) = a. Then P2(r(a))(b) = a‡.

Proof. The condition Q(a)b = a implies P2(r(a))(b) = Q(a‡)Q(a)(b) = Q(a‡)(a) =
a‡, which proves the desired conclusion. �
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Remark 4.5. Let a be a regular element in a JB∗-triple E. Suppose b is an
element in E such that Q(a)(b) = a, Q(b)(a) = b and Q(a)Q(b) = Q(b)Q(a).
Following the arguments in the proof of Theorem 4.3(h) ⇒ (i) we conclude that
Q(a)(E(a)) ⊆ E(a), Q(b)(E(a)) ⊆ E(a), and Q(a)|E(a), Q(b)|E(a) are invertible
operators in BR(E(a)) with Q(a)|−1

E(a) = Q(b)|E(a). Since b = Q(b)(a) ∈ E(a), we

can easily deduce from Proposition 4.4 that b = P2(r(a))(b) = a‡. Consequently,
the unique element b ∈ E satisfying the conditions in Theorem 4.3(h) is a‡.

Remark 4.6. [15, §4] Every C∗-algebra A can be regarded as a JB∗-triple with
product {a, b, c} = 1

2
(ab∗c+ cb∗a). We shall see next that the notion of regularity

in A as a C∗-algebra is equivalent to the notion of regularity in A as a JB∗-triple.
Namely, suppose a ∈ A is regular in the C∗-sense. Then there exists b ∈ A
satisfying aba = a. Then Q(a)(b∗) = {a, b∗, a} = a, showing that a is regular in
the triple sense. If a is regular in the triple sense, there exists c in A such that
a = Q(a)(c) = ac∗a witnessing that a is regular in the C∗-sense.

For a regular element a ∈ A it seems necessary to clarify the connection between
the Moore–Penrose inverse of a in the C∗-algebra sense and the generalized inverse
of a in the JB∗-triple sense. Suppose a† and a‡ are the Moore–Penrose inverse and
the generalized inverse of a, respectively. The elements aa† and a†a are projections
in A with a = aa†a and a†aa† = a†. In our setting we have Q(a)((a†)∗) = a,
Q((a†)∗)(a) = (a†)∗ and

Q(a)Q((a†)∗)(x) = a(a†)x(a†)a = (aa†)x(a†a)

= (aa†)∗x(a†a)∗ = (a†)∗a∗xa∗(a†)∗ = Q((a†)∗)Q(a)(x).

Therefore (a†)∗ satisfies the hypothesis in Theorem 4.3(i). Remark 4.5 proves
that (a†)∗ = a‡.

We can afford now a first characterization of partial isometries in JB∗-triples in
terms of regularity and norm. The next result is a JB∗-triple analogue of Theorem
2.6.

Theorem 4.7. [15, Corollary 3.6] Let e be a norm-one element in a JB∗-triple
E. Then the following statements are equivalent:

(a) e is a tripotent;
(b) e is regular and ‖e‡‖ ≤ 1;
(c) There exists b in E with ‖b‖ ≤ 1 and Q(e)(b) = e.

Proof. The implications (a) ⇒ (b) follows from the fact that a non-zero tripotent
tripotent e in E is regular with e‡ = e. The implication (b) ⇒ (c) is trivial. Let
us prove (c) ⇒ (a). Suppose there exists b ∈ A with ‖b‖ ≤ 1 and Q(e)(b) = e.
Applying Proposition 4.4 we obtain P2(r(a))(b) = e‡. By hypothesis

1 ≥ ‖b‖ ≥ ‖P2(r(a))(b)‖ = ‖e‡‖ ≥ ‖e‖−1 = 1.

Since e‡ is the inverse of e in Ee, with ‖e‖ = 1 = ‖e‡‖, we can easily deduce from
the Gelfand representation of Ee that e = e‡ is a partial isometry. �

We deal now with the notion of quadratic-conorm in a JB∗-triple E. The
quadratic-conorm, γq(a), of an element a in a JB∗-triple E was introduced by
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M.J. Burgos, A. Kaidi, A. Morales, M.I. Ramírez and the second author of this
survey in [15], the concrete definition reads as follows:

γq : E → R+
0 , γq(a) = γ(Q(a)), (4.17)

where γ(Q(a)) is the reduced minimum modulus of Q(a) (see (2.3)).

The reciprocal statement of that in Proposition 4.1 was established in [15].

Proposition 4.8. [15, Theorem 2.3] Let a be an element in a JB∗-triple E. Then
a is regular if, and only if, Q(a) has norm closed range.

Proof. The “only if” implication is given by Proposition 4.1. For the “if” impli-
cation let us assume that Q(a)(E) is closed, and hence E(a) = Q(a)(E). Since
a ∈ Ea ⊆ E(a) = Q(a)(E), there exists a ∈ E such that Q(a)(b) = a, which
concludes the argument. �

As in the case of C∗-algebras, Proposition 4.8 is the first step to deal with
the quadratic-conorm. By the just quoted proposition and the properties of the
reduced minimum modulus, an element a in a JB∗-triple E is regular if, and only,
if Q(a) has closed range if, and only if, γq(a) = γ(Q(a)) > 0.

