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This paper discusses the possibility of #ruly nonparametric inference
about functionals of an unknown density. Examples considered include:
discrete functionals, such as the number of modes of a density and the
number of terms in the true model; and continuous functionals, such as the
optimal bandwidth for kernel density estimates or the widths of confidence
intervals for adaptive location estimators. For such functionals it is not
generally possible to make two-sided nonparametric confidence statements.
However, one-sided nonparametric confidence statements are possible: e.g.,
“I say with 95% confidence that the underlying distribution has at least
three modes.” Roughly, this is because the functionals of interest are semi-
continuous with respect to the topology induced by a distribution-free metric.
Then a neighborhood procedure can be used. The procedure is to find the
minimum value of the functional over a neighborhood of the empirical
distribution in function space. If this neighborhood is a nonparametric 1 — a
confidence region for the true distribution, the resulting minimum value
lowerbounds the true value with a probability of at least 1 — a. This lower
bound has good asymptotic properties in the high-confidence setting a close
to 0.

1. Introduction. Let F denote a cumulative distribution function, f and
f® its density and derivatives (when they exist).

Nonlinear functionals of f and f‘ are ubiquitous in the literature of
theoretical statistics. A brief catalog would include:

L,-norms
(1.1) Li(F) = ( J( f<k>)2)l/2
L,-norms ’

(12) L) - ( firop )

1 < p < o0; and L_-norms

(1.3) Lo (F) = sup|f ®(x)|;

1/p
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Fisher information

(1.4) I(F) = [(£)/f;
and the (Shannon) negentropy
(1.5) A(F) = ff log f.

Two integer-valued nonlinear functionals worth mentioning are mixture com-
plexity K(F) (the number of mixture terms needed to represent a density, see
Section 4 below) and M(F'), the number of modes of F.

The contexts in which these occur are varied, but many of them are of distinct
interest from the point of view of actual applications. For example, knowledge of
LY and T allows one to set confidence intervals for the Hodges-Lehmann and
adaptive location estimators, respectively. Knowledge of L} and L3 allows one to
choose the smoothing parameter for histograms and kernel density estimates.
The problem of selecting model size K(F) is of real practical interest. L) can be
related to the power of certain tests for uniformity. And I and A have useful
applications in deconvolution and projection pursuit.

Of course, in any applied setting, the value of such functionals at the
unknown true distribution is unknown. It is therefore of interest to obtain, based
on empirical data, information about the value of such functionals. However,
there is an immediate logical difficulty with this. The functionals all depend on
the true distribution having a well-defined density with a certain amount of
regularity. For example, the existence of Fisher information requires that the
distribution have a density whose square root is differentiable in quadratic mean.
Such an hypothesis is not empirically verifiable. Thus one is in the position of
attempting to obtain an empirical estimate of a quantity whose very existence is
not subject to empirical test.

The point of this paper is that sense can be made out of what might
otherwise seem a problem of circular reasoning. It is possible to make inferences
about the values of functionals such as (1.1)—(1.4) with a truly nonparametric
validity. The inferences, however, are of a restricted, one-sided nature. Thus one
can make statements of the form, “I have 95% confidence that the number of
modes of the underlying distribution is at least 3.” These statements, if con-
structed by the procedure given below, have at least the indicated coverage
probability, whatever be the underlying distribution (smooth, singular or dis-
crete); they depend on no hypothesis about the underlying distribution and are
totally empirical. Moreover, as the paper will show, the one-sided bounds set by
this procedure are good in the sense that they are consistent (converge to the
true value of the functional as the sample size increases) and converge (under
regularity) at rapid rates.

In short, there are nonparametric lower bounds for many functionals of
iriterest and these have good sampling properties. In most applications it is
precisely the lower bounds that are of interest. Knowing that the number of
modes or the number of mixture components is at least so big rules out many
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crude models. Knowing that the Fisher information is at least so big sets an
upper bound on the size of an asymptotic confidence interval and allows for
conservative inference.

The contents of this paper are as follows. Section 2 discusses the problem of
placing nonparametric upper bounds on functionals such as those discussed
above and adapts an idea of Bahadur and Savage to show that in nonparametric
settings it is not generally possible to do so. Section 3 gives an explicit construc-
tion of lower bounds for lower semicontinuous functionals. Called the neighbor-
hood procedure, it involves solving an optimization problem: Find the minimum
value of the functional over a neighborhood of the empirical distribution and
report that value as a lower bound on the value of the functional at the true
distribution. The nonparametric validity of the lower bound is immediate if the
neighborhood is a nonparametric confidence region for the true distribution.
That the lower bound is good, i.e., is not much smaller than the true value,
depends on asymptotic analysis. The high confidence case is considered, where
the coverage probability is near 1 in large samples. Using elementary properties
of the lower envelope of a semicontinuous functional, consistency holds (i.e., the
lower bound tends to the true value) at every point of semicontinuity and a
speed of convergence holds at every semi-Lipschitz point.

Applications are given to the functionals described above in Sections 4 and 5,
where lower semicontinuity and lower semi-Lipschitz properties are derived.
Section 6 gives some applications; the nonparametric validity of the lower
bounds is useful for constructing consistent empirical procedures with conserva-
tive properties. Section 7 considers some generalizations of the present work and
Section 8 discuses some broader issues it raises.

Some notation. J refers to an unspecified functional such as those men-
tioned above (L% I, K, M, etc.). F, G and H represent distribution functions
and f, g and A ordinary functions (generally densities). P is the set of all
probabilities on the real line R. L, denotes the traditional space of locally
integrable functions with integrable pth powers. Occasionally, notation will be
abused by saying that a distribution F belongs to L, or some other function
space. The intended meaning is that F' has a density that belongs to that space.
® denotes the Gaussian distribution and ¢ denotes the Gaussian density. F*G
denotes the convolution of distributions F and G.

2. Nonexistence of upper confidence bounds. Bahadur and Savage (1956)
showed that in general there is no way of setting confidence intervals for the
mean which will give nonparametric validity. This section will show that this is
true of many other functionals as well—especially the ones of interest for this
paper.

The key idea is that near any distribution of interest, there are empirically
_indistinguishable distributions (indistinguishable at a given sample size) where
the functional takes on arbitrarily large values. It is not possible then in
principle to place an upper bound on the value of the functional solely in terms
of empirical data: untestable a priori assumptions would be necessary.
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Formalizing this idea requires some topological notions. Let F be the set of
distributions in which the true distribution is known to lie: examples being the
set of all distributions and the set of all distributions in some neighborhood of
the normal distribution. Equip F with the testing topology as follows. Let r
denote the testing metric

(2.1) (F,G) = sup

0<V¥<1

b

f\IrdF—f\IrdG

the supremum is over all measurable functions on R with values in [0, 1]. This
distance is usually called the variation distance. We call it the testing distance to
emphasize the following basic fact: This distance is small if and only if the best
test between F and G has a poor chance of distinguishing the two [Le Cam
(1973) and (1986), Chapter 4]. Indeed, if 7(F,G) = ¢, then any test based on a
single observation has a sum of type I and type II errors of at least 1 — ¢/2.
Moreover, by Lemma A.1, if 7(F,G) < 2(1 — (1 — €2/8)!/™), then the best test
based on n i.i.d. observations has a sum of type I and type II errors of at least
1 — ¢/2. Thus, at any given sample size n, if 7(F, G) is small enough, F and G
are difficult to tell apart based on n observations.

Let J be the functional of interest and let J € R be its range (e.g.,
R,R*,Z,Z"). Give J the topology it inherits from R and give the product space
F X J the product topology. We suppose that </ is well defined on a dense subset
dom(J) of F (e.g., the set of densities with a finite L,-norm, etc.).

Now define the graph of / over F in the obvious way as a set of ordered pairs:

(2.2) graph(J,F) = {(F, J(F)): F € dom(J) N F}
and let the epigraph be everything “above the graph”:
(2.3)  epigraph(J,F) = {(F, j): Fe€ dom(J) N Fand j > J(F)}.

