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TESTING THAT A GAUSSIAN PROCESS IS STATIONARY

By T. W. Epps
University of Virginia

A class of procedures is proposed for testing the stationarity of a
Gaussian process or the homogeneity of independent processes. Requiring
very limited prior knowledge of model structure, the methods can detect
changes or diferences in mean, in variance, in covariances and even in law.
Although the theory of the stationarity test is worked out only for processes
whose realizations are stationary over “epochs” separated by known change
points, Monte Carlo evidence indicates that it can be useful also in detecting
more general forms of nonstationarity. The test statistic is a quadratic form
in diferences among epoch means of certain “sensing” functions, the choice of
which governs sensitivity to specific forms of nonstationarity or inhomogene-
ity. The applicability of the general asymptotic theory of the test is verified
for two specific forms of sensing function, and small-sample properties of
tests of each form are studied by means of simulation.

1. Introduction. This paper introduces a class of chi-squared statistics
which may be used to test the stationarity of a time series or the homogeneity of
two or more independent processes. In either case we work with samples of
equally spaced observations of processes which, at least under the null hypothe-
sis, are assumed to be Gaussian. In developing the theory of the stationarity test
we confine attention to processes which change abruptly at known points in time
and are stationary in between, but Monte Carlo evidence indicates that the test
will be useful in more general situations.

For the statistician who deals with i.i.d. samples there is an abundance of
methods for studying the homogeneity of data, ranging from ANOVA to the
various nonparametric two-sample tests. With time series the situation is quite
different. One who has exact knowledge of the underlying model, including the
values of the parameters, might hope to whiten the data and apply a method
designed for use with random samples; but one rarely has such information. If at
least the model is known, although not the parameters, the likelihood-ratio
principle can be employed to test for stationarity. A related Bayesian procedure
is described by Hsu (1984). Other methods which can be applied in special cases
have been developed by Box and Tiao (1965), to test for changes in level, and
Wichern, Miller and Hsu (1976), to test for changes in variance.

The usual situation, however, is one in which the statistician does not know
the model structure, wants to estimate it, but must first confront the existence of
suspected nonstationarities. In this situation the likelihood-ratio test is infeasible
since there are too many unknown parameters, yet the range of other techniques
to consider is narrow indeed. Quenouille (1958) has developed an approximate
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procedure to test for changes in autocovariance when the model structure is not
fully known, and the test of Melard and Roy (1983, 1984)—a quadratic form in
diferences among sample covariances—is sensitive to changes in variance as well.
Picard (1985) also describes a test for changes in the autocovariance function,
based on the spectral density functions of the two samples.

The present paper broadens considerably the collection of tools available for
testing stationarity or homogeneity. It describes a class of chi-squared tests that
utilize certain functionals of the data, called “sensing functions,” which can be
selected to enhance power against a variety of changes or diferences. With the
appropriate choice of function one may look for changes in mean, variance,
autocovariances and even in law—as when a Gaussian process becomes con-
taminated. A principal advantage of the procedure is that it requires very
limited prior knowledge of model structure; namely, a single, weak condition on
the summability of the autocovariances.

The general form of the test statistic is presented in Sections 2-4, where the
necessary distribution theory is worked out under certain assumptions about the
properties of the sensing functions. Two examples of sensing functions are given
in Section 3 in order to motivate the procedure, and in Section 5 we show that
these functions do have the necessary properties. Section 6 presents the results of
a preliminary Monte Carlo study of the test’s finite-sample behavior. We find
that the test can give quite reliable indications of nonstationarities of various
sorts for a variety of model structures.

To simplify the exposition, we confine our discussion to the problem of testing
the stationarity of a single time series, but with minor changes in notation the
results apply as well to testing the homogeneity of independent processes.

2. Assumptions. Let {X,}?2 __ be a discrete-parameter stochastic process,
of which {X,)T_, is a sample of equally spaced observations. The sample may be
partitioned into N > 2 subsets, called “epochs,” within each of which the process
is known to be stationary, and we let 1 <7, <1, < .-+ <7y_; < T represent
the presumed change points. Taking 7, = 0 and 7y = T, the length of the nth
epochisthen T, =1, — 7,_,, n =1,2,..., N. Although T, is, of course, finite, it
will be convenient to regard the nth epoch as the realization of an infinitely long
process, denoted {X;*}2 __, with unspecified mean p, and covariance function
{0 (r), r=0, £1, £2,...}. We shall often write 0?2 for 6,(0). The null hypothesis
to be tested is that the processes {X}},{X?},...,{X,V} are identically distrib-
uted, with common mean g and covariance function {a(r)}.

