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A QUASIRANDOM APPROACH TO INTEGRATION IN
BAYESIAN STATISTICS!
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Practical Bayesian statistics with realistic models usually gives posterior
distributions that are analytically intractable, and inferences must be made
via numerical integration. In many cases, the integrands can be transformed
into periodic functions on the unit d-dimensional cube, for which quasiran-
dom sequences are known to give efficient numerical integration rules. This
paper reviews some relevant theory, defines new criteria for identifying
suitable quasirandom sequences and suggests some extensions to the basic
integration rules. Various quasirandom methods are then compared on the
sort of integrals that arise in Bayesian inference and are shown to be much
more efficient than Monte Carlo methods.

1. Introduction: Numerical integration in Bayesian statistics. The
central role of numerical integration in practical Bayesian statistics has been
emphasised in, for example, Smith, Skene, Shaw, Naylor and Dransfield (1985).
Many important summaries, such as posterior parameter moments, predictive
distributions and evaluations of marginal densities, can be expressed via integrals
of the form

(1.1) Sx(q) = fR q(8)m(8) de,

where 0 is a d-dimensional parameter indexing the plausible models, m is the
unnormalised posterior density, i.e., “likelihood X prior,” ¢ is some function
(possibly vector- or matrix-valued) and R is a region of the parameter space ©.
If R is irrelevant or is obvious from the context (often R = ® = R?), then it will
be omitted.

For example, ¢ = S(1)"! is the normalising constant, ¢S(0) = E(8) is the
posterior parameter mean vector, and ¢S(80T) — c25(0)S(0)T = V() is the pos-
terior parameter variance—covariance matrix.

With realistic likelihoods and genuine prior information, the integrals are
usually analytically intractable and must be estimated numerically, usually in
practice by an approximation of the form

w) $x(a) = X mm(8)a(0).

The 0, are called nodes (or points) and the w; are weights. The nodes and
weights together constitute an integration rule. Quantities such as E(8) and
V(8) can similarly be estimated by replacing each S by the corresponding S.
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As likelihood evaluations may be computationally expensive, we want n to be
small, and $(q) to be based on the same sequence of nodes (0,) for all g. We shall
assume that the sequence of weights (w)) is to be the same for all g; this is the
case for almost all numerical integration schemes in current practice. Some other
desirable properties of numerical integration rules for use in Bayesian inference
are discused in Shaw (1987a). In particular, the weights should all be positive: If
any weights were negative, then, for example, the estimated normalising con-
stant $(1)~! might be negative. More general surveys of numerical integration
may be found in the books by Stroud (1971) and Davis and Rabinowitz (1984).

The current paper illustrates how “quasirandom sequences” can be incorpo-
rated in a general automatic strategy for efficient high-dimensional numerical
integration of the type of functions arising in Bayesian statistics. Much of the
paper is a review of existing theory, but some new ideas of potential value for
statisticians are given in Sections 4 and 6. Section 2 describes how, in many
cases, numerical integration can be simplified by adaptively transforming the
parameter space ® to the unit hypercube. Section 3 reviews rational, irrational
and irregular quasirandom sequences of points in the unit hypercube and their
“discrepancy.” Section 4 defines some new criteria for identifying useful rational
sequences and tabulates various quasirandom integration rules found by these
criteria. Section 5 describes some well-known irrational and irregular sequences.
Section 6 suggests some ways of extending the basic integration rules defined by
the quasirandom sequences of Sections 4 and 5. Section 7 compares the efficien-
cies of the different quasirandom integration methods on two artificial but
relevant examples and summarises experience gained from applying the methods
to genuine statistical problems.

2. Adaptive integration rules. For a given posterior distribution, good
integration rules usually have to be found iteratively: Information from one
iteration helps construct the rule for the next iteration. The initial integration
rule may be determined, for example, by the behaviour of the posterior density
in the region of the mode.

We shall assume that the parameter space ® is R? and that the first and
second moments of the posterior p(0|y) exist, where y denotes the data. Then a
useful simplification in defining good integration rules is to find a transformation
B: 6 — x such that x has zero mean and identity variance—covariance matrix.
For example, we could use the Cholesky decomposition of the precision matrix

[V(0)]7,
x = B(8) = C(6 — E(0)),

where C is the upper-triangular matrix such that
cTc = [v(e)] "

We could equally well choose C to be lower-triangular. In practice, an approxi-
mate transformation of this kind can be found using estimates of E(0) and V(6)
from the previous iteration, or from several previous iterations combined. We
may therefore, without essential loss of generality, concentrate on standardised
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posterior densities p(x|y) that have mean approximately 0 and variance—covari-
ance matrix approximately the identity.

For standardised posterior distributions with few parameters (say d < 6),
rescaled Cartesian product Gauss—Hermite integration rules are often highly
efficient. See Naylor and Smith (1982, 1983) and Smith, Skene, Shaw, Naylor
and Dransfield (1985) for a description and examples. However, the number of
nodes increases exponentially with increasing d. Even for small d, Gauss—Hermite
integration is only efficient if the integrand is smooth (i.e., all kth partial
derivatives are continuous and bounded for some large k). Therefore, we still
need efficient methods for cases where d is large, or ¢ or m are badly behaved.

