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RANK REGRESSION

By Jack Cuzick
Imperial Cancer Research Fund Labs

An estimation procedure for (b, g) is developed for the transformation
model g(Y) = bz + error, where g is an unspecified strictly increasing func-
tion. The estimator for b can be viewed as a hybrid between an M-estimator
and an R-estimator. It differs from an M-estimator in that the dependent
variable is replaced by a score based on ranks and frcm an R-estimator in
that the ranks of dependent variable itself are used, not the ranks of the
residuals. This provides robustness against the scale on which the variables
are thought to be linearly related, as opposed to robustness against mis-
specification of the error distribution. Existence, unjqueness, consistency and
asymptotic normality are studied.

1. Introduction. Consider the model
(1) g(Y,) = byz; + ¢, i=1,...,n,

where g is some strictly increasing function, ¢ are iid. and z,,..., 2, are
nonrandom covariate values. This model states that, after some order preserving
transformation, the dependent variable is related to z in a simple linear fashion
except for errors of observation. Parametric forms for g have been studied
extensively in the literature, notably the Box—Cox (1964) transform,

_ (y"‘—l)/a, a >0,
g(y,a)_{logy, a=0‘

See also Tukey (1957).

In this paper we consider the case in which g is completely unspecified except
for the fact that it is strictly increasing. This sort of model has been used
extensively in medical applications and includes as special cases the proportional
hazards model [Cox (1972)], the proportional odds model [Bennett (1983)] and
the Pareto family of models [Clayton and Cuzick (1985, 1986)]. See also Prentice
(1978), Kalbfleisch (1978), Kalbfleish and Prentice (1980), Pettitt (1982, 1984,
1987), Bickel (1986) and Doksum (1987). Applications exist in many other fields
[cf. Heckman and Singer (1984) and Lancaster and Nickell (1980)].

Assuming that the errors ¢; are i.i.d. and independent of the {z;}, which are
assumed to be fixed, we seek a method for estimating b, from the pairs (y;, 2;).
(If the z; are assumed random but independent of the e, we may argue
conditionally on their values.) Invariance arguments suggest basing inference on
the vector of ranks R = (R,,..., R,) of the {y,} via the marginal likelihood of
ranks. If we assume ¢ has density f,, let ¢, = g(;) and write {¢ € R} for the set
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1370 J. CUZICK

of {t,...,¢,} which satisfy the ordering determined by R, then the marginal
likelihood takes the form

L(b;R,2) = [ Tlf(t:i—bz)at,
(teR}i=1 :

and, assuming ¢(t) = —f,'(t)/f,(t) exists, the estimating equation takes the
form

dlogL n
(2) 3b = Z ziERtb(ti - bzi) = 0

i=1

where
f{teR}h(ti)H;‘;lfO(tj‘_ sz) di;
f{tGR}I—[;}=1f0(tj - sz) dtj

is the conditional expectation given the ranks R and that the regression parame-
ter equals b. Under weak conditions it can be shown that asymptotically
equivalent estimators are obtained if (2) is replaced by

n :
(3) Y zp(8 - bz,) =

i=1
where 7 = E(t;). Note that £2 depends on b. This approach has been developed
by Clayton and Cuzick (1985, 1986), but computation of #* and the variance of
the MLE is difficult, and the rigorous establishment of asymptotic properties of
the estimator is not currently available.

In this paper an alternative approach, which is mathematlcally easier, is
developed It is based on replacing £ by simpler scores, denoted £, in (3) where
£ is defined as follows. Let F, be the dlstrlbutlon function for e, let Fy(t) be the
dlstrlbutlon function of a randomly chosen ¢,

(@ nm=%§aa—@x

Egh(t;) =

and define the adjusted empirical distribution function of the ¢, as
n 1 2z
F(t) = —— Z I{t,ét};

then 2 = F; X F(t ))- We shall often omit reference to the subscript on F, when
b equals b, so that EF(t)=n /(n + 1)F(t). Other approximate marginal likeli-
hood procedures have been considered by Pettitt (1982, 1984, 1987) and Doksum
(1987).

Asymptotic normality of this estimator is established and a consistent esti-
mate of the asymptotic variance is given. The special case ¢(¢) = ¢ is considered
in detail and it is shown that in this case (3) (with #? in place of £°) always has a
unique solution. Other simplifications are also discussed in this case. Limited
simulations confirm the usefulness of the estimator and its estimated variance
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and compare b to the least squares estimator with £ known. Comparisons with
Cox’s estimator for the proportional hazards model are also made.

Model (1) is clearly location and scale invariant, so that any constant is
subsumed in the g function, and the regression parameter b, must be scaled in
relation to the standard deviation of the error variable. The absolute values of
these quantities require knowledge of the transformation g. This can be esti-
mated by

8(3) = B(x)

at the data points and interpolated in any reasonable way between them. When
g is smooth, weak convergence of this estimator and joint normality of (g, b) are
established. .

