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CONDITIONAL INFERENCE FOR RESTRICTED
RANDOMIZATION DESIGNS!

By R. T. SMYTHE
George Washington University

In a clinical trial to compare two treatments, suppose that patients are
assigned to treatment according to a certain class of restricted randomization
rules. Conditional on the difference in numbers between the two treatment
groups, the asymptotic null distribution of a class of permutation tests is
shown to be Gaussian.

1. Introduction. Consider a clinical trial where patients become available
one at a time for treatment and must be assigned to a treatment group
immediately upon arrival. Suppose there are just two treatments to be compared
and equal-sized treatment groups are desired. Rather than assigning patients at
random to treatment by tossing a coin (complete randomization), restricted
randomization schemes are often employed in order to force more equal numbers
of patients in the two treatment groups. A number of such schemes have been
developed [see, e.g., Simon (1979)], some of which are adaptive in the sense that
the treatment assignment of the n + 1st patient may depend on the assignments
of the first n patients.

Suppose that at the end of the trial we are interested in testing the hypothesis
H, that there is no difference between the two treatments. For a class of
adaptive restricted randomization rules proposed by Smith (1984a), Wei, Smythe
and Smith (1986) (henceforth referred to as WSS) studied the asymptotic null
distribution of nonparametric test statistics for H,, under a randomization
model. In the case of two treatments, it was shown that for a large class of test
statistics, the asymptotic null distribution was normal under these restricted
randomization rules.

Cox (1982) suggested the use in this situation of a conditional randomization
test, where the significance level would be computed conditionally on the
difference between the numbers of patients in the two treatment groups or on
some other measure of imbalance in the design. For example, if this difference
were equal to 5, only permutations of treatment assignments with terminal
imbalance equal to 5 would be included in the reference set. It was conjectured
by WSS (page 270) that, under the restricted randomization rules they studied,
the conditional distribution of this test statistic is again asymptotically normal.
The purpose of this note is to verify the conjecture of WSS under the same
restricted randomization rules and a mild additional hypothesis on the scores.
The proof uses ideas from Holst (1979) and Heckman (1985).
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Section 2 gives details of the restricted randomization scheme and test
statistics. In Section 3 the main result is stated and proved.

2. Restricted randomization rules and the test statistic. For two treat-
ments, Smith’s (1984a) procedure is as follows. Let p be a function from [0,1]
into [0, 1] with the properties

(2.1) p(y)<jity=}and p(y) 2 5ify<jy,
(2.2) : p has a bounded second derivative.

Suppose that after i assignments there are N, patients in treatment 1. Then
the probability that the i + 1st patient is assigned to treatment 1 is given by
P(N/i). It is shown in WSS that N,/i -, } under (2.1), i.e., balance between
the two treatment groups is achieved as i — co. Further properties of this
assignment scheme are discussed by Smith (1984b).

Now suppose patients have been assigned to treatment following the rule p

and after n patients are treated, {x,,,...,x,,} is the sequence of observed
responses. Let the corresponding scores of the x’s be denoted {a,,,..., a,,}. We
will assume that the scores satisfy
n
(2.3) 3 C > Osuch that n max a2, < C) a? foreach n.
1<i<n 1

This condition appears to be required by our proof. It is satisfied by some of the
usual scores (e.g., ranks) but is stronger than the more familiar Lindeberg
condition (cf. WSS)

(2.4) lim max a?, /
n—-ow l<i<n

Let T, =1 if the ith patient is assigned to treatment 1 and 0, otherwise.
Under complete randomization and (2.4), if v2 = ¥7_,a2,, the statistic

noa, 1
9 in T — =
igl vn( ! 2)

has, under H), a limiting standard normal distribution [Lehmann (1975), page
352]. However, under the restricted randomization schemes considered by WSS,
the appropriate variance for 2X7_,a,,(T; — 1) is not vZ, but s = Y b2, where

the modified scores {b;,} are defined by a linear transformation of {a;,} (WSS,
page 268),

n a, k—2 _ )
25) b,=a,+v X {—ch—_nl TT(+v) 1)}, i=1,2,...,n,
k=i+1 J=t

with y = p’(3) and [T}, = 1 if £ < i. It was shown by WSS (page 272) that the
scores {b,,} satisfy (2.4) if the {a;,} do; the same is true for (2.3).
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From WSS Theorem 3.5, it follows that, assuming (2.4),

(2.6) W, = 2i ai"(T, _ l)

is asymptotically standard normal under H,.

For n>1, let D,=N,—(n— N,)=25" (T, - 1) denote the difference
between the numbers of patients in the two treatments. Following Cox’s (1982)
suggestion, our objective is to study the conditional distribution of W, given D,.

3. A conditional limit theorem. Let {a,,} be the desired scores for the test
statistic W, defined in (2.6). Assume that (2.4) holds and that:

(3.1) The scores {a;,} are centered, i.e., X" ,a;, = 0 for each n.

The scores {a;,} are normalized for each n, to make
n b2 — 82 =1
i=1%n = °n .

