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Abstract. C. Akemann and G.K. Pedersen [Duke Math. J. 40 (1973), 785–
795.] defined three concepts of semicontinuity for self-adjoint elements of A∗∗,
the enveloping von Neumann algebra of a C∗-algebra A. We give the basic
properties of the analogous concepts for elements of pA∗∗p, where p is a closed
projection in A∗∗. In other words, in place of affine functionals on Q, the
quasi–state space of A, we consider functionals on F (p), the closed face of Q
suppported by p. We prove an interpolation theorem: If h ≥ k, where h is
lower semicontinuous on F (p) and k upper semicontinuous, then there is a
continuous affine functional x on F (p) such that k ≤ x ≤ h. We also prove
an interpolation–extension theorem: Now h and k are given on Q, x is given
on F (p) between h|F (p) and k|F (p), and we seek to extend x to x̃ on Q so that
k ≤ x̃ ≤ h. We give a characterization of pM(A)sap in terms of semicontinuity.
And we give new characterizations of operator convexity and strong operator
convexity in terms of semicontinuity.

1. Definitions, notations, and basic properties

For a C∗-algebra A, S = S(A) denotes the state space of A and Q = Q(A)
the quasi–state space, Q(A) = {ϕ ∈ A∗ : ϕ ≥ 0 and ‖ϕ‖ ≤ 1}. E. Effros [13]
showed that norm closed faces of Q(A) containing 0 correspond one–to-one to
projections p in A∗∗, via F (p) = {ϕ ∈ Q : ϕ(1− p) = 0}. Then p is called closed
if F (p) is weak∗ closed and open if p is the support projection of a hereditary
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C∗-subalgebra of A. It was proved by Effros in [13] that these definitions imply
p is closed if and only if 1 − p is open, and the open/closed terminology was
introduced by Akemann in [1]. Akemann [2] introduced the concept of compact
projections. The projection p is compact if and only if F (p) ∩ S is weak∗ closed.
Among several equivalences, p is compact if and only if it is closed and there is

a in A such that p ≤ a ≤ 1; and p is compact if and only if it is closed in Ã∗∗.

Here Ã = A+C1, where 1 is the identity of A∗∗. For the semicontinuity concepts
introduced by Akemann and Pedersen in [3] we need some more notations. For
S ⊂ A∗∗, Ssa = {h ∈ S : h∗ = h}, S+ = {h ∈ S : h ≥ 0}, Sm is the set of
limits in A∗∗ of bounded increasing nets from S, Sm the set of limits of bounded
decreasing nets from S, and Sσ and Sσ are defined similarly using monotone
sequences. Also − denotes norm closure. Then h is strongly lower semicontinuous

(lsc) if h ∈ ((Asa)
m)−, middle lsc if h ∈ (Ãsa)

m, and weakly lsc if h ∈ ((Ãsa)
m)−.

The upper semicontinuous (usc) concepts are defined analogously, using m instead
of m, and h is usc in any sense if and only if −h is lsc in the same sense. We
use completely analogous definitions for semicontinuity on F (p). If p is a closed
projection in A∗∗ and h is in pA∗∗sap, then h is strongly lsc on p if h ∈ ((pAsap)

m)−,

h is middle lsc on p if h ∈ (pÃsap)
m, and h is weakly lsc on p if h ∈ ((pÃsap)

m)−;
and the usc concepts are defined similarly.

Under the Kadison function representation, A∗∗ is identified with the space
of bounded affine functionals vanishing at 0 on Q and A is identified with the
subspace of weak∗ continuous functionals. These identifications are isometric on
A∗∗sa and Asa. Since F (p) is the normal quasi–state space of the von Neumann
algebra pA∗∗p, similar identifications are available relative to a closed projection
p. Thus pA∗∗sap is identified with B0(p), the space of R-valued bounded affine
functionals on F (p), vanishing at 0, and pAsap is identified with A0(p) = {f ∈
B0(p) : f is weak∗ continuous}. (An argument justifying the last fact, which is
presumably folklore, was provided in the proof of [5, Corollary 3.5].) Usually
these identifications will be used without any notation, but when a notation is
necessary, â will denote the functional on Q corresponding to a in A∗∗, and the
unwieldy symbol Fp(a) will denote the functional on F (p) corresponding to a in
pA∗∗p. Note that Fp(pap) = â|F (p).

Since Fp(p)(ϕ) = ‖ϕ‖, for ϕ ∈ F (p), Fp(p) is an lsc function on F (p). If p is
compact, then by the above, p ∈ pAp and hence Fp(p) is continuous. Otherwise,
F (p) ∩ S is not weak∗ closed. Thus if p is not compact, Fp(p) is not usc and p is
not in pAp. Once it is proved that strong lsc on p implies middle lsc on p, it will
then be clear that if p is compact, all three types of semicontinuity coincide, and
if p is not compact, the strong and middle types definitely differ.

Some of the Akemann–Pedersen work is part of the abstract theory of compact
convex sets. For example, see the beginning of [3, §3]. Thus in many cases,
their arguments apply in our situation and our proofs can be abridged. In this
connection note that the functional Fp(p), which plays the same role here that 1̂
plays in [3], is determined by the structure of F (p) as a convex set and the choice
of the complemented extreme point 0.
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Lemma 1.1. (cf. [3, Theorem 2.1]) If p is a closed projection in A∗∗ and h is
in pA∗∗sap then Fp(h) is lsc, if and only if h is the σ-weak limit of an increasing

net (hi), where hi = λip+ paip ∈ pÃsap and limλi = 0. In this case (λi) may be
taken strictly increasing.

Proof. The argument from [3] applies unchanged. �

We state a known result for reference.

Lemma 1.2. ([5, Corollary 3.4]) If p is a closed projection in A∗∗, h is in pAsap,
and −sp ≤ h ≤ tp for s, t ≥ 0, then there is a in Asa such that pap = h and
−s1 ≤ a ≤ t1. (If A is unital, s and t may be arbitrary.)

Proposition 1.3. (cf. [3, Theorem 2.1 and Proposition 2.2]) If p is a closed
projection in A∗∗ and h is in pA∗∗sap, then the following are equivalent:

(i) h induces an lsc function on F (p).
(ii) h is the σ-weak limit of an increasing net (hi) such that hi = λip + paip,

where λi ∈ R, ai ∈ Asa, and limλi = 0.
(iii) ∀ε > 0, h+ εp ∈ (pAsap)

m.
(iv) h ∈ ((pAsap)

m)−.
Moreover, if h ≥ 0 and h is strongly lsc on p, then ∀ε > 0, h+ εp ∈ (pA+p)

m.

Proof. The proof is almost the same as that in [3], but one additional argument is
needed for the proof that (ii) implies (iii) and the proof of the last sentence. Let
P = {a ∈ A+ : ‖a‖ < 1}, the canonical approximate identity of A ([15, p.11]). If
(hi) is as in (ii), we construct a net ki,b = (λi + ε)b + paip, b ∈ pPp, where we
use only the pairs (i, b) with λi + ε > 0. For the last sentence we also require
that ki,b ≥ 0. The ordering on the index set is modified as follows: (i, b) ≤ (j, c)
if and only if i ≤ j and ki,b ≤ kj,c. In order to make the Akemann–Pedersen
argument work, we need the following: If x ∈ pAsap and σpA∗∗p(x) ⊂ (−∞, t]
with 0 < t < 1, then there is b in pPp such that x ≤ b. To prove this, first cite
1.2 to write x = px̃p with x̃ ∈ Asa and σ(x̃) ⊂ (−∞, t] and then let b = px̃+p. One
can also cite 1.2 for the notationally convenient fact that pA+p = (pAp)+. �

When p is closed but not compact and a ∈ Asa, the condition λp + pap ≥ 0
does not necessarily imply λ ≥ 0. In other words, it is possible that

(1) ∃a ∈ A+ such that p ≤ pap.

The condition (1) was studied in [6], where it was shown (for p closed) to be
equivalent to the existence of a compact projection q such that ‖p− q‖ < 1. Also
pAp is (non-isometrically) completely order isomorphic to qAq. The following
easy lemma is needed for this situation.

Lemma 1.4. If p is a closed but not compact projection in A∗∗, then there is a
constant K such that |λ| ≤ K‖λp+ pap‖ for a ∈ A.

Proof. This follows from elementary Banach space theory, the fact that pAp is
closed ([4, Proposition 4.4]), and the fact that p /∈ pAp. �
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Proposition 1.5. (cf. [3, Proposition 2.5]) If p is a closed projection in A∗∗ and

h ∈ pA∗∗sap, then h ∈ (pÃsap)
m if and only if there is λ such that h+λp is strongly

lsc on p.

Proof. If h + λp is strongly lsc, then Proposition 1.3 clearly implies that h ∈
(pÃsap)

m. Conversely suppose h is the limit of an increasing net (hi), where
hi = λip + paip. If p is non-compact, then by Lemma 1.4, there is λ such that
λ + λi ≥ 0, for i ≥ i0. Thus each such hi + λp gives an lsc functional on F (p),
and so does h+λp. Then the equivalence of (i) and (iv) in Proposition 1.3 shows
that h+ λp is strongly lsc. The compact case is trivial. �

Remark 1.6. It was shown in [3, Theorem 3.3] that h in A∗∗sa is weakly lsc if and
only if it induces an lsc function on S. The analogous result for closed faces is false
as shown below in Example 3.4. A portion of the Akemann–Pedersen argument
is very general and still applies here. Namely, h in pA∗∗sap is lsc on F (p)∩S if and

only if there is a net (hi) in pÃsap such that hi ≤ h, ∀i, and (hi) converges to h
σ-weakly. (The net may not be bounded.) The rest of the Akemann–Pedersen

argument fails since pÃp may not be an algebra and hence may not be inverse
closed.

It may be imagined that we should have defined weak semicontinuity (or that
we should define a fourth and even weaker kind of semicontinuity) to mean that h
is a semicontinuous function on F (p)∩S. But we believe that this last condition

is too weak to be useful, except when it implies h ∈ ((pÃsap)
m)−. The following

open question seems mildly interesting: Is {h ∈ pA∗∗sap : h is lsc on F (p) ∩ S}
the smallest subset of pA∗∗sap containing ((pÃsap)

m)− and closed under increasing
convergence?