We can give a precise description of the quadratic-conorm in terms of the triple
spectrum.

Theorem 4.9. [15, Theorem 3.4 and Corollary 3.5] The identity

γq(a) = inf{t2 : t ∈ Sp(a)\{0}} = inf{s : s ∈ σB(Ea)(L(a, a)|Ea)}
holds for every non-zero element a in a JB∗-triple E. Consequently, ‖a‖2 ≥
γq(a), for all a ∈ E, and the quadratic-conorm of an element a does not change
when computed with respect to any closed complex subtriple F ⊆ E with a ∈ F .
Furthermore, if a is regular then γq(a) = ‖a‡‖−2.

Proof. The second equality follows from (4.8). We shall prove the first equality.
By the comments before this theorem, a is non-regular if, and only if, γq(a) = 0
and 0 = inf{t2 : t ∈ Sp(a)\{0}} by Theorem 4.3. We can therefore assume that a
is regular and hence m = inf{t2 : t ∈ Sp(a)\{0}} = min{t2 : t ∈ Sp(a)\{0}} > 0.
In other words,

√
m = min(Sp(a)\{0}).

Let a‡ be the generalized inverse of a in E. It is known from the properties

defining a‡ that ‖a‡‖ =
1

inf{t : t ∈ Sp(a)\{0}}
=

1√
m

. We know from Theorem

4.3 and subsequent comments that r(a) ∈ E, Q(a)Q(a‡) = Q(a‡)Q(a) = P2(r(a)),
Q(a)(E(a)) ⊆ E(a) = E2(r(a)), Q(a‡)(E(a)) ⊆ E(a), Q(a)|E(a) and Q(a‡)|E(a)

are invertible in BR(E(a)) and Q(a)|−1
E(a) = Q(a‡)|E(a). It follows from these prop-

erties and the Peirce arithmetic that ker(Q(a)) = E1(r(a))⊕ E0(r(a)). For each
x ∈ E with dist(x, ker(Q(a))) ≥ 1, we have 1 ≤ ‖x−P1(r(a))(x)−P0(r(a))(x)‖ =
‖P2(r(a))(x)‖. Then the inequality

1 ≤ ‖P2(r(a))(x)‖ = ‖Q(a‡)Q(a)(x)‖ ≤ ‖Q(a‡)‖‖Q(a)(x)‖
proves that

‖Q(a)(x)‖ ≥ ‖Q(a‡)‖−1 = ‖a‡‖−2 = m,
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for every x in the above conditions, which assures that

γq(a) ≥ m = inf{t2 : t ∈ Sp(a)\{0}}.
To prove the reciprocal inequality, take δ > 0 such that 2δ <

√
m,
√

m+δ < ‖a‖
and consider the JB∗-subtriple Ea

∼= C(Sp(a)\{0}), and the element x0 ∈ Ea

defined by

x0(t) =

{ √
m+δ−t

δ
, if t ∈ [

√
m,
√

m + δ] ∩ Sp(a),
0, if t ∈ [

√
m + δ,∞) ∩ Sp(a).

Clearly x0 ∈ Ea ⊆ E(a) = E2(r(a)). For each k ∈ ker(Q(a)) = E1(r(a)) ⊕
E0(r(a)) we have ‖x0 + k‖ ≥ ‖P2(r(a))(x0 + k)‖ = ‖P2(r(a))(x0)‖ = ‖x0‖ = 1,
which assures that dist(x0, ker(Q(a))) ≥ 1. Since ‖Q(a)(x0)‖ = m, we deduce
that

γq(a) ≤ m = inf{t2 : t ∈ Sp(a)\{0}}.
The final statement follows from the fact that SpF (a) =SpE(a). �

The quadratic-conorm can be now applied to characterize tripotents.

Theorem 4.10. [15, Corollary 3.6] Let e be an element in a JB∗-triple E. The
following conditions are equivalent:

(a) γq(e) = ‖e‖ = 1;
(b) e is a non-zero tripotent.

Proof. (a) ⇒ (b) It follows from our assumptions and Theorems 4.3 and 4.9 that e
is regular. Furthermore, Theorem 4.9 also proves that ‖e‖ = γq(e) = ‖e‡‖−2 = 1,
and thus e is a tripotent by Theorem 4.7.

The implication (b) ⇒ (c) is now clear. �

Concerning the continuity of the quadratic-conorm, having in mind the upper
semi-continuity of the reduced minimum modulus [52, Corollary 10.15]), we can
easily deduce that the quadratic-conorm in a JB∗-triple is upper semi-continuous
on E\{0} (see [15, Theorem 3.13]).

