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CONVEX MODELS, MLE AND MISSPECIFICATION1

By Valentin Patilea

Université d’Orléans

We analyze the asymptotic behavior of maximum likelihood estimators
(MLE) in convex dominated models when the true distribution generating
the independent data does not necessarily belong to the model. Inspired
by the Hellinger distance and its properties, we introduce a family of di-
vergences (contrast functions) which allow a unified treatment of well- and
misspecified convex models. Convergence and rates of convergence of the
MLE with respect to our divergences are obtained from inequalities satis-
fied by these divergences and results from empirical process theory (uni-
form laws of large numbers and maximal inequalities). As a particular
case we recover existing results for Hellinger convergence of MLE in well-
specified convex models. Four examples are considered: mixtures of discrete
distributions, monotone densities, decreasing failure rate distributions and
a finite-dimensional parametric model.

1. Introduction. Consider an i.i.d. sampleX1�X2� � � � � defined on a prob-
ability space ���� �P� and distributed according to Q, a probability measure
on the sample space (� �A). It is assumed that Q has a density q with respect
to some σ-finite measure µ. In order to estimate q we consider � , a statistical
model on (� �A) dominated by µ. In this paper we are interested in the case
where � is a convex model, that is, a convex set of densities. Typically, a con-
vex set of densities � is either written in a parametric form � = �pθ� θ ∈ ���
with � a convex set of some linear space and θ→ pθ linear, or defined through
restrictions on monotonicity, regularity, symmetry, etc. The most important
class of convex sets of densities with linear parameterization is represented
by mixture models. While any convex set of densities defined through restric-
tions can also be written as a mixture model, such parameterization may have
less statistical meaning than the original conditions specifying the convex set
of densities. For notational simplicity, even if � is given parametrically, we
will most of the time omit the parameter in the following.
The true density q is not necessarily assumed to belong to the statistical

model. Moreover, even if the model depends on the sample size, it may not ap-
proach q asymptotically. In other words we allow model � to be misspecified
[see Dahlhaus and Wefelmeyer (1996) for a recent reference on misspecifica-
tion]. The model � is supposed to be compatible with the observed data in
the sense that it contains probability measures dominating Q, that is, there
exists p ∈ � such that p ·µ dominates Q (where p ·µ denotes the probability
measure having the density p with respect to µ).
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The estimation method we consider is maximum likelihood. We therefore
assume that there exists p0 ∈ � , which we call the (pseudo-)true density, such
that ∫

log
p0

p
dQ ≥ 0 ∀p ∈ � �(1.1)

the above expectation could be +∞. Herein we use the following rule: we
write “pseudo” in brackets when we consider both cases, well-specified and
misspecified models; when we do not use brackets we refer only to misspecified
models. Clearly, if � is well-specified, that is q ∈ � , then q satisfies (1.1).
When the model is misspecified, necessarily P0 = p0 · µ dominates Q. If

sup
p∈�

∫
logpdQ is finite(1.2)

and attained, then the (pseudo-)true density is defined as a density attaining
the supremum. However, in general we do not impose (1.2). If the model is
misspecified but there exists p0 ∈ � such that∫

log
q

p0
dQ = inf

p∈�

∫
log

q

p
dQ <∞�

then p0 satisfies (1.1). In this case p0 can be interpreted as the element of �
which is the closest, in the sense of Kullback-Leibler divergence, to the true
density q. If � is given in a parametric form, then θ0 ∈ � with the property
pθ0 = p0 will be called a (pseudo-)true parameter. Pfanzagl (1990) gives some
mild sufficient conditions for the existence of a pseudo-true parameter.
If there exists p0 ∈ � satisfying (1.1), the fact that � is a convex model

ensures the uniqueness of p0. More precisely, if p0 and p
′
0 satisfy (1.1), then

p0 = p′0 Q-a.s. If the model is given in a parametric form, in general, we do
not necessarily have the uniqueness of the (pseudo-)true parameter.
We assume that � is such that, almost surely, there exists a maximum

likelihood estimator (MLE), that is, there exists p̂ ∈ � satisfying∫
log p̂ dQn = sup

p∈�

∫
logpdQn <∞�(1.3)

where Qn denotes the empirical distribution built from the first n observa-
tions. More generally, we could consider ηn-MLE defined such that∫
log p̂ dQn ≥ supp∈�

∫
logpdQn − ηn� where ηn → 0 as n → ∞� All the

results of this paper can be adapted to ηn-MLE. For the sake of simplicity we
assume (1.3). If the model is given in a parametric form, the parameter value
θ̂ ∈ � such that pθ̂ = p̂ will be also called a MLE.
In this paper we analyze the convergence of a MLE p̂ (or pθ̂) towards

the (pseudo-)true density. MLE under misspecification has been considered,
amongst others, by Huber (1967) and Pfanzagl (1969, 1990). However, the
approach we consider herein is inspired by the Hellinger convergence re-
sults for MLE in well-specified models [see van de Geer (1993, 2000)]. Recall
that the Hellinger distance between two densities p1 and p2 is defined as
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h�p1� p2� = ��1/2� ∫ �√p1 − √
p2�2dµ�1/2 and if P2 = p2 · µ dominates p1 · µ,

then

h�p1� p2� =
[
1
2

∫ (√
p1

p2
− 1

)2

dP2

]1/2
�(1.4)

Typically, if the true density belongs to the model, Hellinger convergence re-
sults can be obtained using two types of ingredients: (i) “basic inequalities”
involving, on one side, the squared Hellinger distance between the estimator
and the true density and, on the other side, an empirical process; and (ii) the
behavior of the increments of the empirical process derived from entropy calcu-
lations. The Hellinger metric appears to be a convenient tool for investigating
the properties of the ML estimators in infinite-dimensional models containing
the true density. Nevertheless, it cannot be used in the same manner under
misspecification since, in general, the usual basic inequalities do not hold. A
quick way to understand the difficulty is to remark that when the model is
“wrong”, the true density no longer appears in the Hellinger distance between
the MLE and its limit, the pseudo-true density.
Inspired by (1.4), we propose the divergence

h0�p�p0� =
[
1
2

∫ (√
p

p0
− 1

)2

dQ

]1/2
�

where p0 is the pseudo-true density and Q is the true distribution �p0 �= q =
dQ/dµ�, as a natural substitute of the Hellinger distance between p and p0
in the case of misspecification; see also Patilea (1997). Note that h0�p�p0�
coincides with the Hellinger distance h�p�p0� when the model contains the
true density (i.e., p0 = q� and p0 · µ dominates p · µ. We show in this paper
that the divergence h0 allows a unified study of the asymptotics of the MLE
for well- and misspecified convex models. While preparing a revision for this
paper, the Editor drew our attention to the fact that van de Geer (2000) also
studies misspecified models. In this independent work we complete and extend
her Lemma 10.14. We derive the properties of h0 by considering it to be an
element of the family of divergences hα, α ∈ �0�1� defined as follows: if p1 and
p2 are nonnegative measurable functions, then

h2α�p1� p2� =
1
2

∫
αp1+�1−α�p2>0

(√
p1

αp1 + �1− α�p2
− 1

)2

dQ�(1.5)

The framework we consider below is slightly more general than the usual
framework of convex models: � is called a convex model if � is a set of non-
negative measurable functions (not necessarily densities), either specified as
a convex set of functions, or given in a parametric form � = �pθ� θ ∈ �� with
θ → pθ concave. Clearly, if for all θ ∈ �, pθ integrates to one, then θ → pθ
is necessarily linear. By abuse, we call the elements of � densities and p0, p̂
(pseudo-)true density and MLE, respectively. Again it seems that the convex-
ity assumption plays a crucial role in the asymptotic study of MLE or, more
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generally, ofM-estimators [see, e.g., Koltchinskii (1997) for a list of references
on asymptotic results in convex models]. In particular, the convexity of a model
in a parametric form allows little use to be made of the parameterization and
thus avoids possible difficulties associated with it such as, for instance, the
identification problem.
The paper is organized as follows. In Section 2 we study the properties of

the family of divergences hα� α ∈ �0�1�. In Section 3, using “basic inequalities”
satisfies hα and a uniform law of large numbers obtained under entropy con-
ditions, we extend some results of van de Geer (1993) [see also van de Geer
(2000), Section 4.1] and we prove hα-convergence for ML estimators. When
the model has a parametric form we show that, under some mild conditions,
hα-convergence is equivalent to convergence in the parameter space. Rates
of convergence in probability for MLE are obtained in Section 4 as counter-
parts of the results of van de Geer [(2000), Chapter 7] using the behavior of
an empirical process indexed by a class of transformations of the elements
in � . Moreover, under some mild conditions, we show that when hα�p�p0�
is close to zero,

∫
p>0 log�p0/p�dQ has almost the order of h2α�p�p0�. This is

an extension of a result of Wong and Shen (1995) proving that the square
of the Hellinger distance almost dominates the Kullback-Leibler contrast. In
Section 5 we present four examples of convex models: mixtures of discrete
distributions, monotone densities, decreasing failure rate distributions and
a finite-dimensional model. For each model we give some properties of the
pseudo-true density and we deduce the rates of convergence for MLE.

2. A divergence for misspecified convex models. As announced in
the introduction, the properties of h0 are derived from those of the family of
divergences hα, α ∈ �0�1� defined in (1.5). Hereafter, we use the notation

pα = αp+ �1− α�p0�

The rationale for introducing the convex combination pα in the definition of
hα�p�p0� is to avoid the difficulty produced by small values of p0� Finally,
we show that h0�p�p0� is not much affected by the possible unboundedness of
p/p0�Nevertheless, studying hα, α ∈ �0�1� seems useful for better understand-
ing the properties of h0 and the behavior of the MLE under misspecification.
Most of the properties of hα are based on the following lemma.

Lemma 2.1. For any α ∈ �0�1� and p ∈ � ,∫ p

pα
dQ ≤ 1 ≤

∫
p>0

pα
p
dQ(2.1)

(
∫
p>0�pα/p�dQ could be +∞). The second inequality is strict if p �= p0 on

�q > 0�.