Another basic subject is semicontinuity of projections. Akemann and Pedersen
showed ([3, Theorem 3.6]) that p is open if and only if it is strongly lsc if and
only if it is weakly lsc, whence p is closed if and only if it is middle usc if and
only if it is weakly usc. And the author observed ([5, 2.47]) that p is compact if
and only if it is strongly usc. Only a portion of this goes through in the relative
case.

Proposition 1.7. If p is a closed projection in A∗∗ and q is a subprojection of p,
then q is strongly lsc on p if and only if p− q is closed (i.e., q is relatively open),
and q is strongly usc on p if and only if q is compact.

Proof. If q is strongly lsc on p, then F (p− q) = {ϕ ∈ F (p) : Fp(q)(ϕ) ≤ 0}, which
is closed. Conversely, if p− q is closed, then 1− p+ q is open and hence strongly
lsc in A∗∗. A fortiori, q = p(1 − p + q)p is strongly lsc on p. If q is strongly usc
on p, then S ∩ F (q) = {ϕ ∈ F (p) : Fp(q)(ϕ) ≥ 1}, which is closed. Therefore q is
compact. Conversely, if q is compact, then q is strongly usc in A∗∗ and, a fortiori,
strongly usc on F (p). �

Example 1.8. Let A = c ⊗ K, the algebra of norm convergent sequences in
K, the set of compact operators on l2. Then A∗∗ can be identified with the
algebra of bounded indexed collections, (hn)1≤n≤∞, with each hn in B(l2). Let
vn = 1√

2
e1 + 1√

2
en+1, where e1, e2, . . . are the standard basis vectors in l2. Let the
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closed projection p in A∗∗ be given by pn = vn× vn for n <∞, and p∞ = e1× e1.
Here v × w denotes the rank one operator x 7→ (x,w)v. An element h of pA∗∗sap
is given by a bounded collection (tn)1≤n≤∞ of real numbers such that hn = tnpn.
Then it is easily seen that h is strongly lsc on p if and only if 1

2
t∞ ≤ lim inf tn and

strongly usc on p if and only if 1
2
t∞ ≥ lim sup tn. It follows that every element

of pA∗∗sap is middle lsc and middle usc on p. Since there are subprojections of p
which are not closed, for example p− p∞, this shows that middle semicontinuity
on p, for a subprojection q of p, does not imply that q is closed or relatively open.

2. The interpolation and interpolation–extension theorems

Lemma 2.1. Assume p is a closed projection in A∗∗, h is strongly lsc on p, k is
strongly usc on p, and h ≥ k. Then there is a function f such that lim

ε→0+
f(ε) = 0

and: If δ > 0, x ∈ pAsap, and k − εp ≤ x ≤ h + εp, then ∃y ∈ pAsap such that
‖y − x‖ ≤ f(ε) and k − δp ≤ y ≤ h+ δp.

Proof. The proof has a lot in common with that of [5, Lemma 3.14], but there
are enough extra steps needed that it seems advisable to write out a complete
version. Choose a net (λαp+paαp) which increases to h and has all the properties
of Lemma 1.1. Choose a similar net (µβp+pbβp) which decreases to k. Let δ > 0.
Then with the help of Dini’s theorem we can see that for sufficiently large α and
β, all of the following hold:

(µβ − ε− δ)p+ pbβp ≤ x ≤ (λα + ε+ δ)p+ paαp,

µβp+ pbβp ≤ (λα + δ)p+ paαp, and

µβ − λα ≤ δ.

Fix one such (α, β). Since λα < 0 and µβ > 0, we also have:

pbβp− (ε+ δ)p ≤ x ≤ paαp+ (ε+ δ)p,

pbβp ≤ paαp+ δp,

p(aα − bβ)p ≤ h− λαp− k + µβp ≤ h− k + δp,

paαp ≤ h+ δp, and

pbβp ≥ k − δp.

By 1.2 there is c̃ in Asa such that pc̃p = p(aα−bβ)p and −δ1 ≤ c̃ ≤ (‖h−k‖+δ)1.

Also let b̃ = bβ, ã = b̃+ c̃, and choose x̃ in Asa so that px̃p = x. Then

p(̃b− ε1− δ1)p ≤ px̃p ≤ p(ã+ ε1 + δ1)p,

and hence ∃λ > 0 such that

−λ(1− p) + b̃− (ε+ 2δ)1 ≤ x̃ ≤ ã+ (ε+ 2δ)1 + λ(1− p), and

−λ(1− p) + b̃− δ1 ≤ ã+ (1/2)δ1 + λ(1− p).

(The existence of λ follows from the fact that a matrix of the form

(
x y
y∗ λ+ z

)
is

positive for fixed x, y, z and sufficiently large λ whenever x is positive invertible.
Here elements of A∗∗ are regarded as 2× 2 matrices relative to 1 = p+ (1− p).)
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Let (eγ) be an approximate identity of her(1−p), the hereditary C∗-subalgebra
of A supported by 1−p. Then by Dini’s theorem, for γ sufficiently large we have:

−λeγ + b̃− (ε+ 3δ)1 ≤ x̃ ≤ ã+ (ε+ 3δ)1 + λeγ, and

−λeγ + b̃− δ1 ≤ ã+ δ1 + λeγ.

Fix one such γ. Then

x̃ = −λeγ + b̃−(ε+3δ)1+(ã− b̃+(2ε+6δ)1+2λeγ)
1
2 t(ã− b̃+(2ε+6δ)1+2λeγ)

1
2 ,

where 0 ≤ t ≤ 1 and t ∈ 1
2
1 + A ⊂ Ã.

Let

ỹ = −λeγ + b̃− δ1 + (ã− b̃+ 2δ1 + 2λeγ)
1
2 t(ã− b̃+ 2δ1 + 2λeγ)

1
2 ,

and y = pỹp. Then ỹ ∈ Asa and

pbβp− δp ≤ y ≤ paαp+ δp.

Hence

k − 2δp ≤ y ≤ h+ 2δp.

Also,

‖y−x‖ ≤ ε+2δ+
√

2ε+ 4δ

[
‖(ã−b̃+(2ε+6δ)1+2λeγ)

1
2p‖+‖p(ã−b̃+2δ1+2λeγ)

1
2‖
]
.

Since ‖z 1
2p‖ = ‖pzp‖ 1

2 and ‖pz 1
2‖ = ‖pzp‖ 1

2 ,

‖y − x‖ ≤ ε+ 2δ +
√

2ε+ 4δ

[
(‖h− k‖+ 2ε+ 7δ)

1
2 + (‖h− k‖+ 3δ)

1
2

]
≤ ε+ 2δ +

√
2ε+ 4δ

[
2‖h− k‖

1
2 + (2ε+ 7δ)

1
2 + (3δ)

1
2

]
≤ max(C1ε, C2ε

1
2‖h− k‖

1
2 ),

if δ is small enough. �

Theorem 2.2. Assume p is a closed projection in A∗∗, h is strongly lsc on p, k
is strongly usc on p, and k ≤ h.

(i) Then there is x in pAsap such that k ≤ x ≤ h.
(ii) Moreover, there is a function f such that lim

ε→0+
f(ε) = 0 and for each y in

pAsap such that k− εp ≤ y ≤ h+ εp, there is x in pAsap with ‖x− y‖ ≤ f(ε) and
k ≤ x ≤ h.

(iii) If S = {x ∈ pAsap : k ≤ x ≤ h} and T = {y ∈ pA∗∗sap : k ≤ y ≤ h}, then
S is σ-weakly dense in T .

Proof. The deduction of parts (i) and (ii) from the lemma is routine and is iden-
tical to the deduction of [5, Theorem 3.15] from [5, Lemma 3.14]. Note that the
initial ε need not be small.

(iii) Let y be in T and let V be a symmetric, convex, σ-weak neighborhood
of 0. We need to find x in S such that x − y ∈ V . First choose δ > 0 such
that the ball of radius f(3δ) is contained in 1/3V , for the f of part (ii). Choose
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nets (λαp+ paαp) and (µβp+ pbβp) as in the proof of the lemma. As before, for
sufficiently large α and β, we have

pbβp ≤ paαp+ δp,

(2) paαp ≤ h+ δp, and

pbβp ≥ k − δp.

Also note that (paαp) and (pbβp) converge σ-strongly to h and k and that k−2δp ≤
y ≤ h+ 2δp.

There is t in pA∗∗sap such that

0 ≤ t ≤ p and y = k − 2δp+ (h− k + 4δp)
1
2 t(h− k + 4δp)

1
2 .

Let zαβ = (pbβp) − 2δp + (paαp − pbβp + 4δp)
1
2 t(paαp − pbβp + 4δp)

1
2 , for α, β

sufficiently large. Since zαβ → y, we may fix (α, β) so that (2) holds and zαβ−y ∈
1/3V . Then

pbβp− 2δp ≤ zαβ ≤ paαp+ 2δp.

Now, as above, choose c̃ in Asa such that pc̃p = p(aα − bβ)p and c̃ ≥ −δ1, let

b̃ = bβ, and let ã = b̃+ c̃. Then choose λ > 0 so that

b̃− δ1 ≤ δ1 + ã+ λ(1− p).

Finally, choose eγ from an approximite identity of her(1− p) so that

b̃− 2δ1 ≤ 2δ1 + ã+ λeγ.

Then there is s in A∗∗sa such that 0 ≤ s ≤ 1 and

zαβ = pbβp− 2δp+ p(ã− b̃+ 4δ1 + λeγ)
1
2 s(ã− b̃+ 4δ1 + λeγ)

1
2p.

By the Kaplasky density theorem, there is a net (ri) in Asa such that ‖ri‖ ≤ 1/2
and ri → s− 1/21, σ-strongly. Let

wi = pbβp− 2δp+ p(ã− b̃+ 4δ1 + λeγ)
1
2 (ri + 1/21)(ã− b̃+ 4δ1 + λeγ)

1
2p.