DEFINITION.  is said to satisfy the dense graph condition (DGC) if
(2.4) graph(J, F) is dense in epigraph(J, F).

The DGC cannot generally be satisfied by a 7-continuous functional, since
continuity implies a closed graph and DGC implies something at the other
extreme. A functional satisfying DGC is badly discontinuous: In any neighbor-
hood of a point, it takes on arbitrarily large values. As a result, there is no useful
upper confidence bound valid uniformly over F.

THEOREM 2.1. Let X,, X,,..., X,, be a random sample from some distribu-
tion F € F. Let C, be a confidence interval determined by the value of this
sample. Let J satisfy DGC over F. If somewhere in F, C, asserts a nontrivial
upper bound, then somewhere in F the coverage probability of C, is 0. Formally,
if B=sup{j: j€J)} (e.g, B= +») and if

sup P.{B¢ C,} =1,
FeF
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then
inf P.{J(F) e C =0.
Fl' F F{ ( ) n}

PRrROOF. Let § > 0 and choose a distribution F; € F at which

The upper endpoint of C,, B, = sup{x € C,}, is smaller than B with F;-prob-
ability at least 1 — 8. Let 8 be a 1 — 2§ quantile of the distribution of B,, i.e.,
(2.5) P, {B,<B} =1-24.
B can be chosen less than B because of the last remark. Now let G5 be a
distribution so close to Fj that .
(2.6) (B, Gy) < 2(1 - (1 - 82/8)"7")
and (by the DGC)

J(G;) > B.
Consider the function ¥, on R* which is the indicator of the event {B, < 8}.
Since {B, < B} implies {J(G;) ¢ C,} we have
(2.7) P;{J(G,) & C,} = P;{B, < B} = Eaé,.)\l'(”),
where G{™ is the product measure on R" obtained from G;. We wish to show
that the expectation on the right-hand side is large. We now invoke Lemma A.1,

which shows that the bound (2.6) on the one-dimensional testing distance implies
that

(2.8) (G, ) < 8,

where F{™ is the product measure on R” obtained from F; and (™ denotes the
n-dimensional testing distance. The lemma is based on inequalities between
variation and Hellinger distance; see Le Cam [(1973), (1986)] or Pitman (1979).
Now (2.8) yields

|Egem¥, — Egm¥,| <8,
which, plugged into (2.7), yields
P;{J(G;) & C,} = Egw¥, — 8
=P {B,<B} -8=1-34,

the last inequality following from (2.5). As 8§ > 0 was arbitrary, this completes
the proof. O

While functionals satisfying the DGC may seem wildly pathological, they are
common when F is truly nonparametric. Intuitively, a truly nonparametric
family of distributions has the property that, when it contains a distribution F,
it also contains all other distributions which cannot be reliably distinguished
from F at a given sample size based on any empirical tests. No distribution
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which produces samples very much like those actually seen should be ruled out
a priori.

Following this line of reasoning, we arrive at the requirement that, for F to be
nonparametric, it should contain at least a small 7 neighborhood around essen-
tially every point. Formally,

DEFINITION. The family F is strongly nonparametric if its r-interior is
dense in F.

Under this definition, the following are strongly nonparametric families:

1. the set of all distributions,

2. the set of all distributions satisfying a goodness-of-fit test, { F: 8(F,; F) < d},
where § is a consistent goodness-of-fit statistic such as the Cramer —-von Mises
or Kolmogorov.

The following are not strongly nonparametric:

3. a finite-dimensional parametric model,

4. a set of distributions all satisfying a quantltatlve regularity condition, such as
(F: LY F) < 128.364),

5. a set of distributions with common compact support, e.g., [0,1].

While (3)-(5) may seem appealing models in many settings, it should be empha-
sized that if one claims to know that the unknown distribution lies in such a set,
one is using information external to the sample to do so.

Under this definition, nonparametric upper bounds are unavailable for the
functionals of Section 1.

THEOREM 2.2. If F is strongly nonparametric, the following functionals
satisfy DGC over F:

. the number of modes, M(F),

. the mixture complexity, K(F),

. any L,-norm of any derivative of the density,
. Fisher information, I(F),

. negentropy, A(F).

Qv O

This proof is given in the Appendix. Intuitively, these functionals are all
measures of the wiggliness of a density. But it is possible to make the density
arbitrarily more wiggly via an arbitrarily small r perturbation. Figure 1 shows
how a density can be perturbed in this way.

The theorem says that data alone cannot rule out the possibility of wiggles in
the density at a scale too narrow to have been observed at the given sample size.
Consequently, measures of wiggliness cannot be upperbounded based on the data
alone.

What about lower bounds? It is clear from the above that if both J and —<J
satisfy DGC, lower bounds are not available either. Using this observation, one
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F1c. 1. A density with three modes and a small perturbation of it with nine modes.

can show that if F is large enough, there are no nonparametric lower or upper
bounds for functionals such as the mean. This was the point of Bahadur and
Savage’s original work; their argument is at the core of Theorem 2.1. The present
abstract approach is adapted to general functionals and can be used to show
(surprisingly) that neither upper nor lower bounds are available for the negen-
tropy A. One can also show that the only nonparametric bounds for functionals
such as the density indicator,
D(F) = {1, if ¥ hgsadensity,

0, otherwise,
are the trivial ones, i.e.,

D(F) <1,

D(F) > 0.
However, the paper will now focus on positive results.

Actually, the functionals introduced in Section 1 (except for the negentropy
A) do admit of lower bounds. Intuitively, this is because in a neighborhood of a
smooth density one can find densities which are much wigglier, but none that are
much smoother. Mathematically, this is because these functionals (despite their
pathological graphs) have closed epigraphs. The significance of this for inference
is apparent from Figure 2. Suppose that by empirical or other means we are able
to conclude that the true distribution generating the data must lie in a small
neighborhood N. This information gives a lower bound to J(F)—namely, the
least value of ¢ in that neighborhood; this is indicated in Figure 2.

;) 4 ///
i X

Epigraph(JF)
- >
N F

F1G6. 2. A functional with closed epigraph. The information that the true F lies in a neighborhood N
provides the lower bound j* on the value of J(F).
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A functional with closed epigraph is called lower semicontinuous. The basic
idea just described is that it should be possible to set lov.er confidence bounds for
lower semicontinuous functionals. This idea is developed in detail in the next
section.

3. Construction of lower confidence bounds. The construction of lower
confidence bounds, as just indicated, depends on a topological property of J. It
will be convenient to switch gears somewhat and focus on a weaker topology
than the testing topology.

The Kolmogorov, or sup-norm, is defined by

(8.1) |F - G| = SI;plF(t) - G(¢)l.

This distance makes sense between any distributions, is bounded by 1, is strictly
smaller than the testing distance (i.e., gives bigger balls for the same nominal
radius) and, most importantly, the Kolmogorov distance between the empirical
and the true distribution is distribution-free. Let F, denote the empirical
distribution of a sample from F and U, denote the empirical of a sample from
the uniform distribution U on [0, 1]. Then for each & > 0,

(3.2) prob{|F, — F| < &} > prob{|U, — U| < ¢}

with equality for every continuous F. This sort of property is fundamental to
nonparametric constructions.

The functional J will be said to be norm lower semicontinuous (| - |-ls.c.) if,
for every sequence F, of distributions satisfying |F,, — F| — 0, we have
(3.3) liminfJ(E,) > J(F).

n—oo

Among other things, this requires that at every point where the definition of
J could be ambiguous, J takes the least value. As indicated above, (3.3) is
fundamental to our construction of lower confidence bounds.

3.1. The lower envelope of a functional. Let J be an arbitrary functional
and define the e-lower envelope of J by

(3.4) J(F;e) = inf{J(G): |G — F| < ¢}.
That is, J(F; ¢) is a lower bound on the value of J(G) given the information

that |F — G| < e. This lower bound has two parameters, F and ¢, and regular
behavior with respect to each of these.

LEMMA 3.1 (Behavior in ¢). J(F; -) is a monotone decreasing function of &.
If J is lower semicontinuous, J(F, -) takes the lower value at jumps, and its
value at ¢ = 0 is just J(F).