As the maintained hypotehsis, we assume that, for each epoch n, {X;'} is

Gaussian and that there exists { > 0 such that

0

(A1) S irflon(r)] < .

r=—oo
Aithough stronger than absolute summability (the case { = 0), (A.l) is an
extremely mild condition, satisfied for every { > 0 by all stationary ARMA
models. Note that we need the process to satisfy (A.1) and to be stationary and
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Gaussian within each epoch only for purposes of developing an asymptotic
theory under local alternatives (Section 4). For the validity of the test it is
enough that these conditions hold under H, for the process as a whole. Monte
Carlo evidence (Section 6) confirms that the test does have power against more
general alternatives, such as that { X'} is non-Gaussian or even nonstationary,

for some n.
We now introduce the vector-valued sensing function

g*(Xt’Xt—l""’Xt~L;}‘)’ g*:RL+1XRd_’RJ’
and certain conditions that it must satisfy. Here A is a d-vector of real numbers,

initially considered to be constants but later allowed to be sample dependent in
specific versions of the test.

The first condition imposed on g* is that all its elements be functions of the
same linear combination of the observations X,, X,_,,..., X,_;, L > 0; that is,
for certain real numbers {a,(A)}f., we have .

(A2) g*(X,, X,_1,..., X,_;A) =g(X,(L); N), &R, XR,~>R,,

where X,(L) = X, + ay(A\)X,_, + -+ +a,(A)X,_,. Henceforth, we refer to both
g™ and g as sensing functions.

The test statistic will depend on differences among sample means of g in
diferent epochs, which are defined as

ng(A) = TI:I Zg*(Xtv Xt-—b“" Xt—L: }\)
t

(2.1) T,
=T;' ¥ &(X/(L);)),
t=L+1

the first sum running from 7, _, + L + 1 to 7,. The sensing function must satisfy
a second condition if we are to estimate consistently the asymptotic covariance
matrices of these means. For epoch n let y,(A) = Eg(X(L); \) =
Eg*(X,, X, 1y--» X, 13 A), 7,1 + L < t < 7,. Under H, we have v,(A) = y,(}),
say, for n =1,2,..., N. Adopting momentarily a very compact notation, let
8™(t) = (X[ (L); A) — v,(A), with g%(¢) as jth element of this J-dimensional
process. The fourth-order cumulants of g in epoch n may then be defined as

Khum(, T, 85 A) = E[27(0)82(q)&1(r)8n(s)]
—E[£20)22(9)| E[£1(r)&x(s)]
~E[87(0)87(r)| E[£2(q)&n(s)]
-E[£20)22(s)| E[&1(9)r(r)],

for ¢,r,s=0,+1,+2,..., and j, k,I,me (1,2,...,J}. We require of our
choice of g that, for each n,

2]

(A3) sup Y |kfum(g, 7 g + 15 A)| < oo,
: —00<g<o0 r=-—00

(2.2)

for j,k,l,me (1,2,...,J}.
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In Section 5 we show for two specific sensing functions how this condition may

actually be verified.
The asymptotic covariance matrix of the normalized mean vector gr(A) is

given by

L) = ¥ Covlg(XA(L); ), (X3(L); M.

r=—oo

That the elements of this matrix are finite will be shown (in the proof of Lemma
4.1) to follow from (A.1). We need the following assumption about T',(A) in order
to prove a central limit theorem for gr(A):

(A.4) T,(A) is positive definite. _

3. Some examples. Before proceeding with the theory we give two exam-
ples of sensing functions that will be useful in testing stationarity or homogene-
ity. The first is designed to detect changes in mean and covariance structure.
Taking A = {u;, pig, ..., x> Ay, Ag, ..., AL}, where L and the constants {A;} are
to be selected by the researcher, let

(3.1) XML)=XP+MNX2, + o +0. X0,

(3.2) Po(L) =p (L +A + - +Xp)
and
(3.3) g(X7(L); A) = {X(L),[X2(L) - w (L))}

With this arrangement gr(A) comprises the epoch mean of {X,(L)} and its
sample second moment about p,(L). The case L = 0 gives a test based on the
marginal mean and variance. Naturally, either component of (3.3) could be used
alone to give special sensitivity to changes in mean or covariance structure. We
show in Section 5 that (3.3) does satisfy (A.3) and that the epoch means p (L),
which are ordinarily unknown, can be replaced by their sample counterparts.
The second example affords a broad-spectrum test for changes in the process
that do not involve just the first two moments, such as the contamination or
truncation of a Gaussian process. Taking L > 0 and J an even integer, let
Ao = {1, Aq,---» Ao} bean L + 1-vector of real numbers; and let A, A,,..., A, 5
be distinct, positive scalars. With A = {Ag,Ay,...,A ) €ER,, ., and
XM Ly= X+ Ay X1 + -+ AL X[t 1, define
g(th(L); A) = {cos AXP(L),sin N\ XM(L),...,
3.4
G4 cos A, X (L),sin }\J/2th(L)}/'

The mean vector gr(A) now consists of real and imaginary parts of the joint
empirical characteristic function of {X,, X,_,,..., X,_;} in epoch n, evaluated
at points A Ao, AyAg,..., A A, Since these statistics are consistent estimators
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of the corresponding components of the true joint characteristic function of
(XX, ..., X2}, they can register quite general changes in the joint distri-
bution. We show in Section 5 that (3.4) does satisfy (A.3) and that certain useful
forms of data dependence in A are permissible.