Then wi ∈ pAsap and wi → zαβ. Fix an i such that wi − zαβ ∈ 1/3V . Since

k − 3δp ≤ pbβp− 2δp ≤ wi ≤ paαp+ 2δp ≤ h+ 3δp,

there is x in S such that ‖x− wi‖ ≤ f(3δ). �

Corollary 2.3. If p is a closed projection in A∗∗ and h is strongly lsc on p, then
there is x in pAsap such that x ≤ h. Moreover, if t ∈ (−∞, 0] and tp ≤ h, then
x may be chosen such that tp ≤ x.

Theorem 2.4. Let p be a closed projection in A∗∗. If F (p) is weak∗ metrizable,
in particular if A is separable, then ((pAsap)

m)− = (pAsap)
m = (pAsap)

σ. Also
((pA+p)

m)− = (pA+p)
m = (pA+p)

σ.

Proof. This is deduced from Theorem 2.2 in the same way as [5, Theorem 3.24]
and [5, Corollary 3.25] were deduced from [5, Theorem 3.15]. �

Lemma 2.5. If p is a projection in a von Neumann algebra M , if k ≤ h and
pkp ≤ y ≤ php for h, k, y ∈ Msa, and if ε > 0, then there is x in Msa such that
pxp = y and k − ε1 ≤ x ≤ h+ ε1.
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Proof. We take x = k − ε1 + z∗z, where z = t(h − k + 2ε1)
1
2 and ‖t‖ ≤ 1. It

is enough to choose t so that t(h − k + 2ε1)
1
2p = (y − pkp + εp)

1
2 . Let q be the

range projection of (h− k+ 2ε1)
1
2p. Note that (h− k+ 2ε1)

1
2p has closed range,

(h− k + 2ε1)
1
2 (p(h− k + 2ε1)p)−

1
2 is a partial isometry from p to q, and

q = (h− k + 2ε1)
1
2 (p(h− k + 2ε1)p)−1(h− k + 2ε1)

1
2 ,

where the inverses are taken in pMp. So our condition is equivalent to

tq = (y − pkp+ εp)
1
2 (p(h− k + 2ε1)p)−1(h− k + 2ε1)

1
2 ,

and it suffices to check that with this definition, ‖tq‖ ≤ 1. This is done by
verifying that (tq)∗(tq) ≤ q. �

We state a result from [5] for convenience.

Lemma 2.6. ([5, Lemma 3.1 (a)]) If q is a projection in a von Neumann algebra
M , s1 ∈ M , ‖s1q‖ ≤ 1, and ‖s1‖ ≤ 1 + ε, then there is s in M such that
sq = s1q, ‖s‖ ≤ 1, and ‖s− s1‖ ≤

√
2ε+ ε2.

Lemma 2.7. Assume p is a projection in a von Neumann algebra M , y, h, k ∈
Msa, h ≥ k, php ≥ pyp ≥ pkp, k ≤ y ≤ h + ε1, p(h − k)p ≥ ηp, and 0 < ε <
η ≤ ‖h − k‖. Then there is x in Msa such that pxp = pyp, k ≤ x ≤ h, and

‖x− y‖ ≤ C0(
ε
η
)

1
4‖h− k‖, where C0 is a universal constant.

Proof. Since

0 ≤ y − k ≤ h− k + ε1 =

(
(h− k)

1
2

ε
1
21

)∗(
(h− k)

1
2

ε
1
21

)
,

there are t1, t2 in M with ‖(t1 t2)‖ ≤ 1, such that

(y − k)
1
2 = (t1 t2)

(
(h− k)

1
2

ε
1
21

)
= t1(h− k)

1
2 + ε

1
2 t2.

We set x = k+ z∗z, where z = s(h− k) 1
2 and ‖s‖ ≤ 1. To achieve pxp = pyp, we

choose s so that s(h− k)
1
2p = (y − k)

1
2p. Equivalently,

s(h− k)
1
2p = t1(h− k)

1
2p+ ε

1
2 t2p, or

(3) (s− t1)(h− k)
1
2p = ε

1
2 t2p.

Then, by using formulas similar to those relating to q in the proof of 2.5, we see
that (3) is equivalent to

(s− t1)q = ε
1
2 t2(p(h− k)p)−1(h− k)

1
2 ,

where q is the range projection of (h − k)
1
2p and the inverse is taken in pMp.

Also, (3) is equivalent to

(4) sq = t1q + ε
1
2 t2(p(h− k)p)−1(h− k)

1
2 = (y − k)

1
2 (p(h− k)p)−1(h− k)

1
2 .

By verifying that (sq)∗(sq) ≤ q, we see that (4) implies ‖sq‖ ≤ 1.
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We start with s1 = t1 + ε
1
2 t2(p(h−k)p)−1(h−k) 1

2 , and note that (4) is satisfied

with s1 in place of s. Also, since (p(h − k)p)−
1
2 (h − k)

1
2 is partial isometry, we

have

(5) ‖s1 − t1‖ ≤ (
ε

η
)

1
2 and ‖s1‖ ≤ 1 + (

ε

η
)

1
2 .

Then by Lemma 2.6, we can find s so that ‖s‖ ≤ 1, sq = s1q, and

‖s− s1‖ ≤
(

2(
ε

η
)

1
2 +

ε

η

) 1
2

≤ C1(
ε

η
)

1
4 .

Thus,

‖z − (y − k)
1
2‖ ≤ C1(

ε

η
)

1
4‖h− k‖

1
2 + (

ε

η
)

1
2‖h− k‖

1
2 + ε

1
2 ≤ C2(

ε

η
)

1
4‖h− k‖

1
2 ,

where in the middle term we have used the estimate (5) for ‖s1 − t1‖.
Finally,

‖x− y‖ ≤ ‖z − (y − k)
1
2‖(‖z‖+ ‖y − k‖

1
2 ) ≤ C2(

ε

η
)

1
4‖h− k‖

1
2 (2‖h− k‖

1
2 + ε

1
2 )

≤ C0(
ε

η
)

1
4‖h− k‖.

�

Lemma 2.8. Assume p is a projection in a von Neumann algebra M , y, h, k ∈
Msa, h ≥ k, php ≥ pyp ≥ pkp, k − ε1 ≤ y ≤ h + ε1, p(h − k)p ≥ ηp, and
0 < ε < η ≤ ‖h − k‖. Then there is x in Msa such that pxp = pyp, k ≤ x ≤ h,

and ‖x− y‖ ≤ C( ε
η
)

1
4‖h− k‖, where C is a universal constant.

Proof. First apply Lemma 2.7 with k − ε1 in place of k. We obtain x1 such that
px1p = pyp, k−ε1 ≤ x1 ≤ h and ‖x1−y‖ ≤ C0(

ε
η
)

1
4 (‖h−k‖+ε). Then apply the

symmetric version of Lemma 2.7 (i.e., apply Lemma 2.7 to −h ≤ −x1 ≤ −k+ ε1)

to obtain x such that pxp = pyp, k ≤ x ≤ h, and ‖x− x1‖ ≤ C0(
ε
η
)

1
4‖h− k‖. �

Remark 2.9. Lemma 3.1 (b) of [5] asserts the following:
(6) If p and q are projections in a von Neumann algebra M , t ∈M , ‖ptq‖ ≤ 1,

and ‖t‖ ≤ 1 + ε, then there is t′ in M such that pt′q = ptq, ‖t′‖ ≤ 1 and
‖t′ − t‖ ≤ 2

√
2ε+ ε2.

S. Wassermann [18, p.68] pointed out that the proof of the estimate 2
√

2ε+ ε2

in [5] is wrong and that the best estimate proved by the argument in [5] is O(ε
1
4 )

rather then O(ε
1
2 ). Lemma 2.8, in the special case h = 1, k = −1, also gives a

O(ε
1
4 ) estimate for the special case of (6) where p = q and t∗ = t. However, (6) is

actually correct as stated. Here is a sketch of the proof: Represent t by a matrix(
a b
c d

)
with a = ptq, b = pt(1−q), etc. The proof of [5, Lemma 3.1 (a)] produces

explicit choices for b1, c1 such that ‖b1 − b‖ ≤
√

2ε+ ε2, ‖c1 − c‖ ≤
√

2ε+ ε2,

‖(a b1)‖ ≤ 1, and ‖
(

a
c1

)
‖ ≤ 1. Let t1 =

(
a b1
c1 d

)
. Then ‖t1 − t‖ ≤

√
2ε+ ε2, and
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it can be shown, by verifying that t∗1t1 ≤ (1 + ε)2

(
q 0
0 1− q

)
, that ‖t1‖ ≤ 1 + ε.

Then an application of [5, Lemma 3.1 (a)] to t1 yields t′ =

(
a ∗
c1 ∗

)
such that

‖t′ − t1‖ ≤
√

2ε+ ε2 and ‖t′‖ ≤ 1.

In [5], instead of t1 we used t0 =

(
a b
c1 d

)
and provided a fallaceous proof that

‖t0‖ ≤ 1 + ε. Presumably, the best that can be said is that ‖t0‖ ≤ 1 + ε +√
2ε+ ε2 = 1 + δ; and thus the argument in [5] produces a t′ with ‖t′ − t0‖ ≤√
2δ + δ2.
The estimate in (6) is sharp to within a factor of 2, but we know nothing about

the sharpness of the estimate in Lemma 2.8. However, if we assume in 2.8 that

h− k ≥ η1, the estimate can be improved to 2‖h− k‖
(

ε
η

+ ε2

η2

) 1
2

, even without

the hypothesis ε < η.
The interpolation–extension theorem will be stated in a very general form. In

all the known applications, q = 1.

Theorem 2.10. Assume p and q are closed projections in A∗∗, p ≤ q, h ∈
((qAsaq)

m)−, k ∈ ((qAsaq)m)−, h ≥ k, p(h − k)p ≥ ηp for η > 0, y ∈ pAsap
and pkp ≤ y ≤ pkp.

(i) There is x in qAsaq such that pxp = y and k ≤ x ≤ h.
(ii) If x′ ∈ qAsaq, px

′p = y, and k − εq ≤ x′ ≤ h + εq for ε < η ≤ ‖h − k‖,
then x in part (i) can be chosen so that ‖x− x′‖ ≤ C ′( ε

η
)

1
4‖h− k‖, where C ′ is a

universal constant.
(iii) If A = {x ∈ qAsaq : pxp = y and k ≤ x ≤ h} and B = {x ∈ qA∗∗saq :

pxp = y and k ≤ x ≤ h} then A is σ-weakly (or equivalently, σ-strongly)
dense in B.