Monte Carlo integration has been widely used in both such cases, see
Hammersley and Handscomb (1964) for a detailed discussion and Stewart (1985)
and van Dijk and Kloek (1985) for recent statistically oriented examples and
references. A particular variant of Monte Carlo integration, importance sam-
pling, allows integrals over infinite regions to be estimated. The nodes x; are
generated independently from an importance sampling distribution

G(x) =Pr(X <x),
and the corresponding weights are defined by
dGg|!
wi =

dx

evaluated at x;

= g(x;) "~
S(g) is then an unbiased estimator of S(q), and its variance is small if g(x) is
roughly proportional to the absolute value of the integrand. As the name
suggests, G should be chosen to concentrate the nodes in “important” regions of
the parameter space.

Unfortunately, it can be difficult in practice to find an appropriate importance
sampling distribution G, especially as we would prefer to use the same nodes and
weights for many different integrands. Shaw (1986a) addressed this problem by
introducing a flexible class of importance sampling distributions defined im-
plicitly by

(2.1) X;=c[A;f(U) - (1-A)(1-U) + 8], Jj=1,...4d,

X = (Xl""’ Xd)’

where 0 < A; <1, f; is a monotonic increasing function on (0,1) such that
f({u) > —0asu—->0+,U=(U,...,U,) is uniformly distributed on the unit
d-dimensional cube C,; = [0,1)¢ and b; and c; are constants determined by f; and
A,. Integration rules using such importance sampling distributions are easy to
define. Let (u;) be a sequence of n points u; = (4,5, ..., 4;,) € Cy, and let (v;) be
a discrete probability distribution on (u;), so that (u;) are the nodes and (v;) the
weights of an integration rule on C,. Then the nodes of the corresponding
integration rule on R¢ are (x;), where the jth coordinate of the ith node is

(2.2) iy = ol Aif(w,) — (1 - 4) (1 - uy) + )],
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with corresponding weight
d
(2.3) w; = v,-le(cj[Ajfj'(uij) -(1-4)f0 - uij)])’

where f; denotes the derivative of f.. Typically, v; = 1/n for all , although an
exception is discussed in Section 6.3.

Thus the problem of numerically integrating q(8)m(8) over R can be
reduced at each iteration to the equivalent problem of numerically integrating
q(B7'G " 'u)ym(B~'G'u) over C,. If G is sufficiently heavy-tailed, then the
transformed integrands will tend to 0 at the boundary of C,, and can therefore
be extended to a periodic function on R¢ where “periodic”’ will here always
mean “continuous, multivariate, with period 1 in each variable.” The remainder
of this paper therefore concerns integration rules that are efficient on C,,
particularly for well-behaved periodic integrands. The gain in efliciency over
straightforward Monte Carlo methods helps compensate for the fact that just
one importance sampling distribution is used for several integrands. The choice
of A;and f; in (2.1) to transform from C; to R< at a given iteration is considered
in a separate paper [Shaw (1986a)].

3. Quasirandom sequences and discrepancy. A quasirandom sequence
is any infinite sequence s = (u,|i € N) of points in C,; =[0,1)? generated by
some algorithm. Our interest is in using s,, the first n elements of s, as the nodes
of an integration rule for C,, with weights v; = 1/n, i = 1,..., n. Various studies
from a number theoretic perspective, see Niederreiter (1978) for a detailed
survey, suggest algorithms for “good” sequences, as well as considering various
definitions of “goodness.”

Quasirandom sequences will be called regular if

(3.1) u;., =u; + a(modl)

(i.e., the jth coordinate in u;,, is the fractional part of the jth coordinate in
u; + a), or irregular if generated by any other form of algorithm. Regular
sequences will be called rational if each a; € Q, irrational if each a; ¢ Q and
mixed otherwise. These names are not standard.

Criteria for good integration rules can be derived from the discrepancy of the
sequence s = (u;). Using a similar notation to Section 1, define

Sw(q) = fR q(u) du,

8r(a; 5,) =;1; Y q(u,),

u;,€ER

for R c C,, so that A = §R(q; s,) — Sg(q) is the error in using nodes u; and
weights v, =1/n, i =1,...,n, to integrate ¢ over R. In the particular case
g =1and R =[0,x)=[0,x,) X --- X[0, x,), A is called the local discrepancy
of the sequence s, at x.
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There are several measures of global discrepancy; see, for example, Kuipers
and Niederreiter (1974), Chapter 2. In particular, the L® starred discrepancy,
Dy, is just the one-sample Kolmogorov—-Smirnov test statistic defined by
(3.2) D¥ = sup |S‘[o,“)(1; s,) — S[o,“)(l)l.

uecC,
If lim,_, DX = 0, then s is said to be equidistributed. This discrepancy mea-
sure is important theoretically since if g: C; = R is of bounded variation V(gq) in
the sense of Hardy and Krause [see Niederreiter (1978), pages 966-967], then the
integration error is bounded:

(3.3) |Sc(a5 5,) — Sc,()| < V(g)Dyx.