These methods differ from R-estimators or “aligned-rank” estimators [Hodges
and Lehmann (1963) and Sen (1963)] in that they are concerned with accounting
for the transformation g and thus are based on the ranks of the y,, whereas
R-estimators aim at robustness against misspecification of the error distribution
and use ranks of the residuals.

2. Main results. We first set out the basic notation and assumptions.
Directions in which they can be weakened are considered later. All sums will be
from 1 to n unless otherwise stated. Assume that:

(A1) The errors ¢, are i.i.d. with distribution function Fj and density f, which
is uniformly continuous and positive on (— o0, ). Uniform continuity of f,
implies that it is bounded.

(A2) Let G,(2) = (1/n)XI, ., Assume G, is nondegenerate, G, > G as
n — oo, where G is some nondegenerate distribution function and if Z, has
distribution G,, then |Z [P is uniformly integrable for some p to be specified
below (we must have p > 4). We also assume Yz, = 0, but this can always be
achieved since estimation is invariant under shifts of the {z,}.

The requirement that G, — G can be weakened, since the uniform integrabil-
ity implies that the {G,} are tight and so a convergent subsequence can always
be taken, and the results stated below can be rephrased to accommodate this.

(A3) For Fy(t) defined at (4), there exists K < oo such that

(6)  Fy'(w) +u(l-u)(FY(u) s K{u-u)}"% O0<u<l,

for all n and b € B, some neighborhood of b,. We also require that « satisfies
a+pt<il

This is essentially a moment condition on T = bZ, + ¢, although it also
implies further smoothness of the distribution. Since F, is the distribution
function for T, (A3) implies that

(6) EIT" <o fory<1l/a.

The requirement a + p~' < % plus (6), which implies E|Z,|P < oo for p < a”,
shows that we must have p > 4.
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If f,(¢) = (d/dt)F(t), the inequality for the second term on the left-hand
side of (5) is equivalent to

fs(2) 2 K"Y{F,(£)(1 - Fy(¢))}'"*, -0 <t<oo.

The inequality for the first term on the left-hand side of (5) alone is implied by
this inequality. The existence of a derivative for F, and its inverse is implied by
(Al).

(A4) The function ¢ is continuously differentiable and ¢’ is bounded on
(—00,00). Also ¢(¢) = 0 for all ¢ and is strictly positive on a set of positive
measure. Since we assume Xz; = 0, by adding a constant if necessary we can
always assume E¢(e;) = 0.

(A5) The functions Z(bZ + ¢) and ¢’(U,) are L, continuous as b — b,. These
functions are defined at (10) and (19) below.

(A6) The expression o = E(Z{Z — Z(byZ + £)}¢'(¢)) is positive.

THEOREM 1. Under assumptions (A1)-(A6), except on a set of probability
tending to zero as n — o, there exists a solution b to the equation

(7) 1(b) = Y z0(8 - bzi) =0,
such that as n - oo,
/(b — by) - (0, o),

where b, is the true value of b given in (1). When ¢(t) = t, this solution exists
and is unique for all n > 2.

The asymptotic variance is given by 6% = 62/0,, where
1 te
02 = lim —ZVar(ziq)(ei) - fboz'ﬂ'h(s) ds)
n—>o N 0

®) = E(Z)E(¢() - 2B(Zs(2) [* () ds

+E(f0”°z”h(s) ds)2 - E(fob"z“‘h(s) ds)(fob"z”zh(s) ds)

(9) n—oo N
=E(Z{Z - Z(b,Z + ¢)}¢'(¢)).
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Here
h(s) = E(Z¢'(e)|byZ + e = 5),
dib
zZ,= ?El =E(Z,bZ, +¢=1})
_ T2_12fo(E - be;)

E?-lfo(z? - sz) ’
(10) Z(s) = E(Z|b)Z + ¢ = 5),
where ¢, €, €,,..., are iid. with distribution function F,, independent of Z

which has distribution function G. The variance 62 can be estimated consistently
by replacing b, by b and Z by a variable with distribution G, in these
expressions. .

REMARK 1. It is disappointing not to be able to give more comprehensive
results about existence, uniqueness and consistency. One would expect that the
results for ¢ = ¢ would carry over to a very general set of (¢, ¢, Z,). However
counterexamples can occur in small samples and pathological outcomes.
For example let Z=(-2,-1,3), R=(2,1,3) and assume ¢(—o0) = — o0,
¢(+00) = C < oo. Then ‘

I(b) = —2¢(25 + 2b) — ¢(2 + b) + 3¢(24 — 3b)
and as b — oo,
(t(l), Loy t(3)) = (—2b + const., —b + const.,3b + const.),
so that
1I(b) = —2¢(b) — ¢(—b) + 3¢(const.) > +o0, asb - +oo.

If b > — oo, then (¢, ¢y t3) = (3b, —b, —2b), so

1I(b) = —2¢(b) — ¢(4b) + 3¢(—5b) > +00 as b - —oo.
Thus i(b) = 0 has either no solution or an even number of solutions, depending

on the detailed specification of F, and ¢. This behaviour is illustrated in Figure
1, where the pathological nature of the extra solution is apparent.