Proof. We first show

(7) ∀ε > 0,∃x ∈ qAsaq such that pxp = y and k − εq ≤ x ≤ h+ εq.

To prove (7), note that by Lemmas 2.5 and 2.8 there is x̃ in qA∗∗saq such that
px̃p = y and k ≤ x̃ ≤ h. Then by 2.2 (iii) there is a net (xα) in qAsaq such that
k ≤ xα ≤ h and xα → x̃ σ-weakly. Since pA∗∗p is the bidual of pAp, this implies
that pxαp→ y in the weak Banach space topology of pAp. Therefore there is x0,
a suitable convex combination of the xα’s, such that ‖px0p − y‖ ≤ ε. By 1.2 we
can find z in qAsaq such that ‖z‖ ≤ ε and pzp = y− px0p. Then take x = x0 + z.

Next we show
(8) If x′ ∈ qAsaq, px

′p = y, k − εq ≤ x′ ≤ h + εq, 0 < ε < η ≤ ‖h − k‖,
and δ > 0, then there is x ∈ qAsaq such that pxp = y, k − δq ≤ x ≤ h + δq, and
‖x− x′‖ ≤ C( ε

η
)

1
4‖h− k‖, where C is as in Lemma 2.8.

To prove (8) let C = {x ∈ qAsaq : k − δq ≤ x ≤ h+ δq} and D = {x ∈ qAsaq :

pxp = y and ‖x−x′‖ ≤ C( ε
η
)

1
4‖h−k‖}. Since ∃x ∈ qAsaq such that k ≤ x ≤ h, C

has non-empty interior in qAsaq. Thus if C∩D = φ, the Hahn–Banach separation
theorem implies the existence of a non-trivial bounded linear functional f on the
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real Banach space qAsaq such that sup
x∈C

f(x) ≤ inf
x∈D

f(x). By Lemma 2.8 there is

x̃ in qA∗∗saq such that k ≤ x̃ ≤ h, px̃p = y, and ‖x̃− x′‖ ≤ C( ε
η
)

1
4‖h− k‖. Since x̃

is in the σ-weak closure of {x ∈ qAsaq : h ≤ x ≤ k}, we see that f(x̃) < sup
x∈C

f(x).

Let L = {x ∈ A : xp = 0} and L∗ = {x ∈ A : px = 0}. Then D = x′ + qBq,
where B is a ball in (L+ L∗)sa. Since L+ L∗ is closed by [9], the σ-weak closure
of (L + L∗) can be identified with its bidual; and we conclude that x̃ is in the
σ-weak closure of D. Therefore f(x̃) ≥ inf

x∈D
f(x), a contradiction.

Now it is routine to combine (7) and (8) to prove (i). And (ii) follows from (8),
where C ′ can be any number greater than C. For (iii), given x in B, there is a
net (xα) in qAsaq such that k ≤ xα ≤ h and xα → x, σ-weakly, as above. And as
above, pxαp→ y in the weak Banach space topology of pAp. Thus there is a net
(x′β), consisting of convex combinations of the xα’s such that x′β → x σ-weakly
and px′βp→ y in norm. Then we can find zβ in qAsaq such that zβ → 0 in norm
and pzβp = y − px′βp. So if x′′β = x′β + zβ, we have x′′β → x σ-weakly, px′′βp = y,
and k− δβq ≤ x′′β ≤ h+ δβq, where δβ → 0. Then by applying part (ii) to x′′β, we
find x′′′β in A such that ‖x′′′β − x′′β‖ → 0. �

If p is central, the hypothesis p(h − k)p ≥ ηp can be omitted from theorem

2.10. One can show in this case that h̃ = h(q − p) + y and k̃ = k(q − p) + y give

an lsc and a usc function on F (q). Then apply Theorem 2.2 to q, h̃ and k̃. But in
general, this hypothesis cannot be omitted, even if A is unital q = 1, and p, h, k
are all in A.

Example 2.11. Let A = c ⊗ M2, the algebra of convergent sequences in M2.
Let (tn) be a non-convergent sequence in (0,1), and let (δn) be a sequence such

that δn > 0 and δn → 0. Let p be the constant sequence

(
1 0
0 0

)
, and let h and

k in Asa be given by hn =

(
tnδn δ

1
2
n

δ
1
2
n

1
2

)
, kn =

(
(tn − 1)δn 0

0 −1
2

)
. If y = 0, in

pAsap, then all hypotheses of 2.10 except p(h − k)p ≥ ηp are satisfied, and also
(1 − p)(h − k)(1 − p) ≥ 1 − p. But there is no x in Asa such that pxp = y and
k ≤ x ≤ h. If x existed, then xn = kn + sn(hn − kn), sn ∈ [0, 1], since hn − kn

has rank 1. Since pnxnpn = 0, we see that sn = 1− tn. Then xn =

(
0 ∗
∗ 1

2
− tn

)
,

which is absurd, since (1
2
− tn) is not convergent.

Proposition 2.12. Assume p is a closed projection in A∗∗, h ∈ ((pAsap)
m)−,

and sp ≤ h ≤ tp with s ≤ 0, t ≥ 0. If F (p) is weak∗ metrizable, in particular if

A is separable, then there is h̃ in ((Asa)
m)− such that ph̃p = h and s1 ≤ h̃ ≤ t1.

Under the same hypothesis, p((Ãsa)
m)p = (pÃsap)

m.

Proof. Use 2.3 to find x in pAsap such that sp ≤ x ≤ h. Then, since by 2.4 h− x
is in (pA+p)

σ, there is an increasing sequence (xn) in pAsap such that xn → h
and xn ≥ sp. Let yn = (1− 1

n
)xn + 1

n
sp. Then (yn) is increasing, and, except in
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the trivial case s = t = 0, tp − yn ≥ δnp for δn > 0. Thus we can use Theorem
2.10 to construct recursively a1, a2, . . . in Asa such that panp = (1− 1

n
)xn and

s1 ≤ an +
s

n
1 ≤ an+1 +

s

n+ 1
1 ≤ t1.

Then, since s
n
→ 0, all conditions are met if we take h̃ = lim(an + s

n
1).

The last sentence follows easily. �

Remark 2.13. Although for each h in (pÃsap)
m there is h̃ in (Ãsa)

m such that

ph̃p = h, ‖h̃‖ may have to be much larger than ‖h‖. (It doesn’t help to relax

the requirement to h̃ ∈ ((Ãsa)
m)−.) In particular, if h is in ((pAsap)

m)− and

sp ≤ h ≤ tp for s > 0, there need not exist h̃ in ((Asa)
m)− such that ph̃p = h and

(s− ε)1 ≤ h̃ ≤ (t+ ε)1. However, there does exist h̃ with (s− ε)1 ≤ h̃.

3. Continuous elements

Each type of semicontinuity gives rise to a concept of continuity, where h is
continuous if it is both lsc and usc. We already know that h is strongly continuous
on p, in this sense, if and only if h ∈ pAsap if and only if h is in A0(p). For
the other two types of semicontinuity, when p = 1, it was proved in [3] that

(Ãsa)
m∩ (Ãsa)m = M(A)sa and ((Ãsa)

m)−∩ ((Ãsa)m)− = QM(A)sa, where QM(A)
is the quasi-multiplier space of A. Since in general pAp is not an algebra, we
cannot characterize the middle and weakly continuous elements of pA∗∗sap in terms
of multiplier properties. Instead we will show that they are related to pM(A)sap
and pQM(A)sap.
Most of the content of the next lemma is needed to deal with the non-separable
case.

Lemma 3.1. Assume p is a closed projection in A∗∗ and A is σ-unital. If h ∈
(pÃsap)

σ, then for sufficiently large λ, there is an increasing sequence (xn) in
pA+p such that xn → h+ λp and h+ λp− xn ≥ δnp with δn > 0.

Proof. Assume h is the limit of an increasing sequence (λnp + yn), λn ∈ R,
yn ∈ pAsap. By Lemma 1.4, {λn} is bounded if p is not compact; and if p is
compact, we may also arrange that {λn} is bounded. Choose λ large enough that
µn = λ+ λn > 0, ∀n, and that µnp+ yn ≥ p. Thus µn ∈ (0,M ] for some M > 0.
Let P = {a ∈ A+ : ‖a‖ < 1}, as in the proof of 1.3, and let (en) be a sequential
approximate identity for A with en ∈ P . Then, using the same technique as in
the proof of 1.3, we can recursively construct f1, f2, . . . in pPp such that

0 ≤ µnfn + yn ≤ µn+1fn+1 + yn+1, and fn ≥ penp.

We claim that the choice xn = µnfn + yn meets all requirements. Since (xn) is
bounded and increasing, it converges to some h′ in pA∗∗sap, and clearly h′ ≤ h+λp.
But since xn ≥ (λ + λn)p + yn − M(p − penp) and penp → p, we also have
h′ ≥ h+ λp. �

Theorem 3.2. Assume A is a σ-unital C∗-algebra, p is a closed projection in
A∗∗, and h ∈ pA∗∗sap.
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(i) Then h ∈ pM(A)sap if and only if h ∈ (pÃsap)
σ ∩ (pÃsap)σ.

(ii) If F (p) is weak∗ metrizable, in particular if A is separable, then

pM(A)sap = (pÃsap)
m ∩ (pÃsap)m.

(iii) If F (p) is weak∗ metrizable, in particular if A is separable, then

(pQM(A)sap)
− = ((pÃsap)

m)− ∩ ((pÃsap)m)−.

Proof. (i) Since A is σ-unital, M(A)sa = (Ãsa)
σ ∩ (Ãsa)σ. Thus the necessity of

the condition is clear. So assume h ∈ (pÃsap)
σ ∩ (pÃsap)σ. Choose λ, µ > 0 so

that h+ λp is the limit of an increasing sequence (xn) with the properties in 3.1
and h−µp is the limit of a decreasing sequence (yn) with symmetrical properties.
Let e be a strictly positive element of A. We will recursively construct sequences
(ak) and (bk) in Asa such that:

(a) −λ1 + ak ≤ −λ1 + ak+1 ≤ µ1 + bk+1 ≤ µ1 + bk,
(b) pakp ∈ co{xn : n ≥ k} and pbkp ∈ co{yn : n ≥ k}, where co denotes convex

hull, and
(c) ‖e(µ1 + bk + λ1− ak)e‖ ≤ 1

k
, k ≥ 2.