The properties defining the class of extremally rich C∗-algebras, introduced by
L.G. Brown and G.K. Pedersen in [12], have been recently studied in the setting of
JB∗-triples by F.B. Jamjoom, A. Siddiqui, H.M. Tahlawi, and the second author
of this note (see [39]). Among other examples, we know that every JBW∗-triple
is extremally rich, and since every extremally rich C∗-algebra is an extremally
rich JB∗-triple, the class of extremally rich JB∗-triples is strictly wider than the
class of JBW∗-triples. A JB∗-triple version of Proposition 2.12 reads as follows.

Theorem 4.11. [39, Corollary 3.7] Let E be an extremally rich JB∗-triple. Then
the quadratic-conorm γq(.) is continuous at a point a in E if, and only if, either
a is not regular (i.e. γq(a) = 0) or a is Brown-Pedersen quasi-invertible (i.e. a
is regular and its range tripotent lies in E and is an extreme point of its closed
unit ball). �

Since every C∗-algebra A can be also regarded as an element in the class of
JB∗-triples, the notions of conorm and quadratic-conorm coexist for C∗-algebras.
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Let us clarify the relation between these functions. Let a be an element in a C∗-
algebra A. Suppose a = v|a| is the polar decomposition of a in the von Neumann
algebra A∗∗. Clearly v is a tripotent in A∗∗. When A is regarded as a JB∗-triple
we can also consider the range tripotent of a in A∗∗. Since a[3] = {a, a, a} =
aa∗a = v|a||a|v∗v|a| = v|a|3, we can inductively prove that

a[2n+1] = {a, a, a[2n−1]} = v|a|(2n+1), (4.18)

for all n in N, and thus
pt(a) = vp(|a|), (4.19)

for every odd polynomial p(ζ) = α1ζ + α3ζ
3 + . . . + α2n+1ζ

(2n+1), where p(|a|)
denotes the usual continuous functional calculus at |a|, and pt(a) the continuous
triple functional calculus at a. To avoid confusion let E denote the C∗-algebra
A regarded as a JB∗-triple with respect to the triple product given by (4.4). As
before let Ea and E|a| denote the JB∗-subtriples of E generated by a and |a|,
respectively. Let Pt(a) and Pt(|a|) denote the (non-necessarily closed) subtriples
of all odd polynomials on a and |a|, respectively. Since |a|[2n−1] = |a|(2n−1) for
every natural number n, we deduce from (4.18) and (4.19) that the mapping

Φ : Pt(|a|) −→ Pt(a), p(|a|) 7→ vp(|a|) = pt(a)

is a continuous linear bijection preserving triple products. Since Pt(a) ⊂ Ea

and Pt(|a|) ⊂ E|a|, we deduce that Φ is an isometry (compare the arguments
in page 96). Therefore, by the norm density of Pt(|a|) and Pt(a) in E|a| and Ea,
respectively, Φ extends to a surjective isometric triple isomorphism from E|a| onto
Ea.

It is not hard to see from the positivity of |a| that the subtriple E|a| ∼=
C0(Sp(|a|)) of E generated by |a| coincides with the C∗-subalgebra A|a| ∼= C0(σ(|a|))
of A generated by |a|. Indeed, the inclusion E|a| ⊆ A|a| is clear because |a| ∈ A|a|
and the latter is a JB∗-subtriple of E. On the other hand, given two functions

0 ≤ f, g ∈ E|a| ⊆ A|a| ∼= C0(σ(|a|)), the sequence ({f, t[
1

2n+1
], g})n ⊆ E|a| is

monotone and converges pointwise to fg in A|a|. Thus, Dini’s theorem implies
that fg ∈ E|a|. Therefore, |a|2 and all its powers are in E|a|. We conclude that
E|a| = A|a| as affirmed.

The arguments in the above paragraphs show that

Φ : E|a| = A|a| ∼= C0(σ(|a|)) −→ Ea
∼= C0(Sp(a)),

f(|a|) 7→ vf(|a|) = ft(a) (4.20)

is a surjective JB∗-triple isomorphism, and in particular v = r(a) and

Sp(a) = Sp(|a|) = σ(|a|) ∪ {0}. (4.21)

We recall that for each element a in a C∗-algebra A, the quadratic mapping
Ua : A → A is defined by Ua(x) := axa (x ∈ A). It can be easily checked that
Q(a)(x) = Ua(x

∗) for all x ∈ A.

Corollary 4.12. [15, Corollaries 4.1 and 4.2] Let a be an element in a C∗-algebra
A, then the following statements hold:
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(a) γq(a) = γ(|a|)2 = γ(a∗a) = γ(aa∗);
(b) γq(a) = γ(Ua).

Proof. Statement (a) is a straightforward consequence of Theorems 2.9 and 4.9
and (4.21).