4. Theory of the test. The test statistic to be developed is a quadratic
form in differences among the epoch mean vectors {gr(A)}, which will
be shown to be distributed asymptotically as chi-squared. The main tasks
in demonstrating this are to prove the asymptotic joint normality of
T Y ’[&r (M) = (M- .., Ty ?[&r(A) — Yn(A)] and to develop a consistent
estimator of the covariance matrix of these vectors.

The first step is to prove a central limit theorem for each g(A), and this
much can be done with weaker assumptions than (A.1) and (A.3). Condition (A.1)
implies

(4.1) Y o (r)l < o0;
and (A.3) trivially guarantees that
(4.2) Varg;(X(L);A) <o, je€{1,2,...,d)}.

LEMMA 4.1. Let { X'} be a stationary, Gaussian process satisfying (4.1) and
choose g so as to satisfy (A.2), (4.2) and (A.4). Then as T, - oo,

(4.3) T, [&r,(A) = va(A)] =p N(O,T,(N)).

The proof is based on the central limit theorem for functions of Gaussian
processes given by Giraitis and Surgailis (1985). We will also need the following
lemma.

LeEMMA 4.2. Let {X,}2 _, be a stationary process satisfying (A.1) for some
¢ >0, and define X(L)= X, + o,X, , + -+ +a,X,_,, where the o, are arbi-
trary real constants. Then {X,(L)} is a stationary process, and &(r) =
Cov[X(L), X(L)], r =0, £1, +2,..., satisfies

0

(4.4) Y 1148(r)| < .

r=-—oo

ProOF. Write X,(L)=a(B)X,=(1+ B+ -+ +a;B%)X,, where B is
the backshift operator, and let B'oc = o(—r) = o(r). Then

8(r) = Cov[a(B)X,, B'a(B)X,]| = «(B)a(B~')B'

>

L L
Jj=0 k=

a0, BT Uk,
0



1672 T. W. EPPS

where a, = 1. For { > 0 satisfying (A.1) we have

00 o0

L L
X rfs(r < X IrF Y X lejayl |BTU R

r=—o0 r=-—o0 J=0k=0

i E |°‘jak|{ io‘, lr—(j- k)|§|°(" -(Jj- k)|

J=0 k=0 r=—o0
r#(Jj— k)

XIr/[r= (G =R+ 1/ - kl‘}

o0

5 |a,~ak|{[u CHAIF Y - (- k)

k=0 r=-—o00

A
~.
it

Xlo(r— (j— RY)| + 1j - kl‘}

Z Z | akl{[l./ — Kl +1]° i Irfle(r)l + 1/ = klf}

Jj=0%k=0 r=-—o0
< o0,
the next-to-last inequality following from max___,_|r/[r — (j — k)]l <
lj—kl +1.0

PrOOF OF LEMMA 4.1. Let Y* = X*(L) and 8,(r) = Cov(Yy", Y*). For u €
R, u#0,let h(Y) = u'g(Y” \). By (A4)

(4.5) S Cov[A(¥p), h(¥7)] = wT,(A)u > o,

r=-o0

and it follows from Gebelein’s lemma (1941) [Rozanov (1967), page 182] that
|Cov[A(Y5), R(Y)]| < 18,(r)| Var h(Y7) /a(0).
With (4.2) and Lemma 4.2 this implies

(4.6) 2 1Cov[A(Yg), R(Y)]I < oo,

which establishes the finiteness of the elements of I',(A). Inequalities (4.5) and
(4.6) are the conditions needed for Theorem 5 of Giraitis and Surgailis (1985),
page 200, which implies that T, '/?L,[h(Y;*) — ER(Y)] —»p N(O,V,), where
[Anderson (1971), Theorem 8.3.1, page 459] V}, = u'T,(A)u. The conclusion now
follows from the Cramér—Wold theorem [Billingsley (1968), page 49]. O

We remark for later purposes that the stronger version of (4.1) given by (A.1)
implies the correspondingly stronger version of (4.6), namely,
o0
(4.7) Y |rf|Cov[A(YS), A(Y")]] < 0, some ¢ > 0.

r=-—o0
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Having established the limiting marginal distribution of each gr(A), we must
now deal with the joint distribution of these statistics for the IV epochs. Assume
that

(4.8) T!im T,/T=c,<(0,1), n=1,2,...,N.

Let ¥(A) be a block-diagonal, square matrix of order J - N with matrices
¢y 'Ty(A), ..., ex'Tn(A) on the diagonal; and define

Gr(A) = {gT,(A)/:---’gTN()\)'}' ER,N-

THEOREM 4.1. If the assumptions of Lemma 4.1 hold for each n, then as
T > oo,

T'2[Gr(N) — EGr(N)] —»p N(0,9(7)).