Another bound on the integration error, valid for all Riemann-integrable g, is
given in Hlawka (1971). Unfortunately, all such bounds tend in practice to be
grossly pessimistic. Note also that D* is impossibly costly to evaluate if d or n
is large.

In the next two sections, we shall consider some particular quasirandom
sequences with low discrepancy and /or other desirable properties.

4. Rational sequences. If a in (3.1) is a member of Q¢ then we can write

b

(4.1) a; =

j .
f R k,eN, j=1,...,d,

n
where
g-c.d.(kl, k2,..., kd’ n) =1.

Then clearly u; = u,_;, but u; # u,; for £ < n. We shall therefore consider the
finite rational sequence s, = (u;|i = 1,..., n), and call n the period of s = (u;).
This is a multivariate analogue of the one-dimensional trapezium rule, which is
well known to be efficient for integrating periodic functions; see Hammersley and
Handscomb (1964), formulae 5.6.9-5.6.13, and Walley and Fearn (1979). How-
ever, we still need criteria for choosing suitable n and k.

13 ”

The standard criterion, “p,” arises as follows. Let
Mk)= {mmeZ¢m+0,mk=0(modn)},
and
d
(4.2) r(m) = l_Ilmax(l,|mj).
j=

Thus M(k) is the set of all integer vectors m = (m,,..., m,), excluding (0,...,0),
such that ¥mk; is a multiple of n, and r(m) is the product of the nonzero
coordinates of m. Then for k € Z¢ define

(4.3) p(k,n) = min r(m),

so that p is a measure of the distance from the origin to the nearest point of
M(k). From results in Section 4 of Niederreiter (1978), it follows that the
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discrepancy of s, satisfies an inequality of the form
d c(d,n)
D*< — + ——,
n  p(k,n)

where c¢(d, n) is independent of k. Therefore, for given d and n, we should look
for values of k that yield large p. If p is sufficiently large, then k is often called a
good lattice point modulo n (although the literature contains several conflicting
definitions of “sufficiently”). This criterion, due to Hlawka, yields integration
rules that are particularly efficient for periodic functions whose multiple Fourier
expansion has coefficients tending rapidly to zero. See Zaremba (1968) and
Niederreiter (1978) for details.

We could use more natural measures of distance than (4.2). Thus an alterna-
tive criterion is that

44 k,n

(4.4) v(l,n) = min E -

be large, since » is an upper bound on the minimum number of parallel
(d — 1)-dimensional hyperplanes covering s,. For suppose that m is such that
m.k = 0 (mod n), and let

where a,; € N and b;; € {0,1,.. n—l} Then

nmu; = EmbU E (ik; — a;;n)
j=1
4.5 d
j=1

=0 (mod n).
Therefore m.u; is an integer. Also, since 0 < u;; < 1for j =1,2,..., d, we have:

(1) If all m; < 0, then ¥m; < m.u,; < 0;
(2) if all m; > 0, then 0 < m.u; < Xm; and

(3) if some m are positive and some negative, then X, _om; <mu; <X, . m;

In case (1), the integer m.u; can take only X|m, possible values (Xm; + 1,
Im;+2,...,0). Similarly, m.u; has only X|m | and Z|m;| — 1 possible values in
cases 2 and 3), respectively. Thus s, is covered by at most Z|m/| hyperplanes
of the form m.x = constant. This gives » the natural mterpretatmn described
previously, and also implies that if m € M(k) is such that ¥|m is small, then
numerical integration with nodes s, will tend to be inaccurate for functions that
are badly behaved in the direction m.

Although p is important in identifying rational sequences with low dis-
crepancy, it appears that » must also be large. For example, the two-dimensional
rational sequence k = (1,27), n = 125, d = 2, with » = 15, has lower discrepancy
(D* = 0.026048) than the sequence k = (1,33), n =125, d =2, » =11, D* =
0.027200, even though it has smaller p (27 compared to 28).



QUASIRANDOM INTEGRATION

Examples of recommended rational sequences

TABLE 1

901

Rule Criterion
k n d P2 f3 Py Ps V2 V3 V4 Vs
121 555 3 121 24 30 14
61 388 3 61 18 24 12
47 252 3 47 12 20 10
36 1556 3 36 14 15 9
17 78 3 17 6 12 6
7 38 3 7 4 8 6
5 18 3 5 2 6 4
3 14 3 3 2 4 4
188 857 4 116 19 18 31 12 11
109 390 4 56 18 8 24 10 8
69 226 4 15 12 8 16 8 8
32 533 6 32 8 4 2 25 8 6 6
23 328 5 23 8 3 3 20 8 6 6
23 246 5 23 6 3 3 18 6 6 6
15 124 5 15 4 4 2 12 6 6 6
7 60 4 7 4 1 8 6 4
32 325 6 32 6 4 2 15 7 6 6
19 394 7 19 10 3 3 14 8 6 6
12 211 7 12 4 2 2 13 6 5 5
11 171 6 11 6 2 2 12 6 5 5
13 98 7 13 2 1 1 14 4 4 4
9 70 6 9 2 1 1 10 4 4 4
6 49 7 6 2 1 1 7 4 4 4
4 25 5 4 2 1 1 5 4 4 4
4 29 7 4 1 1 1 5 3 3 3
23 610 10 23 4 3 2 18 6 6 6
32 425 8 32 6 1 1 15 7 4 4
10 237 13 10 3 1 1 11 5 4 4
17 342 18 17 2 1 1 18 4 4 4
16 391 22 16 2 1 1 17 4 4 4
13 322 22 13 2 1 1 14 4 4 4
10 121 11 10 2 1 1 11 4 4 4
6 91 12 6 2 1 1 7 4 4 4
5 54 9 5 2 1 1 6 4 4 4
9 230 22 9 2 1 1 10 4 4 4
9 188 23 9 2 1 1 8 4 4 4
4 95 18 4 2 1 1 5 4 4 4
4 53 - 13 4 1 1 1 5 3 3 3
10 341 30 10 2 1 1 11 4 4 4
5 198 30 5 2 1 1 6 4 4 4
4 115 22 4 2 1 1 5 4 4 4
2 19 9 2 1 1 1 3 3 3 3
4 149 37 4 1 1 1 5 3 3 3
2 47 23 2 1 1 1 3 3 3 3