REMARK 2. The assumption (A6) that o > 0 would appear to hold quite
generally, the case ¢(¢) = ¢t being demonstrated in Lemma 5. It would be nice to
have more general conditions under which it is true. The following can no doubt
be extended:

PROPOSITION. Assume ¢', Z, ¢ are all symmetric, Var(Z)Var(e) > 0 and for
t>0,0 < Z(t) < by 't, and Z(t) is (weakly) concave. Then o7 > 0.
Proor. Without loss of generality take b, = 1. Condition on [¢| to obtain
E(ZZ(Z + )9/(s)) = 1E(Z(Z(Z + &) + Z(Z - £)}9/(e)).

Now concavity and the fact that Z(t) is an odd function allows one to conclude
that

1Z{Z(Z +e) + Z(Z — ¢)} < ZZ(Z) < Z*
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F16. 1.  Plot of the estimating equation (7) forn = 3,Z = (-2, — 1,3, R = (2,1,3), (f, F) ~ N(0,1)
and three choices of @: (i) @(¢) =t (—), (i) p(¢)=1¢, t<0; p(¢) =12 t>0 (--) and (iii)
pt)=t t<L p(t)=1,¢t>1(---).

so that o2 > 0. Equality can hold only if Var(Z) = 0 or if Z(¢) = ¢ for all ¢ > 0
and this requires Var(e) = 0. O

THEOREM 2. If we assume (Al)-(A6) and define g(y) =t ( Yiy) for y €

[ Xy Yi+1))s then 8(y) — () as n > oo for all continuity points y of g. If g is
continuously differentiable, then

n*(&(y) — &(y)) = v(»)
weakly in the Skorohod space D on every bounded set, where y(-) is a mean zero
Gaussian process with covariance function

, e(t) P(tz)
E(v(n)v(%) =0 Z(tl)ZUz) ETENINTEN)

) [F(tl E{F(')(tl - boZ)E)(tz - boZ)}]»
Y = s

f(tl) f(t
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where o2 and Z(t) are as in Theorem 1, t;=g(¥,), i =1,2, (f,F) are the
density and distribution function of b,Z + ¢, respectively, and

p(t) = lim nCov(b, F(t))

= E(Z6()pz1e50) + BBt — b2) [ "h()(1 = Fls = b2)) ds).

Also b and g(y) are asymptotically jointly normal with limiting covariance given
by

— t

nCov(b, 8(y)) — Z(t)e® + % ,

where t = g(y).

REMARK 3. When Z takes only a fixed finite set of values z,,.. ., 2, Doksum
(1987) has proposed an alternative estimate for g. His estimator would appear to
be less stable at values of y, where min;_;  ,f(8(¥) — boz;) is small, but may
perform better at other values of y.

.....

The proofs of these results rely on a Taylor expansion of the estimating
equation and use results of Neuhaus (1975) and van Zuijlen (1978) on empirical
distributions of independent but not identically distributed random variables.
The remainder terms consist of complicated expressions involving the joint
empirical distribution of (¢, z) and do not appear to be covered by general
empirical process theory.

3. A special case. The results and expressions in the above theorems can be
simplified in the important special case when ¢(¢) = t. Most importantly a
unique solution to the estimating equation always exists. Uniqueness follows
from the monotonicity of I(b) in this case which is established in Lemma 5
below.

We now show a solution always exists. For all b, () is increased if R; and R;
are interchanged if 2, > z;, but R; < R;. Thus /() and b are maximized when z;
and R, have perfect rank correlation and they are minimized when they have
perfect inverse rank correlation. Thus it is enough to show lim, , ., /(b) < 0 when
2z, and R; have perfect rank correlation and lim, 1 —wl(b) > 0 when they are
inversely ordered. We will only establish the former statement. If all z; are
distinct, then, since F(¢;) = R,/(n + 1), it follows that as b > + oo,

FyY(Ry/(n+1)) = bz, + Fy'({i/(n + 1) = (i - 1)/n}n)
so that % — bz; » F; '(1 — i/(n + 1)). It follows that for b large enough z; and
t? — bz; will be perfectly negatively rank correlated. Since Zz; = 0, the fact that
lim,, /(b) < 0 for n >'2 in this case is easily proved by induction on n. When
some z; are equal, /() is unchanged if the associated ¢( t? — bz,) are averaged
and the result still holds so long as the z; are not all equal.
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In this special case the estimating equation (7) can be rewritten as
b= Zzizi&/zzizy
which suggests a simple iterative method of solution. Also we obtain (Lemma 5)
o2 =E(Z-Z(bZ +¢))’ and h(t) = Z(¢).
If ¢ is A47(0,1) then

2,2

— d 00 b’z
Z(t) = zl—t-logf_ exp(btz - ——2—) dG(z).