~ PROOF.
(35) J(F; ¢) is monotone decreasing in &
because the neighborhoods {F: |F — G| < &} increase with increasing e.
(3.6) J(F; ¢) is lower semicontinuous in &
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if J is lower semicontinuous in F. This is immediate from the alternate
definition of lower semicontinuity, namely that the sets {G: J(G) > j} are open.
If J(F; ¢) took the larger value at a jump, we could show that such a set was not
open. Define

38.7) J(F;0) = lirr(l)J(F; €).

This makes sense by (3.5). Combining (3.7) and (3.3) we conclude that if J is
|+ |-ls.c., '

(3.8) J(F;0) = J(F). a

LeMMA 3.2 (Behavior in F). If J(:) has any of these properties, so does
J(;e):

(3.9) | semicontinuity
(3.10a) convexity

(3.10b) translation invariance
(3.10¢c) scale invariance
(3.10d) decrease under convolution.

Proor. (3.9) follows just as (3.6). (3.10b) and (3.10c) both follow from the
scale and translation invariance of the Kolmogorov neighborhoods: |G — F| < ¢
if and only if |G((- — t)/s) — F((- — t)/s)| < &.(3.10a) and (3.10d) are due to the
convexity of the Kolmogorov neighborhoods: (1 — §)N(F;) + dN(F)) C
N(1 — 8)F, + 8F,), where N(F)= {G: |G — F| <¢. 0O

In short, J(F; ¢) is at least a regular of functional as F as J. Often it is
considerably more regular continuous or even Lipschitz continuous.

LEMMA 3.3 [Bounds on J(F; ¢)]. For every G and F,

(3.11) J(G,e) > J(F; e+ |F - G))
and if |F - G| <,
(3.12) J(F) > J(G, &) > J(F,2¢).

PROOF. Since an ¢ + |F — G| ball around F must contain an ¢ ball around
G (use the triangle inequality), the infimum of </ over the larger ball cannot be
larger than the infimum over the smaller. This establishes (3.11). To get (3.12),
combine (3.11) and (3.4). O

3.2. Statistical applications of the lower envelope. Let X,,..., X, be iid.
. according to some unknown distribution function F. Let F, be the empirical
distribution function F(x) = #{i: X;<x, 1 <i < n}/n. The basic idea for
setting a lower confidence bound on «/ is to let ¢, be some fixed positive number
and use J(F,; ¢,) as a lower bound for J(F).
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To see that this can work, note that
Pe{J(F,; ¢,) < J(F)} 2 Po{|F, - F| < ,}
because, by (3.4), the event {|F, — F| < ¢,} implies {J(F,; ¢,) < J(F)}. On the
other hand the probability on the right-hand side is distribution free, by (3.2).
Thus we have:

~ PROPOSITION. If ¢, is the 1 — a quantile of the distribution of |\U — U,|,
then
(3.13) Po{J(Fe,) <J(F)}21-a

whatever F is. In other words, J(F,; ¢,) is a lower confidence bound for J(F)
with a nonparametric coverage probability of at least 1 — a.

It may help to think of this procedure in terms of neighborhoods. One is
putting down a 1 — & confidence region in function space for the true distribu-
tion. The value J(F,; ¢,) is the least value of the functional </ over this region.
With probability 1 — a, the true distribution lies in this region, and when this
happens, J(F,; ¢,) is less than J(F'). Consequently the lower bound has the
advertised coverage probability.

Of course, having a nonparametric coverage probability is only part of the
story. The trivial bound — oo has an excellent nonparametric coverage probabil-
ity. One also wants to have the slack J(F) — J(F,; ¢,) be small while still
satisfying (3.13).

It is difficult to study the properties of this slack, for general J, except
asymptotically. That is, instead of considering one fixed sample size, one consid-
ers a sequence of problems of size n — 0. Then, allowing ¢, to depend on n, one
attempts to understand the behavior of J(F) — J(F,; ¢,) for large n.

There are two interesting ways that ¢, can depend on n. First, one can have

(3’14) PF{‘Fn - F| =< sn} -1

this is the high confidence setting where we want a very conservative lower
bound on J. Alternatively, one might have

(3.15) PA|F,—Fl<e,} 21— a;

this is the moderate confidence setting. As it turns out, the first setting is much
simpler to analyze than the second.

3.3. Analysis in the high confidence setting. A slight strengthening of (3.14)
will be quite useful. Say that ¢, goes to 0 slowly enough if ¢, — 0

(3.16) Py{|F, — F| < ¢, foralmost all n} =1
(below, “almost all n” means “for all but finitely many n” and will be

abbreviated a.a.n.). By the Chung-Smirnov law of the iterated logarithm, a
sufficient condition for (3.16) is

n
3.17 lim inf ‘/— > 2712,
(817) e ") loglogn
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see Csorgd and Révész [(1981), page 157]. In other words, if ¢, goes to 0 a little
more slowly than n~'/% the event {|F,, — F| < ¢,} will happen for all but finitely
many n, with probability 1. But then (3.12) can be used with F, playing the role
of G, and we conclude:

THEOREM 34. If ¢, = 0 slowly enough,
(3.18) J(F) > J(F,;e,) >J(F;2,) a.a.n.
with probability 1.

This bound is useful because it brackets the random quantity J(F,; e,)
between two deterministic ones. It has two main corollaries.

COROLLARY (Consistency). If J is norm-l.s.c. and if €, = 0 slowly enough,
then J(F,; €,) is universally consistent:

J(Fy; e,) 2o J(F)
and converges from below:
J(E,;¢,) <J(F) a.a.n.,
with probability 1. '

ProoF. By (3.7), J(F;2¢,) = J(F). Now use (3.18). O

DEFINITION. ¢ is said to be lower semi-Lipschitz of order p at F if

(3.19a) J(F) — J(F;¢) = O(¢").
COROLLARY (Rates). If (3.19a) holds and if ¢, — 0 slowly enough,
(3'19b) J(F) - J(Fn; 8n) = Oa.s‘(sft)'

ProoFr. If (3.19a) holds, then the same is true with 2¢ in place of e&. Now use
(3.18). O .

These two corollaries relate statistical properties of J(F,; ¢,) (convergence
and rates of convergence) to analytical properties of the functional ¢/ (semicon-
tinuity and semi-Lipschitz bounds). In the cases where o/ is either integer-valued
or convex, these analytical properties are not hard to establish.

4. Discrete functionals. This section applies the lower bounds technology
of the last section to two functionals with discrete values: the number of modes
of a distribution and the order of the true model.

4.1. Lower semicontinuity. Consider first the functional M counting the
number of modes. There is some ambiguity in the definition of this functional:
For example one might argue that the uniform distribution U has only 1 mode
or that it has infinitely many. Of course, the lower semicontinuous version of the
functional will have only 1 mode.
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To define such a version, use a device introduced by Silverman (1981). Let F
be an arbitrary (e.g., discrete) distribution, and @, denote the Gaussian distribu-
tion with variance k. Consider the convolution ®, * F; this is a distribution with
smooth derivatives of any order (since (d/dt)*(®, * F) = [(d/dt*)®,]* F). In
particular, it has a smooth second derivative. It therefore makes sense to define
the number of modes of ®,* F, M(®, * F) as the number of downcrossings in
the second derivative of this curve. Silverman’s observation is that M(®, * F) is
monotone decreasing in A. This uses two special properties of the Gaussian
distribution: the variation-diminishing property [Karlin (1968)] and the semi-
group property @, *®, = &, ., .1In any event, we can define

(4.1) M(F) = ’lzin})M(Qh* F)
and this makes sense due to the indicated monotonicity'in A.
LEMMA 4.1. M(F) is norm lower semicontinuous.