Choose a1 arbitrarily such that pa1p = x1. Then use Theorem 2.10 to construct
b1 such that pb1p = y1 and b1 ≥ (−λ− µ)1 + a1.

Now assume a1, . . . , ak and b1, . . . , bk have already been constructed. Choose
N ≥ k + 1 so that pakp ∈ co{xn : n < N} and pbkp ∈ co{yn : n < N}. We first
construct a′n, b

′
n in Asa, for n ≥ N so that:

(a′) −λ1+ak ≤ −λ1+a′N ≤ −λ1+a′N+1 ≤ · · · ≤ µ1+b′N+1 ≤ µ1+b′N ≤ µ1+bk

and
(b′) pa′np = xn, pb

′
np = yn.

This is just a matter of successive applications of Theorem 2.10. (Choose first
a′N , then b′N , then a′N+1, etc.) Then let fn = (λ + µ)1 + b′n − a′n and f = lim fn.

Then pfp = 0. Since 0 ≤ f ≤ fn, Theorem 2.10 (iii) produces a net (z
(n)
α )α∈Dn

such that z
(n)
α ∈ Asa, 0 ≤ z

(n)
α ≤ fn, pz

(n)
α p = 0 and z

(n)
α → f σ-weakly. Let

S = {e(fn − z
(n)
α )e : n ≥ N,α ∈ Dn}. Since fn → f σ-weakly and z

(n)
α → f

σ-weakly for each n, we see that 0 is in the σ-weak closure of S. But S ⊂ A and
the restriction to A of the σ-weak topology is the weak Banach space topology of
A. Thus there is v in co(S) such that ‖v‖ < 1

k+1
. Then there are n1, . . . , nl ≥ N

and s1, . . . , sl ≥ 0 such that
∑
si = 1 and v = e(f ′ − z)e where f ′ =

∑
sifni

, z ∈
A+, pzp = 0, and z ≤ f ′, Then we can take ak+1 = z+

∑
sia

′
ni

and bk+1 =
∑
sib

′
ni

.

Now it is clear that lim(−λ1 + ak) = lim(µ1 + bk). if h̃ is this limit, then

h̃ ∈M(A)sa by [3] and ph̃p = h.
(ii) Follows from (i) and Theorem 2.4.

(iii) SinceQM(A)sa = ((Ãsa)
m)−∩((Ãsa)m)− by [3], it is clear that pQM(A)sap ⊂

((pÃsap)
m)− ∩ ((pÃsap)m)−.

Thus also (pQM(A)sap)
− ⊂ ((pÃsap)

m)− ∩ ((pÃsap)m)−. For the converse, take

f ∈ ((pÃsap)
m)− ∩ ((pÃsap)m)− and ε > 0. Choose h ∈ (pÃsap)

m such that
‖h− f‖ < ε, and let h1 = h+ εp. Then h1 ≥ f , ‖h1 − f‖ < 2ε, and h1 − f ≥ δp
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for some δ > 0. In a symmetrical way, find k1 in (pÃsap)m with k1 ≤ f . By 2.12

there are h̃ in (Ãsa)
m) and k̃ in (Ãsa)m such that ph̃p = h1 and pk̃p = k1. Since

p(h̃ − k̃)p ≥ δp, for λ sufficiently large we have h̃ + λ(1 − p) ≥ k̃. Then by [5,

Theorem 3.26 (c)] there is f̃ in QM(A)sa such that k̃ ≤ f̃ ≤ h̃+ λ(1− p). Then

‖pf̃p− f‖ < 2ε. �

Remark 3.3. (i) The Non-commutative Tietze Extension Theorem was proved in
the separable case in [4] and in general form in [17, Theorem 10]. It states that
the natural map from M(A) to M(A/I) is surjective when A is σ-unital and I
is a closed two-sided ideal. Part (i) of the theorem specializes to this when p is
in the center of A∗∗. Another theorem that specializes to [17, Theorem 10] is [5,

Theorem 3.43(b)]. It implies, when A is σ-unital and h is in pA∗∗sap that h = ph̃

for some h̃ in M(A) such that ph̃ = h̃p if and only if h is q-continuous on p. It
is interesting to note that part (i) of Theorem 3.2 was proved with Pedersen’s
techniques, whereas [5, Theorem 3.43] was proved by totally different methods
(but still related to semicontinuity).

(ii) It was shown in [5, Example 3.13] that pM(A)p need not be norm closed.

Therefore when we wish to find h̃ in M(A)sa such that ph̃p = h, we may need to

take ‖h̃‖ much larger than ‖h‖.
(iii) Assume F (p)is metrizable. There are two natural vector spaces intermedi-

ate between pM(A)sap and (pQM(A)sap)
−, namely (pM(A)sap)

− and pQM(A)sap.
In general these spaces are not comparable. In fact [5, Example 3.13] showed that
(pM(A)sap)

− need not be contained in pQM(A)sap. And it is easy to find exam-
ples, with p = 1, where QM(A)sa 6⊂ M(A)sa = (M(A)sa)

−. By taking the direct
sum of two examples, we get non-comparability.

In [5, Proposition 2.3] we showed that (Ãsa)
m ∩ ((Ãsa)m)− = ((Ãsa)

m)− ∩
(Ãsa)m = M(A)sa, but we do not know whether (pÃsap)

m ∩ ((pÃsap)m)− =

((pÃsap)
m)− ∩ (pÃsap)m. These sets are also intermediate between pM(A)sap and

(pQM(A)sap)
−. If they are equal, they are both equal to pM(A)sap; but if they

are unequal, neither is a vector space, since they are negatives of one another.
(iv) Theorem 2.2 is a satisfactory generalization to closed faces of [5, Theorem

3.15], the “strong interpolation theorem”. There are less satisfactory versions for
closed faces of [5, Theorem 3.40 (c)] and [5, Theorem 3.26], the “middle” and
“weak” interpolation theorems. These are just corollaries of the results in [5].

The middle version states that if A is σ-unital, h is q-lsc on p, k is q-usc on p,

and h
q

≥ k, then there is f in pM(a)sap such that k ≤ f ≤ h. This is proved by
applying [5, Theorem 3.40] to h+t(1−p) and k+s(1−p), for t sufficiently large and

s sufficiently small, to obtain f̃ inM(A)sa such that k+s(1−p) ≤ f̃ ≤ h+t(1−p).
Then take f = pf̃p. Although this result is in some sense an exact analogue of
[5, Theorem 3.40], we would really like to have f q-continuous on p. This follows
from the stated conclusion when p = 1 but not in general.

The weak version states that if A is σ-unital, F (p) is weak∗ metrizable h is
weakly lsc on F (p), k is weakly usc on F (p), and h − k ≥ δp for δ > 0, then
there is f in pQM(A)sap such that k ≤ f ≤ h. This is deduced from [5, Theorem
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3.26(c)] similarly to the proof of part(iii) of Theorem 3.2. (Approximate h from

below by (pÃsap)
m and k from above by (pÃsap)m.)

Example 3.4. We are now able to provide the example promised in Remark 1.6,
an element of pA∗∗sap which is an lsc functional on F (p) ∩ S but is not weakly
lsc on F (p). Let A = c ⊗ K and let p be as in [5, Example 3.13]. Thus let

vk,n = (1 − 1/k)
1
2 ek + (1/k)

1
2 en+k, k = 1, . . . , n, where e1, e2, . . . is the standard

basis of l2. Then p is given by (pn) where pn =
∑n

k=1 vk,n × vk,n for n <∞ and
p∞ = 1. The fact that p∞ = 1 implies p is closed.

We claim that the restriction to F (p) ∩ S of the weak∗ topology agrees with
the norm topology, which implies that every element of B0(p) is continuous on
F (p) ∩ S. Note that each ϕ in Q(A) is given by {ϕn : 1 ≤ n ≤ ∞} where
ϕn ∈ Q(K) and ‖ϕ‖ = ‖ϕ∞‖+

∑∞
1 ‖ϕn‖. We will represent ϕ by a pair (ϕ′, ϕ′′),

where for h in A∗∗, ϕ′(h) =
∑∞

1 ϕn(hn) and ϕ′′(h) = ϕ∞(h∞). Now suppose
ϕi and ϕ are in F (p) ∩ S and ϕi → ϕ weak∗. It is permissible to pass to a
subsequence so that ϕ′i → θ and ϕ′′i → ψ for some θ, ψ. Clearly ψ = (0, ψ′′), and
we proceed to show that θ = (θ′, 0). For temporarily fixed k, l define h in QM(A)
by

hn =


0, n < max(k, l),

ek × el, n = ∞,

ek × el − (1− 1/k)
1
2 (1− 1/l)

1
2k

1
2 l

1
2 en+k × en+l, otherwise,

Since h is weak∗ continuous on S and ‖ϕ′i‖ → ‖θ‖, θ(h) = limϕ′i(h). But ϕ′i(h) =
0, since pnhnpn = 0 for n <∞; and θ(h) = θ′′(h) for the same reason. Therefore
θ′′ = 0, whence θ = ϕ′ and ψ = ϕ′′. Since we now have that ϕin → ϕn for
1 ≤ n ≤ ∞ and

∑∞
n=1 ‖ϕin‖ →

∑∞
n=1 ‖ϕn‖, and since it is well known that the

restriction of the weak∗ topology of K∗ to S(K) agrees with the norm topology,
it follows that ‖ϕi − ϕ‖ → 0, and the claim is proved.

Next we produce an h in pA∗∗sap \ (pQM(A)sap)
−. It was shown in [5, Example

3.13(i)] that if h is in pQM(A)p and h∞ = 0, then lim supn→∞ |(hnvk,n, vk,n)| =

O(1/k
1
2 ). Now it is easily seen that if h ∈ (pQM(A)p)− and h∞ = 0, then h is in

{pxp : x ∈ QM(A) and x∞ = 0}−. It follows that limk→∞ lim supn→∞ |(hnvk,nvk,n)|
= 0. To find an h not satisfying this condition, let hn = −pn for n < ∞ and
h∞ = 0.