If additionally Z is normal, say /4/(0, 62), then

R.
th=(1+ 2!/ ‘1( - )
=1+ (be)) "0 1),

where @ is the standard normal distribution function,

_ t (bo,)’
20 = T ey
b,  (bo,) -1
02=o0? 1—( 2) +( 2) )(1+(booz)) ,

ol = 022(1 + (booz)z)_l,
so that
0% = 71 + 3(b,)” + §(80.)°),

which can be compared to the value o, % obtained in parametric maximum
likelihood estimation. Thus b is nearly fully efficient when either b, or o? is close
to zero, relative to the error variance.

4. Numerical results. Some simulation results are presented in Table 1.
We have taken n =50, the {z;} have been sampled from a uniform [0,1]
distribution and & = 0.5,1,0,2.0,4.0. The errors were either standard normal or
(minus) standard extreme value (s.e.v.) corresponding to a proportional hazards
model. Each configuration was simulated 200 times and analyzed in four ways:
methods (i) and (iii) used (7) with @(¢) = ¢ or @(¢) = e’ — 1 corresponding to
normal errors and extreme value errors, respectively. Method (ii) was least
‘squares which is optimal for the parametric model with normal errors and
‘method (iv) was Cox’s (1972) approach to analyzing the proportional hazards
model which is known to have optimality properties amongst rank methods in
this case. The same sequence of random numbers was used for different values of
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TABLE 1
Mean, mean square root, skewness and kurtosis of the estimate b based on 200 simulations, n = 50,
and {z;} drawn from a uniform [0,1] distribution.

Error -
Method b distribution b mse(b) Y1 Yo
() o) = ¢ 0.496 0.175 0129  —0.105
(i) L.S. 0.511 0.180 0.162 0.048
(iii) p(¢) =€’ -1 0.5 N(©,1) - 0.467 0.182 0.252 0.350
(iv) Cox P. H. 0.504 0.215 0.218 0.273
@) 0.971 0.178 0.110 —0.362
(ii) 1011 0.180 0.162 0.048
(iii) 1.0 N@©,1) 0.932 0.204 0.360 0.099
(iv) 1.002 0.225 0.413 0.026
@ 1.908 0.201 0200  —0311
(ii) 2,011 0.180 0.162 0.048
(iii) 2.0 N@©,1) 1.928 0.291 0.392 0.012
@iv) 2.034 0.310 0375  —0.076
@ 3.631 0.409 0133  —0525
(ii) 4,011 0.180 0.162 0.048
(iii) 4.0 N(,1) 4.058 0.852 —0.283 3.778%
@iv) 4.259 0.763 0.281 —0.364
@ 0.452 0.157 0.091 0.331
(i) 0.549 0.281 0.183 0.350
(iii) 0.5 s.ev. 0.470 0.159 —0.024 —0.046
@iv) 0.513 0.191 —0.043 —0.066
) . 0.877 0.176 0.221 0.186
(i) 1.049 0.281 0.183 0.350
(iii) 1.0 s.ev. 0.954 0.175 0.187 —-0.072
@iv) 1.044 0.206 0.094 —0.196
@) 1.668 0.306 0.374 —0.235
(ii) 2.049 0.281 0.183 0.350
(iii) 2.0 s.ev. 1.900 0.243 0.504 0.042
@iv) 2.093 0.287 0.427 -0.177
@ 3.080 1.146 0415  —0.484
(ii) 4.049 0.281 0.183 0.350
(iii) 4.0 s.ev. 3.726 0.525 0.790 0.681
(iv) 4.160 0.513 0.610 0.147

Contains two outliers (0.75,7.42). If these are omitted parameters are (4.066, 0.680, 0.328, —0.324).

b. The results are very encouraging. For b= 0.5 or b= 1.0 method (i) is
indistinguishable from least squares for normal errors. When b = 2.0 method (i)
has about 10% greater mean squared error than least squares and only when
b = 4.0 corresponding to b/s.e.(b) = 15 does method (i) show appreciable de-
gradement below the optimal parametric method. This is due to both negative
bias and increased variance for large b. This procedure appears to exhibit less
bias and smaller increases in variance for large b, than those of Pettitt (1987)
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150 | i : s {-
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100 | i
50 | k

1 *

7 :§ ;
0 z H : A¢ ; g o

-1.2-1.0-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

bo-'b

Fic. 2. Histogram of B — B for standard normal errors, n =50, and ¢(t) =t based on 1000
simulations for B = 0.5, B = 2.0, and for least squares (where the distribution does not depend on
B). The {z;} are a fixed sample from a uniform [0,1] distribution and T ,(z, — 2)% = 5.249.
Ordinate values refer to the center of an interval, i.e., 0.2 refers to the interval (0.1,0.3).

and Doksum (1987). However all these procedures have very similar performance
when b, is near zero. Similar results are found when comparing method (iii) with
Cox’s method for s.e.v. errors, although since Cox’s method is known to lose
efficiency compared to the best parametric method when b is large, the differ-
ence between method (iii) and Cox’s method (iv) is smaller as b increases.