ProOF. Fix 2> 0. Let F, > F in norm and let f;, and f; denote the
second derivatives of @, * F, and ®,, * F. An integration by parts gives

114, — 141 < |F, = FI 1289,

so the derivative curves converge uniformly. It is then clear that eventually f ,
must have as many downcrossings as f;:
liminf M(®,*F,) > M(®,*F),
n—oo
but by monotonicity M(F,) > M(®, * F,) and so
liminf M(E,) > M(®,*F);

n-— oo

so now the result follows from (4.1). O

Consider now a functional related to model selection. Let {G,: § € 0} be a
parameterized family of distributions and let K(F), the mixture complexity of
F, be the least number of G-components necessary to exactly represent F.
Formally

k
(4.2) K(F) = inf{k: F=Y ,B,.G(,;},
i=1
and K = + oo if F has no finite representation.
The family {G,} will be said to be closed if the set G, = {L¥,8,Gy: LB; = 1,
B, >0, 6, € ©)} is closed under norm convergence for each k. The following
analytic criterion can be used to establish closure.

LEMMA 4.2. If norm convergence of (Gydp,(0) = [Gydu(0) implies weak
convergence u, = L, then the family G, is closed.
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Proor. If p is a discrete measure with & points of support, weak conver-
gence implies that eventually every member of the sequence p, will have at least
k points of support. O

This lemma can be used to show that a translation family is closed if the
Fourier transform of its kernel never vanishes. Thus the Gaussian translation
family G, = ®(- — ) is closed. Similar conclusions for the normal scale family
follow from a condition on the Mellin transform. Any totally positive family will
work as well.

Once closure is established, semicontinuity is easy:

LEMMA 4.3. If the family {G,)} is closed, the K(F') is norm lower semicon-
tinuous.

ProoF. If the family is closed, then if K(F) =k, F is at a distance 6 > 0
from G,_,. Consequently, if F, - F, as soon as |F, — F| <4, K(F,) >k — 1.
(3.3) follows. O

4.2. Rate of convergence. For all lower semicontinuous functionals the the-
ory of Section 3 implies that if ¢, — 0 slowly enough, the slack in the lower
bound J(F) — J(F,; €,) tends almost surely to 0. For discrete functionals, such
as M and K, something much stronger is true. By Lemma 3.1, J(F;¢) is a
nonincreasing integer valued function of &, constant except for jumps, and at
each jump takes the lower value. The picture is as in Figure 3.

Thus the graph of J(F; ¢) versus ¢ is a stairstep, and if J(F') < oo, it has a
last step extending from O out to some value *(F'). For all ¢ in the range
[0, e*(F)], J(F;e) = J(F;0) = J(F). Comparing with (3.18) one sees that as
soon as 2¢, < €*, one has J(F,; ¢,) = J(F) whenever the high probability event
|F, — F| < &, occurs. There are standard bounds for the probability of this event.

THEOREM 4.4. Every integer valued l.s.c. functional can be lower bounded
with a slack tending to 0 at a rate that is ultimately exponential. Formally, at

J(F;¢e)

} >
le* 8

F16.3. J(F: ¢) for an integer-valued functional.



ONE-SIDED INFERENCE FOR FUNCTIONALS 1403

each F where J(F) < oo, there is an £*(F) > 0 such that
(4.3) Po{J(F,;¢,) <J(F)} < 4/2 exp{ —-2n(e* —¢,)> }

Proor. Using (3.11), one sees that if ¢, + |F, — F| < ¢*, then J(F,;¢,) >
J(F'). Consequently, the probability on the left is no greater than the probability
that |F, — F| > (¢* — ¢,),. The right side of (4.3) is simply an exponential
bound on the probability of this event. The particular bound is an application of
the Dvoretzky—Kiefer—Wolfowitz inequality with the constant ¢ = 4y2 estab-
lished by Hu (1985). Compare Shorack and Wellner [(1986), pages 354-356]. OI

Of course, £*(F') is unknown. If it were possible to bound &* away from 0
based on empirical observations, then one could construct an upper confidence
bound on J(F) using (4.3). But such upper bounds are not generally available, as
Section 2 showed.

The theorem does not give information about the probability that
J(F,; ¢,) > J(F); this depends on how the user has chosen the sequence ¢, If ¢,
goes to 0 very slowly, this probability goes to 0 rapidly; if ¢, goes to 0 rapidly
[say as (loglog n/n)'/%], this goes to 0 slowly.

5. Convex functionals. This section applies the lower bound technique to
the analysis of L% and I.

5.1. Lower semicontinuity. The functionals of interest are not well defined
on the space of all probability measures. For example, the Fisher information
may be written as I = 4/ ((ﬂ (x)))%. Now suppose that f is the density of the
uniform (0, 1) distribution. Then, one might argue that, as d/dx/f(x) = 0 a.e.,
we should put I = 0 in this case. On the other hand, as we know that one can
estimate the location of the uniform (6,1 + 6) family at a rate faster than n~1/2,
we might argue from the statistical interpretation of Fisher information that at
the uniform distribution we must put I = + 0.

Happily, there is no ambiguity about the value of J(F) when F has a very
smooth density, e.g., an infinitely differentiable density, for example a density
containing a Gaussian convolution component. As the class of such smooth
densities is weakly dense in the set of all densities, we can use the definition
there to define an extension to all F which'is lower semicontinuous and hence to
which our inference methods apply. The Gaussian convolution technique we
employ was also used by Port and Stone (1974).

LEMMA 5.1. Let J be convex, bounded below and translation invariant.
Suppose that J,(+) = J(®, * - ) is continuous. Then the definition

(5.1) So(F) = lim J(,» F)

always makes sense and defines a convex lower semicontinuous functional.
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Proor. By the convexity of J and the semigroup property of @,,
I(@psn,* F) = I(®y, # @)+ F) < [J(@),x F(- = 1)) dB,(2).

Using translation invariance of J this gives
J(®), 1, * F) < J(®, *F)
S0 .
(5.2) J(®, * F') is monotone decreasing in A.

Consequently, the limit in (5.1) is well defined and exhibits <J, as the pointwise
supremum of a set of continuous functionals. Hence Jj, is Ls.c.; convexity follows
by simple algebra. O

To apply this lemma to a particular J of interest one needs
(5.3) to show that the functionals /(- ) are continuous;
(5.4) toshow that J, = J on the set where we agree that o is well defined.

Then one obtains a convex lower semicontinuous extension J, of JJ to all of P.
For the case J = Lz where 1 < p < o0, the natural domain of this functional
is L’;,, the L,, Sobolev space of order & [Adams (1975)]. Then we have

LEMMA 52. Letk > 0,1 <p < . (a) If {F,} converges in norm to F, then
¢op*F, > ¢,*F inLfasn - oo.
(o) If f € LE, then
op*f—f inLEash—0.

The proof is based on standard ideas in Sobolev spaces and is in the Appendix.
Since L% is a continuous functional on L%, part (a) implies that oJ, is norm
continuous; part (b) implies that J, = </ on L';,. For the case p = o one obtains
that J, = J only if the supremum in (1.3) interpreted as an essential supremum.

Now let J = I. The domain of I is the set of distributions with root densities
differentiable in quadratic mean. The relevant tool is

LEMMA 53. (a) Let {F,} be a sequence of distributions converging in norm
to F. Then

J¢u*F, = [o,*F inLjasn — oo.
(b) Let F have a root density \/f € L. Then

[+ f = inlhash—0.

There is quite a bit one can say about this method of defining these func-
tionals. For example, the use of the Gaussian kernel ®, is not really necessary;
defining J,(F) = sup,,. o J(K, * F), where K,(t) = K(t/h), one can show that
Jy = J, for the functionals o of interest, whenever K is reasonably smooth.
Moreover, one can show (see Lemmas A2 and A.3 below) that under this
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approach, the condition oJ, < oo is equivalent, if J = Lﬁ, to F e Lf, and if
J = I, to F having a root density that is differentiable in quadratic mean.

For a concrete example, in the case of Fisher information, we get that
I, = + oo at the uniform distribution, as it should on statistical grounds.