By Theorem 3.2(iii) h is not both weakly lsc and weakly usc. Since h is ob-
viously usc, it is the promised example of an element of pA∗∗sap which is an lsc
functional on F (p) ∩ S but is not weakly lsc.

4. Semicontinuity and the continuous functional calculus

In this section we consider the continuous functional calculus within the alge-
bra pA∗∗p for functions which are operator convex, and sometimes also operator
monotone. If f is a continuous function on an interval I, f is called operator mono-
tone, and −f is called operator decreasing, if for self-adjoint operators h1 and h2

with σ(hi) ⊂ I, h1 ≤ h2 implies f(h1) ≤ f(h2). Also f (still continuous on I) is
called operator convex, and −f is called operator concave, if for self-adjoint h1 and
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h2 with σ(hi) ⊂ I and t ∈ [0, 1], we have f(th1+(1−t)h2) ≤ tf(h1)+(1−t)f(h2),
and f is strongly operator convex if the function f(x0 + ·), for x0 in I, satisfies
the six equivalent conditions of [5, Theorem 2.36]. One of these conditions is that
pf(php)p ≤ f(h) whenever p is a projection and h is a self-adjoint operator with
σ(h) ⊂ I, and Ch. Davis proved in [11] that operator convexity is equivalent to
the weaker condition pf(php)p ≤ pf(h)p. (The translation of the independent
variable in f is needed only because one of the six conditions in [5, 2.36] doesn’t
make sense unless 0 ∈ I. The symbol pf(php)p can easily be interpreted to make
sense, and lead to correct characterizations, even if 0 /∈ I.) A self-contained and
efficient exposition of operator monotonicity and convexity, from the point of
view of operator algebraists, can be found in [14]. Historical background can be
found in [14] and [12].

If f is operator convex, then for each x in I
(9)

f(x) = ax2 + bx+ c+

∫
t<I

(x− x0)
2

(x− t)(x0 − t)2
dµ−(t) +

∫
t>I

(x− x0)
2

(t− x)(t− x0)2
dµ+(t).

Here a ≥ 0, x0 can be any point in the interior of I (the integrands are obtained
by subtracting from ±1/(t− x) its first degree Taylor polynomial at x0), and µ±
are positive measures which are finite on bounded sets and such that

∫
1/(1 +

|t|3)dµ±(t) <∞. These conditions are sufficient to imply the convergence of the
integrals for x in the interior of I. If I contains one or both endpoints, then
convergence of (9) at such endpoint(s) imposes an additional restriction on µ±.
Any choice of a, b, c, and µ± meeting all these requirements does indeed produce
an operator convex function.

If f is strongly operator convex, then for each x in I

(10) f(x) = c+

∫
t<I

1

x− t
dµ−(t) +

∫
t>I

1

t− x
dµ+(t).

Here c ≥ 0 and µ± are positive measures such that
∫

1/(1+|t|)dµ± <∞. Again if
I contains one or both endpoints, then convergence at such endpoint(s) imposes
an additional restriction on µ±, and all the conditions imply that (10) does indeed
produce a strongly operator convex function. (The measures µ± appearing for f
in (10) are the same ones appearing for f in (9).)

If f is operator monotone, then for each x in I

(11) f(x) = ax+ b+

∫
t<I

x− x0

(x− t)(x0 − t)
dµ−(t) +

∫
t>I

x− x0

(t− x)(t− x0)
dµ+(t).

Here a ≥ 0, x0 can be any point in I (the integrand is 1/(t − x) − 1/(t − x0))
and µ± are positive measures such that

∫
1/(1 + t2)dµ±(t) < ∞. Again, if I

contains one or both endpoints, then convergence at such endpoint(s) imposes an
additional restriction on µ± and all the conditions imply that (11) does indeed
produce an operator monotone function.

Lemma 4.1. Let p be a closed projection in A∗∗, where A is unital, and let h be
in pAsap.

(i) Then h2 is usc on p.
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(ii) If h ≥ εp for some ε > 0, then h−1 is usc in A∗∗ and a fortiori usc on p.

Proof. (i) If h = pap, then h2 = papap. It is routine to deduce from p ∈ (Asa)m

that apa ∈ (Asa)m. Therefore p(apa)p ∈ (pAsap)m.

(ii) By 1.2 we may write h = pap for a ≥ ε1. Let y = a
1
2p. Since y∗y ≥ εp,

y has closed range. The range projection, q, of y is also the range projection of
yy∗ = a

1
2pa

1
2 . Note that yy∗ is usc (as above) and that σ(yy∗) omits the interval

(0, ε). It is known (cf. [5, Proposition 2.44(b)] that this implies q is closed. Since

(as in the proof of 2.5) q = a
1
2 (pap)−1a

1
2 , where the inverse is taken in pA∗∗p, and

since a
1
2 is invertible, we deduce from the fact that q is usc that also (pap)−1 is

usc. �

Lemma 4.2. Assume p is a closed projection in A∗∗, A is unital, f is an operator
convex function on an interval I, h ∈ pAsap, and σpA∗∗p(h) ⊂ I. Then f(h) is
usc on F (p).

Proof. We use the integral representation of f . Then f(h) can be obtained by
substituting h for x in (9), thus obtaining a Bochner integral. Since (p(Asa)mp)

−

is a closed cone, it is enough to verify that each term and each value of the
integrand is usc on p; and this follows from Lemma 4.1. �

Theorem 4.3. Assume p is a closed projection in A∗∗, f is an operator convex
function on an interval I, h ∈ pAsap, and σpA∗∗p(h) ⊂ I.

(i) If either p is compact or 0 ∈ I and f(0) ≤ 0, then f(h) is strongly usc on
p.

(ii) If 0 ∈ I, then f(h) is middle usc on p.
(iii) If 0 is an endpoint of I, then f(h) is weakly usc on p.

Conversely, if f is a function which satisfies the conclusion of (i) for all closed
faces in the unital case, then f is operator convex.

Proof. (i) We apply Lemma 4.2 to Ã, identifying (Ã)∗∗ with A∗∗ ⊕ C. If p is

compact, then p ⊕ 0 is closed and f(h ⊕ 0), computed in (p ⊕ 0)(Ã)∗∗(p ⊕ 0), is

the same as f(h) ⊕ 0. Since the weak∗ topologies from Ã and A agree on F (p),
4.2 implies f(h) is strongly usc on p. If p is not compact, then p̃ = p⊕1 is closed.

Applying 4.2 to h ⊕ 0 (in p̃Ãsap̃), we find that f(h) ⊕ f(0) is usc on p̃, whence

(f(h)−f(0)p)⊕0 is also usc on p̃. Since F (p) can be identified with F (p̃)∩S(Ã),
this implies f(h)− f(0)p is strongly usc on p. And since f(0) ≤ 0, it follows that
f(h) is also strongly usc.

(ii) Follows from (i).
(iii) We may assume 0 is the left endpoint of I. There are sequences (δn) in

(0,∞) and (θn) in (0,1) such that δn → 0, θn → 1 and f(δnp+ θnh) is defined for
all n. Since f(δnp+ θnh) is obtained by applying f(δn + ·) to θnh, f(δnp+ θnh) ∈
(pÃsap)m for each n. Therefore f(h) ∈ ((pÃsap)m)−.

For the converse let A = c ⊗ Mm, where m = k + l. Matrices will be written

in block form,

(
a b
c d

)
, where a is k × k, b is k × l, etc. Elements of A∗∗ will

be represented by bounded indexed collections (hn)1≤n≤∞. Let p be the closed
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projection given by pn =

(
1k 0
0 0

)
for n < ∞ and p∞ =

(
1k 0
0 1l

)
. If h is in

pA∗∗sap, then for n finite, hn can be regarded as a k × k matrix an, and h∞ =(
a∞ b∞
b∗∞ c∞

)
. It is fairly easy to see that h is in pAsap if and only an → a∞ and h

is usc if and only if a′ ≤ a∞ for every cluster point a′ of (an). (The last condition
is equivalent to: For each ε > 0, there is N such that n ≥ N ⇒ an ≤ a∞ + ε1k.)

Choose a matrix h∞ =

(
a∞ b∞
b∗∞ c∞

)
such that σ(h∞) ⊂ I and let an = a∞ for

n <∞. Then h is in pAsap, and f(h) is usc if and only if f(pr(h∞)) = f(a∞) ≤

pr(f(h∞)). Here pr

((
a b
c d

))
= a. This last condition demanded for all k, l, is

equivalent to operator convexity by [11]. �

Remark 4.4. In [5, propositions 2.34 and 2.35(b)] another characterization of
operator convexity was given; namely, f is operator convex if and only if f(h)
is weakly lsc when h ∈ QM(A)sa, and σ(h) ⊂ I (demanded for all C∗-algebras).
It may seem strange that in the one situation operator convexity produces lower
semicontinuity and in the other upper semicontinuity. However, if we keep in mind
the closure property of C∗-algebras under the continuous functional calculus, then
a moment’s thought convinces us that it all makes sense. None of QM(A), pAp,
or pM(A)p are C∗-algebras in general, but A and M(A) are. (We will treat
pM(A)p below.)

We now show that the conditions relating to 0 and f(0) cannot be dropped from
Theorem 4.3. Of course, f(0), computed by the continuous functional calculus
for 0 in pAsap, is f(0)p; and f(0)p is strongly usc if and only if p is compact
or f(0) ≤ 0. Also, there does not exist h in pAsap with 0 6∈ σpA∗∗p(h) unless p
satisfies the condition (1) from §1.