The table also illustrates the effects of analyzing extreme value errors as if
they were normal and vice versa. Very little bias appears to result in analyzing
normal errors by methods appropriate for proportional hazards data [methods
(iii) and (iv)]. This is somewhat surprising since the regression coefficient must
always be normalized to a standard error variable with rank methods and the
variance of an extreme value variate is m2/6 so one might expect the estimate to
be inflated by a factor =/ V6 = 1.28. However a downward bias of about this
factor is observed when s.e.v. data is analyzed by method (i). Thus, an assess-
ment of the bias introduced when the shape of the error distribution is mis-
specified appears to be complicated.

The table suggests that the distribution of b is approximately normal and this
is confirmed in Figure 2 where the histograms of b are plotted for method (i) and
‘least squares for b = 0.5 and b = 2.0 and standard normal errors. These plots are
based on 1000 simulations.
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The estimator for the variance of & has been implemented as follows. Let
6%(b) = n~'[62/64), define & = ¥ — bz, and compute 62 from the first expres-
sion in (9) ignoring the limit and replacmg b, with b and g; with &. Now from
the proof of Lemma 4 one can write

2
41

I

—Var

?'()
zz{qo(e)+ f,,.,(t)( (t) - —F(t))}]

i=1
=A+B+C,

say, where these terms are approximated as follows:

szl o L e -or)

—n ' Y 0%,

i=1
which corresponds to the parametric variance,

B= —ZZzzCov[q)(e) Z(( ))(F(tj) - ——F(t))

.2 (&)
= n(n +1) ;52‘21(”(5 ( J) Iar oy s
and
C= %Var{ -éz"fi((t; (F( ;) — 2 )}
11 v(2) ¥()
“ ) R Te ) 1)

X {2[1(;;z§zg) - Fy# - sz)][I(lf'gi,‘?) - R(# - b2 ‘)]

+ L Fy[min(2, 22) - bz,] — Fy(#2 — b2, ) Fy 28 - bzk)}
ii} b=>5

The performance of this estimator would appear to be quite satisfactory, based

on the evidence provided in Table 2.
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TABLE 2
Comparison of the simulated and approximated variance for n = 50 based on 200 simulations. The
simulation is based on the same data as for Table 1.

Error Simulated _

Method b distribution variance 62 se(62%)
() o(t) =¢ 05 NO,1) 0.174 0178 0.010
(i) p(¢) = €' — 1 0.181 0.162 0.045
) 2.0 N©,1) 0.192 0215 0.028
(i) 0.285 0.293 0.216
) 0.5 s.ev. 0.155 0.178 0.009
(i) 0.158 0.159 0.044
) 20 s.ev. 0.195 0.210 0.030
(i) 0.233 0.235 0115

5. Proofs. The following lemma is due to van Zuijlen (1978).

LEMMA 1 (van Zuijlen). Let Y, be independent random variables with
distribution functions F,, i = 1,..., n, and define

F(t) =0 T R®,  B(0) = (14 )7 Ty ooy

Then for any € > 0, 8 > 0, there exist constants 0 < K, < K, < oo depending
only on ¢ and 8 such that for all t and any fixed n,

(11) K\F(t) < F(t) < K,F(t) onF(t) >0,
(12) K,(1-F(t)) <1 - F(¢t) < K,(1 - F(t)) onF(t) <n/(n+1),
(13) n1/2|ﬁ(t) - F(t)l =< Kz{F(t)(l - F(t))}(l/z)",

with probability greater than or equal to 1 — 6.

The following two lemmas bound remainder terms in the expansion of (7)
about b,.

LEMMA 2. Assume (A1)-(Ad4), let u; = F(t,) and 2, = 0,F(t,)) + (1 — 6,)F(t,)
for any random 6; € [0,1]. Then, as n = oo,
n=1/? Z%[‘P'(Fgl(ui) - bz;)(Fy W(u,)) — o' (Fy X&) - bzi)(Fb_l(&i)),]

) X(F(ti) - F(ti)) -p0.

Proor. From Lemma 1 we know that given any § > 0, there exist 0 < K, <
K, < oo such that when 0 < F(t,)) < n/(n + 1),

K1 - ) £ 81 - 8,) < Kpuy(1 - ;)
with probability at least 1 — 8. Thus, using (A3) and (A4), except on a set of
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small probability, we can bound (14) on the set {F(t,) < ¢y} by a constant times
. IF(t,) - F(t,)
n el ey T <er

Using the bound (13) and letting F(¢) = n“):lzi|I(ti <t this can be bounded by
a constant times

/ F—(1/2‘+a+e)dpz(t)
{F(t)<ep}

except on a set of vanishing probability. After an integration by parts, this
equals

F(t)y=¢ A o
(15 F0724 ) B ()] paymo — F(t) dF~0/2%9(t).
) lF(t) 0 ‘/;F(t)<eo}
Now for p > 1,
A 1 P ip
(16) A s (3 Ter | (A@)

which by (A4) and (11) is less than a constant times F(¢)!"?"" with probability
exceeding 1 — 8. By choosing ¢ so that a + ¢ + p~! < 1, the expression (15) can
be bounded by a constant times

(F(gg)) />~ ***P™D 5 0 ase, » — 0.