Let us discuss the statistical interpretation of these extensions. One can show
that if J = L" or J = I, these extensions have the property that Jy(F) is the
smallest poss1ble limit point of all sequences {J(F,)} with {F,} a sequence of
distributions with C* densities converging weakly to F. Thus <J; is a kind of
smallest extension of J; and statistically, this means it is a kind of most
conservative version of <J. Since these functionals are generally used in lower
bounds, conservativeness means that the extended version may often be used in
place of the original one and that this replacement is generally valid. For
example, work of Donoho and Liu (1987) introduces a functional called the
geometric information; this can be shown equivalent to the ls.c. extension of
Fisher information used here. They show that if one uses this functional in place
of Fisher information, the information inequality (Cramér-Rao lower bound)
still holds—without any smoothness hypothesis on the family to which it is
applied. Devroye and Gyorfi [(1985), pages 77-79] use the lower semicontinuous
extension of L2 and show that if one uses this functional in place of L3, bounds
for the risk of kernel density estimation which were developed for the case where
f has two nice derivatives remain valid for all f.

In short, the lower semicontinuous extension of these statistical functionals
off the set of smooth densities makes good statistical sense. See also the two
examples of Section 6. So below, we treat the extended version ¢, as the
functional of interest.

5.2. Rates of convergence. The lower semicontinuity of J implies that the
lower confidence bound J(F,; ¢,) converges to J as n — co. The rate of this
convergence is of interest, as one obviously wants the slack J(F) — J(F,; ¢,) to
be small. Using the result (3.19) at the end of Section 3, it is obviously of interest
to find conditions under which p = 1 in (3.19a). For convex functionals this is
actually easy to do.

DEFINITION. Let J be convex. A support functional for JJ at a point F is a
linear functional A satisfying

J(G) — J(F) = Ap(G — F).

If J has a linear Gateaux derivative J’ at F, then J’ is such a support
functional. In general, a convex function has a set of subgradients < at each F
—each subgradient is a support functional.

DEFINITION. The dual norm [A|, of a linear functional A on the space of
differences of distributions is

MG - F)
5.5 Ay = sup ——————.
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THEOREM 5.4. If the convex functional J has a support functional A at F
with finite dual norm, then (3.19a) holds with p = 1. In detail, we have

(5.6a) J(F) — J(F,¢) < £*(F)e,
where
(5.6b) §(F) = A,,e‘?f;(p)'}‘F'*'

PROOF. Let Ay be a support functional for J at F. Then for any G,

(5.7a) J(G) —J(F)>2Ap(G-F).

By definition of dual norm

(5.7b) Ap(G — F) 2 —[\pl«|G — F,

1) .

(5.8) |Gir;?fqu(G) > J(F) — |Aplse. O

To apply this proposition, we will compute support functionals for different J
of interest. For (the square of) L% we get, using integration by parts & times,

(5.9) Ap(8) = (-1)* [2f @ da,

whenever LZ*(F) < 0. For I we get, after one integration by parts,
(5.10) Ae(A) = [£3(¥ = ¥2/2) dA,

where ¥ = —f’/f and ¥’ is supposed to exist in measure. For L,
(5.11) Ap(8) = sgn( f ®(x0)) AP(x,)

if f/® has a unique extremum at x,. For (the pth power of) L),
(5.12) Ap(d) = jpfp-ldA.

When do these functionals have a finite dual norm? A sufficient condition is
supplied by looking at the Riesz representer.

LEMMA 5.5. Every linear functional X on the space of differences A = F — G
with a representation \(A) = [{ dA has |\|, < variation({).

PROOF. Indeed, integrating by parts [¢dA = — JA d¢ so
[A(A)| < variation({)|A|. O

COROLLARY. Let BV denote the space of functions of bounded variation.
These functionals have p = 1 in (3.19) under these conditions:

L% @b e BV,
L Y%V — ¥%/2) € BV,
LY: {1 € BV.
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The interpretation of these results is as follows. Letting ¢, be of order
(loglog n/n)*/?, then (3.19) implies that in these cases, J(F,;¢,) = J(F) at a
rate very nearly n~1/2

On the other hand, for functionals such as L* and L% k > 0, expressions
such as (5.11) involve evaluations of derivatives at various points and cannot be
represented as integrals with kernels of bounded variation. It appears that in
these cases p = 1 is not generally possible. The author’s calculations indicate the
rates

(5.13) p(L2, F) = 3
if f € BV and has a unique quadratic maximum and
(5.14) o(Le, F) =3

if f/ € BV and has a unique quadratic extremum. Using techniques of Donoho
and Liu (1987) it may be shown that the rates for estimating these functionals
certainly cannot be better than # in the first case and % in the second case. It
should also be remembered that (3.19) only provides a bound on the rate of
convergence; the actual rate may be faster.

The general conclusion of this section is that the convex functionals Lz and I
are ls.c. and so admit of nonparametric lower bounds which are universally
consistent. At points where a semi-Lipschitz condition holds, lower bounds can
be n~" consistent for every r in the range (0, 3). The semi-Lipschitz condition
involves the boundedness of the subdifferential of J at a point. It is therefore
essentially a smoothness condition on the functional.

It is important to note the constant £*(F') in (5.6b) cannot be upperbounded
based on empirical observations. Otherwise there would exist nonparametric
upper bounds for ¢/, contradicting the results of Section 2.

6. Examples. The material of the last three sections can be used to present
some existence results of practical interest. In general, the method is useful for
generating consistent methods which are conservative in certain senses.

6.1. Efficient bandwidth selection. In order to estimate a density by the
popular kernel or histogram methods, one has to choose a bandwidth or
binwidth parameter. Several methods of automatically choosing such parameters
have been proposed, ranging from the simple device of using the bandwidth
appropriate for the normal density of the same scale, to various cross-validation
schemes.

If one is interested in obtaining a density estimator with good integrated
mean square error, the asymptotically optimal bandwidth for the kernel proce-
dure has the form

(6.1) b(F) = cy(nL3(F)’

where ¢, depends on the kernel employed; and the asymptotically optimal
binwidth for the histogram is

(6.2) h(F) = ¢(nLy(F)?)

)—1/5,

-1/3
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(In each case it is assumed that the density has L} or L2 finite.) Of course, in
practice, one does not know b, or A,—after all, F' is unknown.

The approach of this paper lends itself to placing upper bounds on b, and A,
That is, one places nonparametric lower bounds on L3(F) and Li(F) and plugs
the lower bounds into (6.1) and (6.2). This method has good properties.

Consistency. Let ¢, — 0 slowly enough. Then

63 biFyen)
( M ) bn(F) —-)8.8.
whenever L(F) < oo and

ho(Fy; en)

-

_hn(—F)— as. 1

whenever LY(F) < co.

Conservatism. With high probability, the resulting density estimate over-
smooths, that is, b,(F,; ¢,) and h,(F,; ¢,) are upper bounds

Pp{b.(Fy; €,) 2 b,(F)} 2 P(|U, - Ul <¢,)

(and similarly for 4,), where the right-hand side is tabulated as the distribution
of the Kolmogorov—Smirnov statistic. Asymptotically, this probability tends to 1
if ¢, — 0 slowly enough.

Efficiency. Under the assumption L3(F) < oo and regularity conditions on
the kernel and on F, the MISE of the kernel density estimate employing the
empirical bandwidth b,(F,; ¢,) is asymptotic to the MISE of the kernel estimate
using b,.

Thus one can make statements of the form: the right bandwidth may be
smaller than this, but I have good confidence that it is not larger. This is an
interesting result because it says that although one does not know how much to
smooth, one knows it is not necessary to smooth more than a certain amount. Or,
to put it another way, the best bandwidth, if we knew what it was, would reveal
at least as much detail as our upper bound reveals.

At the same time, this conservatism does not cost anything in asymptotic
efficiency. The upper bound and the quantity being bounded are asymptotically
equivalent. The efficiency statement relies on a theorem of P. Hall; see the
Appendix. )

Terrell and Scott (1985) were first to propose a technique of bandwidth
selection that always has the conservatism property mentioned above. However,
their technique has neither the consistency nor efficiency properties, so the
present result is something of an improvement.

6.2. Construction of confidence intervals. For several adaptive location
estimators, construction of confidence intervals requires knowledge of a nonlin-
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ear functional. The asymptotic variance of the Hodges—Lehmann estimator is
V = (12LY(F)*)~%; the asymptotic variance of the center of symmetry is V =
I(F)™ .