?mameters to form good rational sequences with period n and increment

o=
nn

-,—,—mod n,...,
n

1 k& k2

kd-l

mod n) .

See Section 4 for a description of the criteria p; and »;. The table is ordered so that given an upper
bound on n and a lower bound on d, the recommended rule is the first one satisfying the bounds.
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In high dimensions, n must, unfortunately, be very large for p or v to identify
good rational sequences. For example, the table of recommended sequences for
d =9 in Hua and Wang (1981) has p > 2 only for n > 85,000. However, the
integrands we are interested in, which arise from statistical models, are typically
very well behaved in all but a few dimensions [Shaw (1986a)]. It makes more
sense therefore to demand just that p and » be large for all projections of s, onto
low-dimensional faces of C;, and define criteria p; and »; to be the minima over
all k* of p(k*, n) and »(k*, n), respectively, where k* omits d — i coordinates
from k. For example, if a given rule has d = 7 and »; = 8, then projecting its
nodes onto any three-dimensional “face” of C, will define a rule with d = 3 and
v > 8.

Computer searches to identify such s, have been carried out. To obtain
results in reasonable time, most of the searches were restricted to k of the form
1, &, k2%,..., k% 1) modn, the resulting rules being then identified as triples
(k, n, d). Table 1 gives some recommended rules and their properties; note that
if (k, n, d) is good by the preceding criteria, then (&, n, d — 1) will also be fairly
good, since its values of p; and »; for each i = 1,2,...,d — 1 must be at least as
large as the corresponding p; and »; for the rule (&, n, d). All the rules in Table 1
have &k and n coprime, so that p, = », = n. Table 1 is ordered so that given an
upper bound on n and a lower bound on d, the recommended rule is the first one
satisfying the bounds. Thus, for integration over C,,, the recommended rule with
most points is (%, n, d) = (23,610, 10), but if fewer nodes are desired, then the
next rule satisfying n < 610 and d > 10 is (10,237,13). Any ten-dimensional
projection of this rule could be used; the simplest being just (10, 237, 10). If 237
nodes are still too many, then ten-dimensional projections of the rules (10,121, 11),
(6,91,12), (4,53, 13) or (2,47, 23) could be used.

Similar rules, but with restricted n and different criteria, have been studied
by Korobov, whose results are reviewed in Stroud (1971), Section 6.3. See also
Haber (1983).

5. Irrational and irregular sequences. Davis and Rabinowitz (1984), Sec-
tion 5.9.3, suggest several possible values for irrational « in (3.1). These include

(5.1) @ = ({51 P> -r (P2,

where p; are different primes,

(5.2) : a=(££,...,¢9,
where ¢ = p'/(?* for some prime p, and
2 47 2ad
(5.3) a=|2cos—,2cos—,...,2cos— |,
p p p

where p > 2d + 3 is a prime such that either

(i) 2 has order p — 1 mod p (i.e,2? ' =1mod p,2*# 1 mod p for1 < k <

p—1),o0r
(ii) 2 has order (p — 1)/2 mod p and p = 7 mod 8.
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Thus p in (5.3) has possible values 5,7,11,13,19, 23,29, 37,47, ... . This restric-
tion on p is not mentioned by Davis and Rabinowitz, but is necessary for the «;
to be independent over @ (and hence for the sequence to be equidistributed); see,
for example, Hua and Wang (1965). Irrational sequences with increments given
by (5.1)-(5.3) are all equidistributed, but (5.3) generally appears to give the
lowest discrepancy in finite subsequences.

The irregular quasirandom sequences most used in statistics are pseudoran-
dom numbers. Taking a subjective view of probability, a good pseudorandom
number generator is a quasirandom sequence whose successive points, to accu-
racy (say) 1071°, are independent realisations of a random variable. From this
perspective, the philosophical objections to Monte Carlo methods expressed by,
for example, Zaremba (1968) seem irrelevant. There is, of course, the practical
difficulty of generating pseudorandom sequences, although many pesudorandom
number generators such as that given by Wichmann and Hill (1982) appear to be
adequate for all practical purposes. The primary objection remains, however,
that other quasirandom sequences tend more rapidly to equidistribution than do
pseudorandom sequences, so are more efficient for numerically integrating smooth
functions over C;.