Proof. We obtain the first inequality as consequence of equation (2.2) in
Pfanzagl (1990). Fix α ∈ �0�1� and define m�x�p� = p�x�/pα�x�, x ∈ � �
p ∈ � � It is easy to see that p→ m�x�p� is concave for any x ∈ � , provided
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that � is a convex model. Moreover, �x�p� → m�x�p� satisfies conditions (i)
and (iii) of the lemma in Pfanzagl [(1990, page 1872] with �z� α� replaced by
�x�p� � Finally, note that equation (2.1) in Pfanzagl (1990) considered with
L�y� = lny is a direct consequence of the definition of p0 [see (1.1) above]
and the concavity of the logarithm function. For the second inequality in (2.1)
above use Jensen’s inequality. ✷

The previous lemma ensures that, for any α ∈ �0�1�� hα�p�p0�, p ∈ � is
uniformly bounded. We continue with some properties of hα.

Lemma 2.2. For any α ∈ �0�1� and p ∈ � we have

0 ≤ h2α�p�p0� ≤
∫ (

1−
√
p

pα

)
dQ�(2.2)

Consequently, if p̂ is a MLE, then

0 ≤ h2α�p̂� p0� ≤
∫ (√

p̂

p̂α
− 1

)
d�Qn −Q��(2.3)

where p̂α = αp̂+ �1− α�p0.

Proof. From Lemma 2.1 we have, for all p ∈ � ,

0 ≤ h2α�p�p0� =
1
2

∫ (
p

pα
− 1

)
dQ−

∫ (√
p

pα
− 1

)
dQ ≤

∫ (
1−

√
p

pα

)
dQ�

Moreover, from the definition of p̂ and the convexity of the model we have
that, for any β

0 ≤
∫
log

(
p̂

p̂α

)β
dQn ≤

∫ [(
p̂

p̂α

)β
− 1

]
dQn�(2.4)

Take β = 1/2 and deduce (2.3). ✷

The “basic inequality” (2.3) provides an upper bound for the contrast, mea-
sured by hα, between the MLE p̂ and the (pseudo-)true density p0� As a conse-
quence, we can use the behavior of the empirical process indexed by the family
�√p/pα ��q>0�� p ∈ � � and deduce convergence and rates of convergence for
hα�p̂� p0� (�A denotes the indicator function of the set A�. The next lemma
provides another interesting basic inequality for studying the asymptotics of
MLE in possibly “wrong” models. Inequality (2.6) with α = 0 is also proved by
van de Geer [(2000), Lemma 10.14] in the case in which q/p0 is bounded by
a constant.

Lemma 2.3. Let α ∈ �0�1�. For any p ∈ � �

h2α�p�p0� ≤
∫ (

1− p

p 1+α
2

)
dQ = − 1

2

∫ p− pα
p 1+α

2

dQ�(2.5)
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Consequently, if p̂ is a MLE, then

h2α�p̂� p0� ≤
∫ (

p̂

p̂ 1+α
2

− 1

)
d�Qn −Q��(2.6)

Proof. For the first inequality write

− 1
2

∫ p− pα
p 1+α

2

dQ = 1
2

∫ (
1− p

pα

)
dQ+ 1

2

∫ �√p−√
pα�2

pα

�√p+√
pα�2

2p 1+α
2

dQ�

As the first term on the right-hand side is nonnegative (see Lemma 2.1), it
remains to prove that the last term dominates h2α�p�p0�. For this it suffices
to remark that

√
p+√pα ≥

√
2p 1+α

2
. Finally, combine (2.5) and (2.4) in order

to obtain (2.6). ✷

Note that the families ��p/p 1+α
2
���q>0�� p ∈ � �� α ∈ �0�1� are uniformly

bounded by 2. Let us also remark that in the case p0 = q and α = 0� inequality
(2.6) is slightly weaker than the one proved in Lemma 4.5 of van de Geer
(2000) where h0�p̂� p0� is replaced by the Hellinger distance h�p̂� p0�� This is
because in well-specified models h0�p̂� p0� ≤ h�p̂� p0� and the equality holds
if and only if p0 ·µ dominates p̂ ·µ. Nevertheless, this condition is satisfied in
the common examples of convex models. Next, we show that, modulo a scaling
factor, h2α�p�p0� is dominated by the Kullback-Leibler contrast between p and
p0.

Lemma 2.4. Let α ∈ �0�1�. If p ∈ � , then

h2α�p�p0� ≤
1
2

∫
log

pα
p
dQ ≤ 1

2

∫
log

p0

p
dQ ≤ 1

2�1− α�
∫
log

pα
p
dQ�(2.7)

Proof. From log x ≥ �x− 1�/x, ∀x > 0� deduce that

1
2

∫
log

pα
p
dQ ≥

∫ √
pα −√

p√
pα

dQ =
∫ (

1−
√
p

pα

)
dQ�

The first inequality is then a consequence of (2.2). The other two inequalities
are obvious. ✷

Note that setting α = 0 in (2.7) yields

1
2

∫ (√
p

p0
− 1

)2

dQ ≤ 1
2

∫
log

p0

p
dQ�

which is an extension to our framework of the well-known inequality between
the Hellinger distance and the Kullback-Leibler divergence. More precisely,
we can write∫

log
√
p0

p
dQ ≥

∫ √
p0/p− 1√
p0/p

dQ =
∫ (

1−
√
p

p0

)
dQ�(2.8)
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and the last quantity is exactly h2�p�p0�, that is, the square of the Hellinger
distance between p and p0, provided that p0 = dQ/dµ and � is a set, not
necessarily convex, of densities (

∫
pdµ = 1, for any p ∈ � ). When the model

is “wrong” �p0 �= dQ/dµ�, the last quantity in (2.8) is not necessarily equal to
h20�p�p0�. Nevertheless, the convexity of the model allows us to write∫ (

1−
√
p

p0

)
dQ ≥ h20�p�p0� =

1
2

∫ (√
p

p0
− 1

)2

dQ�

regardless of whether p0 = dQ/dµ. Moreover, for this last inequality the
functions p ∈ � need not integrate to one.
In general, hα, α ∈ �0�1� is not a distance (e.g., hα is not necessarily sym-

metric). However, hα has other interesting properties which we present below.
In particular, modulo a multiplicative factor, hα, α ∈ �0�1� is symmetric and
satisfies the triangle inequality. It seems that h0 does not necessarily share
these properties.

Lemma 2.5. Let pi, i = 1�2�3, be nonnegative measurable functions de-
fined on �� �A� and α ∈ �0�1�.
(a) Let α ′ ∈ �0�1� with α ≥ α ′� If α′ = 0 assume also that p2 · µ dominates

Q. Then,

hα�p1� p2� ≤ hα ′ �p1� p2��(2.9)

(b) There exist C1 and C2� constants depending on α� such that

hα�p1� p2� ≤ C1hα�p2� p1�
and

hα�p1� p3� ≤ C2 �hα�p1� p2� + hα�p2� p3���(2.10)

Proof. See the Appendix.

Observe that hα�p�p0� can be included in a larger family of divergences
suggested by Professor Rolin (private communication):

ds�α�p�p0� =
1
4

∫
φs

(
p

pα

)
dQ� p ∈ � �

where, for s > 1� φs�z� = s�s − 1�−1�z − 1 − s�z1/s − 1� �, z > 0. We have
h2α = d2�α. For instance, it is easy to extend inequality (2.3) to

0 ≤ ds�α�p̂� p0� ≤
s2

4�s− 1�
∫ ((

p̂

p̂α

)1/s

− 1

)
d�Qn −Q��

However, in this paper we will stick to hα.
Assume now that the model� is written in a parametric form. If θ̂ denotes a

MLE, we look for conditions under which the hα-convergence of pθ̂ towards pθ0
implies the convergence of θ̂ to θ0, the (pseudo-)true parameter, in a topology
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of the parameter space �. For simplicity, we assume that θ0 is identifiable,
that is pθ = pθ0 Q− a�s� implies θ = θ0� We present some possible extensions
after the next lemma. The following result is a version of Lemma 5.2 of van
de Geer (1993) and shows that hα, α ∈ �0�1� is an appropriate tool for proving
convergence in the parameter space when the parameterization satisfies some
mild conditions. Note that the proof of the lemma below does not require
convexity of the statistical model.

Lemma 2.6. Let � = �pθ� θ ∈ �� be a model (not necessarily convex) and
α ∈ �0�1�. Assume that there exists a unique (pseudo-)true density pθ0 and
that θ0 is identifiable. Moreover, � ⊂ �∗ with ��∗� τ� a first countable compact
space. Suppose that, for any x ∈ � , the map θ → pθ�x� ≥ 0 is defined on �∗

and is measurable. Moreover, assume that, for any θ ∈ �∗� the map θ′ → pθ′ �x�
is continuous at θ, for Q-almost all x ∈ � (the exceptional set may depend on
θ). Then, hα�pθn�pθ0� → 0 for some sequence �θn� ⊂ � iff θn → θ0.

Proof. Fix θ ∈ �∗ with θ �= θ0. Let Vm�θ�, m ≥ 1, be a sequence of
decreasing open neighborhoods of θ ∈ �∗, not containing θ0. For any m ≥ 1
define

vθ�m = ess inf
θ′∈Vm�θ�

∣∣∣∣∣
√
pθ ′

pθ ′�α
− 1

∣∣∣∣∣ ≥ 0�(2.11)

where pθ ′�α = αpθ ′ + �1−α�p0 and “ess inf ” stands for the essential infimum.
Clearly, vθ�m, m ≥ 1, is an increasing sequence of measurable functions, dom-
inated, Q-almost everywhere, by �√pθ/pθ�α − 1 �. Moreover, for any m, the
essential infimum vθ�m is larger than the pointwise infimum

inf
θ′∈Vm�θ�

∣∣∣∣∣
√
pθ′ �x�
pθ ′�α�x�

− 1

∣∣∣∣∣
which, for any x ∈ � such that the function θ ′ → pθ ′ �x� is continuous at
θ, grows to �√pθ�x�/pθ�α�x� − 1 �� From this and a monotone convergence
argument we obtain

lim
m→∞

∫
v2θ�mdQ = h2α�pθ�pθ0� > 0

[for θ ∈ �∗ \�, hα�pθ�pθ0� has the same definition as above].
Now fix some U an open neighborhood of θ0 and note that Uc (its comple-

ment) is a compact set. For any θ ∈ Uc take Vθ an open neighborhood of θ
such that ∫

v2θ dQ > 0�

where vθ is defined as in (2.11). We choose a finite subcover Vθ1
� � � � �Vθs

of Uc

and we have

inf
θ∈Uc

h2α�pθ�pθ0� ≥ min
1≤i≤s

∫
v2θidQ > 0�
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SinceUwas arbitrary we obtain that hα�pθn�pθ0� → 0 implies θn → θ0. On the
other hand, use (2.1) and deduce that

∫ √
pθ/pθ �α dQ ≤ 1� θ ∈ �� Let θn → θ0.