PrROOF. Let Z; = T'/?[gr(A) — v,(A)). Using the definition (2.1), we can
write

Zp = TY2T 1Y [8*( X,y Xy—1se-or Xo— 13 A) = Yu(A)] = TV2T, 'Ly, (N)
t )

=TT Y [(XP(L);A) = 1(N)] = TVT Ly (),

t=L+1

the first sum running from 7,_, + L + 1 to 7,. Clearly, the last term is o(1)
as T — oo. Now choose a sequence of integers {gr}, with 0 < g, <
min{T}, T, ..., T,} — L and such that

(4.9) lim g, = + o0, lim T ¢, = 0.

T- o0 T—- o0

Discarding the first g observations in each epoch, let
T,

n

Zx =TT ¥ [&(XM(L);A) - v(D)].

t=L+1+qp

Then for n = 1,2,..., N,

|Zy — Z£| < TV?T; 1

E2(XA(L)i ) = 1(0)]| + (1)

= (T/T.)(ar/T)"

a7 T [#(X2(L); X) = v(M)] | + o),

where the summations are from L + 1 to L + g¢r. Lemma 4.1, (4.8) and (4.9)
imply that the right side is 0p(1), from which it follows that the limiting joint
distributions of {Z}Y_, and {Z}}_, coincide. By (4.8) and Lemma 4.1 the
limiting marginal distribution of Z# is N(O,c, T (A), n=1,2,...,N. The
conclusion of the theorem will follow if we can show that {Z# }V_, are asymptoti-
cally independent as T — oo.
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Let E; represent the index set {aci+ L+1+gqg,..., 1), and let o(Er)
be the o-field generated by {(X,teE ). Zf is then measurable o(Er ). Pick
l1<n’<n<N. Since (X"} and {X"} are Gaussian, any two o-fields o(Er,)
and o( E7 ) are asymptotically independent iff

lim sup  |Cov(X,, X,)| = 0.
T- o S€ET ,t€Ey

Now .
lim sup {|Cov( X,, X,)|: s € E;,t€Ep}
T

= limsup {lo(s = £)]: 7, + L+ 1+ g, <t< Tos Tu1
T

+L+1+¢qr<s<um,)

< limsup {|o,(s — #)]: —c0 <t < 7,7, + gp < 5 < o}
T

= limsup {|o,(r)|: g7 < r < o)
T

0
< lim Y |o(r) =0,
T r=qr
the value of the final limit following from (4.1) and (4.9). This establishes the
asymptotic pairwise independence of o( Er ) and o Er ) and, hence, of Zf and
Zf . Mutual independence of {Z£)]., is established by showing, in a similar
way, that linear combinations of all disjoint subsets of {Zf )}, are asymptoti-
cally independent. O

Notice that the conclusion of the theorem applies both under H,, when Y(A)
and I (M) take the same values in each epoch, and under alternatives to H, in
which the process remains stationary and Gaussian within epochs. In fact, it is
clear that an “asymptotic” stationarity within epochs is sufficient, allowing for
the dependence among observations to cause protracted transitions from one
form to the next.

We now show that there exists for the stationary, Gaussian process in each
epoch a consistent estimator of L(A), the asymptotic covariance matrix of

&r(A).

LEMMa 4.3. Define the sequence of integers
(410)  M; =max{[a,T*],T,- L - 1}, a;>0,a,€(0,1),
where “[-1” denotes “greatest integer,” and the function

w(y) =1, y=0,
(4.11) =2(1-y), O<y<l1,
’ =0, elsewhere.

Let &(X(L); \) = g(X(L); \) - &1(N), where g satisfies (A.2). If {X}isa
stationary, Gaussian process satisfying (A1), and if (A.3) holds, then as
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T,, — oo the statistic

M, T,—r
(412) T, o) = T w(r/Mp)T0 £ 2(XHL) NA(KEAL)iAY

converges almost surely to T'()).

Proor. (4.6) and Theorem 8.3.1 of Anderson (1971), page 459, imply that
T(A) equals 27 times the spectral density matrix of g(X/(L); A), denoted
f.(v; A), evaluated at frequency » = 0. Apart from a factor 2, the right side of
(4.12) is a particular form of Gaposhkin’s (1980) strongly consistent estimator of
f(0; A). The lag window function w and the truncation point M satisfy
Gaposhkin’s conditions I and III’; and his conditions II’(a) and (b) are given by
(A.3) and implied by (4.7), respectively. The conclusion follows from Gaposhkin’s
Theorems 4 and 5. Details are given in Epps (1987). O

Taking ¢7(A) to be the block-diagonal matrix with (T/T,)T', ,(A) as the nth
diagonal element, it follows from Lemma 4.3 and (4.8) that ,(A) — %(A) ass.