The following three irregular sequences have been used successfully for quasi-
random integration over C, [e.g., Warnock (1972)].

Haber sequences:

i(i+1) i(i+1)

‘-—2——\/})_1,..., 2 ‘/1—); (mod1),

where the p; are prime (usually p; is the jth prime). Haber (1970) suggests that
this sequence should be better than more frequently used pseudorandom se-
quences for Monte Carlo integration, since the 2d-dimensional sequence with ith
node (u;,u,.;) is equidistributed for n = 1,2,... . Analogous sequences to (5.4)
can obviously be based on (5.2) or (5.3) rather than on (5.1).

Halton sequences:

(5'5) U= (¢pl(i)’ ¢p2(i)""’¢pd(i))’
where the p; are pairwise coprime (usually they are chosen to be the first d
primes), and ¢,(i) is the radical inverse function of i, obtained by writing i to
base p and “reflecting about the decimal point.” Thus 15 (base 10) = 120 (base
3), s0 ¢5(15) = 0.021 = 2 + &= L.

Hammersley sequences:

(5.4) u; =

i
(5.6) u,, = ;;’(ppl(l)"“’(ppd—l(l) , i=0,...,n—-1,

with ¢, as given previously. Warnock (1972) has u; rather than u;,, in defini-
tions (5.5) and (5.6), but our definitions, with u;, = 0 in both cases, are more
common. :

+The LP, sequences, defined in Sobol’ (1967), are also based on the radical
inverse function. Particular LP, sequences satisfying further criteria are
described in Sobol’ (1976); we shall call these restricted sequences Sobol’



904 J. E. H. SHAW

TABLE 2
Discrepancies D* of some two-dimensional sequences.

Number of points n

Sequence 32 64 128 256
Irrational (5.1) 0.075593 0.056624 0.047269 0.024452
Irrational (5.2) 0.147048 0.063998 0.051435 0.035319
Irrational (5.3) 0.232526 0.120083 0.069723 0.039034
Haber 0.175382 . 0.109077 0.116184 0.064437
Halton 0.104167 0.052083 0.036651 0.018760
Hammersley 0.097656 0.053711 0.029541 0.016052
Sobol’ 0.089844 0.053711 0.025146 0.014587
Rational (%, n, d) 0.084961 0.041748 0.023071 0.012451

k= 7 19 47 75

sequences. An algorithm to generate Sobol’ sequences may be found in Sobol’
(1979); the number of nodes should be a power of 2.

The discrepancies D* of some two-dimensional sequences are given in Table 2,
for n =32, 64, 128 and 256 points. Of the irrational sequences, (5.3) has
the highest D*, but it is decreasing more rapidly than the D* for sequences
(5.1) and (5.2). Of the irregular sequences, the Haber sequence has relatively
high D*, but the Halton, Hammersley and Sobol’ sequences are shown to have
only slightly higher discrepancies than the rational sequences (7, 32,2),
(19,64, 2), (47,128,2) and (75,256,2), and have the advantage of being defined
for arbitrarily large n. Note also that the often used “Cartesian product” set
of nodes {%,2,...,2} X (%,2,...,%) has D* = (32 + 31)/32% = 0.061523,
much higher than the D* for any of the 256-point sequences in Table 2 apart
from the Haber sequence.

6. Some possible extensions.

6.1. Randomised quasirandom rules. Quasirandom sequences s® = (u{V),
P = (u®),... can be combined in many ways to give new sequences s = (u;,).
For example, suppose s¥) is a pseudorandom sequence. Then for i = 1,2,..., we
can use u{)_; to define a pseudorandom permutation o; of {1,2,...,d}, and
define s by
u(21,?+o,-(u(2) )(modl), i=1,2,..., j=12,...,n.

Qyitj—n = ni+j—n

We are thus taking successive configurations of n points and applying pseudo-
random offsets and permutations of the axes. An integral calculated numerically
using the first N = mn points as nodes is then the average of m subestimates,
and the “between subestimate” variance, which should be much less than the
“within subestimate” variance, can be used to assess the accuracy of the overall
integral estimate. This is particularly useful if s@® is a rational sequence with
period n.
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The sequence s could be any quasirandom sequence that does not interact
significantly with s; choosing a good pseudorandom sequence is just the easiest
way to ensure this. Cranley and Patterson (1976) consider combining several
rational sequences s@, s, etc.

6.2. Augmented rational sequences. 1f s, is a rational sequence with period
n, then its centroid ¢ is at nu, (mod1). Therefore the (n + 1)-point sequence
8! .1 =8, (1 —c) has centroid 0.5 = (0.5,...,0.5), and with weights o, =
1/(n + 1) will integrate exactly any linear function on C,. This might seem a
desirable property, and a similar idea with a particular irregular sequence
appears in Arvidsen and Johnsson (1982). However, the analogy with the
trapezium rule is destroyed in our case, and the resulting integration rules are, in
fact, considerably less accurate for periodic integrands than the original rules
given by the unaugmented rational sequences.

Similarly the 2n-point sequence obtained by combining s, with its reflection
about 0.5 has centroid 0.5, but is in practice worse than combining two randomised
n-point configurations.