(b) Let us note that Q(a)(x∗) = Ua(x) for all x ∈ A. Then the equality
γq(a) = γ(Q(a)) = γ(Ua) follows from the definitions. �

4.1. Real JB∗-triples. Real JB∗-triples became an object of interest for Func-
tional Analysts during the nineties as a Jordan analogue of real C∗-algebras. The
formal definition appears in a paper by J.M. Isidro, W. Kaup and A. Rodŕıguez
in 1995 (see [37]). Following the just quoted article, a real Banach space is called
a real JB∗-triple if it is a norm-closed real subtriple of a complex JB∗-triple.
The algebraic complexification Ec := E ⊕ iE can be naturally equipped with
a triple product extending the triple product of E and making Ec a complex
Jordan Banach triple system. Real JB∗-triples are naturally linked to real forms
of (complex) JB∗-triples. More concretely, by [37, Proposition 2.2], given a real
JB∗-triple E, then there exists a unique complex JB∗-triple structure on Ec with
respect to a norm extending the original norm on E. Furthermore, the mapping
τ : Ec → Ec, τ(x + iy) = x − iy (x, y ∈ E) is a conjugation (conjugate linear
isometry of period 2) preserving triple products on Ec such that

E = Eτ
c = {z ∈ Ec : τ(z) = z}.

Real C∗-algebras, JB-algebras, real Hilbert spaces and (complex) JB∗-triples
are examples of real JB∗-triples. The class of real JB∗-triples also includes the
so-called J∗B-algebras by K. Alvermann in [3].

As in the complex case, a real JBW∗-triple is a real JB∗-triple whose underlying
Banach space is a dual space. It follows from [37, Lemma 4.2 and Theorem 4.4]
that the bidual, E∗∗, of a real JB∗-triple E is a real JBW∗-triple with respect to
a triple product extending the triple product of E. Every real JBW∗-triple has a
unique predual and its triple product is separately weak∗-continuous (see [50]).

Real von Neumann algebras and JBW∗-triples are examples of real JBW∗-
triples.

Along this subsection, E will denote a real JB∗-triple with complexification Ec,
and τ will stand for the conjugation on Ec satisfying Eτ

c = E.

An element e in E is said to be a tripotent if {e, e, e} = e. Let If U(E)
(respectively, U(Ec)) denotes the set of all tripotents in E (respectively, the set
of all tripotents in Ec) it follows from the properties of the conjugation τ that

U(E) = U(Ec)
τ = {e ∈ U(Ec) : τ(e) = e}. (4.22)

Let us notice that the equality in (4.22) was already observed in [37, 50, 24, 22].
Every tripotent e in E induces a Peirce decomposition of E and also of Ec in
the sense we recalled in page 96. We observe that, according to the previous
comments (Ec)j(e) ∩ E = ((Ec)j(e))

τ = Ej(e) for every j = 0, 1, 2, and the
Peirce projections of E associated with e are precisely the restrictions to E of the
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corresponding Peirce projections of Ec associated with e. Additional information
about inner ideals on real JB∗-triples can be found in [22].

An element a in E is called regular (respectively, strongly regular) if there
exists b in E such that Q(a)(b) = a (respectively, Q(a)2(b) = a). Since τ is a
conjugation and preserves triple products we can easily prove, via Theorem 4.3,
that the following statements are equivalent for an element a in E.

(R.1) a is regular in E;
(R.2) a is regular in Ec;
(R.3) a is strongly regular in Ec;
(R.4) There exists an element b in Ec satisfying the following properties Q(a)(b) =

a, Q(b)(a) = b and [Q(a), Q(b)] := Q(a) Q(b)−Q(b) Q(a) = 0;
(R.5) a is strongly regular in E.

The implications (R.1) ⇒ (R.2), (R.5) ⇒ (R.1) and (R.5) ⇒ (R.3) are clear.
The unique implication which is not straightforwardly derived from Theorem 4.3
and the structure theory revised in this subsection is (R.3) ⇒ (R.5). To see this
implication, suppose a is strongly regular in Ec. The there exists b ∈ Ec such
that Q(a)2(b) = a. Since τ preserves triple products and τ(a) = τ , we can easily

deduce that Q(a)2(τ(b)) = a and hence Q(a)2( b+τ(b)
2

) = a. Since b+τ(b)
2

lies in E,
the element a is strongly regular in E.

For each element a in E the symbol Pt
R(a) will denote the subspace of E

of all elements of the form pt(a) = α1a
[1] + α3a

[3] + . . . + α2n+1a
[2n+1], where

p(ζ) = α1ζ +α3ζ
3 + . . .+α2n+1ζ

(2n+1) is an odd polynomial with real coefficients,
a[1] = a, a[3] = {a, a, a} and a[2n+1] = {a, a, a[2n−1]} for n ≥ 1, while Pt

C(a) = Pt(a)
will have its usual meaning given in this section when a is regarded as an element
in Ec. Clearly the norm closure of Pt

R(a) (respectively, of Pt
C(a)) coincides with

the real JB∗-subtriple Ea of E generated by a (respectively, with the JB∗-subtriple
(Ec)a of Ec generated by a). By construction (Pt

C(a))
τ

= Pt
R(a) and (Ec)

τ
a = Ea.