The main ingredients of the distribution theory of the test are now assembled.
The statistic which follows is a quadratic form in differences among means of the
sensing functions in different epochs, the form of differencing depending on the
researcher’s beliefs about the type of nonstationarity that may be present.
We allow for a variety of possibilities by introducing a JK X JN matrix A, 1 <
K < N, of the form A = D ® I;. Here I, is the identity matrix, and each row of
the K X N matrix D comprises N — 2 zeroes and the integers { —1,1} arranged
so that rank(D) =K < N - 1; eg.,

-1 1 0 0 0
-1 0 1 00
(4.13) D=1
-1 .0 0 0 1

The product of A and G1() is then a vector of differences among epoch means,
such as, with (4.13) for D,

AGr(A) = {gTz(}\)' - gT‘(A),, ey gTNO\)' - gT,O\)/}'-
The test statistic may now be defined compactly as
(4.14) @r(A) = T[aGr (M) [a%,(MAT” [AG (V)]

where “+” signifies generalized inverse. In the case N = 2 this takes the simple
form

Qr(A) = [gn(A) ~ gn (V] [T Tr 4(N) + 5Ty (V)]
[gTz(}‘) - gT,O‘)]-

We introduce the following sequence of “local” alternatives in order to analyze

(4.15)



1676 T. W. EPPS

the limiting distribution of @(A) when H, is false.
Hp:v,(A) = ¥{P(A) = v%(X) + T7V%,(X),  ¢,(X) #0,

(4.16)
T,(A) =TD(A) = T,(A) + T-V%,(\), n=12,...,N.

(4.16) allows the means and covariance matrices of the sensing functions to differ
across epochs, but it requires the differences to vanish, as T increases, at a rate
that assures a limiting distribution for the test statistic. This limiting behavior is
expressed by the following theorem.

THEOREM 4.2. Under the conditions for Theorem 4.1 and Lemma 4.3 Q(\)
converges in distribution under {H;} to noncentral x2(J K), with noncentral-
ity parameter

(4.17) £(N) = [a0(N)]{A[Iy ® Ty(A)] &)} “[ad(A)] > o,

where ®(N) = {¢(A), (), ..., dn(A)}. Under H,, Qr(A) converges weakly
to central x*(J - K).

ProoF. Under the sequence of alternatives {H,} we have ¥,(A) -
Iy ® T(A)as. and limg_ TY?AEGp(A) = A®(A). Theorem 4.1 and the
Mann-Wald theorem imply that

T [AGr(A)]'{A[Iy ® T,(M)] A} “'[AGp(M)]

converges weakly to noncentral x%(JJ - K), with noncentrality parameter £(A)
given by (4.17). Under H,, £&A) = 0. The corresponding result for @,(A) follows
from Lemma 4.3 and another application of Mann-Wald. O

5. The special cases. Here we develop some specific versions of the test by
showing that sensing functions (3.3) and (3.4) satisfy condition (A.3), and we
extend Theorem 4.2 to allow data-dependent A in these special cases.

Consider first the mean-covariance test, based on

(3.3) g(XM(L);A) = {X(L),[XML) - p(D)]*},

where X*(L) and p,(L) are given by (3.1) and (3.2). Since X/*(L) is itself a
stationary, Gaussian process, the cumulants nuu(q, r, s; A), which involve the
first element of g only, are identically 0; (A.3) is, therefore, trivially met for
j=k=1=m=1. We will show that (A.3) holds also for j=k=I=m=2;
the general case can be handled similarly. Since, by Lemma 4.2, X;*(L) satisfies
(A.1), the necessary summability condition for the cumulants k},..(q, r, s; )
comes immediately from

LEMMA 5.1.  If {X,} is a stationary, Gaussian process satisfying (A.1), and if
{k(q,r,8): q,r,s=0,%1,+2,...} represent the fourth-order cumulants of

(X, — p)?, where p = EX,, then sup, L |«(q,7,q + )| < 0.



TESTING THAT A GAUSSIAN PROCESS IS STATIONARY 1677
ProoF. Setting pu = 0 and o(0) = 1 without loss of generality, we have
k(q,r,s) = E[(X3 - 1)(X2 - 1)(X? - 1)(Xx2 - 1)]
-E[(Xx3-1)(X2 - 1)|E[(X? - 1)(x2-1)]
~E[(x3-1)(x?-1)]E[(x2-1)(x2-1)]
~E[(x3 - 1)(x2 - )] E[(x2 - 1)(x2 - 1)].
Multiplying out the expressions in brackets and evaluating moments of the form
E[X2/XZkX2X2™), j, k,1, m € {0,1}, by differentiating the joint moment gen-
erating function of X,, X,, X,, X,, we obtain ~
«(q,7,q +r) = 16[o(g)’o(q + r)a(q - r)

+o(r)o(q + r)o(g — r) + o(g)%e(r)Y.

Therefore,
sup Y |k(q,r,q + 1) < 16sup X [lo(q + r)| + [o(g + r)| + |o(r)[]
q r q r

=48) |o(r)| < . O

With (A.3) verified, Lemma 4.3 furnishes a consistent estimator of I',(A) in
each epoch n; and if (A.4) holds, Theorem 4.2 gives the limiting distribution of
Qr(N) as x*(2K), K < N — 1. Since p,(L) in (3.2) depends on p,, which is
ordinarily unknown, it will be necessary in practice to replace it by a statistic,
fin(L), such as T;* ¥7», .. X,(L). We now show, under one further condition on
the covariance estimator, that this change does not alter the large-sample theory
of the test.