(3.2)

Under assumptions (3.1) and (3.2), W, = 2X7_,a,,T.. Now let d,, = n" /2, so
that n='/2D, = 2% ,4,(T; — ). Define an array {b,,} from the scores {d,,} via
(2.5) and let 52 = £ b2 From results of Wei (1978), it follows that, as n — oo,
82 = (1 — 2y)~! = s?, the limiting variance of n~'/2D,. For any real « and B, it
is easily checked that the scores {aa,, + 28n~'/?) satisfy (2.4); thus (WSS, page
270) the statistic
n
oW, + pn"'’D, = ¥ (aa;, + 28" 2)(T; - §)
i=1

has approximately, for large n, a normal distribution with mean 0 and variance
I (ab,, + 2Bb,,)%. The Cramér-Wold device [cf. Billingsley (1968), page 48]
then implies that, for large n, (W,, n~'/2D,) may be approximated by a bivariate
normal with zero means and covariance matrix

( 3 3) % % Z bin Ein
. % Z bin Ein E 5t2n .

This suggests, but does not establish, that the conditional distribution (centered
and normalized) of W, given D, should be asymptotically normal; this was the
conjecture of WSS to be verified here.

To ease the notation, define p, = 7 b, 5;,. In view of (3.2), we have p2 < §2
for every n. The sequence {p,} need not converge (see the remarks at the end of
the section). Since the conditional variance should be 1 — p2/52, to exclude the
possibility of a degenerate conditional limit [cf. (3.3)] we assume

n
(3.4) limsupp? < lim Y 42, = s2.
n n o

The key to the proof of the main theorem is a formula due to Bartlett (1938)
[cf. also Holst (1979), page 552].
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THEOREM 3.1. Let (X,Y) be a two-dimensional random vector with X
integer-valued. Then, for n such that P(X = n) > 0,

(3.5) E(e®™|X =n)=[27P(X = n)]—l'/:7 E(exp[iv(X — n) + itY]) dv.

Now let x be any real number. Let {m,} be a sequence of integers with the
property that

(3.6) m, — n is even and m, = xn'/? + o(n'/?).

The sequence {m,} will denote the observed values of D,.
Here is our conditional limit theorem:

THEOREM 3.2. Suppose the treatment assignment rule p satisfies (2.1) and
(2.2) and that the scores {a;,} satisfy (2.3), (3.1), (3.2) and (3.4). If the sequence
m = m,, satisfies (3.6) and if 02 = (1 — p2/s?), then the conditional distribution
of o, '[W, — p,x/s?], given D, = m, converges as n — o to a standard normal
law.

ProoF. The first part of the proof follows the general outline of Theorem 3
of Holst (1979). For complete randomization, where b;, = a;,, Holst’s theorem
gives the desired result immediately, since in this case E(e*T~1/?) = cos(¢/2)
and Holst’s condition (3.3) is clearly satisfied.

Note first that {D,=m} = (X_,T; = (n + m)/2}. Consider, for ¢ fixed,
E(exp[iy(W, — xp,,/sz)/o 12T = (n + m)/2) and use (3.5) to write this as

Vn 1 Ve
[¢2_—2—P(Dn=m)] e 2
®.7) X f_ﬂ E{exp[iv(zn:’[j _ ; ~ ] + 2(§)Zajn’.l}}exp( —si;t:p") dv
=A;'B,,

where A, = (Vnn /V2)P(D, = m). By Theorem 1 of Heckman (1985),
(3.8) limA; ! = se**/s"/2,
n
Making the transformation u = vyn /2, B, can be written as
7y /2 Cr ] 2 t
T|—= +2|—]a;
) /2 {"(Z [ i o, |

itxp,
> b _ iux + o(1))du

X exp
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where T, =T, - . Let a;,(u)=n""%+ (t/uo,)a,,. Then b, (u) =25
(t/uo,)b,, and [using (3.2)]

n
§2= E b2, =52+ t?/u’? + 2tp,/uc,.

It is easily checked that the scores {@;,} satisfy (2.3), so it follows that

{(b;,} do also. It follows by the proof of Theorem 3.5 of WSS that
E{exp[2iv(5;, ' )Z7a,,T))} —» e™® */2 as n - oo for all v, with convergence uni-
form on compact sets.

Let A > 0 be fixed and consider

69) %fleE(exp(%uiajnTj))exp(—z[ux + o(l)])exp( lapn) du

1 n
— RA
= BA.

Using (3.4),
E[exp(m(us (i @ jn T; ))] - exp(_é(ugn)2) -

asn — oo for0 < |u| < A.

The limiting value of (3.9) is then the same as that of
1 to, I? t2
\/2_77 f exp su + S_On exp| — E

xexp(—i[ux + o(1)])exp( —slzt:p,,) du.

(3.10)

Let n’ be any subsequence on which p, converges to p. Taking the limit as
n’ — oo in (3.9) and defining 02 = (1 — p%/s?), we get

—itxp A S s2 o 1%\
—t /2 -1 A —iux
exp( % )s f 5 exp( 3 {u + penl B du.

Letting A — o gives
lim lim B4 =e"! /z(s‘le‘(xz/sz)/z)
A—00 B0
and combining this with (3.8) gives
(3.11) lim lim A;'BA = e #/2,
A—>o00 n—w

The remainder of the proof consists of showing that
lim lim [B, - B#] =o.