It follows that Ea is a real form the commutative C∗-algebra C0(SpEc
(a)). Fur-

thermore, as shown in [16, pages 69-70], Ea is JB∗-triple isomorphic to the com-
mutative real C∗-algebra C0(SpEc

(a), R) of all real-valued continuous functions on
SpEc(a) vanishing at 0. Namely, by the Stone–Weierstrass theorem there exists
a homeomorphism σ : Sp(a) → Sp(a) and a unitary element u ∈ C(Sp(a)) such
that σ(0) = 0, σ2 = IdSp(a), and

τ(f)(t) = u(t)f(σ(t)),

for every t ∈ Sp(a) and every f ∈ C0(Sp(a)). Since in the identification (Ec)a
∼=

C0(Sp(a)) the element a correspond to the function t 7→ t and a = τ(a), we deduce
that σ(t) = t and u(t) = 1 for all t ∈ Sp(a). This proves that Ea

∼= C0(Sp(a), R)
is the self-adjoint part of C0(Sp(a)).

As in the setting of real C∗-algebras, for each element a in a real JB∗-triple E,
we convey to set Sp(a) =SpE(a) =SpEc(a) ⊆ [0, ‖a‖].

The bitranspose of τ , τ ∗∗ : E∗∗
c → E∗∗

c , is again a conjugation on E∗∗
c and

E∗∗ = (E∗∗
c )τ∗∗ (see [37, Lemma 4.2]). It can be shown that the range tripotent

in E∗∗
c , of an element a in E, is τ ∗∗-symmetric, and hence lies in E∗∗. These
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two elements will be called the range tripotent and the support tripotent of a in
E∗∗, respectively. Making use of this machinery, we can mimic the arguments in
Theorem 4.3 to show that statements (R.1)−(R.5) in page 108 are also equivalent
to the following:

(R.6) There exists an element b in E satisfying the following properties Q(a)(b) =
a, Q(b)(a) = b and [Q(a), Q(b)] := Q(a) Q(b)−Q(b) Q(a) = 0;

(R.7) The cubic root of a in Ea is strongly regular in E;
(R.8) 0 is isolated in the triple spectrum of the cubic root of a in Ea;
(R.9) 0 is isolated in Sp(a);

(R.10) The range tripotent r(a) lies in E and a is an invertible element in the
commutative real C∗-algebra Ea

∼= C0(Sp(a), R).

Concerning the generalized inverse, we simply observe that a ∈ E is regular if,
and only if, a is regular in Ec, and in such a case τ(a‡) = a‡ ∈ E is called
the generalized inverse of a in E. Indeed, we just observe that, by the Stone–
Weierstrass theorem, for a regular element a in E, its unique generalized inverse a‡

(associated with the continuous functional calculus at a for the function f(t) =
1
t

with t ∈Sp(a)) can be approximated in norm by odd polynomials with real
coefficients in a.

A real version of Theorem 4.7 can be now stated.

Theorem 4.13. Let e be a norm-one element in a real JB∗-triple E. Then the
following statements are equivalent:

(a) e is a tripotent;
(b) e is regular and ‖e‡‖ ≤ 1;
(c) There exists b in E with ‖b‖ ≤ 1 and Q(e)(b) = e. �

The notion of quadratic conorm given in (4.17) also makes sense in the setting
of real JB∗-triples. For an element a in E the maps Q(a)|E : E → E and Q(a) :
Ec → Ec define the quadratic-conorms γq

E(a) = γ(Q(a)|E) and γq
Ec

(a) = γ(Q(a)).
We shall see that these quadratic-conorms coincide for every a ∈ E.

It is easy to check that ker(Q(a)) = {x + iy : x, y ∈ ker(Q(a)|E)}, or in other
words, ker(Q(a)) is τ -invariant and ker(Q(a)|E) = ker(Q(a))τ .

Suppose z ∈ E ⊂ Ec satisfies dist(z, ker(Q(a)|E)) ≥ 1. The projection P (x) =
x+τ(x)

2
is contractive. Thus, for each x + iy ∈ ker(Q(a)) we have ‖z + x + iy‖ ≥

‖z + x‖ ≥ 1 because x ∈ ker(Q(a)|E) and dist(z, ker(Q(a)|E)) ≥ 1. This implies
that

γq
Ec

(a) = γ(Q(a)) ≤ γq
E(a) = γ(Q(a)|E). (4.23)

On the other hand, a is not regular in E if, and only if, it is not regular in Ec if,
and only if, γq

Ec
(a) = 0 if, and only if, γq

E(a) = 0. Let us assume that a is regular
and

√
m = min{t : t ∈ Sp(a)\{0}}. We have shown in the proof of Theorem 4.9

that the element x0 ∈ (Ec)a
∼= C0(Sp(a)) defined by

x0(t) =

{ √
m+δ−t

δ
, if t ∈ [

√
m,
√

m + δ] ∩ Sp(a),
0, if t ∈ [

√
m + δ,∞) ∩ Sp(a)



110 F.J. FERNÁNDEZ-POLO, A.M. PERALTA

satisfies dist(x0, ker(Q(a))) ≥ 1 and ‖Q(a)(x0)‖ = γq
Ec

(a). Since x0 is a real-
valued function, we deduce that x0 ∈ C0(Sp(a), R) ∼= Ea and hence

γq
Ec

(a) = ‖Q(a)(x0)‖ ≥ γq
E(a). (4.24)

Combining (4.23) and (4.24) we get γq
E(a) = γq

Ec
(a) = inf{t2 : t ∈ Sp(a)\{0}},

for every a ∈ E, and if a is regular then γq(a) = ‖a‡‖−2. The previous formula
can be now applied to obtain the next real version of Theorem 4.10.