THEOREM 5.1. Let I'y , be given by (4.12) but with the sequence of integers
{My } further restricted as

(51) Mgy =max{[a,T],T,-L-1}, a,>0,a;€(0,1/2).
Let Q@+(M\) and Qr(A7) be constructed from, respectively, g(X(L); ) in (3.3)
and g(X(L); Ap) = {X(L),[X(L) — 8.(L)]1*), where f, (L) =

T; 1Y%, .. X(L). Then under the remaining conditions for Theorem 4.2, the
statistics Q7 (Ay) and Qp(\) have the same limiting distributions as T — .

“The proof will follow easily from the next lemma.

LEMMA 5.2. Under the conditions of Theorem 5.1 I'r. (Ap) —p T, (A).
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ProOF. We show that when (5.1) holds each element of Ry =T (Ar) —
Tr (M) converges in probability to 0. From (4.12) we have

My,
Ry =) “’("/]‘41',,)7'{1 Y [8(X(L); Ap)8( X[ (L); Ag)
r=0 t
_g(th(L); }\)g(Xt’:-r(L); }\)I] .
Letting Rp(j, k) denote the jkth element, for j, k£ € {1,2}, routine calculations
give

RT,,(]-’I) =0,
My,
R, (1,2) = Br, (2,1) = ~200,(1) = ma(D)] T8(7) + OlT;7),

My,
Ry, (2,2) = ~2(8,(L) ~ m(L)] L T
xZ{[x(L) - A L)) [ X2 AL) - (L))"

+[XP(L) = p (L[ XA AL) = 2,(L)]} + OK(T; ),

where S,(r) is the rth-order sample autocovariance of X,(L) in epoch n. Now

|Ry(1,2)| < 2T, Y215,(L) = p(L)|T,)*Mp S,(0) + op(1). Since S,(0) and the

factor in brackets are Op(1l), whereas TV My —» 0 as T, > o by (5.1), we

conclude that Rp(1,2) = 0p(1). The same conclus10n holds a fortlon for R1(2,2),
since 1/T,, times the second sum converges in probability to

E[th(L) - p‘n(L)] [Xt’:-r(L) - p‘n(L)]

+E[XML) - p D[ X2 (L) = pa(L)] = 0. O

ProOF OF THEOREM 5.1. We show that |@7(A;) — Qr(A)| —p 0. For brev-

ity let Ap=AGr(Ap), A =AGp(N), By =[A9p(Ap)A]*, B=[A9(MA]T

and B = {A[Iy ® Ty(A)]A’} 1. Then
1Qr(Ar) — Q@r (X))
< T|A7BAz — ABA| + T|A7(By — B)A7| + TIA'(B - B)A|.

Under the sequence of alternatives {Hy} we have T'/2A = Op(1) and T'/?A} =
Op(1). Since B — Bas. and By —p B under Lemmas 4.3 and 5.2, respectively, it
follows that the last two terms are Op(1). For the first term we have

T|A7BA; — ABA| < T|(Ap — A)BA| + TIAB(Ar — A)|.
That this converges in probability to 0 will follow at once if we can show that
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TY*(Ap — A) = TY?A[G1(A 1) — G(A)] = 0p(1). Since the nth component of
T'?[Gr(Ar) — Gp(M)] is
Tl/z[grn(}\r) - gT,,(}‘)]

= 0. 10 £IX(L) - (L)) = T ZIX(L) = mo (D]

= {0, -TV2[a,(L) - u( D))"} =5 0,
the conclusion does follow. O

We turn now to the test involving differences among sample characteristic
functions of the various epochs, which is based on the sensing function

g(XM(L); ) = {cos A, X2(L),sin \,X7(L),...,
cos A, X (L),sin Ay XML)Y.
Here J is an even, positive integer; X7(L) = X+ A, X1 + -+ +Ao . X 1

and AER,,,,, , comprises the vector Ay = {1,Aq,...,Aq.} and the scalars
{A;}723. To rule out obvious violations of (A.4), we require that

(5.2) 0<A1<A2<”' <AJ/2'

(3.4)

Under these conditions the following lemma, proved in Epps (1987), establishes
(A3).

LemMa 5.3. If {X,} is a stationary, Gaussian process satisfying (A.1) and if
&(X,(L); \) is given by (3.4), then the fourth-order cumulants {;,,(q, 1, s; A),
J Rk lme(1,2,...,J},q,r,s=0,+1,+2,...} satisfy

Sup—oo<q<oozio=—oo lxjklm(q’ r,q + r; A)I < 0.

Assuming that (A.4) holds, the limiting distribution of @(A) now follows
from Theorem 4.2.