The continuity of the maps θ → pθ�x� and Fatou’s lemma then imply that∫ √
pθn/pθn �α dQ→ 1� Finally, inequality (2.2) yields hα�pθn�pθ0� → 0� ✷

The previous result can be extended to the case where the (pseudo-)true
parameter is not identifiable. Define �0 = �θ ∈ �� pθ = pθ0 Q-a.s.�� The
continuity of pθ with respect to the parameter implies that �0 is a closed
subset of �∗. We obtain that hα�pθn�pθ0� → 0 ensures θn → �0, that is, for
any U open set containing �0, θn ∈ U for n sufficiently large.

3. Convergence of MLE. The next step is to find conditions under which
hα�p̂� p0� [or hα�pθ̂�pθ0�] decreases to zero. Such convergence can be obtained
from the inequalities deduced above, between hα�p̂� p0� and certain empirical
processes, and strong uniform laws of large numbers (SULLN). Here, and in
the following, we assume that there are no measurability problems with the
quantities we manipulate. For instance we may suppose that the classes of
functions we consider below are permissible in the sense of Pollard (1984). For
a more general approach we could follow van der Vaart and Wellner (1996).
Let us briefly recall some basic facts.
If � is a family of measurable real-valued functions defined on �� �A� and

P is a probability on this space, H1�δ�� �P� denotes the δ-entropy of � with
respect to the L1�P�-norm, that is, H1�δ�� �P� = logN1�δ�� �P� with
N1�δ�� �P� =

min
{
J� ∃g1� � � � � gJ� such that ∀g ∈ � � ∃gj with

∫
�gj − g�dP ≤ δ

}
�

Recall also that the envelope of � is defined as G = supg∈� |g| � The following
result can be found in van de Geer (2000), Section 3.6 [see also Pollard (1984),
Section II.5].

Theorem 3.1 (SULLN). Let X1�X2� � � � i.i.d. with distribution Q on
�� �A� and let Qn denote the empirical distribution based on the first n
observations. Assume the envelope condition

∫
GdQ < ∞ and suppose that

n−1H1�δ�� �Qn� →P 0� for all δ > 0� Then

sup
g∈�

∣∣∣∫ gd�Qn −Q�
∣∣∣→ 0 almost surely.

For α ∈ �0�1� and p ∈ � , define gp = �p/p 1+α
2
���q>0� and g′p = √

p/pα
��q>0�. Consider the families �α = �gp� p ∈ � � and � ′

α = �g′p� p ∈ � � and
let Gα and G′

α denote the corresponding envelopes.

Proposition 3.2. (a) If α ∈ �0�1� and, for any δ > 0

n−1H1�δ��α�Qn� →P 0�(3.1)

then hα�p̂� p0� → 0, almost surely.
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(b) If α ∈ �0�1� and, for any δ > 0

n−1H1�δ�� ′
α�Qn� →P 0�(3.2)

then hα�p̂� p0� → 0, almost surely. If (3.2) is satisfied for α = 0 and G′
0 is

integrable, then h0�p̂� p0� → 0, almost surely.

Proof. (a) Clearly Gα is bounded, thus integrable. This, together with
(3.1), ensures the SULLN for the family � . Finally, use Lemma 2.3.
(b) Use Lemma 2.2 and the SULLN for the family � ′

α. ✷

Many statistical models are written in a parametric form � = �pθ� θ ∈ ��
with � a topological space that is a subset of a first countable compact space.
Moreover, for any θ ∈ �, the map θ′ → pθ′ �x� is continuous at θ, for µ-almost
all x ∈ � ; the exceptional set may depend on θ [see, e.g., Wang (1985) and
Pfanzagl (1988)]. It can be proved that in such cases conditions (3.1) or (3.2)
are automatically fulfilled, and this without assuming a convex model. The
following result can be found in van de Geer (1993), Lemma 5.1.

Lemma 3.3. Let � ⊂ �/ where ��/� τ� is a first countable compact space.
Consider �pθ� θ ∈ �/� a family of functions as in Lemma 2�6� Let g�·�x� �
�0�∞� → �� x ∈ � � be a family of continuous transformations. Denote gθ�x� =
g�pθ�x��x� and �̃ = �gθ� θ ∈ �∗� and assume that �̃ is a family of mea-
surable, uniformly bounded real-valued functions defined on �� �A�. Then
n−1H1�δ� �̃ �Qn� →P 0.

The previous lemma and Proposition 3.2 show that establishing hα-conver-
gence of MLE in convex models given in a parametric form with the densities
continuous in the parameter is an easy matter, regardless of whether the
model is well-specified or not. Let us note this in the following corollary.

Corollary 3.4. Assume that � ⊂ �/ with ��/� τ� a first countable compact
space and that � = �pθ� θ ∈ �� is a convex model. Moreover, θ→ pθ, θ ∈ �/,
are defined and satisfy the conditions of Lemma 3�3. Then, for any α ∈ �0�1�,
hα�pθ̂�p0� → 0, almost surely. If furthermore θ0 is identifiable then θ̂ → θ0,
almost surely.

Proof. Define g�y�x� = 2y��1+α�y+�1−α�pθ0�x��−1 ��q>0��x� and obtain
the result from Proposition 3.2 for � = �α, α ∈ �0�1�, Lemma 3.3 and Lemma
2.6. ✷

Extensions to the case where θ0 is not identifiable can be also considered
(see the comments after Lemma 2.6). Note that the definition of the MLE θ̂
does not change, that is, it is still defined as the maximizer of the likelihood
over � and not over �/.
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4. h�-rates of convergence. Inequalities (2.3) and (2.6) can also be used
to obtain the rates of convergence in probability for hα�p̂� p0� and other inter-
esting quantities in possibly misspecified convex models. For this purpose we
use the approach presented in Chapter 7 of van de Geer (2000); see also van der
Vaart and Wellner [(1996), Section 3.2]. The idea is to analyze the behavior of
the empirical processes indexed by the families � ′

α = �√p/pα ��q>0�� p ∈ � �
and �α = ��p/p 1+α

2
���q>0�� p ∈ � �� respectively, in L2�Q� neighborhoods of

the function ��q>0�. We deduce rates of convergence from the entropy with
bracketing of the families � ′

α and �α.
For some (large) universal constant c1 and � a family of real-valued func-

tions, define

JB�δ�� �Q� =
∫ δ
δ2
c1

H
1/2
B �u�� �Q�du ∨ δ� δ > 0�

with HB�δ�� �Q� the δ-entropy with bracketing with respect to the
L2�Q�-norm, that is HB�δ�� �Q� = logNB�δ�� �Q� where

NB�δ�� �Q� = min
{
J� ∃ ��gLj �gUj ��Jj=1 such that ∀g ∈ � � ∃gLj ≤ g ≤ gUj

with
∫
�gLj − gUj �2dQ ≤ δ2

}
�

Results on the empirical process [see, e.g., van de Geer (2000), Chapter 5]
prove that the behavior of the increments at g0 ∈ � of the empirical process
indexed by � depends on JB�
Note that small values of p0 may cause difficulties in computing entropies

of �α and � ′
α. A possible remedy is to truncate the elements of the families

�α and � ′
α [see also van de Geer (2000), Section 7.3]. For σ ≥ 0� define

� σ
α =

{
�p/p 1+α

2
���q>0� ��p0>σ�� p ∈ �

}
(4.1)

and

�
′ σ
α = �

√
p/pα ��q>0� ��p0>σ�� p ∈ � ��

After a little algebra, it can be proved that, for any α� α′ ∈ �0�1�� there
exists C = C�α� α′� > 0 such that

HB�Cδ�� σ
α �Q� ≤HB�δ�� σ

α′ �Q�� δ > 0� σ ≥ 0�(4.2)

Moreover, for any α ∈ �0�1�
HB�C′δ�� σ

0 �Q� ≤HB�δ��
′ σ
α �Q�� δ > 0� σ ≥ 0�(4.3)

with C′ = C′�α� > 0 [see Patilea (1997) for the details]. The inequalities (4.2)
and (4.3) indicate that for proving a general result on hα-rates, it suffices to
use the family � σ

0 and the inequality (2.6). The families �
′ σ
α � α ∈ �0�1� may

serve for obtaining entropy bounds. Note that the entropy calculations in the
case of misspecification are usually not more complicated than in the case of
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well-specified models [see, e.g., van der Vaart and Wellner (1996) for some
general results on entropy bounds].
Before applying empirical process results for � σ

0 � we should note that, for
any p ∈ � (� not necessarily convex)∥∥p/p1/2 − 1

∥∥
L2�Q� ≤ 2h0�p�p0��(4.4)

Indeed, p1/2 = �1/2�p+ �1/2�p0 and thus∥∥p/p1/2 − 1
∥∥2
L2�Q� =

1
4

∫ (√
p−√

p0
)2

p0

p0

p1/2

(√
p+√

p0√
p1/2

)2

dQ�

Since p0/p1/2 ≤ 2 and �√p+√
p0�/√p1/2 ≤ 2, we obtain �4�4� �

Proposition 4.1. Consider σ�δ� ≥ 0� δ > 0 and a family � = �
σ�δ�
0 or

� = �
′ σ�δ�
α′ , α′ ∈ �0�1�. Assume that 2 is a function of δ > 0 satisfying�

(i) 2�δ� ≥ JB�δ�� �Q��
(ii) 2�δ�/δ2 is non-increasing.