6.3. Nonuniform weights. For a finite irrational sequence s,, there may be
some advantage in letting the corresponding weights v; tend to 0 as i tends to 0
or n. This will help reduce any end effects. For example, we could define

l

- i=1,2,...,7,
o r(n-r+1) r
6 ! i 1
. =, =r+1,..,n—r,
(6.1) P — i=r n-r,
n—i+1 )
= —) i=n—r+1,...,n.
r(n-r+1)

The case n = 2r — 1 with u, = 0.5 was studied by Haselgrove (1961), see also
Sugihara and Murota (1982). Haselgrove derived rules with even higher accuracy
for integrating periodic functions, but, unfortunately, their weights are not all
positive.

The weights (6.1) could be used with other quasirandom sequences, such as

(6.2) Some1 =Uo+ (—Up, —U,_1,...,0,uy,...,u,) (mod1),

where n = 2m + 1, u, € C, and (u;) is the Haber sequence (5.4) or the Halton
sequence (5.5). Some examples of rules with weights given by (6.1) are tested in
Section 7.

6.4. Quasirandom spherical rules. This section briefly describes a transfor-
mation of C, that may be better than (2.1) if the posterior distribution is
ellipsoidally symmetric, or at least approximately so, which implies that the
standardised posterior distribution will be roughly spherically symmetric. Such
posterior distributions often arise from Bayesian analogues of classical statistical
procedures, as in Lindley and Smith (1972).
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A point u in C,,, can be transformed into a point x on U,,,, the surface of the

(2m)-dimensional unit sphere, as follows. For i = 1,2,..., m, let
2
= [_IOg(u2i—l)]l/ ’
(6.3) c; = cos(2muy;), s, =sin(27u,,),
Yoi—1 = C;Tys Yoi = 8;T;,

and for j = 1,2,...,2m, let

x. = Jj

i Tyam o212
[Z%;nl yi2]

This transformation is based on the Box-Muller (1958) method for generating
pseudorandom Normal deviates; it easily follows that if u is a uniformly
distributed random point in C,,,, then x will be uniformly distributed on U,,,.
We can also generate a point on the (2m — 1)-dimensional unit sphere by
omitting the last coordinate and summing from 1 to 2m — 1 in the denominator
of (6.4). A good sequence of points in C,,, can be transformed in this way into a
“fairly good” sequence on U, (d = 2m or 2m — 1), although the transformation
[(6.3) and (6.4)] is less smooth than (2.1) since the denominator in formula (6.4)
jumps whenever u crosses the boundary of C,,,,.

Sibuya (1962) used a similar idea to generate points uniformly on the surface
of a sphere, but his method is less appropriate for transforming quasirandom
sequences. Note that finding well distributed sequences on U, is a very difficult
problem; see, for example, Beck (1985).

Standard methods can be used to combine quasirandom integration rules on
concentric spherical surfaces, by making the radii proportional to the square
roots of the zeroes of a Laguerre polynomial [see Stroud (1971), Section 2.8]. The
resulting integration rules have been used successfully in up to 20 dimensions,
whereas previously known spherical rules as in Stroud (1968) and Keast and Diaz
(1983) failed because of negative weights. An example is given in Shaw (1987a).

(6.4)

7. Examples. The methods described previously have been incorporated
into computer programs for automatic adaptive integration, and have been
extensively used and tested on many posterior densities. Skene, Shaw and Lee
(1986) include examples requiring numerical integration in up to 12 dimensions.
In this se¢tion we consider two artificial examples, so the different quasirandom
sequences suggested previously can be tested on problems with known solutions.

7.1. A well-behaved ten-dimensional posterior distribution. Suppose we use
the importance sampling function (2.1) with fi(u) = log(u), A; =05, b, = 0 and
¢; = 1.1633925. The importance sampling density is then a product of logistic
densities, and ¢; is chosen so that straightforward Monte Carlo importance

" sampling will integrate a standard Normal density with minimum mean squared
error, as described in the following discussion. We shall compare Monte Carlo
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with some of the quasirandom integration rules given previously, when p(x |y) is
the ten-dimensional standard Normal density.

The accuracy of Monte Carlo integration can be calculated exactly as follows.
Consider first one-dimensional importance sampling with just one point; i.e., we
shall estimate the integral

S(a) = [ alx)p(x)

by
g(q; x )_ ‘I(xo()::()xo) ,

where x, is a random point from density g. Then the expected mean squared
error of this estimator is

e [a@p) T
e.m.s.e.(§,q)—f_w[ 2(0) S(q)] g(x) dx
e a@tpe)
L 8@
= I(q) - S(q)%,
If
p(x) = (27r)_1/2exp(—%x2)
and

_ 2exp(2x/c)
8(x) = c[1 + exp(2x/¢)]*’

so that g corresponds to (2.1) with f; = log, A;=0.5 and b; = 0, then it can be
shown that

w0 Gl &) -3 o ]

where E denotes expectation with respect to Z, a random variable having a
standard Normal distribution. In particular, em.s.e.(S; 1) is minimised at ¢ =
1.1633925, giving