Similarly we can bound (14) on the set where {1 — F(¢,) < ¢,}. After deleting
these sets it is clear than we can choose M so large that the contribution from
terms with |z, > M can also be ignored. On the remaining set use the bound
(13), write the summation as an integral as above and invoke the bounded
convergence theorem and the continuity of ¢, F~! and (F~!) to obtain the
result. Continuity of F~! and (F~!) follows from the assumption of continuity
of f, in (Al).O

LEMMA 3. Let 7(t) = F, '(F(t)). Under assumptions (Al)-(A4),

o () - F(1))
an) [

tends to zero in probability as n - oo. Here
F(t’ Z) = n_l ZI(ti§t,z,~§z)

o'(7(¢t) — b2) d(ﬁ(t, z) — F(t, 2))

and

F(t,z) = EF(t,2) = [ dFy(s - by) dG,().

s<t
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ProoF. From (A3) there exists a K such that

(fo(7(2))) ™" < K(F(2))”"*.

Given any 8 > 0, bounding d(F(t, z) — F(t, 2)) by dF(t, z) + dF(t, z) and
estimating each term separately it can be shown, as in Lemma 2, that the
integral over {F(¢) < ¢} is less than a constant times

j‘ F-/2+ate () dF (t)
{F(t)<g}

with probability 1 — 8. An integration by parts and use of the bound (16) shows
that when @ + p~! + & < 4, this tends to zero in probability as ¢, | 0 uniformly
in n. A similar argument can be used to bound the set on which 1 — F(¢) < &,.
Also this argument can be adapted to omit the set {|z| > M} from the domain of
integration for M large enough. Thus it is enough to show the expected square of
(17) restricted to the set {g, < F(£) <1 — &, |2| < M} tends to zero as n — oo.
Writing F(¢), F(t), F(t, z), F(t, z) in terms of their defining sums gives the
expression

1 nonoonon o ¢(r(s) = bz)¢(7(s,) — b2))
n(n + 1) f'/;oggsl))g—eo El ,E:l kz Z 2% fo(7(81)) fo( 7(52))
g<F(s)s1—¢ 12;] <

(18)
XE| (L za = Filsr = 52 (( Tz = Fiss = 020)

xd<(I{ti§s.} - Fy(s, - bzi))(I(tjész) — Fs, ~ sz))}].

The integrals can be viewed as Riemann-Stieljes integrals and written as
limits of approximating Riemann sums. Dominated convergence allows one to
interchange the expectation and limit operations. It then follows from indepen-
dence that all terms are zero unless

(i=j k=1i+k}, {i=k,j=1Li+j},
(i=1,j=ki*j} or {i=j=k=1).

There are less than 3n? such terms and the contribution from each of these sets
will be shown to go to zero. Without loss of generality we can assume s; < s,.
Consider, first the terms where {i = j, k = [, i # k}. The expectation equals

{E)(sl - bzkv)(l — Fy(sy — bzk))}
X Ty - eyy dFo(1 = b2;) = dFo(s, = bz;) dFo(s, = b2,)}.-

Now all the terms in the integrand are bounded and the integral of the
.expression above is bounded in absolute value by

J (s~ bz) + [ [dFy(s, - b)) dF(s, - b2) = 2,
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so that these terms give a contribution which is O(n~!). On theset (i = &, j = [,
i # j}, the expectation in (18) equals

(1 — Fy(s; - bzi))(l — Fy(sy - sz)) dFy(s, — bz;) dFy(s, — sz)»
whereas on the set {i = I, j =k, i #j} it equals
(1 — Fy(s, — b2,)) (= Fo(s, — bz;)) dFy(s, — bz,) dFy(s, — bz;).

Both these sets again yield terms which when integrated and summed are
O(n~Y). Finally, when {i =j = k =1}, by considering the sets {f, = s, = s,},
{t; <81}, {t; =35, <83}, {8, <t <83}, {8y <t =5,} and {¢; > s,} separately,
the expectation becomes

Liaymay(1 = Fi(s1 = b2,))" dFi(s, = b2)
+ {Fy(s — bz;)(1 — Fy(s, — b2;))(1 — Fy(sy — bz;))
—(1 = Fy(s, — b2;))(1 — Fy(sy - bz;))
+(Fy(sy — bz;) — Fy(s; - bz,))(—Fy(s; — bz;))(1 — Fy(sy — bz;))
—(—Fyls; - bz;))(1 — Fy(s, — bz;))
+(1 = Fy(sy — b2,))(—Fy(s, — bz;))(—Fi(s, — b2,))}
X dFy(s, — bz;) dFy(s, — bz;).
When integrated and summed these terms will give'a contribution of order

O(n~%). 0O

The bulk of the proofs of Theorems 1 and 2 is carried out in the following two
lemmas which are of some independent interest.