Under the approach of the present paper, the width of the confidence
intervals would be upper bounded by first constructing a lower bound for L9 or
I. Plugging this into the formula for V, one would obtain an upper bound V on
the asymptotic variance. Then one would say, “Although I do not know the
width of the right interval, I know that with high probability it is not larger
than this upper bound.”

Let C(t, v, n, a) denote the interval

[t — @1 - 2a)(v/n)"% t + @11 — 2a)(v/n)"?.

Whenever the V is greater than V, we have C( §, V,n, &) containing C( ﬁ, V, n, a),
)

Plo6cC(0,V,n,a)} >P{6C(6,V,n,a)} — P(V>V).

But P{V > V} < P(|F, — F| > ¢,}, which tends to 0 in a known way if ¢, — 0
slowly enough. It follows that the coverage probability of the procedure is not
essentially worse than the coverage probability that would be possible if V were
known. At the same time, because of the universal consistency V — V, the width
of the interval based on V is not much larger than the width that of the
V-known interval.

[What may be true, especially in small samples, is that the V-known interval
is not very good. In small samples, one would want to work with nonasymptotic
confidence intervals. In principle, the functional C, (F) = “the shortest inter-
val centered at § which contains @ with a Py-probability of 1 — a” ought to be
amenable to an upper bound approach.]

The insight that one could construct conservative confidence intervals for the
adaptive location parameter is due to Bickel and Klaassen (1982).

7. Extensions. This section describes a few ways the approach of this paper
can be used more generally—with other kinds of functionals and in other
settings.

7.1. Some convolution-decreasing functionals. The author’s interest in this
topic arose in the study of some deconvolution problems [Donoho (1981)] and in
projection pursuit [Huber (1985)]. In those problems it was of interest to study
three particular functionals. Let Var(F') denote the variance of F. The standar-
dized negentropy is

(7.1) A(F) = f f log f + log(Var(F)) /2.

The standardized Fisher information is

I(F) = Var(F)I(F)
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and the standardized fourth cumulant is

_ J(x — ave(F))* dF

GF) =3 = ()

These three functionals are convolution decreasing:
(7.2) J(Fy* Fy) < min(J(F), J(F,))

under appropriate conditions on F, and F.

This convolution-decreasing property is important in the formal solution of
those problems. Roughly speaking if the functionals were norm continuous and if
(7.2) held it would follow immediately that certain deconvolution problems could
be solved, using the statistic J(F,). However, these.functionals are not continu-
ous—and J(F,) need not be well defined. They are semicontinuous, however.
Because of (3.10d), (7.2) implies that

J(Fy* F; ¢) < min(J(Fy; €), J(Fy; €)).

As J(F; ¢) is defined over a much broader class of distributions than J(F), it
offers the convolution-decreasing property without assuming the regularity con-
ditions (e.g., existence of variance or of a regular density) involved in deriving
relations such as (7.2). As a result, the formal approach to solving these problems
can be made rigorous by substituting J(F,; ¢,) in place of J(F). We hope to
report on this work elsewhere.

7.2. Use of other neighborhoods. From an abstract point of view, many
other neighborhood systems might be used to construct lower bounds of the type
given here. If 8(F; G) denotes a measure of discrepancy between distributions,
then defining

(7.3) Jy(Fy; €,) = inf{J(G): 8(F,; G) < e,},
one has
(7.4) P{Jy<J} = P(8(F,; F) <¢,}.

For discrepancies such as the Kuiper metric and the Cramér-von Mises good-
ness-of-fit measure, the right side of (7.4) is still distribution free; the approach
still yields.nonparametric lower confidence bounds. In this sense, the neighbor-
hood approach is quite general. However, we have used the Kolmogorov neigh-
borhood here for its combination of many useful properties:

1. triangle inequality,

2. translation invariance,

3. distribution freeness,

4. Glivenko—Cantelli property/law of iterated logarithm,
:5. dual space with known properties.

To redo the analysis given in the sections above without some of these properties
might force a real complication in the analysis.
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7.3. Applications to other kinds of data. Although the paper focusses on
functionals of a one-dimensional density, the approach can be used in other
settings as well.

7.3.1. Functionals of a spectral density. One expects that the approach of
the present paper could be applied to functionals of the spectral density of a
stationary time series. Indeed, the normalized empirical spectral measure of a
time series has many of the properties of the empirical measure of a random
sample. First, the Kolmogorov distance between the empirical and true spectral
measures is asymptotically distribution free. Second, a law of the (uniterated)
logarithm for the Kolmogorov distance exists.

A number of spectral functionals seem to be of interest. The spectral entropy

(75) e(f) = ["log f(w) dw
and spectral indeterminism
(7.6) i(f) = [1(0)de

arise in prediction and interpolation theory; these are obviously semicontinuous.
Other semicontinuous functionals include the number of spectral peaks m( f)
(defined much as the number of modes was defined in Section 4) and the order of

the correct autoregressive model
-2
for some (B, .- -, Br)-

k
(1.7)  k(f) =least k: f(w) = ZO:'Bjeiwj

One-sided inference has obvious applications, “I don’t know the exact order of
the autoregression but I have good confidence it must be at least k(F,; ¢,) = 8;
and k(F,; e,) is universally consistent, so this lower bound can’t be grossly
conservative,” etc.

7.3.2. Linear inverse problems. The following setup is encountered fre-
quently in inverse problems in geophysics and astronomy. One observes data
{5, x;} satisfying the relationship

(7.8) %i=F(x;) + ¢,

where the ¢; are supposed to be Gaussian with known variance o(x;).

In this setting one might want to obtain information about a nonlinear
functional of F. For definiteness, F might be related to some remote object f
whose size is the functional of interest. For example, f may be a field in an
inaccessible region (the Earth’s core, say) while F' is the field measured in an
accessible region (the surface, say). Then F and f could be related by a Green
function which propagates the remote field to the observer:

(7:9) F(x) = [k(x, §)(£) dt.

The functional of interest might then be an energy of the remote field, a
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quadratic functional such as

J= [1(§)" ds.

The relation to the problem of inference about the L,norm of a density
function, given information about the cumulative, should be evident. Indeed,
(7.9) shows that in an explicit way f is a kind of derivative of F.

That upper bounds for </ are generally not available (this, of course depends
on the Green function k) is known and that one can obtain a lower bound via a
neighborhood procedure is also known. For example, the paper by Shure, Parker
and Backus (1982) discusses the problem of solving for the remote field with least
J that fits to within a high P-value; in their case, J is a quadratic functional
measuring ohmic dissipation in the (Earth’s) core (in their notation, F;). They
mention on page 228 that their approach yields lower bounds on the ohmic
dissipation and that physical arguments are necessary to place upper bounds.

It thus appears the geophysicists have observed the need for one-sided
inference somewhat earlier than statisticians.

8. Discussion.

8.1. One-sided inference. Statisticians have generally focused their attention
on confidence statements of a symmetric, two-sided nature, where data allows
one to set confidence limits on a parameter from above and from below.

The present paper gives examples where, from a given type of data (in this
case the empirical distribution of a random sample) one can only get one-sided
information, unless prior or external information is available. The author be-
lieves that such situations are fairly common. In estimating quantities like the
lifetime of the proton or the mass of a remote galaxy, the available data allow
one to place lower bounds: The proton must have a long lifetime or else the
universe would already have fallen apart, but we do not know if the lifetime is
finite or not; the remote galaxy must have a large mass because it radiates a lot
of energy, but we do not know how much dark mass there is.

The cases the author has examined have a common denominator: The quan-
tity of interest is a measure of the complexity of a system —size, norm or number
of components. This should make the phenomenon intuitively understandable.
Empirical data can usually invalidate simple models, i.e., prove that a system
possesses at least a certain degree of complexity. However, data can not usually
rule out very complex models which differ from simpler ones in ways that are not
detectable given the quantity and quality of data at hand. In short, measures of
complexity usually admit of empirical lower but not upper bounds.