Consider �δn� a sequence of positive real numbers such that

δ2n ≥ Q ��p0 ≤ σ�δn���(4.5)

and √
nδ2n ≥ 2�δn��

Then, for any α ∈ �0�1�� h2α�p̂� p0� = OP�δ2n�.
Proof. See the Appendix.

The proof of the proposition above relies on the uniform inequality proved
in Theorem 5.11 of van de Geer (2000). Note that when σ�·� ≡ 0 we can also
obtain exponential bounds for P�hα�p̂� p0� > δn�� It seems difficult to express
the condition �4�5� only in terms of q and Q because, in general, very little
can be said about the sets �p0 ≤ σ� � with σ small, or about the behavior of
q/p0 on such sets. In the example presented in subsection 5.1, the properties
of the model indicate a set Kn�σ� such that �p0 ≤ σ� ⊂Kn�σ�� Therefore, we
will replace �4�5� by the (stronger) condition δ2n ≥ Q �Kn�σ�δn��� �
As a consequence of the hα-rates of convergence we can obtain the rates of

convergence for several quantities representing measures of the performances
of the MLE. These quantities can be also used for further investigation of the
properties of the MLE [see Corollary 4.4; see also �5�6� and the subsequent
comments].

Corollary 4.2. If the conditions of Proposition 4�1 hold, then, for any
α ∈ �0�1�,∫ (

p̂/p̂ 1+α
2
− 1

)
dQn�

∫ (
p̂/p̂ 1+α

2
− 1

)
dQ and

∫
log p̂/p̂ 1+α

2
dQn

are of order OP�δ2n�. Moreover, if α ∈ �0�1�, then ∫ �p̂/p̂α − 1�2 dQ is also of
order OP�δ2n�.
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Proof. For a shorter presentation we only consider the case σ�δ� ≡ 0.
Recall that gp = �p/p 1+α

2
���q>0�. From the definition of p̂ and Lemma 2.1 we

have that

0 ≤
∫
�gp̂ − 1�dQn ≤

∫
�gp̂ − 1�d�Qn −Q��

As a consequence, ∀δ ≥ δn,

P
(∫
�gp̂ − 1�dQn ≥ δ2

)
≤ P

(∫
�gp̂ − 1�d�Qn −Q� ≥ δ2

)
= P

({∫
�gp̂ − 1�d�Qn −Q� ≥ δ2

}
∩ �hα�p̂� p0� > 2δ�

)
+P

({∫
�gp̂ − 1�d�Qn −Q� ≥ δ2

}
∩ �hα�p̂� p0� ≤ 2δ�

)
�

The first term on the right-hand side of the last inequality can be bounded as
in Proposition 4.1. The second term can be bounded by

P

(
sup

hα�p�p0�≤2δ

∫
�gp − 1�d�Qn −Q� ≥ δ2

)
�

for which we can also apply the arguments of Proposition 4.1. Thus, we obtain
the order of the first quantity. For the second it suffices to remark that 0 ≤∫ �1 − gp̂�dQ ≤ ∫ �gp̂ − 1�d�Qn − Q� and to use again the order of

∫ �gp̂ −
1�d�Qn −Q�. The order of the third quantity is obtained using the inequality
log x ≤ x− 1, x > 0, and the definition of p̂. The fourth quantity is dominated
by 2�1/√α+ 1�2h2α�p̂� p0�. ✷

Apparently, we cannot use the previous propositions in order to obtain the
rate of convergence of the log-likelihood ratio

∫
p̂>0 log�p0/p̂�dQ. However, we

can extend an inequality between the Hellinger distance and the Kullback-
Leibler divergence [see Wong and Shen (1995)] to hα. Using this inequality,
which is of interest in its own right, we obtain the above log-likelihood con-
vergence rate under mild conditions. Recall that Wong and Shen [(1995), page
357] prove that, under some integrability conditions [see condition (4.6)],∫

p1 log�p1/p2�dµ = O�ε2 log�1/ε���

where ε2 = ∫ �p1/2
1 − p1/2

2 �2dµ.

Proposition 4.3. Consider α ∈ �0�1�� � a set of nonnegative measurable
functions and Q a finite measure defined on �� �A�� Let �pn� � �p′n� ⊂ � and
assume that there exists γ > 0 such that, for any n ≥ 1

an =
∫
pn>0

(
pn�α
pn

)γ
dQ <∞�(4.6)
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where pn�α = αpn + �1− α�p′n� Define

hn =
∫
pn�α>0

(√
pn
pn�α

− 1

)2

dQ�

and assume hn > 0� n ≥ 1� and hn → 0� Moreover, suppose that

cn =
log �an ∨ 1�
log�1/hn�

� n ≥ 1�(4.7)

is a bounded sequence of nonnegative real numbers. If C = lim supn→∞ cn� then

0 ≤ lim sup
n→∞

1
h2n log�1/hn�

∫
pn>0

(
log

pn�α
pn

+ pn
pn�α

− 1
)
dQ ≤ 2 �2+C�

γ
�

Proof. Consider some ε ∈ �0�1�, to be specified below. Since the function

f�t� = log�1/t� + t− 1

�√t− 1�2 � t > 0�

is decreasing we deduce that, for any p�p′ ∈ � �

0 ≤ log
pα
p
+ p

pα
− 1 ≤ log�1/ε� + ε− 1

�√ε− 1�2
(√

p

pα
− 1

)2

�

provided that p/pα ≥ ε� herein pα = αp+ �1− α�p′. We may write∫
p>0

(
log

pα
p
+ p

pα
− 1

)
dQ =

∫
p/pα≥ε

(
log

pα
p
+ p

pα
− 1

)
dQ

+
∫
0<p/pα<ε

(
log

pα
p
+ p

pα
− 1

)
dQ

def= I1 + I2�

Moreover, from the monotonicity of the function f defined above we have

I1 ≤
log�1/ε� + ε− 1

�√ε− 1�2
∫
p/pα≥ε

(√
p

pα
− 1

)2

dQ ≤ log�1/ε� + ε
�√ε− 1�2 h2�

where h2 = ∫
pα>0

�√p/pα−1�2dQ� Use the fact that log x/xγ is decreasing for
x ≥ e1/γ and deduce

I2 =
∫
0<p/pα<ε

log
pα
p
dQ+

∫
0<p/pα<ε

(
p

pα
− 1

)
dQ

≤ log�1/ε�
�1/ε�γ

∫
0<p/pα<ε

(
pα
p

)γ
dQ+ �ε− 1�Q��0 < p/pα < ε��

≤ �a ∨ 1� log�1/ε��1/ε�γ � ε ≤ e−1/γ�

where a = ∫
p>0 �pα/p�γ dQ <∞� Consequently,∫

p>0

(
log

pα
p
+ p

pα
− 1

)
dQ ≤ log�1/ε� + ε

�√ε− 1�2 h2 + �a ∨ 1� εγ log�1/ε��
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Take ε ≤ e−1/γ such that εγ �a ∨ 1� = h2 [thus, necessarily, h2 ≤ �a ∨ 1� /e]. We
obtain ∫

p>0

(
log

pα
p
+ p

pα
− 1

)
dQ

≤ h2
[
log�1/ε� + ε
�√ε− 1�2 + log�1/ε�

]

= h2

γ
log

1
h

2+ log�a∨1�
log�1/h� +

γ�h2/�a∨1��1/γ
log�1/h�(

�h2/ �a ∨ 1��1/2γ − 1
)2 + 2+ log �a ∨ 1�

log�1/h�

 �
Finally, replace p�p′,h, a by pn�p′n,hn, an� respectively, and let n→∞� ✷

Note that there exists C1� C2 > 0 depending only on α� γ such that C1bn ≤
an ≤ C2bn� with an defined in (4.6) and bn =

∫
pn>0

�p′n/pn�γ dQ� Moreover, if

�an� is bounded by
{
Ch

−β
n

}
� for some C�β > 0� then �cn� defined in (4.7) is

bounded. Hereafter, i.o. means infinitely often.

Corollary 4.4. Consider a convex model � . Let p0 ∈ � be the (pseudo-)
true density and �p̂� a sequence of MLE. Suppose that the conditions of Propo-
sition 4�1 hold and let �δn� be a corresponding rate for hα�p̂� p0�. Moreover,
assume that�

(i) there exists γ > 0 and �an� such that

lim sup
n→∞

log an
log δ−1n

<∞

and

P
(∫

p̂>0

(
p0

p̂

)γ
dQ > an� i�o�

)
= 0�(4.8)

(ii) Q ��p̂ = 0�� = OP�δ2n log δ−1n ��
Then, ∫

p̂>0
log

p0

p̂
dQ = OP�δ2n log δ−1n ��

Proof. From Proposition 4.1 we have h20�p̂� p0� = OP�δ2n��Moreover, from
Corollary 4.2 we have

∫ (
p̂/p̂1/2 − 1

)
dQ = OP�δ2n�� We deduce

∫
p̂>0

(
p̂

p̂1/2
− 1

)
dQ = OP�δ2n log δ−1n ��
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Since h21/2 ≤ h20 (see Lemma 2.5), apply Proposition 4.3 for α = 1/2� p′n = p0�

pn = p̂ and deduce
∫
p̂>0 log

(
p̂1/2/p̂

)
dQ = OP�δ2n log δ−1n �� We can write∫

p̂>0
log

p̂1/2

p̂
dQ =

∫
p̂>0

log
p̂1/2

p0
dQ+

∫
p̂>0

log
p0

p̂
dQ

=
∫
log

p̂1/2

p0
dQ− log

1
2
Q ��p̂ = 0�� +

∫
p̂>0

log
p0

p̂
dQ

≤ − log
1
2
Q ��p̂ = 0�� +

∫
p̂>0

log
p0

p̂
dQ�

On the other hand, use the concavity of the logarithm function and deduce

1
2

∫
p̂>0

log
p0

p̂
dQ ≤

∫
p̂>0

log
p̂1/2

p̂
dQ�

The last two inequalities yield the order of
∫
p̂>0 log �p0/p̂� dQ� ✷

Conditions (i) and (ii) of the previous corollary depend on the properties
of the model and the true distribution Q. Note that condition (ii) does not
represent a serious constraint. In any case, the MLE should be positive at
all observation points and this will usually imply Q ��p̂ = 0�� = OP�n−1� (see
Section 5.2 for an example)� Moreover, Q ��p̂ = 0�� = 0 provided that the
densities of the model have the same support. A possible strategy for verifying
condition (i) is the following. Let ϕ ≥ 1 be a function defined on the sample
space and assume that there exists γ > 0 such that