A—>o00 n'—o0
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Consider
1 _ .
e E(exp(2iu) a;,T;))e "™ du.
V2 ‘/;15|u|s'n',ﬁ/2 ( p( L, ’))
Transforming back to v = u/ Vn, we get ua,, = v + (t/o,)a,,.
Define 8;, = (t/0,)a;,. The integral then becomes

n i _ )
(3.12) \/ — E(exp(2i2(v +3,, T-))e‘"’"’ dv.
7 27 ‘/;1/,/;{5|u|5ﬂ/2 1 / ) /

Fixing n for the moment, let ¥ (v) = E(exp(2iL{(v + 8,,)T,)). Taking expec-
tation conditional on o(T}, T,..., T,_,) gives

Ya(v) = cos(v + 8,,)¥,_1(v)
(813) +2isin(v + 8,,,,)E{exp[2inz::l(v + 8].")7_}“p(iv"ﬁ) - —;—}}

We may expand [ p(x) — 3]as p’(3)(x — 3) + $B(x)(x — 1)?, where by assump-
tion (2.2), B(x) is bounded. Noting that
J-1 }

yi(v) = E{2i(Nj —j/2)exp(2i Y (v +8,,)T,

(3.13) may be written as
‘Pn(v) = COS(U + 6nn)‘l/n—l('))

(3.14) ysin(o + 8,,)(¥h_1(v)/(n — 1)) + Bi(o),
where
n-1 — N, -1 ? Nn—l
Rl (v) = isin(v + S,m)E{exp(2i Y (v+ 81,,)’1})( n"_ 1 %) B( — )}

Proceeding as in Lemma 1 of Heckman (1985), iteration of (3.14) yields, for
l1<l<n-1,

n l
4/"(0) = l:[ lCOS(’U + 8jn)‘l/n—l(v) + Y Z Sin(v + 8n—k+1,n)
n—Il+ k=1

(3.15)
n h
x| T o0+ 8,)}¥4(0)/(n ~ k) + RCo),
n—k+2
where the integral of |R.(v)|n'/? is easily seen to approach 0 as n — oo.

Now by (2.3), max, _;_,a?, < (C/n)La?, and it was proved by WSS (page
272) that Ya?, < c,Lb%, = c,. Since (3.4) guarantees that liminf,o2 > 0, we have
for given ¢, and A sufficiently large, that
(3.16) max ((¢/e,)a;,| < A/2Vn.

l<i<n

Using (3.15), (3.16) and the fact that E|N,_,/(n — 1) — 1|2 < ¢(n — 1)~ ! [Smith
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(1984a), page 1026], the proof that (3.12) converges to 0 as n — oo is a relatively
straightforward modification of the argument of Heckman (1985). Thus on any
subsequence n’ on which p, has a limit p, the conditional distribution of
o, (W, — xp,/s%.,), given D,, = m, converges to a standard normal law. Since
{p,} is bounded, this implies the conclusion of Theorem 3.2. O

It is tempting to say that Theorem 3.2 shows that “the conditional distribu-
tion of W, given D,, converges to a normal law.” However, under a randomiza-
tion model, there is no reason why p, should converge, and one can construct
scores for which it will not. If liminf,p, < limsup,p,, the conditional distribu-
tion of W, given D,, may have different limits on distinct subsequences; but
centered and normalized as in Theorem 3.2, the conditional limit exists on the
entire sequence.

Acknowledgments. The author would like to thank the Departments of
Statistics and Biostatistics of the University of Washington for their hospitality
during the preparation of this work. Thanks are also due to the referees and the
Associate Editor for their helpful comments.

REFERENCES

BARTLETT, M. S. (1938). The characteristic function of a conditional statistic. JJ. London Math. Soc.
13 62-67.

BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.

Cox, D. R. (1982). A remark on randomization in clinical trials. Utilitas Math. 21 A 245-252.

HECKMAN, N. (1985). A local limit theorem for a biased coin design for sequential tests. Ann.
Statist. 13 785-788.

HowsT, L. (1979). Two conditional limit theorems with applications. Ann. Statist. 7 551-557.

LEHMANN, E. L. (1975). Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San
Francisco.

SIMON, R. (1979). Restricted randomization designs in clinical trials. Biometrics 35 503-512.

SMmiITH, R. L. (1984a). Properties of biased coin designs in sequential clinical trials. Ann. Statist. 12
1018-1034.

SMITH, R. L. (1984b). Sequential treatment allocation using biased coin designs. J. Roy. Statist. Soc.
Ser. B 46 519-543.

WEI L. J. (1978). The adaptive biased coin design for sequential experiments. Ann. Statist. 6
92-100.

WEI, L. J., SMYTHE, R. T. and SMiTH, R. L. (1986). K-treatment comparisons with restricted
randomization rules in clinical trials. Ann. Statist. 14 265-274.

DEPARTMENT OF STATISTICS / C & IS
GEORGE WASHINGTON UNIVERSITY
WASHINGTON, D.C. 20052