LEMMA 4. Assume (Al)-(A4). Then for b € B as defined in (A3) and
n — oo,

1
n'/? ;Zz,«b(if’ —bz;) — pa| — (0, a?(d)),
where
) .= E(Z9(U, ) - n = E(Z6(U,)),
U, = Fy'o Fy(bZ +¢) — bZ

and U, ,, is defined similarly except Z, replaces Z.
The variance satisfies 0 < 62(b) < oo and is given by

2(5) = E(2Vax(o(U,)2)) - 2E(28(U) — ) [ hs) ds

(20) :
“ +E(f0”°z+ehb(3)d8) - E(.f(,boz+€'hb(s)ds)(f()boz+ezhb(s)ds)’
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where

1) nts) = 28

When b = by, U, and Z are independent and p,, = p = 0.
The random variables Z,,, Z, ¢, ¢,, ¢, are all assumed independent; Z, has df
G,, Z has df G and ¢, ¢, ¢, have df F,.

E(Z§'(U,)|byZ + € = s).

Proor. Let 7, = F, !0 F(¢;) and expand about F(¢;) to get
=n""2 Y z9(r; — bz;)
(F(t) - F(t))
fb(’fi)

+n 2 Yz (B(t) - F(t,))

(22) +n"12Y 2, ¢'(7, — bz;)

¢'(7—bz) (7, — bzi))

fo( %) folm:) ’
where 7 € [, F; o F(¢;)]. By Lemma 2 the last term can be ignored. The
second term can be written as

Lol  F(8) = F(¢) b .
n/[fz——————fb(T(t)) o'(7(¢) — bz) dF(¢, z)
F(t) - F(¢t)

I areny

where 7(¢), F(¢, z) and F(¢, z) are defined in Lemma 3.
Now Lemma 3 permits one to neglect the last term in this expression, so that
(22) is asymptotically equivalent to

o'(7(t) — bz) d(ﬁ(t, z) — F(t, z))],

n-1/2 Z[zi‘i’('ri - bz;) + fz(I(,lét) — Fy(t - bz,-))
(23)
¢'(7(¢) — b2)
fo(7(t))
where F(t) has been replaced by n(n + 1)~'F(¢) and F(t) — n(n + 1)"'F(t) has
been written as a sum. This is a sum of independent random variables and has
mean

dl;})(t - bZ) dGn(z)]’

n~YV%Y z,E¢(7,— bz;) = n*?E(Z,9(7(e + byZ,) — bZ,)).

Asymptotic normality is easily established from the Liapounov theorem and
boundedness of the variance can be established by bounding the variance of the
sum of each of the two terms in (23) using the methods of Lemmas 2 and 3. The
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form given for the asymptotic variance can easily be derived by noting that

¢'(r(2) — b2)
JA Tz = Fult = b2} —F e dF(t = b2) dG,(2)

- /{I(tét) — Byt - bzi)}h,,(t) dt

= - ft‘hb(t) dt + const. i
0 .

LEMMA 5. Under (Al) and (A4)
- %Zm(if - bz;) = Lz(z - 2)¢' (2 - bz,).
If (A2), (A3) and (A5) are also assumed and b — b, as n - oo, then
(24) ~ Fa(e - 2)#(if - b2) — o,
where o} is given by (9). When ¢(t) = t, the left-hand side of (24) is positive for
allband alln > 2 and of = E{Z — Z(b,Z + ¢)}*.

ProoF. The first equality follows from
dFy (u) _ dFy(y) [dFy(y)
db db dy =P )
which can be obtained from letting y = F, %(u), so that u = Fy(y) and
du _ 9F(y) dy  OF(y)
db dy db ab
Now the left-hand side of (24) can be written as
(25) E(z,(z,- Z(?%))¢'(2 - bZ,)),
where % = F; 1o F(b,Z, + ¢) and Z,, is defined in (A2).
Since EZ, = 0 and Z is a conditional expectation,
EZ2=E(z,- Z)’ + E(2?),

where the argument of Z has been suppressed. Therefore if M is any set and I,,
denotes the indicator of this set

|E(2,(Z - 2,)¢'( - bZ,)1,;)| < (const.)EV*(Z21y ) EV*(Z, - Z)*
< (const.)E(Z2)EV?(Z21,,),

since |¢’| is bounded, and this will tend to zero if EI,, — 0. Thus by taking M
large enough, we can restrict (25) to the set on which |Z,| < M and see that (25)
converges to

(26) E(Z{Z - Z(b)Z + ¢)}¢/'(¢)) = oF.