Similar quadratic forms in elements of the empirical characteristic function
have been widely applied in estimation and, especially, in testing goodness of fit;
see, for example, Feuerverger and McDunnough (1981), Koutrouvelis (1980),
Koutrouvelis and Kellermeier (1981), Epps and Singleton (1986) and Epps (1987).
Although these procedures are relatively simple and have considerable intuitive
appeal, their obvious disadvantage is the need to select a priori the arguments of
the characteristic function. In the present context these arguments are the
points in R ; ,, represented by products of the vector A, with the scale factors
{A,}/Z3. Practical considerations do, however, eliminate some of the ambiguity in
choosing JJ and the elements of A. For one thing, J must be fairly small if the
matrices (I'y ,(A))} are to be inverted; and, fortunately, sampling experiments in
other applications have shown that good results can usually be obtained with </
as small as 4, and often as small as 2. For the same reason the distance
[Aol IA; = X;| between any pair of arguments must not be too small, relative to
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the scale of the data. Of course, since the scale of the data can usually be
determined only from the sample, the last requirement complicates the distribu-
tion theory of the test by making the arguments data dependent.

The next result shows that, under certain conditions, such dependence on the
sample does not alter the limiting distribution of @,(\). Since the main interest
is in scaling the arguments of the characteristic function, we allow only the scale
factors Ay, Ay, ..., A/, to be sample dependent.

THEOREM 5.2. Let A = {A, A,,.. A J/2) be a vector of constants satisfying
(5.2) and choose Ap = (A, A,, ... XJ/z} where the statistics {5\ i} satisfy

(5.3) A=A =0x(T"V2) asT - o0, jE{1,2,..., J/2},
(5.4) Plo<f, <f,< - <X, ,<C)=1, T=12,..,

for some ﬁmte C. If @p(M) and Qr(Ar) are constructed from (3.4) with T. T, n
and My as in Theorem 5.1 and if the remaining conditions of Theorem 42
hold, then Qr(A7) and Q4(A\) have the same limiting distribution as T — .

Proor. Conditions (5.3) and (5.4) satisfy assumptions (A.8) in Epps (1987).
Lemmas 3.2 and 3.3 in Epps (1987) then assure the consistency of T r,, (A7) and
the weak convergence of the normalized vectors &r(A) on the space "of continu-
ous functions on [0, C]. With these results the extension of the present Theorem
4.2 to Ay follows along the lines of the proof of Theorem 3.1 in Epps (1987). O

As we have seen, the elements of &r(A) in each epoch n are components of the
empmcal characteristic function of X ”(L) The purpose of the a priori bound C
in (5.4) is to limit the domain of the characteristic function to a bounded interval
in R,, which is required for the weak convergence of the normalized &r(A) [Epps
(1987), Lemma 3.3, Remark 2].

As an example of a choice of A which satisfies (5.3) and (5.4) and provides the
desired scale adjustment, pick constants {X,}7/% satisfying (5.2), and some small
e > 0. With S, representing the sample standard deviation of the data from
epoch 1, let

A= min{XN;/¢e, N;/S,},  j€{1,2,..., J/2)}.

The A ; are now ordered and bounded with probability 1, thus satisfying (5.4)
with C = X, ,/e. Letting

A= min{N,/¢, X;/0,},
(5.3) follows from (A.1) and Theorem 8.3.3 of Anderson (1971), page 465 ff.

" 6. Monte Carlo experiments. As a preliminary study of the finite-sample
performance of the stationarity test, simulation was used to estimate type I
errors and powers of tests based on two versions of each of sensing functions (3.3)
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and (3.4). These are
1. marginal mean-variance test (MMYV), based on (3.3) with L = 0 and (L) =

ﬁ'n = X_n = Tn—lzt th;

2. bivariate mean-variance test (BMV), based on (3.3) with L =1, X*(L) =
X —125X", p(L) = —025X;

3. marginal characteristic-function test (MCF'), based on (3.4) with L = 0, J = 4,
X, =05/8, %, =10/8;

4. bivariate characteristic-function test (BCF), based on (3.4) with L =1,
XML)=X- 125X and J and {},, X,)} as in the MCF test.

The choice of X*(L) in the two bivariate tests was made experimentfilly.
“Prewhitening” the data with the linear filter X, — 1.25X, , turns out to
improve the accuracy of the test while preserving some sensitivity to a change in
mean. The values of J and {4, X,} in the MCF and BCF tests are based on
extensive simulations reported in Epps and Singleton (1986), which introduced a
characteristic-function test for the classical two-sample problem with i.i.d. sam-
ples. Considering both power and computation, the best overall results were
obtained in the ii.d. case with the characteristic function evaluated at J/2 = 2
points, corresponding approximately to the values of A, and 5\2 given previously.

The following results are for N = 2 epochs. Parameters a, and a, in the
truncation function My in (4.10) were set equal to 1.0 and 0.4, respectively. The
present study is “preliminary” in the sense that we have not examined exten-
sively the effects of varying these and other parameters. Results were obtained
for epochs of length (T3, T;) = (50,50), (50,100), (100,100), (100,200) and
(200, 200), but for brevity only those for (50, 50) and (200, 200) are reported. For
the same reason estimates of type I errors and powers are given for level 0.05
only.