Theorem 4.14. [16, Corollary 4.3] Let e be an element in a real JB∗-triple E.
The following conditions are equivalent:

(a) γq(e) = ‖e‖ = 1;
(b) e is a non-zero tripotent. �

We culminate this section observing that a study about regular elements and
quadratic-conorms for real J∗B-triples (a class containing all real JB∗-triples) was
conducted in [16].

5. Geometric characterization in real and complex JB∗-triples.
Contractive perturbations

For later purposes we shall need the next lemma due to Y. Friedman and B.
Russo [26]. As we commented in Section 3, Lemma 3.1 is a C∗-algebra version of
the following result.

Lemma 5.1. [26, Lemma 1.6] Let e be a tripotent in a real JB∗-triple E. Suppose
x is a norm-one element in E with P2(e)x = e. Then x = e + P0(e)x. �

We note that the original statement of the above lemma in [26, Lemma 1.6]
is only established for (complex) JB∗-triples. However, the statement for real
JB∗-triples can be easily deduced from the original result by just regarding real
JB∗-triples as real forms of their complexifications.

It is well known that the unit element in an associative complex Banach algebra
A is an extreme point of the closed unit ball of A (see [58, Proposition 1.6.6]).
A unital JB-algebra J with unit 1 is an example of order unit space in the sense
employed in [30, §1.2]. It follows from [30, Lemmas 1.2.2 and 1.2.5] that the
set S(J) of all states of J relative to 1 (i.e. the norm-one positive elements in
J∗) is a norming set for J , that is, for every a ∈ J there exists ϕ ∈ S(J) with
|ϕ(a)| = ‖a‖. In particular, 1 is an extreme point of the closed unit ball of J .
The self-adjoint part of a JB∗-algebra (or more generally, the self-adjoint part
of a unital J∗B-algebra in the sense of Alvermann [3]) is a JB-algebra (see [60]
and [30, §3.8]), consequently, the unit of every unital JB∗-algebra (respectively,
of every unital J∗B-algebra) A is an extreme point in the closed unit ball of A.

In Section 3 we have revisited the geometric characterization of partial isome-
tries in C∗-algebras obtained by C.A. Akemann and N. Weaver in [2] (see Theorem
3.2). This result is an useful tool for many problems where the answer is spe-
cially tractable if instead of projections we need to preserve partial isometries.
Akemann-Weaver theorem naturally leads to the question whether a geometric
characterization of tripotents in general JB∗-triples is affordable. This problem
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was studied by J. Mart́inez and the authors of this survey in the wider setting of
tripotents in real or complex JB∗-triples (see [24]). Keeping in mind the notation
in Section 3 the characterization is established in the next result.

Theorem 5.2. [24, Theorems 2.1 and 2.3] Let e be a norm-one element in a real

or complex JB∗-triple E. Then e is a tripotent if, and only if, D
E

1 (e) = D
E

2 (e).

Moreover, for each tripotent e in E we have D
E

1 (e) = E0(e).

Proof. We shall assume that E is a real JB∗-triple.

(⇒) Let e be a tripotent. The inclusion D
E

2 (e) ⊆ D
E

1 (e) is always true for
every norm-one element in a Banach space. Therefore, it will be enough to prove
the reverse inclusion.

We observe that in a real JB∗-triple E, the Peirce 2-subspace E2(e) is a unital
real J∗B-subalgebra of the unital JB∗-algebra (Ec)2(e) associated with e in the
complexification of E, and e is the unit element in both Jordan algebras. Then,
given y ∈ D

E

1 (e) (i.e. ‖e ± αy‖ = 1 with α > 0), we have ‖e ± αP2(e)y‖ ≤ 1.
Since e is the unit element in the J∗B-algebra E2(e) it follows that P2(e)(y) = 0.

Since P2(e)(e + αy) = e, Lemma 5.1 assures that e + αy = e + P0(e)(αy), and

thus e ⊥ y = P0(e)y, which proves that y belongs to D
E

2 (e) (see (4.9)).

We have also shown that D
E

1 (e) = E0(e) for every non-zero tripotent e in E.