0=
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Now Z; is a conditional expectation so that Z? 1 Z — Z? for all n and b. Thus
when ¢(t) = t so that ¢’(¢) = 1, the left-hand side of (24) can be written as

;1;2(2;' - Ei)z = E(Zn - Zn)2

which is positive provided Var(Z,) > 0. In particular o2 = E{Z — Z(b,Z + ¢)}%.
O

Proor oF THEOREM 1. We first sixow that except for a set of probability
tending to zero (which may vary with n) that a solution to (7) exists which tends
to b,. Consider the mean function w(d)= E(Z¢(U,)). We know pu(b,) =0
and — dp/db = E(Z(Z — Z)¢'(U,)) is positive at b, and by (A5) is continuous
there. Thus there exist b, < b, < b, such that p(d) is strictly decreasing on
(b,, b,) and so given any & > 0, there exist

by—e<by<by,<b, <by+e
such that u(bg) > 0, u(b,) < 0. It follows from the asymptotic normality of I(d)
for any b € B (Lemma 4) that given any § > 0, there exists an N, such that for
n = N, I(by) > 0 and I(b,) < 0 except on a set of probability less than . Since
%(b) is continuous, this establishes the existence of a & such that I(b) = 0 and
% bO.
Now expand /() around b, to obtain

0 =1(b,) + (3 - bo)l'(l;),
where b € [b,, b], so that
n='?1(b,)
n~(b)
with 62 < oo by Lemmas 4 and 5 and (A6). The fact that ¢ > 0 and that o2 can
be estimated consistently from the data are easily checked. O

n2(b - b,) = - - N(0, 0?)

PROOF OF THEOREM 2. Weak convergence of n/%(F(¢) — F(t)} to a mean
zero Gaussian process follows from the results of Neuhaus (1975). Continuity of
£ then ensures that 8(y) — g(y), a.s. at continuity points, and differentiability
ensures weak convergence of n'/%(g(y) — g(y)) to a mean zero Gaussian process
on every bounded set. The covariance function of this process is easily computed,
as is the asymptotic joint normally of b and 8(t) and their covariance. The
methods are extremely similar to those in the proof of Lemma 4. O

6. Extensions. The theorems can be made more general at the expense of
added mathematical complexity. An indication of the possibilities is given below.
(i) The assumption that ¢’ is continuous can be dropped completely since the

. existence of ¢’ implies that

lim inf (2¢) ™" [ e(s)ds = ¢'(t) ae.
t—e

el0
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and that will suffice to prove Lemma 3. Thus truncated versions of ¢, i.e.,
oM(t) = min(M, max(— M, ¢(t))), can be considered. Discontinuities in ¢ itself,
such as ¢(t) = —1 + 21 (¢= 0> appear to be more difficult to treat asymptotically,
in particular /(b) is no longer continuous.

(ii) The assumption that |¢'(¢)| is bounded can be weakened if stronger
conditions are placed on the {2;}. The proportional hazards model corresponds to
¢'(¢) = e’ and in this case the results can be established if we alter (Al) to
E¢%(e;) < oo, strengthen (A2) to exp(bZ,) is uniformly integrable in n for all b
and replace (A3) by the requirement that |d/du¢(F, '(v))| < K{u(l — u)} =+
forall b€ B and a < 3

(iii) Correction to Cuzick (1985). This paper addressed similar questions
related to nonparametric testing when censoring is present. Unfortunately the
condition “|z,| are bounded” was omitted from the statement of Theorem 1. The
conditions used in this paper can be weakened by using current techniques.

(iv) Although nonparametric in the transformation, the current analysis
retains a parametric assumption about the error distribution. Incorrect specifi-
cation of f, will lead to biased estimators, although it is not clear how serious
this will be in practice. A more general theory would allow an adaptive estimate
of f, also. Clayton and Cuzick (1985, 1986) consider a parametric family of error
distributions, but a more general theory would be of interest.

(v) Extensions to multivariate predictors are straightforward. b = (b,,..., b,)
and z; = (z},..., %) now become vectors and a solution is sought to the vector
equation

n
i=1

Under technical assumptions similar to (A1)-(A6), Theorems 1 and 2 can be
extended in a straightforward manner and the special properties associated with
@(t) =t can also be established. In particular uniqueness of a solution to (27)
follows by taking a derivative with respect to b of the right-hand side and yields
the matrix

n

E z,(z;, - 2,) = — z":l (z; - 2,)(z, - ,),

i=1

which can be shown to be symmetric and negatlve definite in a manner similar to
Lemma 5. Here

dtP
z,=(z,...,2F) and z/=—

i db;

The existence of a solution follows by considering an iterative solution to (27).
We obtain

(28) b, = (Tzzr) (Tat)
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so that
by = b, = (Tz2]) " Tz, (2 - i)
= (Zzizi)_l(zziig)(bn - bn—l)’

where Z; is evaluated between b,_; and b,. Now ¥z ,(z; — z;)’ = 0, so that
Zzii§ = Ziiiiy )
Yzzi= ) (2, - 2)(z,— %) + 2Z,%]
and (Xz;z!)"'(Xz,;Z/) has all eigenvalues less than unity in absolute value
implying that the mapping (28) is a contraction and must have a fixed point.
Numerical work is needed in this multivariate setting.
(vi) The method can also be extended to deal with censored data. The
quantity R,/(n + 1) must be replaced by a Kaplan-Meier (or equivalent) esti-
mator in the definition of the #° and the score function ¢ must be extended to

deal with censored observations as in Prentice (1978). More work is needed to
establish the properties of b in this setup.

Acknowledgment. I thank Robert Edwards doing the programming associ-
ated with the numerical results in Section 4.
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