(7.1) 1) = 5_ {exp 2 1} — 1.015245,
(7.2) 1) = o= {1 + (1 + %)exp%} — 1.015245
and

3 I(x? ¢ (3 3 3 1 ! 2.659350
(73) (x)_—{Z (Z+—2+?)expcz}—. .

AT 4
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In the ten-dimensional case, since g and p are both products of independent
densities, it follows from (7.1)—(7.3) that

ems.e.($;1) = 1(1)" — 1 = 0.163345,
ems.e.(S; x,) = I(1)°I(x) — 0 = 1.163345,
ems.e.(§ x2) = I(1)°I(x?) — 1 = 2.001528,

ems.e.(S; x,x,) = I(1)8I(x)2 — 0 =1.163345,

and the corresponding root ems.e’s are 0.40416, 1.0786, 1.4148 and 1.0786,
respectively.

The first row (MC) in Table 3 repeats these expected mean squared errors,
and hence gives the “mean squared error per node” for Monte Carlo with a large
number of points. The remaining rows of Table 3 summarise the efficiencies of
various quasirandom integration rules compared to straightforward Monte Carlo.
The efficiencies (ratio of e.m.s.e. per node for Monte Carlo to e.m.s.e. per node for
the given rule) were estimated numerically from m = 100 replications of the
given n point rule, each replication incorporating a random offset and permuta-
tion of the axes, as outlined in Section 6.1. The randomisations used the
standard APL pseudorandom number generator, a multiplicative congruential
generator with multiplier 7° and modulus 2% — 1.

Rules R1 to R5 are the rational integration rules (%, n,d) = (4,53,13),
(6,91,12), (10,121,11), (10,237,13) and (23,610, 10), respectively (see Table 1).
Thus the row labelled R1 was obtained as follows:

(1) A permutation of the vector k = (1,4,16,...,4'2 mod 53) was formed from
the pseudorandom vector (uP): For j =d, (d — 1),...,3,2 in turn the jth
and (1 + | ju,,|)th elements of k were exchanged, where [ | denotes “integer
part of.”

(2) The first 10 elements of the permuted vector were taken as (k,, k,,..., k)
in formula (4.1), with n = 53, to give an integration rule over C,.

(3) The pseudorandom vector (u}’) was added to each of the 53 points in the
integration rule, and the result was reduced modulo 1 in each dimension.

(4) The resulting nodes (u;li =1,2,...,53) were transformed to (x;|i=1,
2,...,53) by

x;; = 1.1633925[0.5log(u;;) — 05log(1 — u;;)],  j=1,2,...,d,

with corresponding weights
10

& L

giving an integration rule over R'°. This integration rule was used to obtain
estimates of the integrals S(1), S(x,), S(x2) and S(x,x,).

(5) Steps (1) to (5) were repeated another 99 times using the pseudorandom
vectors (uP) for i =3,4,...,200, and the ratios of the observed mean
squared errors to the theoretical mean squared errors for straightforward
Monte Carlo importance sampling were calculated.

w, = 1.1633925[0.5/u,; + 0.5/(1 — u;,)]),
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TABLE 3
Efficiencies of integration rules (smooth integrand)

Rule n S@) S(x;) S(x2) S(x,%5)
MC 1 0.163 1.163 2.002 1.163
R1 53 7 6 5 1
R2 91 11 8 8 2
R3 121 19 13 11 3
R4 237 14 10 10 4
RS 610 29 25 23 7
A 201 8 7 6 2
I2A 201 4 3 4 2
I3A 201 4 6 7 2
13A1 201 5 5 . 4 1
13A2 201 3 5 4 1
O1A 201 1 1 1 1
02A 201 1 2 1 1
03A 201 3 10 7 2
04A 201 4 10 8 3
05A 256 21 14 12 2
1B 501 9 7 8 2
12B 501 10 9 8 2
I3B 501 7 6 9 1
13B1 501 12 10 6 1
13B2 501 13 5 7 1
O1B 501 1 2 2 1
02B 501 1 1 1 1
03B 501 10 12 9 3
04B 501 13 18 17 3
05B 512 30 21 19 4
01B1 501 1 1 1 1
01B2 501 1 1 1 1
01B3 501 1 1 1 1
03B1 501 2 5 3 1
03B2 501 2 5 4 1
03B3 501 2 3 3 1
13C 1001 8 6 6 2
13C1 1001 10 10 7 2
13C2 . 1001 12 6 7 2
03C 1001 17 20 25 6
04C 1001 ‘ 16 19 20 5
05C 1024 31 23 27 6

n = number of points in the given rule. The first row (MC) gives the expected mean squared error
per point in estimating the corresponding integrals S(1), S(x,), S(x%) and S(x,x,) by Monte Carlo.
Other rows give approximate relative efficiencies of the named rule compared to Monte Carlo for the
corresponding integral. Thus, using a single replication of rule R3 with a random offset and axis
permutation, the estimate of S(1) has approximate standard error {0.163/(121 X 19)}'/% = 0.008, and
the estimate of S(x,x,) has approximate standard error {1.163/(121 X 3)}'/* = 0.06. See Section 7.1
for a full description.
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The other rows of Table 3 were produced similarly. Rules I1A, I2A and I3A
use the first 201 points of the irrational sequences (5.1) with p; the jth prime,
(5.2) with £ = 3, and (56.3) with p = 23, respectively. Rules I3A1 and I3A2 have
the same nodes as I3A, but the weights are given by (6.1) with r = 50 (I3A1) or
r=(n+ 1)/2 (I3A2). Rule O1A uses the first 201 points of the Haber sequence
(5.4), rule O2A uses the Haber sequence with I3A replacing I1A as the parent
sequence and rules O3A and O4A use the Halton sequence (5.5) and the
Hammersley sequence (5.6), respectively, with n = 201 and p; the jth prime.
Rule O5A uses the first 256 points from the ten-dimensional Sobol’ (1976)
sequence.