8.2. Nonparametric versus asymptotic methods. The term nonparametric, as
originally used starting in the 1940s, meant essentially that no hypotheses about
the form of the distribution function were necessary. E. J. G. Pitman, in his 1949
lecture notes on nonparametrics captured something of the spirit of nonparamet-
rics when he said, “...often we have no knowledge of the nature of the
distribution except what is supplied by the sample.”
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At present, the term is often applied to procedures such as density estimates.
Although one is not making strict parametric assumptions when estimating a
density, one ends up making hypotheses about the unknown distribution, involv-
ing the existence and regularity of various derivatives of the underlying density,
in choosing the method of estimation (kernel, histogram, spline,...) and the
tuning constants of the method.

Another distinctive feature of the original nonparametrics was that certain
properties held exactly in small samples. The new nonparametric methods have
generally only asymptotic properties, and it is simply not known how well they
hold up in samples of any reasonable size. For example, about the bootstrap
confidence intervals, the best one can generally say is that they are asymptoti-
cally nonparametric.

This paper has shown that some of the concerns of the new nonparametrics
can be addressed while keeping the spirit of the old nonparametrics. One can
discuss inference about certain quantities without making antiempirical, a priori
assumptions, and there exist procedures with guaranteed properties (e.g., non-
parametric coverage probability) in finite samples.

APPENDIX

Proofs.

LEMMA Al (Le Cam). Let F™ denote the product measure on R" with
one-dimensional marginal F. If =(F,G) < 21 — (1 — §2/8)'/"), then
T M(F™, GM) < 3.

Proor. By Le Cam [(1986), pages 46-49], the Hellinger distance

H(F,G) - (2—2f‘/7¢s"du)l/2,

where f and g denote densities with respect to p = F 4+ G, bounds the testing
distance via the inequality

(A1) H2(F®,G®) < 1 ®(F® G®) < 2H(F®,G®)

for k =1,2,.... Also, we can relate the distance between product measures
F® G® to that between marginals via the identity

HY(F™,G™) = 2(1 - (1 - HXF,G)/2)").
Combining the last two displays,
r™W(F™,GM™) < 2H(F™,G™)
=221 - (1 - BXF,6)/2)")]"”

<2[2(1- (1 - «(F,G)/2)")]"”
<é. |
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Proor oF THEOREM 2.2. In this proof, F will be an interior point of F at
which J is well defined, i.e., F € dom(<J). Since F is strongly nonparametric, it
contains a testing neighborhood centered at F, N(F), with radius ¢ > 0. The
goal is to show that J satisfies DGC, i.e., that in any such neighborhood of F, J
takes on values dense in [ J(F'), c0]. Where J(F') = oo, this is trivially true.

Note that since the radius of N(F') is ¢, every mixture of the form (1 — ¢)F +
eH, where H is an arbitrary d.f,, is in N(F).

Consider M, the number of modes, defined as in Section 4. Suppose F has a
finite number of modes. Pick a point x, outside of any modal interval and let H,
be a point mass at x;. Then M((1 — 6,)F + 8, H;) = M(F) + 1forall0 < §, <
¢/2. The process can be repeated, picking an x, and a 8, < ¢/4, yielding
M@ - 8, — 8,)F + 6,H, + §,H,) = M(F) + 2. Continuing in this way, one can
produce a distribution in N(F') with M(F) + j modes, for each j > 0.

Consider K, the mixture complexity. Suppose F is a mixture of exactly
K(F) < oo components. Let ¢, be a #-value distinct from those used in repre-
senting F. Then K((1 — §,)F + §,G,) = K(F) + 1, for each 0 < §, < ¢/2. Con-
tinue as with M.

Consider L" as defined in Section 5 with p > 1. It is well deﬁned on
dom(Lk) = the L,-Sobolev space of order k. Put N, = N(F) N dom(L}) =
N(F)Nn L thls isa convex subset of Lk Let N, denote the r-closure of N0 As
may be checked by a smoothing argument N, conS1sts of all absolutely continu-
ous elements of N(F). Now N,\ N, is nonempty. Indeed we can construct
G € N,\ N, as follows. Take an absolutely continuous F € N, and modify its
density on an interval (a, b) so that on that interval it is proportional to
(t — a)~@*M/P (where 7 is a small positive number), but so that it still in-
tegrates to 1. Call the resulting distribution G. If b — a is small enough, then the
change on (a, b) affects things so little that G € N(F'). G is absolutely continu-
ous, but its density g is neither continuous nor in L,. Thus G € Ny \ N,.

Let G, be a sequence of elements of N, converging in r-distance to G (such a
sequence exists as G € NO) Then by Lemma A3, Lk( ) — oo. It follows that
L% is unbounded on N,

Since N, is connected (it is convex) and since LI”; is continuous on N, endowed
with the Sobolev L% topology, every value in the range [L (F), + o0) is taken on
by L" on N, even though the 7 radius of N(F) may be a.rbltranly small.

The argument for Shannon entropy and Fisher information is similar. As the
argument for I involves more technique, we give it here. Let F be a distribution
with nice root density /f € L}, so that I(F) < co. The testing ball N(F)
contains a Hellinger ball [by (A.1)]. Such a Hellinger ball contains all densities
whose square roots are in an L, ball about /f. Call this ball of root densities
S(/f) and put S, = S(,/f) N Li,. Let S, be the L,-closure of S,. Now S\ S, is
nonempty. Indeed we can construct a root density r in S\ S,. We simply take
an arbitrary element of S, and modify it on a small interval (a, b) so that it
. becomes sufficiently discontinuous, but so that its Ly-norm remains 1. Making it
proportional to (¢ — a)~@*"/2P with p > 2 and a small positive n will work.
Then if b — a is sufficiently small, we can guarantee that the resultant, r say,
will be in S(‘/f ). As r is a root density, it is in S, but due to the discontinuity it
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is not in L, and hence not in S,. Let r, be a sequence of root densities in S,
converging to r in Ly-norm (this exists as r € S;). As r & Ly but |||l = ||I7]ls = 1,
Lemma A.2 implies that ||r,/||, = oo; thus J(r) = ||r’|| is unbounded on S;. As
J(r) is continuous in S, (endowed with the L, topology) and as S; is connected,
the image of S, under J contains every value in the range [J(\/— f), + ). As
I(F)*/? = 2J(,/f) we have established that the image of N(F) N dom(I) under
I contains all values in the range [I(F), + o0). O

We now give the lemmas referred to in the proof: first, a definition. A
sequence { f,} of locally integrable functions converges distributionally to f if

et~ [¢f

for all ¢ that are C* and of compact support.

LemMA A2, If f & L% and if {f,} C L% with f, > [ distributionally, then

liminf|| fn||L:‘., = +o00.
n

PrOOF. Suppose instead that a subsequence of { f,} exists, along which the
Lp norm stays bounded. Without loss of generality let the subsequence be { f,}
itself. Then {f,} is a bounded subset of the Banach space L%. Therefore by
Alaoglu’s theorem { f,} has a subsequence converging weakly in Lk to an element
of L’;, This weak convergence 1mphes distributional convergence as each linear
functional L(f) = f¢{f, where £ is infinitely differentiable and of compact
support, is a bounded linear functional on L" Thus {f,} has a subsequence

converging distributionally to an element of L" By hypothesis the only distribu-
tional limit is f. As f & Lk we have reached a contradiction, which proves the
lemma. O

LEMMA A3. If f is a density not in Lk and if {F,} is a sequence of
distributions with densities in Lt with (F, F ) = 0, then
liminf L%(F,) = +oo.