(⇐) Arguing by contradiction, we suppose that e is not a tripotent in E. Let us
identify Ee with C0(Sp(e), R) and e with the function t 7→ t (t ∈ Sp(e)) (see §4.1).
Since e is not a tripotent there exists t0 ∈]0, 1[∩Sp(e). We define h : Sp(e) → R
the function given by

h(t) =

{
1−t0

t0
t, if t ∈ [0, t0] ∩ Sp(e),

1− t, if t ∈ [t0, 1] ∩ Sp(e).

and we set y = ht(e) ∈ Ee. It is straightforward to check, via continuous triple
functional calculus, that ‖e ± y‖ = ‖e(t) ± h(t)‖C0(Sp(e)) = 1 (i.e. y belongs to

D
E

1 (e)). However, y does not belong to D
E

2 (e). Namely, if we take, for example,
β = 1

1−t0
, we have ‖e + βy‖ = ‖t + βh(t)‖C0(Sp(e)) = 1 + t0 > 1, ‖e‖ = 1 and

‖βy‖ = 1. �

Let x and y be two elements in a real or complex JB∗-triple E. Following [49],
the Bergman operator B(x, y) : E → E is defined by

B(x, y) := IdE − 2L(x, y) + Q(x)Q(y).

For each tripotent e in E, B(e, e) = P0(e).

Bergman operators and orthogonal complements can be also applied to deter-
mine tripotents in JB∗-triples.

Theorem 5.3. ([25, Proposition 9] Let e be a norm-one element in a real or
complex JB∗-triple E. The following statements are equivalent:

(a) e is a tripotent;
(b) B(e, e)(E) = {e}⊥ = {x ∈ E : e ⊥ x}.
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Proof. As in the previos result, we may asume that E is a real JB∗-triple.

(a) ⇒ (b) Suppose e is a tripotent. In this case B(e, e) = P0(e). Since E0(e) =
P0(e)(E) = B(e, e)(E), we deduce from Peirce arithmetic that x ⊥ e for every
x ∈ E0(e), equivalently B(e, e)(E) ⊆ {e}⊥.

On the other hand, if x ⊥ e, then {e, e, x} = 0, and hence x ∈ E0(e) =
B(e, e)(E).

(b) ⇒ (a) Suppose B(e, e)(E) = {e}⊥. Let us observe that in the JB∗-subtriple
Ee
∼= C0(Sp(e), R) two elements are orthogonal if, and only if, they have disjoint

supports as continuous functions. Since under this identification e corresponds to
the function t 7→ t (t ∈ Sp(e)), we deduce that Ee∩{e}⊥ = {0}. By assumptions,
B(e, e)(e) = e − 2L(e, e)(e) + Q(e)2(e) = e − 2e[3] + e[5] ∈ {e}⊥ ∩ Ee, and thus
e−2e[3]+e[5] = 0. In the identification Ee

∼= C0(Sp(e), R) the element e−2e[3]+e[5]

corresponds to the polynomial t− 2t3 + t5, so e− 2e[3] + e[5] = 0 forces to Sp(e) ⊆
{0, 1}, which proves that e is a tripotent. �

The above result appeared in [25, Proposition 9] where it was obtained as a
consequence of a more general conclusion affirming that the identity

{x}⊥ = {y ∈ E : B(x, x)(y) = y}

holds for every element x in a JB∗-triple E with ‖x‖ <
√

2 (see [25, Proposition
7]).

Kadison’s theorem determining the extreme points of the closed unit ball of a
C∗-algebra (see Corollary 3.4) was extended to the categories of complex and real
JB∗-triples by W. Kaup and H. Upmeier [45, Proposition 3.5] and J.M. Isidro,

W. Kaup and A. Rodŕiguez [37, Lemma 3.3], respectively. We can rediscover now
these results as applications of the geometric characterization of tripotents.

Corollary 5.4. ([45, Proposition 3.5], [37, Lemma 3.3]) Let e be a norm-one
element in a real or complex JB∗-triple E. Then the following statements are
equivalent:

(a) e is an extreme point of the closed unit ball of E;

(b) D
E

1 (e) = {0};
(c) e is a tripotent and E0(e) = {0};
(d) B(e, e)(E) = {0}.

Proof. (a) ⇔ (b) Obviously, D
E

1 (e) = {0} if e is an extreme point of the closed unit

ball of E. Reciprocally, if D
E

1 (e) = {0}, and e = 1
2
(x+y) with ‖x‖, ‖y‖ = 1, then

taking z = 1
2
(x− y) we have ‖z‖ ≤ 1, ‖e + z‖ = ‖x‖ = 1 and ‖e− z‖ = ‖y‖ = 1.

Therefore z ∈ D
E

1 (e) = {0}, and hence x = y = e.

(b) ⇒ (c) Since the inclusions {0} ⊆ D
E

2 (e) ⊆ D
E

1 (e) always hold, the as-

sumption D
E

1 (e) = {0}, implies that D
E

2 (e) = D
E

1 (e) = {0}. Theorem 5.2 gives
(c).

(c) ⇒ (d) is clear.
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(d) ⇒ (b) Since {0} ⊆ {e}⊥ ⊆ B(e, e)(E) and the later set coincides with {0}
by hypothesis, Theorem 5.3 assures that e is a tripotent, and Theorem 5.2 proves
that D

E

1 (e) = E0(e) = {e}⊥ = {0}. �

It should be remarked here that a generalization of the celebrated Kadison’s
characterization of the extreme points of the closed unit ball of a C∗-algebra (see
Corollary 3.4) was established by L.A. Harris in [31, Theorem 11] in what is a
forerunner of the previous Corollary 5.4. A thorough survey on unitary elements
in C∗-algebras, JB∗-algebras, and JB∗-triples was conducted by A. Rodŕiguez in
[57].