∫
ϕγdQ <∞� Consider

� ′ = {
p ∈ � � �p0/p���p>0� ≤ ϕ

}
and deduce that P �p̂ /∈ � ′� i�o�� = 0 as a consequence of the almost sure
convergence of hα�p̂� p0� (see Section 5.1 for an example). In some cases it may
be necessary to make ϕ and � ′ to depend on n. More precisely, one will have to
look for a suitable sequence �an� and γ > 0 and bound P� ∫p̂>0 [p0/p̂

]γ
dQ >

an� using the properties of p0� p̂ and conditions on Q� The Borel-Cantelli
lemma will then, with appropriates bounds, imply that P� ∫p̂>0 [p0/p̂

]γ
dQ >

an� i�o�� = 0 (see Section 5.2 for an example).

5. Examples. We consider four examples of convex models: mixtures of
discrete distributions, monotone densities, decreasing failure rate distribu-
tions and a finite-dimensional parametric model. Using the general facts de-
veloped above we (re)obtain asymptotic properties of MLE when the model is
possibly misspecified. See also Pfanzagl (1990) for a different approach.

Example 1 (Mixtures of discrete distributions). In this example the sam-
ple space is the set of nonnegative integers and the dominating measure is the
counting measure. Consider the class of mixtures of power series distributions
(PSD hereafter); see Noack (1950). Recall that a family of PSD is defined as
follows: let a�·� � �0�R� → �0�∞�, a�η� = ∑

x≥0 axηx with ax ≥ 0, x = 0�1� � � �
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and R the radius of convergence of the power series. Without loss of general-
ity we may assume a0 = 1. A power series distribution Pη is defined by the
probabilities pη�x� = Pη��x�� = axηx/a�η�, x ≥ 0. For the sake of simplicity,
we consider hereafter that the function a�·� is such that there exists bl ≥ 0,
l ≥ 1 with b1 > 0 and

log a�η� = ∑
l≥1
blη

l�(5.1)

In particular, this implies ax > 0 for all x ≥ 0� The class of PSD satisfying
�5�1� contains distributions such as Poisson, negative binomial and Hermite.
The mixture models considered in this subsection are built by mixing PSD
defined by the same function a�·�. Thus, � = �pθ� θ probability on H� with

pθ�·� =
∫
H
pη�·�dθ�η�

and H a closed interval included in the set of points η for which the power
series converges. By a slight abuse of notation, we identify η with the unit
point mass at η. Lüxmann-Ellinghaus (1987) showed that (5.1) ensures the
identification of the mixture model, that is pθ�x� = pθ′ �x�, ∀x ≥ 0, implies
that the mixing distributions θ and θ′ coincide. The properties of the (non-
parametric) MLE in such models have been studied by Simar (1976), Lindsay
(1983), Pfanzagl (1988) and Milhaud and Mounime (1996), among others. In
the case of misspecification, one can use the empirical distribution and thus
avoid the bias due to considering a wrong model. Even if the statistician is able
to detect misspecification, he may still consider his PSD mixture model, say
for interpretation purposes and/or for estimating the tail probabilities where
no observation occurred.
The first issue to be analyzed in our framework is the existence of the

pseudo-true mixing distribution θ0. Note that supθ
∫
logpθ dQ finite (the

supremum is taken over all probabilities on H) guarantees the existence of a
pseudo-true mixing distribution [see the proposition of Pfanzagl (1990)]. Below
we provide some mild conditions ensuring a finite supremum.

Lemma 5.1. (a) Consider a family of PSD satisfying �5�1� and a distri-
bution Q on the nonnegative integers. If

∫
x log�x + 1�dQ�x� < ∞� then

supθ
∫
logpθ dQ is finite.

(b) In the case of a mixture of Poisson distributions, supθ
∫
logpθ dQ is finite

iff
∫
log�x+ 1�dQ�x� <∞�

Proof. See the Appendix.

Consider a misspecified mixture model, in particular a PSD mixture model,
and a true distribution of the observations such that there exists a unique
pseudo-true density. Let θ0 be a pseudo-true mixing distribution, that is,∫
log�pθ0/pθ�dQ ≥ 0, ∀θ mixing distribution. We can deduce from Lemma
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2.1 that ∫ pη

pθ0
dQ ≤ 1 ∀η ∈H�(5.2)

Let S be the set of η ∈ H satisfying (5.2) with equality. Integrating with
respect to θ0 and using the Fubini theorem we obtain θ0�S� = 1� In the case of
misspecified PSD mixture models we obtain that θ0 is discrete and its support
has no limit point in �0�R�. Indeed, for any η ∈ S we have∑

x≥0

q�x�∫
ux/a�u�dθ0�u�

ηx = ∑
x≥0

axη
x�

If S has a limit point in �0�R�, then identify the coefficients of the two series
above and deduce that Q is necessarily a mixture of PSD. In particular, in the
case of a misspecified PSD mixture model defined for a finite interval H the
pseudo-true mixing distribution θ0 is necessarily finitely supported.
It can be proved [see Lindsay (1983)] that in a PSD mixture model as con-

sidered herein there exists a unique MLE. Let it be denoted by θ̂.

Corollary 5.2. Let Q be the probability generating the independent ob-
servations. Consider a PSD mixture model � and assume that there exists
θ0 unique (pseudo- )true mixing probability. Then, almost surely, the MLE θ̂
weakly converges towards θ0.

Proof. First remark that if �θn�n≥1 is a sequence of probabilities on H
and θn → θ0 weakly, then pθn�x� → pθ0�x�, x = 0�1� � � � � Then apply Corollary
3.4. ✷

Now we look for the rates of convergence using Proposition 4.1. We confine
our attention to the caseH = �0�M�, 0 <M < 1 ≤ R. Assume that there exists
a unique (pseudo-)true mixing distribution θ0. Note that, for any θ probability
on �0�M��

pθ�x� = ax
∫
�0�M�

ηxa�η�−1 dθ�η� ≤ 1
a0
axM

x� x = 0�1� � � � �

Moreover, using the Cauchy-Hadamard formula 1/R = lim supx→∞
∣∣ax∣∣1/x �

we deduce that there exists M ≤ M′ < 1 and B > 0, such that, for any
θ� pθ�x� ≤ BM′x� ∀x ≥ 0. Consider a family �

σn
0 as in (4.1) defined for a

sequence σn → 0. Note that
{
pθ0�x� ≥ σn

} ⊂ �BM′x ≥ σn� ⊂ �x ≤ an� where
an = a′ log�1/σn� and a′ is some positive constant independent of the sequence
�σn� (provided that the sequence is bounded, say, by 1/2�� but dependent on
M′. Consequently, we have

�
σn
0 ⊂

{
2pθ

pθ + pθ0
��q>0� ��0� an�� θprobability on �0�M�

}
�
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We deduce that HB�δ�� σn
0 �Q�, δ > 0, can be bounded by the logarithm of the

number of all functions defined from a set of a′ log�1/σn� elements to a set
of �1+ 1/δ� elements. Thus, HB�δ�� σn

0 �Q� ≤ A′ log�1/σn� log�1/δ�, for some
A′ > 0, independent of σn and δ. Finally, we have

JB�δ�� σn
0 �Q� ≤ Aδ

√
log�1/σn�

√
log�1/δ� �

for some A > 0.
On the other hand, we bound Q

(�pθ0 ≤ σn�) by looking for a suitable set
Kn such that �pθ0 ≤ σn� ⊂ Kn. Fix 0 < s ≤ M such that θ0��s�M�� > 0.
Then, ∀x ≥ 0, pθ0�x� ≥ c′axsx, for some c′ > 0. We note from the proof
of Lemma 5.1 that if a�·� satisfies (5.1), then there exists v > 0 such that
ax ≥ �1/x!�v. In this case pθ0�x� ≥ c′ sx/�x!�v. Stirling’s formula indicates
Kn = �x� C′x log x ≥ log�1/σn��, for some constant C′ > 0.
Finally, we choose σn and δn �σn = σ �δn�� such that

√
nδn ≥ A

√
log�1/σn�

√
log�1/δn�(5.3)

and

δ2n ≥
∑
x≥Zn

q�x� ≥ Q (�pθ0 ≤ σn�) �(5.4)

where Zn = inf Kn and A is some positive constant. The choice of the trun-
cating sequence �σn� has to be made by a trade-off between (5.3) and (5.4).
A small value of σn allows faster rates in (5.4) but imposes slower rates in
(5.3), while a larger value of σn produces the opposite effect. To simplify the
problem, assume that the true distribution has a finite exponential moment,
that is there exists t0 > 0 such that

∫
exp �t0x�dQ�x� < ∞. Then, (5.4) is

satisfied if

δ2n ≥ exp�−t0Zn��(5.5)

Observe that, for any ε > 0, Zn = t−10 log n − �2 + ε�t−10 log log n, log 1/σn =
C′Zn logZn and δ2n = n−1 log2+εn satisfy (5.3) and (5.5), up to some multi-
plicative constants. This allows us to state the following result.