PROOF. By equivalence of the L% norm with || f ®]|, + || || ,, there is ¢ > 0
with

IF @I, + 111l 2> ell flls

Now convergence in testing distance implies distributional convergence (since the
function ¢ in the definition of 7 may be smooth and of compact support), so
following Lemma A.2 we conclude

(A2) Il + N fall p = + 00

Suppose || f*||,, is bounded in n. Then we must also have | f,||, bounded. If
p = 1 this is trivial since || f,|l, = [f, = 1 If p > 1, use the inequality in Lemma
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A4 to get
I £l 572D < el £,

for some a, 0 < a <1, so that ||f,||, stays bounded. But if both || f)|, and
|| f.ll , stay bounded, we have reached a contradiction with (A.2). It follows that
| /%]l , is not bounded in n nor is any subsequence. Lemma A.3 follows. O

LEMMA A4. Letf be a density which is k — 1 times absolutely continuous,
with f ® € L,. Then
WFIE PP < flloo < Co,, pll  ®N1S

for some constants Cy ;, , < w0 and a =1— (k- 1/p)/(k +1 - 1/p).
PROOF. As f is a density,

[t7= [t <ufiz.
Magaril-II’'yaev (1984) gives the inequality
1 fllw < Co, i, pll FIT™F P15

(and much more general results as well), with a as in the statement of the lemma.
Combining these two displays, the lemma follows. O

Proor oF LEMMA 5.2. Part (b) is standard. See Adams (1975).
For part (a), note that ¢, * F, is a C*® density. Gabushin [(1967), Theorem 2]
gives the inequality
18® N, < Cp, 10,1, dlENIIEPNE,
valid for smooth functions, where / > max(% + 1,2) and
I-k-1+1/p k—1/p
- I-1 ’ Col-1
Putting g = ¢, *(F,, — F) and using
lg®nf < 281165018,
we have, from Gabushin’s result,
Ig®ll, < C'llgl,

with C' = C, 4 o..1..2P¢¥||f. Now as the sup-norm is convex and translation
invariant,

a

&l = 164 *(F, = F) < [,F, - F| = |F, - F,

and so
leg®l, < C'|F, — F|~.
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From equivalence of the L norm with || f||, + || f ®||, we have
|I¢h*Fn - ¢h*F”Lf, = C”(IFn - Fl“o + |Fn - F|ak)

with appropriate a,, a, and C”. This inequality shows that |F,, — F| — 0 implies
¢n*F, > ¢, * F in L!, as claimed. O

ProOF OoF LEMMA 5.3. (a) By the equivalence of the norm of L with
1 fll2 + ICF)Ig, it is enough to show that with g, = ¢, * F and g, = ¢, * F,

’ n2
(A3) J((&2) - (%)) >0
under the advertised conditions. Let M > 0 and partition the integral into the
contributions for |x| > M and |x| < M. Consider the |x| < M part. It can be
written as

fn;((gé/"’)'—( 7)) = fﬂ;( 1285 - 8,8Y")" /808

= {[ ;?fM]gogn} lf_MM( /%86 — gngl/z) .

The term in braces has a liminf as n — 0 of inf _,, 5,82 which can be bounded
away from 0 because g, has a Gaussian convolution component. The integral can
be bounded by

2{ f " aen- &)+ [ (80 (s - 8.

Both g, and g;? are in L,[ ~ M, M], and as in Lemma 4.1, one has the uniform
convergence

lgr — &l =0, |8, — &l 0,
via an integration by parts. So the contribution to (A.3) of [ — M, M] tends to 0
as n — oo.

Consider now the part of the integral coming from outside of [ — M, M].
Define p, = g{g;*/? and p, similarly. As in Port and Stone (1974), fix N < M
and decompose p into the part from the middle of F and the part coming from
the tails. Thus, write p, = p, ; + pg 5, Where

poi(x) = { [ (x = 2) aF(2)} /o),
o) = { [ il = 2) aF(a) R

x| =
and similarly for p,. Now by Lemma 2.6 of Port and Stone,
[eh2< k%1 - F[-N,N])
and defining

B(M,N) = supf 6.1
FeP |x|>M
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we have, by Lemma 2.7 of Port and Stone, that for N fixed,

limsup B(M, N) = 0.
M- o0

Putting these pieces together,

[ (pu=p0) < 2{f on + p%}
|x| =M |x| =M

<ol [ gt ot oot i)
x| >M ;

<4{2B(M,N) + h"*2 - F[-N,N] + F,[-N, N])}.

Letting first n — oo, then M — oo, then N — 0,.we have the right-hand side

tending to O.
(b) Let r,, and r denote the root densities of @, * f and f, respectively.

Ja=r?< [ir2 =72 = fio=f = 1.

The rightmost term goes to 0 for every f € L, as A — 0; so r, = r. Now I(F) is
proportional to the squared Lj-norm of r’, so from the convexity I(®,* F') <
I(F),

[y < ()2

We can conclude that [(rf)> — [(r)*® from the L, convergence mentioned
earlier. Also, r, > r weakly in L}, because L, is dense in the dual of L. But
these two facts—convergence of norms and weak convergence—imply strong
convergence because L, is a Hilbert space and so uniformly convex (again, see
Adams (1975)]. O

PROOF OF THE EFFICIENCY RESULT. Theorem 2 of Hall (1983) establishes
that, if f has compact support, and under regularity conditions on f and on the
kernel %, the kernel density estimate &, * F, [where k,(x) = k(x/b)/b] has the
integrated squared error

(A4) f(kb xF, — )2 =c,(k)(nb) ™" + cy(k)b'LYF)® + 0,(n"4%),

where the o, term is uniform in @,n"'® < b < a,n™'5, for 0 < @, < a, < co.

Here ¢, and c, depend on the kernel %:

e,(k) = [k2, cy(k) = (fxzkdx)2/4.

Hall mentions in the last paragraph of his Section 2 that the result extends to f
‘not of compact support under additional regularity. Assume this extension. Now
by (3.18),

(A.5) b(F) < b(F,; ¢,) < b,(F;2¢,)
for almost all n, with probability 1. Now as ¢, — 0, for all sufficiently large n,
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b,(F;2¢,) < b,(F;0.0001). Put

k) 4 17
7 [el®) Ly(Fy|

By Rosenblatt (1956), a,n"'/® is the asymptotically optimal bandwidth which
was called b, in Section 6. Put

Cfe®) 4 e
2 | ca(k) LE(F;0.0001)

so that a, > a;. Now (A.5) can be rewritten as
(A.6) an"V® < b(F,;e¢,) < an 15,

This inequality holds whenever the event @, = {|F, — F| < 0.0001} is true. Now
P(Q,) = P{|U, — U| < 0.0001} — 1 exponentially fast [compare (4.3)].

Let R,(b) denote the remainder term that was written as o,(n~*?) in (A.4).
Define

Ry(ay, a,) = sup |R,(b)I;

an V5<b<a,n/®

this is a random variable, i.e., is measurable, by the continuity of R (b) in b,
which means the supremum actually can be taken over rational values of b.
Hall’s theorem (A.4) says that R*(a,, a;) = 0,(n~*?). Now define R** to give
equality in

MISE(b,) = ¢,(k)(nb,) " + cy(k)b:LA(F)®* + R} *.
Here b, = b,(F,; ¢,). When Q,, is true, |R}*| < R}¥(a,, a,). As Py(2,) — 1,
R:* = Op(‘R:(al’ a2)) = Op(n_4/5)'

Now a,n"'/% is the asymptotically optimal bandwidth, and by Hall’s theo-
rem,

MISE(a,n"/%) = M*n=*% + R (a,),
where
M* = 5c,(k)*cy(k)°LYF)™".
Moreover, by‘ .consistency LYF,; ¢,) > LY F), we have
b(Fye,) =an /51 +8,),
where 8, = 0,(1). Some algebra gives that for a certain ¢ € (0,1),
MISE(b,(F,; ¢,)) = M*n~**[q(1 +8,) " + (1 - )1 + 8,)| + R3*.
Thus
MISE(b,(Fy; &) _ [ +8,)7" + (1 - @)1 +8,)] + Rx*/(M*n*%)
MISE(a,n"%) 1+ R,(a,)/(M*n*/) )
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As §, = 0,(1), R}* = 0,(n"*") and R,(a,) = 0,(n™*?), we have
MISE(b,,(F,,; e))  [a/(1+0,0)) + (1 - 9)(1 +0,1)] + 0,)]
MISE(a,n"%5) 1+ 0,(1)
=1+ op(l),

as required. O
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