In the case of complex JB∗-triples, the geometric characterization of tripotents
presented in Theorem 5.2 was later rediscovered by R.V. Hügli in [36]. In the
just quoted paper, Hügli also added some other equivalent reformulations. We
can now derive the new reformulations as a consequence of Theorem 5.2.

Corollary 5.5. [36, Theorem 4.1] Let e be a norm-one element in a complex
JB∗-triple E, and let BE denote the closed unit ball of E. Then the following
statements are equivalent:

(a) e is a tripotent;
(b) {y ∈ E : ‖e± y‖ = 1} ⊆ {e}⊥ ∩ BE;
(c) {y ∈ E : ‖e± y‖ = 1} = {y ∈ E : ‖ie± y‖ = 1}.

Proof. (a) ⇒ (b) Suppose e is a tripotent. The set {y ∈ E : ‖e ± y‖ = 1}
is clearly contained in D

E

1 (e). We observe that every element y in the first set
satisfies ‖y‖ ≤ 1. On the other hand, the assumptions combined with Theorem

5.2 show that D
E

1 (e) = D
E

2 (e) = E0(e) = {e}⊥.

(b) ⇒ (a) Let us assume that {y ∈ E : ‖e ± y‖ = 1} ⊆ {e}⊥ ∩ BE. Given

z ∈ D
E

1 (e), there exists a positive α such that αz ∈ {y ∈ E : ‖e ± y‖ = 1},
and hence αz ∈ {e}⊥ ∩ BE. Since orthogonal elements are M -orthogonal in

the geometric sense (see (4.9)), we derive that z ∈ D
E

2 (e). This shows that

D
E

1 (e) = D
E

2 (e) and Theorem 5.2 gives (a).

Although [36, Theorem 4.1] only concerns with complex JB∗-triples, the equiva-
lence (a) ⇔ (b) also holds for real JB∗-triples. Actually statement (b) is equivalent
to

(b′) {y ∈ E : ‖e± y‖ = 1} = {e}⊥ ∩ BE.

Namely, we have shown in the proof of (b) ⇒ (a) that {e}⊥ ∩ BE ⊆ D
E

2 (e), and
thus for a tripotent e in E we have

{y ∈ E : ‖e± y‖ = 1} ⊆ {e}⊥ ∩ BE ⊆ D
E

2 (e) ∩ BE = D
E

1 (e) ∩ BE

= E0(e) ∩ BE = (see (4.9)) = {y ∈ E : ‖e± y‖ = 1}.
(a) ⇒ (c) By (a) ⇔ (b′) we get {y ∈ E : ‖e ± y‖ = 1} = {e}⊥ ∩ BE and

{y ∈ E : ‖ie± y‖ = 1} = {ie}⊥ ∩ BE = {e}⊥ ∩ BE, which proves (c).

(c) ⇒ (a) As in the proof of Theorem 5.2, if e is not a tripotent in E, there
exists t0 ∈]0, 1[∩Sp(e). We identify Ee with C0(Sp(e)) and e with the function
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t 7→ t (t ∈ Sp(e)). We define h : Sp(e) → C the function given by

h(t) =

{
i

√
1−t20
t0

t, if t ∈ [0, t0] ∩ Sp(e),

i
√

1− t2, if t ∈ [t0, 1] ∩ Sp(e)

and we set y = ht(e) ∈ Ee. It is straightforward to check that ‖e ± y‖ = 1 but

‖ie + y‖ ≥ |it0 + h(t0)| =
√

1− t20 + t0 > 1. �

Acknowledgements Authors partially supported by the Spanish Ministry
of Economy and Competitiveness and European Regional Development Fund
project no. MTM2014-58984-P and Junta de Andalućıa grant FQM375.
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38. J. M. Isidro and A. Rodŕiguez Palacios, On the definition of real W ∗-algebras, Proc. Amer.

Math. Soc. 124 (1996), 3407–3410.
39. F. B. Jamjoom, A. M. Peralta, A. A. Siddiqui, and H. M. Tahlawi, Extremally rich JB∗-

triples, Ann. Funct. Anal. 7 (2016), no. 4, 578–592.
40. R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325–338.
41. T. Kato, Perturbation theory for linear operators, Springer-Verlag New York, Inc., New

York, 1966.
42. W. Kaup, Algebraic Characterization of symmetric complex Banach manifolds, Math. Ann.

228 (1977), 39–64.
43. W. Kaup, A Riemann Mapping Theorem for bounded symmentric domains in complex

Banach spaces, Math. Z. 183 (1983), 503–529.
44. W. Kaup, On spectral and singular values in JB*-triples, Proc. Roy. Irish Acad. Sect. A 96

(1996), no. 1, 95–103.
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