Corollary 5.3. Consider a class of PSD satisfying �5�1� and H = �0�M�,
M < 1 ≤ R. Let � denote the corresponding PSD mixture model and Q the
true distribution of the i.i.d. sample. Suppose that there exists a (pseudo-)true
mixing distribution θ0. Moreover, assume that there exists t0 > 0 such that∫
exp �t0x�dQ�x� <∞. Then, for any α ∈ �0�1� and ε > 0�

h2α�pθ̂�pθ0� = OP
(
n−1 log2+εn

)
�

Now, we can apply Corollary 4.2 in order to obtain the rates of different
quantities of interest. For instance,∫

log
2pθ̂

pθ̂ + pθ0
dQn and

∫ (
pθ̂ − pθ0
pθ̂ + pθ0

)2

dQ(5.6)
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are of order n−1 log2+ε n, ∀ε > 0. The first quantity is used by van de Geer
(2000), section 11.2, to prove asymptotic normality in general mixture models.
The second can be used to recover the orders of the chi-square type norms con-
sidered by Lambert and Tierney (1984) (see their Proposition 3.1) and Milhaud
and Mounime (1996). In both papers such rates represent the cornerstone for
proving the asymptotic normality of

√
n�pθ̂�x� − pθ0�x��, x = 0�1� � � � in the

case of mixtures models as considered herein. Future work will try to extend
these results on the asymptotic normality to the case of misspecification.
On the other hand, from Corollary 4.4 we obtain∫

log
(
pθ0
pθ̂

)
dQ = OP

(
n−1 log3+εn

)
(Q ��pθ̂ > 0�� = 1 in this example). Indeed, in order to verify (4.8), let 0 <
s ≤ M such that θ0 ��s�M�� ≥ η > 0� Take � ′ the set of PSD mixtures
with θ ��s�M�� ≥ η/2� Observe that for any element of � ′ we can write
pθ�x� ≥ axs

xη/2a�M� and pθ�x� ≤ axM
x/a0� x ≥ 0� Hence, if the true dis-

tribution has a finite exponential moment, then there exists γ > 0 such that
suppθ∈� ′

∫
pθ>0

(
pθ0/pθ

)γ
dQ < ∞. If θ0 ��s�� = 0� then Corollary 5.2 tells that

P�pθ̂ /∈ � ′� i�o�� = 0 and this implies (4.8)�
Condition (5.1), which ensures the identifiability of mixtures of PSD, fa-

cilitates the proof of the existence of a pseudo-true density and the entropy
calculations. However, since hα is a divergence between densities, convergence
results should also be obtainable when the (pseudo-)true mixing distribution
θ0 is not identifiable.

Example 2. (Monotone densities). Let � be the set of all decreasing den-
sities defined on �0�∞� (hereafter the dominating measure is the Lebesgue
measure). The MLE in such a model, usually called the Grenander’s estima-
tor, was first described by Grenander (1956) and afterwards analyzed, amongst
others, by Wang (1985) and Birgé (1989). It is defined as the slope of the least
concave majorant of the empirical distribution function (df hereafter). There
are (at least) two ways of parameterizing a model of decreasing densities. The
first is as mixtures of uniforms on �0� η�, η > 0, with parameter θ the mixing
distribution on �0�∞�. Note that the mixing distribution θ is identifiable in
this case. Another possible parameterization is θ = p, � = � and � is con-
sidered with the topology given by the distance considered by Wang (1985):

d�p1� p2� = inf
h≥0

{
p1�x+ h� − h ≤ p2�x�� ∀x ≥ 0�

and p2�x� ≤ p1�x− h� + h� ∀x ≥ h
}
�

(5.7)

This metric could be extended to the set of decreasing subdensities on �0�∞�;
let us denote this set by � . A decreasing subdensity on �0�∞� is a decreasing
nonnegative measurable function with integral at most one and it corresponds
to a mixture of uniforms �0� η� with mixing subdistribution (subprobability)
concentrated on �0�∞�. Wang’s Lemma 4.1 states that (� � d) is a compact
metric space and that for any p and �pn� in � , d�pn�p� → 0 iff pn�x� → p�x�
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at all nonzero continuity points of p. In particular, if pn and p are densities
such that d�pn�p� → 0, then pn → p in L1�µ� (by Scheffé’s theorem). Below
we show that convergence with respect to the d metric is equivalent to hα-
convergence.

Lemma 5.4. If
{
pθn

}
and pθ are decreasing (sub)densities, and �θn� and θ

the associated mixing (sub)distributions, then

d�pθn�pθ� → 0 ⇔ θn → θ (vaguely) weakly �

If pθ0 is the (pseudo-)true decreasing density, then, for any α ∈ �0�1�
d�pθn�pθ0� → 0 ⇔ hα�pθn�pθ0� → 0�

Proof. We prove the first equivalence for subdensities. If θn converges to
θ in the vague topology then, for any x > 0 such that θ��x�� = 0,

pθn�x� =
∫
�x≤η�

η−1θn�dη� →
∫
�x≤η�

η−1θ�dη� = pθ�x�

[see, e.g., Billingsley (1968)]. For this implication we remark that x > 0 is a
continuity point for pθ iff θ��x�� = 0. For the converse implication, provided
that θn does not converge vaguely to θ, Helly’s selection theorem implies the
existence of subsequence

{
θnk

}
vaguely convergent to some subdistribution

θ1 �= θ, θ1. From this and the previous implication we obtain a contradiction.
The first equivalence in the case of densities can be obtained in a similar way.
The second equivalence is a consequence of Lemma 2.6. ✷

We have the following extension of Marshall’s lemma [see Marshall (1970)].

Lemma 5.5. Consider X1�X2� � � � �Xn an independent sample from a dis-
tribution Q on �0�∞� with df Q�·�. Let p̂G be the Grenander estimator and

P̂G�·� the corresponding df. For any n,
sup
x≥0

�P̂G�x� −P0�x�� ≤ sup
x≥0

�Qn�x� −Q�x���(5.8)

whereQn�·� is the empirical df andP0�·� denotes the smallest concave majorant
of Q�·�. Moreover, almost surely, p̂G converges pointwise, except possibly at
countable many points of �0�∞�, and in L1�µ� to p0, the density corresponding
to P0�·�.

Proof. Fix n and define a = supx≥0 �Qn�x� −Q�x��. Then P0�·� + a is a
concave function dominating the empirical df. From the definition of P̂G�·� we
deduce P0�·�+a ≥ P̂G�·�. On the other hand, P0�·�−a is the concave envelope
of Q�·� − a and from Q�·� − a ≤ Qn�·� we deduce that P0�·� − a ≤ P̂G�·�. From
the Glivenko-Cantelli theorem and (5.8) we obtain that, almost surely, P̂G�·�
converges uniformly to the smallest concave majorant of the true df. If we
apply, for example, exercise C.9, page 20 of Roberts and Varberg (1973), we



CONVEXITY, MLE AND MISSPECIFICATION 115

obtain that p̂G converges to p0, except possibly at countable many points of
�0�∞�. Scheffé’s theorem gives the L1�µ� convergence of p̂G, almost surely. ✷

The previous lemma indicates that the pseudo-true density in a misspecified
decreasing densities model is the slope of the least concave majorant of the
true df. This pseudo-true density always exists, even if (1.2) is not satisfied.
The full justification of the fact that p0 of Lemma 5.5 is indeed the pseudo-
true density is given in Patilea (1997). A quick argument can be provided if
we assume that

∫
�0�1� log xdQ�x� > −∞. By simple geometry we have that

xp�x� ≤ 1, ∀x ≥ 0, if p is a decreasing density on �0�∞� and from this we may
deduce that supp∈�

∫
logpdQ is finite. Now we may apply the proposition of

Pfanzagl (1990).
The facts of section 3 can be used in order to prove the hα-convergence of

the Grenander estimator. More interesting are the hα-rates which we present
below.

Corollary 5.6. Let � be the family of decreasing densities on �0�∞� and
p̂G Grenander’s estimator. Assume that there exists ε ∈ �0�1� such that∫

�p0>1�
pε0dQ <∞(5.9)

and ∫
�p0≤1�

p−ε0 dQ <∞�(5.10)

with p0 the slope of the least concave majorant of the true df Q�·�� Then, for
any α ∈ �0�1�� h2α�p̂G�p0� = OP�n−2/3�.

Proof. Following van de Geer [(2000), Example 7.4.2], consider the fam-
ily of decreasing functions �̃ = ��2pp0/�p+ p0��1/2 ��q>0�� p ∈ � �. Entropy
bounds for �̃ can be deduced from entropy bounds for the families �̃ ′ =
�g̃��p0>1�� g̃ ∈ �̃� and �̃ ′′ = �g̃ ��p0≤1�� g̃ ∈ �̃�. For �̃ ′ we apply Lemma
7.11 of van de Geer for a family defined on �p0 > 1� ⊂ �0�1�, F = �2p0�1/2,
dµ=p−10 dQ and using (5.9). We deduce that, for some A1>0, HB�δ� �̃ ′� µ�
=HB�δ� p−1/20 �̃ ′�Q� ≤ A1δ

−1, ∀δ > 0 (we denote by p−1/20 �̃ ′ the set �p−1/20 g̃�

g̃ ∈ �̃ ′��. For the family �̃ ′′� we apply van de Geer’s Lemma 7.10 with the
same F and dµ. Using (5.10) we deduce that, for some A2>0 , HB�δ� �̃ ′′� µ�
=HB�δ�p−1/20 �̃ ′′�Q�≤A2δ

−1� ∀δ>0. Consequently, HB�δ� �̃ � µ�=HB�δ�
p
−1/2
0 �̃ �Q� ≤ Aδ−1� with A > 0� Finally, apply Proposition 4.1 for � =
p
−1/2
0 �̃ . ✷

It would be interesting to state the conditions (5.9) and (5.10) only in terms
of the true distribution. Even if this seems to be difficult in a general frame-
work, we can do it in some important cases. If q is unbounded but decreasing
on some interval I = �0� δ�, then P0 �·� and Q �·� coincide on any �0� δ′� ⊂ I
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provided that the graph of Q �·� lies below the right-tangent to Q �·� at the
point �δ′�Q �δ′��� Therefore, in this case the condition (5.9) can be replaced by∫