Example 4.5. Here A = c ⊗ K, as in Example 1.8, and elements of A∗∗ are
identified with bounded collections (hn)1≤n≤∞, where hn ∈ B(l2). Choose θ in
(0, π

2
) and let vn = cos θe1+sin θen+2. Then define pn for n <∞ as vn×vn+e2×e2

and p∞ as e1 × e1 + e2 × e2. Then p = (pn) is closed. For h = (hn) in pA∗∗sap,

we will represent hn as a 2 × 2 matrix

(
an bn
bn cn

)
relative to the basis {vn, e2},

for n < ∞, and h∞ as a matrix

(
a∞ b∞
b∞ c∞

)
relative to the basis e1, e2. Let

r =

(
s t
t u

)
be a positive matrix such that tr(r) = s + u ≤ 1, and let r′ =(

s cos2 θ t cos θ
t cos θ u

)
. Let ϕn in F (p) be given by ϕn(h) = tr(rhn) for n <∞, and

define ϕ∞ by ϕ∞(h) = tr(r′h∞). Then ϕn → ϕ∞ weak∗. Thus if h is strongly usc,

tr(h∞r
′) ≥ lim sup tr(hnr). This implies that

(
a∞ cos2 θ b∞ cos θ
b∞ cos θ c∞

)
≥
(
a b
b c

)
for every cluster point

(
a b
b c

)
of (hn). (This necessary condition is also sufficient
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for strong upper semicontinuity.) It follows that if h is middle usc, then either
c∞ > c or c∞ = c and b = b∞ cos θ. And if h is weakly usc, then c∞ ≥ c. (This
necessary condition is also sufficient.)

Now choose h∞ =

(
a∞ b∞
b∞ c∞

)
, a positive invertible matrix with b∞ 6= 0, and

let hn =

(
a∞ cos2 θ b∞ cos θ
b∞ cos θ c∞

)
for n <∞. Then h ∈ pAsap, and h ≥ εp for some

ε > 0. A routine calculation shows that h−1 is not middle usc. Another such
calculation shows that (h− t0p)

−1 is not weakly usc for 0 < t0 < ε. Note that by
taking θ close to 0 and choosing h∞ appropriately we can arrange that σ(h) is
contained in a very small interval, say [1− δ, 1+ δ]. This means that the operator
convex functions f1(t) = 1/t, t ∈ (0,∞), and f2(t) = 1/(t − t0), t ∈ (t0,∞),
do not have better usc properties than claimed in Theorem 4.3, even if they are
restricted to small subsets of their natural domains.

We next prove a result about the effect of an operator convex function f on
pM(A)sap, but the hypothesis on the domain of f is much stronger than in The-
orem 4.3. The last example shows that the domain hypothesis of 4.3 would not
suffice. (Note that since p ∈ pM(A)sap, all results are translation invariant.)

Proposition 4.6. Assume p is a closed projection in A∗∗, f is an operator convex

function on an interval I, h̃ ∈ M(A)sa, and σ(h̃) ⊂ I. Let h = ph̃p. Then f(h)

is middle usc on p. If f(π(h̃)) ≤ 0, where π : M(A) → M(A)/A is the quotient
map, then f(h) is strongly usc on p.

Proof. It is enough to prove the last sentence. We apply 4.2 or 4.3 for the unital
C∗-algebra M(A), identifying M(A)∗∗ with A∗∗⊕(M(A)/A)∗∗. We use the closed

projection p̃ = p⊕ 1M(A)/A. Then f(h)⊕ f(π(h̃)) is usc on p̃, and we claim this
implies f(h) is strongly usc on p. Thus consider a net (ϕα) in F (p) such that
ϕα → ϕ weak∗. It is permissible to pass to a subnet such that ϕα → θ⊕ψ in F (p̃).

Since θ and ϕ agree on A, θ = ϕ. Now ϕ(f(h)) +ψ(f(π(h̃))) ≥ lim supϕα(f(h)).

Since f(π(h̃)) ≤ 0, this implies ϕ(f(h)) ≥ lim supϕα(f(h)). �

Note. It would be sufficient to assume I ⊃ σpA∗∗p(h)∪σ(π(h̃)), but this does not

lead to a stronger result. If this is the case, 1.2 can be used to find h̃′ in M(A)

such that p̃h̃′p̃ = p̃h̃p̃ and σ(h̃′) ⊂ I.

Lemma 4.7. Assume p is a closed projection in A∗∗, A is unital, f is a strongly
operator convex function on an interval I, h ∈ pAsap, and σpA∗∗p(h) ⊂ I. Then
f(h) is usc in A∗∗. Here f(h) is computed in pA∗∗p and is regarded as an element
of A∗∗ via the inclusion pA∗∗p ⊂ A∗∗.

Proof. We use the integral representation of f . Then f(h) can be obtained by
substituting h for x in (10), thus obtaining a Bochner integral. Since ((Asa)m)−

is a closed cone, it is enough to verify that each value of the integrand is usc in
A∗∗ and note that cp is usc in A∗∗. The former follows from Lemma 4.1(ii). �
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Theorem 4.8. Assume p is a closed projection in A∗∗, f is a strongly operator
convex function on an interval I, h ∈ pAsap, and σpA∗∗p(h) ⊂ I. Define f(h) in
A∗∗ as in Lemma 4.7.

(i) If p is compact, then f(h) is strongly usc in A∗∗.
(ii) If 0 ∈ I, then f(h) − f(0)1 is strongly usc in A∗∗, whence f(h) is middle

usc in A∗∗.
(iii) If 0 is an endpoint of I, then f(h) is weakly usc in A∗∗.

Conversely, if f is a function which satisfies the conclusion of (i) for all closed
faces in the unital case, then f is strongly operator convex.

Proof. (i) We apply Lemma 4.7 to Ã, identifying (Ã)∗∗ with A∗∗ ⊕ C, and using

the closed projection p⊕ 0. Thus f(h)⊕ 0 is usc in (Ã)∗∗, and this implies f(h)
is strongly usc in A∗∗.

(ii) Again we apply Lemma 4.7 to Ã, now with the closed projection p⊕1. Then

f(h)⊕ f(0) is usc in (Ã)∗∗. (Note that f(0) > 0 except in the trivial case f = 0.)
Since (f(h)− f(0)1)⊕ 0 = f(h)⊕ f(0)− f(0)1( eA)∗∗ , this implies f(h)− f(0)1 is
strongly usc in A∗∗.

(iii) This follows from (ii) just as in the proof of Theorem 4.3.
For the converse we use the same algebra A, projection p, and element h

as in the proof of Theorem 4.3. Then f(h) is the element x of A∗∗ given by

xn =

(
f(a∞) 0

0 0

)
for n finite and x∞ = f(h∞). It is easily seen that the

upper semicontinuity of x implies (for this x) that xn ≤ x∞. This condition,
demanded for all k, l, implies the criterion for strong operator convexity given at
the beginning of this section. �

Theorem 4.9. Assume p is a closed projection in A∗∗, f is an operator convex
and operator decreasing function on an interval I, h in pA∗∗sap is strongly lsc on
p, and σpA∗∗p(h) ⊂ I.

(a) (i) If either p is compact or 0 ∈ I and f(0) ≤ 0, then f(h) is strongly usc
on p.

(ii) If 0 ∈ I, then f(h) is middle usc on p.
(iii) If 0 is an endpoint of I, then f(h) is weakly usc on p.

(b) Assume further that f is strongly operator convex.
(i′) If p is compact, then f(h) is strongly usc in A∗∗.
(ii′) If 0 ∈ I, then f(h) is middle usc in A∗∗.
(iii′) If 0 is an endpoint of I, then f(h) is weakly usc in A∗∗.

There are three other symmetric versions of this result, so that all the cases where
f is (strongly) operator convex or (strongly) operator concave and also operator
monotone or operator decreasing are covered.

Proof. (a) (i) The natural domain of f is an interval of the form (t0,∞) or [t0,∞),
t0 ≤ 0, so we assume I has this form. Let h be the limit of an increasing net
(hα) = (λαp+paαp), as in Proposition 1.3 (ii) and take δ > 0. By Dini’s theorem,
f(hα + δp) is defined for α sufficiently large, and it is the result of applying
f(δ + λα + ·) to paαp. Assuming, as we may, that δ + λα > 0, f(δ + λα + 0) ≤
f(0) ≤ 0 in the non-compact case. In either case, then, Theorem 4.3 implies that
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f(hα + δp) is strongly usc. Since f(hα + δp) decreases to f(h+ δp), f(h+ δp) is
also strongly usc. And since f(h+ δp) converges in norm to f(h), finally f(h) is
strongly usc.

(ii) Follows from (i).
(iii) Since f(h + δp) is obtained by applying f(· + δ) to h, part (ii) implies

f(h+ δp) ∈ (pÃsap)m, ∀δ > 0, whence f(h) ∈ ((pÃsap)m)−.
(b)(i′) The proof is the same as for the compact case of (a)(i) except that we

use Theorem 4.8 instead of Theorem 4.3.
(ii′) The proof is the same as for the non-compact case of (a)(ii) except that

we use Theorem 4.8 to deduce that f(δp+ λαp+ paαp)− f(δ + λα)1 is strongly
usc in A∗∗. Since f(δ+λα) ≤ f(0), also f(hα + δp)−f(0)1 is strongly usc in A∗∗.
Then, as above, it follows that f(h)− f(0)1 is strongly usc in A∗∗.

(iii′) follows from (ii′) as above.
For the symmetrical versions use one of the functions ±f(±·). �

One of the very useful results of [3] is that for h ≥ ε1, ε > 0, h is strongly lsc if
and only if h−1 is weakly usc ([3, Proposition 3.5]). (Combes [10] had previously
done the unital case, where the complications referred to in the title of [3] don’t
occur.) In [5, Proposition 2.1] we expanded on this by considering also the other
two kinds of upper semicontinuity for h−1. One part of [5, Proposition 2.1] is
that h−1 is never strongly usc unless A is unital. In the case of a closed face the
situation is more complicated.

Proposition 4.10. Assume p is a closed projection in A∗∗, h ∈ pA∗∗p, and
h ≥ εp for some ε > 0. Let h−1 denote the inverse of h in pA∗∗p, regarded as an
element of A∗∗.

(i) Then h−1 is weakly usc in A∗∗ if and only if h is strongly lsc on p.
(ii) Then h−1 is middle usc in A∗∗ if and only if there is η > 0 such that h−ηp

is strongly lsc on p.
(iii) Then h−1 is strongly usc in A∗∗ if and only if p is compact and h is lsc on

p.