Table 1 presents the estimates of type I errors from simulations of 500 trials,
with standard errors of roughly 1%. Nine different stationary models were used

TABLE 1
Monte Carlo estimates (500 replications) of 5%-level type I errors of
MMV, BMV, MCF and BCF tests (in percent) for epochs
of equal length, 50 and 200

Model for MMV BMV MCF BCF
epochs 50 200 50 200 50 200 50 200
IID 6.2 6.2 2.6 1.0 9.4 6.0 2.6 1.6
AR(0.2) 9.6 6.8 3.6 1.6 11.2 8.0 2.8 3.0
AR(0.8) 34.2 19.4 6.2 5.6 27.4 16.2 5.4 5.4
AR(-0.2) 52 5.2 2.6 1.0 8.0 5.0 2.2 1.8
AR(-0.8) 10.8 6.6 7.8 5.0 9.2 5.8 4.4 3.4
© MA(0.2) 8.8 7.0 3.8 16 10.2 8.2 2.4 3.2
MA(0.8) 108 8.2 3.6 2.2 9.6 8.4 3.2 3.8
MA(-0.2) 5.2 5.4 2.8 1.0 7.8 5.2 2.4 1.8

MA(-0.8) 4.0 1.2 2.4 1.0 5.0 18 2.6 1.4
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TABLE 2
Monte Carlo estimates (100 replications) of 5%-level powers of BMV and BCF tests
(in percent) for epochs of equal length, 50 and 200

Models for epochs BMV BCF
Type of nonstationarity Common features 50 200 50 200

Mean shift
plp+o AR(0.8), o 35 82 21 72
ple+o MA(0.8), ¢ 13 100 9 98
Variance shift
o|1.50 AR(0.8), p 64 100 49 100
g|1.50 MA(0.8), p 56 99 41 98
ARMA structure
AR(0.8)|AR(0.2) I 100 100 91 100
AR(0.8)| MA(0.8) u 100 100 94 100
MA(0.2)|[ MA(0.8) N 3 4 0 6
Law of errors®
N(0,1)|Student #(3) AR(0.8), p, 0 16 16 20 54
N(0, 1)|Student #(3) MA(0.8), n, o 19 11 14 47
N(0, 1)|beta (2, 2) AR(0.8), p, 0 7 3 4 6
N(0, 1)|beta (2,2) MA(0.8), 1, o 2 2 2 3
Unit roots ’
AR1(1.0) 67 85 51 79
AR2(2/3,1/3) 57 83 50 79
Mean variance drift®
p—p+ 20 AR(0.8), 0 10 80 6 71
p—p+ 20 MA(0.8), ¢ 4 100 1 96
o — 30 AR(0.8), 17 100 10 100
o - 30 MA(0.8), n 9 100 6 100

#Student and beta variates standardized to have zero mean and unit variance.
PLinear drift over observations ¢ = 21,22,...,420: p, = 20(t — 21)/400, ¢, =
[1 + 2(¢ — 21),/400].

to generate the epoch samples. Letting {U,} represent a sequence of i.i.d.
standard-normal variates, the models are (1) IID: X,= U, (2) AR(p): X, =
pX, ,+ U, p= 102, +08 and (3) MA(p): X,=pU,_, + U,, p = +£02, +038.

In each case 420 observations were generated and the first 20 discarded. Epoch 1
comprises the T) observations ending with number 220; epoch 2, the T, observa-
tions beginning with number 221.

Table 1 shows that the MMV and MCF tests can be badly excessive, even
with samples as large as 200. This is particularly noteworthy when the data are
autoregressive with p near 1.0. By contrast, the two “bivariate” tests appear to
be reasonably accurate, if somewhat conservative, even for samples as small as
50. The same conclusions hold for other epoch lengths and significance levels not
reported here. It is clear that the accuracy of the tests is improved by the
“prewhitening” that takes place in the bivariate versions.

* Table 2 presents 100 trial estimates of the powers of the two bivariate tests to
detect six different forms of nonstationarity: (1) shifts in mean; (2) shifts in
variance; (3) changes in ARMA structure; (4) changes in the probability law of
the ARMA errors {U,}; (5) unit roots in AR models and (6) drift in mean or
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variance. The last three of these violate the assumptions under which the
large-sample theory shows the tests to be consistent. Nevertheless, both tests are
rather sensitive to the presence of unit roots and to drifts in mean or variance.
Although the BCF test has some ability to detect a change in law from the
normal to the thick-tailed Student #(3), it seems unable to distinguish Gaussian
from thin-tailed processes, such as beta (2,2) and the truncated normal (not
shown). In detecting shifts in mean or variance and changes in model structure
the BMV test is generally more sensitive than the BCF test, but both seem
generally quite satisfactory. In the form tested here neither has power to
distinguish MA(0.2) from MA(0.8), because the marginal distributions of the
filtered processes {X;* — 1.25X*,}, n = 1,2, are nearly identical: N(0,2.1650)
and N(0,2.2025).
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