I∩�q>1�
qεdQ <∞�

for some ε ∈ �0�1�� If q ≤ C1 on some I = �0� δ�� with C1 a positive constant,
then p0 ≤ C1 ∨ �1/δ� on I and thus (5.9) is satisfied. Finally, from p0�x�x ≤
1� x > 0 we deduce that (5.9) is satisfied if∫

�x<1�
x−εdQ <∞�

Similar arguments can be used for replacing (5.10)� If q is decreasing to zero
on some J = �β� b�, where b = sup �q > 0� � then there exists a neighborhood
of b on which p0 = q� This is because, when approaching b� P0 �·� and Q �·�
will coincide as soon as the graph of Q �·� lies below the left-tangents to Q �·� �
Therefore, in this case (5.10) can be replaced by∫

J∩�q≤1�
q−εdQ <∞�

for some ε ∈ �0�1�� If q ≥ C2 > 0 on some (finite) interval �β� b�, with C2 a
constant, then p0 ≥ C2 ∧ �1−Q�β�� b−1 and thus (5.10) is satisfied. Finally,
(5.10) always implies ∫

�x≥1�
xεdQ <∞�(5.11)

As a consequence of Corollary 5.6, we can also deduce the rates of the
quantities listed in Corollary 4.2. In order to apply Corollary 4.4, note that
p̂G�x� > 0 for any 0 ≤ x ≤ X�n�� where X�n� denotes the largest observa-
tion. Therefore, we have Q

({
p̂G = 0

}) = 1 −Q (
X�n�

) = OP�n−1�. This order
is an easy consequence of the fact that Qn

(
X�n�

)
is uniformly distributed

on �0�1�� Now, it remains to verify (4.8). Fix y > 0 a continuity point of p0
such that p0�y� > 0 and let � ′ = �p� p�y� ≥ p0�y�/2� � Note that (5.9) en-
sures supp∈� ′

∫
�0�y� �p0/p�ε dQ <∞ and that the hα-convergence of p̂G implies

P�p̂G /∈ � ′� i�o�� = 0� On the other hand, it is easy to see that p̂G ≥ 1/nX�n�.
Therefore, for any γ > 0∫

p̂G>0

(
p0

p̂G

)γ
��y�∞� dQ ≤ C (

nX�n�
)γ
�

for some C > 0� From �5�11� we deduce that the function f�x� = xε�1−Q�x���
x ≥ 1 is bounded and thus, for any β > 0� there exists C′� n0 > 0 such that

Qn
(
nβ

) ≥ exp
(−C′n1−εβ

) ≥ 1−C′n1−εβ� n ≥ n0�
Take an = n� n ≥ n0 and deduce

P
(∫

p̂G>0

(
p0

p̂

)γ
��y�∞�dQ > an

)
≤ P�X�n� > C

′′n1/γ−1� = 1−Qn�C′′n1/γ−1��
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for some C′′ > 0 independent of n� If γ < ε/�2 + ε�� then the Borel-Cantelli
lemma yields

P
(∫

p̂G>0

(
p0

p̂

)γ
��y�∞� dQ > an� i.o.

)
= 0�

Thus, we can state the following result.

Corollary 5.7. If the conditions of Corollary 5.6 are met, then∫
p̂G>0

log
p0

p̂G
dQ = OP�n−2/3 log n��

Example 3. [Decreasing failure rate (DFR) distributions]. This kind of
model has been examined, for example, by Marshall and Proschan (1965)
and, more recently, Wang (1985). An absolutely continuous distribution on
�0�∞� with density p and df P�·� is called DFR if the hazard (or failure) rate
λ�x� = p�x�/�1 − P�x�� is decreasing on �0�∞�. DFR distributions arise, for
example, as mixtures of exponentials. Let �2 be the set of the densities of
DFR distributions. Note that �2 is convex [see Barlow et al. (1963)]. Since
a DFR distribution has a decreasing density we consider on �2 the topology
induced by the distance written in (5.7). The ML estimator for �2 was derived
in Marshall and Proschan (1965) and it is determined only for x not exceed-
ing the largest observation. Beyond this value MLE can be extended in any
manner that preserves the DFR property. We denote such a MLE by p̂ and its
corresponding hazard rate by λ̂.
As before, let Q�·� and Qn�·� denote the true df and the empirical df, re-

spectively. When dQ/dµ �∈ �2� we can deduce some information regarding
the pseudo-true density p0 from the form of the MLE derived by Marshall
and Prochan (1965). Fix X�0� = 0 and let �X�1�� � � � �X�n�� denote the order
statistics of the observed sample. A MLE p̂ corresponds to a left-continuous
hazard rate, constant between observations. More precisely, λ̂�x� = λ̂�X�i��,
X�i−1� < x ≤X�i�, i = 1� � � � � n− 1, where

λ̂�X�i�� = max
t≥i

min
s≤i−1

t− s∑t−1
j=s�n− j��X�j+1� −X�j��

�(5.12)

Note that the MLE for �2 is such that 1/λ̂�x� is the slope (from the left) of the
largest convex minorant of H−1

Qn
�t� evaluated at the point t = Qn�x�, where,

for P�·� a df with support included in �0�∞� and t ∈ �0�1�,
H−1
P �t� =

∫ P−1�t�

0
�1−P�x��dx(5.13)

[P−1�t� = inf�x� P�x� ≥ t�]. The properties of the function H−1
P �·� are de-

scribed in section 5.3 of Barlow et al. (1972). The form of the MLE identifies
p0 the pseudo-true density as that corresponding to λ0�·�, where 1/λ0�·� is
the slope of H−1

P0
�·� which denotes the largest convex minorant of H−1

Q �·�. The
arguments for proving that p0 is the pseudo-true density are exactly the same
as in the case of decreasing densities. Note that the pseudo-true density for
�2 is not necessarily the same as the pseudo-true density in the misspecified
decreasing densities model.
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Corollary 5.8. Let 1/λ0�·� be the slope of the largest convex minorant of
H−1
Q �·� defined as in �5�13� and p0 the corresponding density. Then, almost

surely, hα�p̂� p0� → 0� α ∈ �0�1�. Moreover, p̂�x� → p0�x� and λ̂�x� → λ0�x�
for all nonzero continuity points of p0�·�, and supx≥0 �P̂�x�−P0�x�� → 0 where
P̂�·� is the MLE df and P0 �·� is the df corresponding to p0. If conditions �5�9�
and �5�10� hold, then h2α�p̂� p0� = OP�n−2/3�� α ∈ �0�1�.
Proof. The hα-convergence is a consequence of Corollary 3.4. The prop-

erties of the metric d [see (5.7)] yield the pointwise convergence of p̂. This
further implies the uniform convergence of the df P̂ and the pointwise conver-
gence of λ̂� The hα-rates are obtained as in the case of monotone densities. ✷

In this model the log-likelihood ratio
∫
p̂>0 log�p0/p̂�dQ depends on the ver-

sion of the MLE p̂. In order to recover the same order as in Corollary 5.7 for
any p̂, some additional conditions on Q seem necessary. We shall not further
investigate this issue herein.

Example 4. (A finite-dimensional convex model). The model below has
been analyzed by Rolin (1992). Let � = �pθ� θ ∈ � = �−1�1�� with pθ�x� =
�1+θx�/2, x ∈ �−1�1�, and observe that supθ∈�

∫
logpθ dQ is finite. By a con-

cavity argument we obtain the existence of θ0, the pseudo-true value of the pa-
rameter. For any θ ∈ � consider the score function s�θ� = ∫

x/�1+θx�dQ�x� ∈
�−∞�∞� and note that if s�−1� > 0 > s�1�, then θ0 ∈ �−1�1�. Moreover,∫
xdQ�x� and θ0 have the same sign. In particular, if

∫
xdQ�x� = 0, then

θ0 = 0, that is the pseudo-true density is uniform on �−1�1�. On the other
hand, if s�−1� > s�1� ≥ 0, then θ0 = 1. Finally, θ0 = −1 if 0 ≥ s�−1� > s�1�.
The MLE θ̂ exists, is unique and can be characterized via the empirical

counterpart of the score function s�·� defined above (see Rolin (1992)). The al-
most sure convergence of θ̂ to θ0 can be obtained as a consequence of Corollary
3.4.
If θ0 ∈ �−1�1� we may deduce HB�u�� �δ��Q� ≤ C log�δ/u�, 0 < u ≤ δ,

where � �δ� = {(
2pθ/�pθ + pθ0�

)
��q>0�� θ ∈ �θ0 − δ� θ0 + δ�

}
. Note that pθ ∈

� �δ� is equivalent to h0�pθ�pθ0� ≤ Cδ� with C = C�θ0� some positive constant.
Applying Proposition 4.1 for � = G�δ� we deduce h20�pθ̂�pθ0� = OP�n−1��
Moreover, the quantities in Corollary 4.2 are also of order OP�n−1�.
A more interesting situation occurs when θ0 = 1 or −1. Hereafter we con-

sider θ0 = 1 (the case θ0 = −1 can be treated in a similar way) and we restrain
the parameter space to ��δ� = �1−δ�1�, 0 < δ < 1. In order to simplify entropy
computations let us assume from now on that

sup
θ1�θ2∈��δ�

∫ 1+ x
�2+ �1+ θ1�x��2+ �1+ θ2�x�

dQ�x� <∞�(5.14)

Under this assumption we may deduce, up to a constant, the same entropy
bounds, and consequently the same rates, as in the case where θ0 was in the
interior of �. Observe that (5.14) is satisfied, for instance, when the model
is well-specified (i.e., dQ/dµ = �1 + x�/2). This case, an example of a well-
specified model with the parameter on the boundary of the parameter space,
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was considered by Rolin (1992). In the case he considered, Rolin deduced that
for any βn → ∞ and y > 0, �βn/ logβn�s�1 − y/βn� → y/2. Moreover, he
showed that

√
n log n �1 − θ̂� converges in distribution to some nonnegative

random variable. From this we may deduce∫ (
2pθ̂

pθ̂ + pθ0
− 1

)
dQ = θ̂− 1

2
s

(
θ̂+ 1
2

)
= OP

(
1
n

)
�

and this order agrees with that obtained from Corollary 4.2. Rolin also proved
that �1/ logβn�I�1− y/βn� → y/2 where

I�θ� =
∫ (

x

1+ θx
)2

dQ�x� = −s′�θ��

From this we may write∫ (
2pθ̂

pθ̂ + pθ0
− 1

)2

dQ = �θ̂− 1�2
4

I

(
θ̂+ 1
2

)
= OP

(
1
n

)
which again coincides with the order given by Corollary 4.2.
The results obtained by Rolin (1992) are, of course, more precise for the case

he considered. In particular he obtained the asymptotic distribution of the
MLE in the non-standard case where the true parameter lies on the bound-
ary of �. However, we are able to deduce all the orders above even under
misspecification. The only simplifying assumption we impose is (5.14).