Proof. (i) If h−1 is weakly usc in A∗∗, then h−1 + δ1 is weakly usc for all δ > 0.
By [3] (h−1 + δ1)−1 is strongly lsc in A∗∗, whence p(h−1 + δ1)−1p is strongly lsc
on p. But p(h−1 + δ1)−1p = (h−1p + δp)−1 and this converges in norm to h as
δ → 0. Hence h is strongly lsc on p. The converse follows from Theorem 4.9(iii′).

(ii) If A is unital, (ii) follows from (i), so we may assume A non-unital. If h−1

is middle usc in A∗∗, let (ki)i∈D be a decreasing net in Ãsa which converges to
h−1. Let D′ = D × (0,∞) and define (i1, δ1) ≤ (i2, δ2) if and only if i1 ≤ i2 and
δ1 ≥ δ2. Then if ki,δ = ki + δ1, (ki,δ)(i,δ)∈D′ is also a decreasing net converging

to h−1. Then (ki,δ
−1) is an increasing net in Ãsa. Since ki,δ ≥ h−1 + δ1, ki,δ

−1 ≤
(h−1 + δ1)−1 and pki,δ

−1p ≤ p(h−1 + δ1)−1p = (h−1p+ δp)−1 ≤ h. Since for fixed
δ, (pki,δ

−1p)i∈D converges to (h−1p+ δp)−1, the limit of (pki,δ
−1p)i∈D′ must be at

least (h−1p+δp)−1, for all δ > 0, and hence the limit is h. Let η > 0 be the scalar
component of ki0,δ0

−1 for some (i0, δ0) in D′. Then h−ηp is strongly lsc on p. The
converse follows from Theorem 4.9(ii′) applied to h− ηp and f(x) = (x+ η)−1.
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(iii) If h−1 is strongly usc in A∗∗, then h−α is strongly usc in A∗∗ for 0 < α < 1
by [5, Proposition 2.30(a)]. Since h−α → p in norm as α → 0, p is strongly usc
in A∗∗, whence p is compact by [5, 2.47]. (This argument proves a general result
which should have been part of [5, 2.44(b)] but was neglected by an oversight.)
And the fact that h is lsc on p follows from part (i). The converse follows from
Theorem 4.9(i′). �

Corollary 4.11. Assume p is a closed projection in A∗∗, h ∈ pA∗∗sap, and h ≥ εp
for some ε > 0.

(i) If h is strongly lsc on p, then h−1 is weakly usc on p.
(ii) If ∃η > 0 such that h− ηp is strongly lsc on p, then h−1 is middle usc on

p.

The fact that the converses don’t hold follows from the last sentence of Theorem
4.3, or it can be deduced from Proposition 4.10 by exhibiting h such that h−1 is
usc on p but not in A∗∗.

It was shown in [5, Proposition 2.59(a)] that if f is non-linear and operator
convex and if both h and f(h) are inQM(A)sa, then hmust be inM(A). Theorem
4.14 below is an analogue with pAp in place of QM(A). (We have found out
recently(see [8, theorems 3.1 and 3.6]) that both Theorem 4.14(i) and [5, 2.59(a)]
can be generalized by allowing f to be merely continuous and strictly convex. But
we don’t know of any similar generalization for Theorem 4.14(ii) or [5, 2.59(b),
(c)].) If h is in pA∗∗sap, h is called strongly q-continuous on p if χF (h) is closed
whenever F is a closed subset of R and χF (h) is compact if in addition 0 6∈ F .
Here χF (h) is the spectral projection, computed in pA∗∗p. Let SQC(p) denote
the complex span of the elements strongly q-continuous on p. If was shown in [5,
Theorem 3.43 (a)] that SQC(p) = {pa : a ∈ A and pa = ap}, whence SQC(p) is
a C∗-algebra. It was shown in the proof that 4 implies 1 in [7, Theorem 3.1] that
if h and h2 are both in pAsap, then h ∈ SQC(p). Thus SQC(p) is the largest
C∗-algebra contained in pAp, just as M(A) is the largest C∗-algebra contained in
QM(A). (The last fact follows from [3, Proposition 4.4].)

Lemma 4.12. Assume p is a closed projection in A∗∗, A is unital, and h ∈ pAsap.
(i) If h2 ∈ pAsap, then h ∈ SQC(p).
(ii) If h ≥ εp for some ε > 0 and h−1 ∈ pAp, then h ∈ SQC(p).

Proof. (i) Follows from [7] as just noted.

(ii) Two methods can be used to obtain h
1
2 : Apply the operator concave func-

tion, f1(t) = t
1
2 , to h or apply the operator convex function, f2(t) = t−

1
2 to h−1.

By 4.2 or 4.3 we see that h
1
2 is both lsc and usc on p, whence h

1
2 ∈ pAsap. By

(i), h
1
2 ∈ SQC(p), and thus also h ∈ SQC(p). �

Lemma 4.13. Assume p is a closed projection in A∗∗, f is non-linear on an
interval I, h ∈ pA∗∗sap, σpA∗∗p(h) ⊂ I, and A is unital.

(i) If f is operator convex and both h and f(h) are in pAsap, then h ∈ SQC(p).
(ii) If f is operator convex and operator decreasing, h is lsc on p, and f(h) ∈

pAp, then h ∈ SQC(p).
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Proof. (i) We can obtain f(h) by substituting h for x in formula (9). A basic
principle is that if both k1 and k2 are usc on p and k1 + k2 is in pAp, then k1 and
k2 are both in pAp (since they are then lsc on p). We can obtain this situation,
using 4.2 or 4.3 by writing f as the sum of two operator convex functions; and
the latter can be achieved by partioning R\I into two Borel sets. The conclusion
is that for t0 in the closed support of µ+ or µ−, and for a neighborhood E of t0,

1

µ±(E)

∫
E

±(h− x0)
2

(tp− h)(t− x0)2
dµ±(t) ∈ pAsap.

Letting E shrink to {t0}, we see that (h−x0)2

(t0p−h)(t0−x0)2
is in pAp, whence 1

t0p−h
is in

pAp. Then 4.12 (ii) implies h is in SQC(p). If both µ+ and µ− are 0, then a > 0,
and we obtain h2 ∈ pAp and cite 4.12 (i).

(ii) We proceed in a similar way, using (11) (for −f) instead of (9) and 4.9
(i) instead of 4.3. The conclusion is (recall that I = (s,∞) or [s,∞)) that for
some t0, h− t0p ≥ εp, ε > 0, and (h− t0p)

−1 ∈ pAp. But then 4.2 or 4.3 applied
to (h − t0p)

−1 implies that h − t0p is usc on p, whence h ∈ pAp. Then part (i)
applies. �

Theorem 4.14. Assume p is a closed projection in A∗∗, f is a continuous func-
tion on an interval I, h ∈ pA∗∗sap, and σpA∗∗p(h) ⊂ I. Also assume either p is
compact or 0 ∈ I and f(0) = 0.

(i) If f is non-linear and operator convex and if both h and f(h) are in pAp,
then h ∈ SQC(p).

(ii) If f is non-linear, operator convex, and operator decreasing, h is strongly
lsc on p, and f(h) is in pAp, then h ∈ SQC(p).
As in Theorem 4.9, there are three other symmetrical versions of part (ii).

Proof. We apply Lemma 4.13 to Ã, identifying Ã∗∗ with A∗∗⊕C. If p is compact,

then p⊕ 0 is closed in Ã∗∗, and we conclude that h⊕ 0 is in SQC(p⊕ 0), whence

h is in SQC(p). Otherwise p̃ = p ⊕ 1 is closed in Ã∗∗, and, using the fact that
f(h⊕ 0) = f(h)⊕ 0, we conclude that h⊕ 0 is in SQC(p⊕ 1). If F is closed in R
and 0 ∈ F , this yields the fact that χF (h)⊕ 1 is closed in Ã∗∗, which implies that

χF (h) is closed in A∗∗. If 0 6∈ F , then χF (h) ⊕ 0 is closed in Ã∗∗, which implies
that χF (h) is compact in A∗∗. �

Remark 4.15. Assume p is not compact. Is the hypothesis that 0 ∈ I and f(0) = 0
really necessary? It is not hard to see that it is impossible to have f(0) < 0, given
the other hypotheses. Also if either 0 /∈ I or f(0) > 0, it can be seen that the
other hypotheses of 4.14 (i) imply that p satisfies condition (1) of §1. Further
analysis of Example 1.8, where of course (1) is satisfied, yields counterexamples
for both parts where 0 /∈ I and counterexamples where f(0) > 0. Also note that
when p is not compact, it is impossible to have h ∈ SQC(p) and 0 /∈ σ(h), and it
is also impossible to have h ∈ SQC(p), f(h) ∈ pAp, and f(0) 6= 0.

We have given several examples in the attempt to provide evidence for the
sharpness of our results; but, although in many cases we have shown that hy-
potheses can’t simply be dropped from the theorems, we do not know whether
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the results of this section are as sharp as the corresponding results in [5], as
documented on pages 899–902 of [5].

5. Final remarks and questions

In [5, Propostion 2.2 and Theorem 3.27] we proved that if weak and middle
semicontinuity coincide for elements of A∗∗sa , then several other properties hold.

One of these is that every positive element (Ãsa)
m is strongly lsc. The same is

not true for semicontinuity on p, as shown by the closed face of Example 1.8. On
the other hand, Proposition 4.10 can be used together with the arguments in [5,

Proposition 2.2] to show that if (Ãsa)
m = ((Ãsa)

m)−, then (pÃsap)
m = ((pÃsap)

m)−

for all closed projections p in A∗∗, and every positive element of (pÃsap)
m is

strongly lsc on p.
Question 1. Are there any other special properties that hold when, for a particular

closed face, (pÃsap)
m = ((pÃsap)

m)−?
In [5] we sometimes considered the following partition of the class of C∗-

algebras:

(1) Unital C∗-algebras.

(2) Non-unital C∗-algebras for which Ãm
sa = (Ãm

sa)
−.

(3) Non-unital C∗-algebras for which Ãm
sa 6= (Ãm

sa)
−.

This trichotomy is appropriate for semicontinuity theory. In this paper, despite
the fact that there is a tremendous variety within the class of closed faces of
C∗-algebras, our theorems distinguished only between compact projections and
non-compact closed projections.
Question 2. What are the “right” subclasses of the class of closed faces of C∗-
algebras to consider in connection with semicontinuity theory?
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