APPENDIX

Proof of Lemma 2.5. (a) Denote p1�α = αp1 + �1 − α�p2� If α > α ′� then
p1�α lies between p1�α ′ and p1. Indeed, p1�α = βp1+�1−β�p1�α ′ with β = �α−
α ′�/�1−α ′� ∈ �0�1�. Observe that hα�p1� p2� = hβ�p1� p1�α ′ � and hα ′ �p1� p2� =
h0�p1� p1�α ′ �. Thus we have to prove that

hβ�p1� p1�α ′ � ≤ h0�p1� p1�α ′ ��(A.1)

for β ∈ �0�1�. Note that h0�p1� p1�α ′ � is finite for all α′ ∈ �0�1� since p1/p1�α ′ ≤
1/α ′ [if α′ = 0 and h0�p1� p2� = ∞ there is nothing to be proved]. Moreover

h2β�p1� p1�α ′ � =
1
2

∫
p1 �=p1�α ′

�√p1 −√
p1�α ′ �2

p1�α ′

(√
p1 −√

pβ�α ′√
p1 −√

p1�α ′

)2
p1�α ′

pβ�α ′
dQ�

where pβ�α ′ = βp1 + �1− β�p1�α ′ . Since
{
p1 �= p1�α ′

} ∩ �q > 0� ⊂ {
p1�α ′ > 0

} ∩
�q > 0� � p1�α ′/pβ�α ′ ≤ 1/�1− β� and
√
p1−√pβ�α ′√
p1−√p1�α ′

��p1 �=p1�α ′ � = �1− β�
√
p1+√p1�α ′√
p1+√pβ�α ′

��p1 �=p1�α ′ � ≤
√
1− β��p1 �=p1�α ′ ��

we obtain (A.1).
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(b) Herein # · # stands for # · #L2�Q�. For the sake of simplicity, assume that
p1�p2� p3 > 0 on �q > 0� � Otherwise, the equations below should be completed
with the corresponding indicator functions. First, note that

√
2hα�p1� p2� =

∥∥∥∥√ p1

αp1 + �1− α�p2
− 1

∥∥∥∥
= 1− α

α

∥∥∥∥∥∥ α�p1 − p2�
αp1 + �1− α�p2

1

1+
√

p1
αp1+�1−α�p2

∥∥∥∥∥∥
= 1− α

α

∥∥∥∥∥∥
(
1−

√
p2

�1− α�p2 + αp1

) 1+
√

p2
�1−α�p2+αp1

1+
√

p1
αp1+�1−α�p2

∥∥∥∥∥∥
≤1− α

α

1+√
1− α√

1− α
√
2h1−α�p2� p1��

For the first inequality to be proved consider two cases. If α ∈ �1/2�1�, from
a) and the inequality above we have

hα�p1� p2� ≤ h1−α�p1� p2� ≤
√
α

1− α�1+
√
α�hα�p2� p1��

On the other hand, if α ∈ �0�1/2� we may write

hα�p1� p2� ≤
√
1− α
α

�1+
√
1− α�h1−α�p2� p1� ≤

√
1− α
α

�1+
√
1− α�hα�p2� p1��

For the second inequality to be proved we remark that, by the usual triangle
inequality

hα�p3� p1� ≤
1√
2

∥∥∥∥√ p1

αp1 + �1− α�p3
−

√
p2

αp2 + �1− α�p3

∥∥∥∥+ hα�p2� p3��

But the first term on the right hand side of the previous inequality equals

1√
2

∥∥∥∥�1−α��p1 − p2�
αp1+�1−α�p2

· p3�αp1+�1−α�p2�√�αp1+�1−α�p3��αp2+�1−α�p3�

× 1

�√p1�αp2+�1−α�p3�+
√
p2�αp1+�1−α�p3� �

∥∥∥∥∥ �
The second ratio in the previous norm can be bounded by 1/�1− α�√α. More-
over, ∥∥∥∥ p1

αp1 + �1− α�p2
− 1

∥∥∥∥ ≤ √
2
(
1+ 1√

α

)
hα�p1� p2��

Thus, we obtain hα�p1� p3� ≤
(
1+√α) �α�1−α��−1 �hα�p1� p2�+hα�p2� p3��� ✷
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Proof of Proposition 4.1. It suffices to prove the result for α = 0 (see
Lemma 2.5). We follow the lines of the proofs of Theorems 7.6 and 7.7 of van
de Geer (2000). For any n ≥ 1� let An = �p0 ≤ σ�δn�� � Recall that gp =(
p/p1/2

)
��q>0� and thus

∣∣gp − 1
∣∣ ≤ 1� p ∈ � � Using �4�5� we deduce that, for

any c > 0

P �h0�p̂� p0� > �c+ 2�δn� ≤ P �B1� +P �B2� ≤
1

nc2δ2n
+P �B2� �

where B1 = �∫An
�gp̂ − 1�d�Qn − Q� > �c + 2�δ2n� and B 2 denotes the set

Bc1 ∩ �h0�p̂� p0� > �c+ 2�δn�� Since the inequality
1
2 h

2
0�p̂� p0� ≤

∫
Ac
n

�gp̂ − 1�d �Qn −Q�

holds on B2 [see inequality �2�6�], we obtain

P �B2� ≤P
(

sup
h0�p�p0�>�c+2�δn

∫
Ac
n

�gp−1�d �Qn−Q�−
1
2
h20�p�p0� ≥ 0

)
def= P �B3� �

Now, it remains to bound P �B3�. Define S = min�s ∈ �� 2s+1�c + 2�δn ≥ 1��
Since h0�p�p0� ≤ 1� p ∈ � we have

P �B3�

≤
S∑
s=0
P

(
sup

h0�p�p0�≤2s+1�c+2�δn

√
n
∫
Ac
n

�gp − 1�d�Qn −Q� ≥
√
n22s−1�c+ 2�2δ2n

)
�

Let ρ2K�g� = 2K2
∫ �exp�|g| /K� − 1− |g| /K�dQ� with K > 0 and g a real-

valued function. From ex−1−x ≤ x2, x ∈ �0�1� and �4�4� � we deduce ρ24�gp−1�
≤ 8h20�p�p0�� p ∈ � � Next, proceed as in Theorem 7.6 of van de Geer (2000).
That is, bound each term of the previous sum using a uniform inequality based
on generalized entropy with bracketing which is defined in the same way as
the entropy with bracketing but with ρK�·� replacing the L2�Q�-norm. ✷

Proof of Lemma 5.1. (a) Fix x ≥ 1 and θ a probability on H which is not
the Dirac mass concentrated at the origin. Consider an interval �s� t� ⊂H\�0�.
We obtain

log pθ�x� ≥ log
∫
�s�t�

pη�x�dθ�η�

= log θ��s� t�� + log
[
θ��s� t��−1

∫
�s�t�

pη�x�dθ�η�
]

≥ log θ��s� t�� + θ��s� t��−1
∫
�s�t�

logpη�x�dθ�η��

where the last inequality is due to Jensen’s inequality. A PSD defined by a
function a�·� as in (5.1) satisfies ax ≥ bx1/x!� x ≥ 1� Indeed, if b�η� denotes the
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logarithm of a�η�, then a�x��0� = a�0��� b ′�0��x+cx�, with cx ≥ 0, (a�x� denotes
the xth derivative of the function a). Therefore,

log pθ�x� ≥ log θ��s� t�� + x log b1 − log�x!� + x log s− b�t�
and thus, if the right-hand side is integrable with respect to Q, then∫
logpθ dQ > −∞. Due to Stirling’s formula, ∀x ≥ 2, there exists λx ∈ �0�1�

such that

log�x− 1�! = �x− 1/2� log x− x+ �1/2� log 2π + λx/�12x��(A.2)

Thus
∫
logpθ dQ > −∞ if

∫
x log�x+ 1�dQ�x� <∞. Since for PSD mixtures

we have
∫
logpθ dQ < 0, we deduce that supθ

∫
logpθ dQ is finite.

(b) Assume that supθ
∫
logpθ dQ is finite and fix θ a probability on H with∫

logpθ dQ > −∞. Since, ∀ x ≥ 1 and η ∈ H, ηx exp�−η� ≤ xx exp�−x�, use
(A.2) and deduce that there exists a constant C such that, for any x ≥ 2

log pθ�x� ≤ x log x− x− log�x !� + log θ ��0�∞�� ≤ −�1/2� log�x+ 1� +C�
From this we have

−∞ <
∫
�x≥2�

logpθ�x�dQ�x� ≤ −1
2

∫
�x≥2�

log �x+ 1� dQ�x� +C�

Thus, necessarily
∫
logpθ dQ > −∞ implies

∫
log�x+ 1�dQ�x� <∞. For the

converse implication define, for example, θ��x�� = 6/�π2�x+ 1�2�� x ≥ 0. Use
again (A.2) and deduce that there exists a constant C′ such that, for any x ≥ 1

log pθ�x� > log�6/π2� − 2 log�x+ 1� + x log x− x− log �x!�
> − �5/2� log�x+ 1� +C′�

Now, it is clear that supθ
∫
logpθ dQ is finite provided that

∫
log�x+1�dQ�x�

is finite. ✷
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