Rules I1B to O5B are the same as I1A to O5A, but with 501 nodes (or 512
nodes in the case of 04C).

Rules O1B1 to O1B3 use the Haber sequence in (6.2), with m = 250 and
weights given by (6.1) and r =1 (01B1), r =50 (O1B2) or r= (n + 1)/2
(01B3). Rules 03B1 to O3B3 are similar, but based on the Halton sequence.

Finally, rules 13C, I13C1, I3C2, 03C, O4C and O5C are as for I3B to O5B, but
with more nodes.

The estimated efficiencies are sufficiently accurate to demonstrate the ad-
vantage of quasirandom rules, particularly those based on suitable rational
sequences, on the Sobol’ sequence, and, at least for larger n, on the Halton and
Hammersley sequences. For example, a single replication of the 121-point rule R3
will estimate the normalising constant S(1)~! = 1 with standard error less than
0.01, whereas over 1600 points would be needed with Monte Carlo. This is
despite the fact that the importance sampling distribution was scaled to show
Monte Carlo at its best.

7.2. A badly behaved three-dimensional posterior distribution. Consider the
standardised density given by

p(xly) = pi(x,)pa(x5, x3),
where p,(x,) is the standard exponential density relocated to have zero mean,
pi(x,) = exp(-1 - x,), %2 -1,
and p, is uniform within three circles, each with radius 1, centred at (0, \/g_ ),

(V%,_V%)and(_vg’_vg)’
3
y 5)

1 3
Pa(%4, x3) = g{‘l’(xz,xa»o» \/;) + ‘P(xz,x:;,
, 3
s g ’

+¢
. 2 2

¢(x2’x3’ cz,ca) = {1’ if (x2 - c2) + (x3 - C3) < 19

0, otherwise.

Thus p is 0 except within three parallel semiinfinite cylinders, is multimodal,
discontinuous, highly skewed and asymmetric with respect to permutations of its

|| o]

Xgy X3y, —

where
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arguments. Posterior distributions qualitatively similar to p have arisen in
practice from nonlinear calibration models; an example is given in Naylor and
Smith (1986).

Table 4 summarises the efficiency of quasirandom integration rules, using the
importance sampling function (2.1) with f(u) = —([1 — ul/u)"?, ¢; = 1.8978%,
j=1,23, b,=—-08 b,=b,=0and A =01, A, = A;=05. This function
was suggested by a single iteration of the adaptive importance sampling scheme
mentioned at the start of Section 7; the constants c; are again designed for
integrating the standard Normal density, see Shaw (1986a) for details. More
appropriate importance sampling distributions are easily found, but the purpose
of this example is to illustrate the increased efficiency of quasirandom methods
over Monte Carlo, even in circumstances that are far from ideal. Note, in
particular, that the transformed integrands in C, are discontinuous across
surfaces not parallel to the faces of C,;, and are therefore not of bounded
variation. Formula (3.2) therefore gives no upper bound on the numerical
integration errors.

The em.s.e.’s in row 1 (MC) of Table 4 were calculated numerically. Rules R1
to R8 are the recommended integration rules for d = 3 from Table 1, other rows
are as for Table 4, described in Section 7.1.

Again the Halton, Hammersley and Sobol’ sequences perform well, and the
rules R1 to R8 based on rational sequences are also surprisingly efficient given
that they were not designed for such badly behaved integrands.

7.3. Summary of experience with other examples. The following general
recommendations stem from work with many different examples, some of which
appear in an unpublished Ph.D. thesis [Shaw (1987b)].

The new criteria (», p; and »;) defined in Section 4 have identified integration
rules that prove efficient in calculating statistically important integrals, the
relative efficiencies in Tables 3 and 4 being typical. These rules can be randomised
and replicated to obtain realistic estimates of the errors in numerical integration
(Section 6.1). This is recommended as a general method for integration when
combined with a smooth transformation of the unit d-dimensional cube, such as
that given by formula (2.2).

Integration rules based on irrational regular sequences, possibly with nonuni-
form weights, are asymptotically more efficient than randomised replications of
any given integration rule, since a randomised integration rule is just high-
dimensional Monte Carlo on a transformed integrand. However, the number of
nodes necessary for randomised rational rules to be dominated seems large (see
Tables 3 and 4). Rules based on formula (5.3) have been found more useful with
quasirandom spherical rules (Section 6.4), presumably because the nonsmooth
transformation (6.3) destroys the “trapezium rule-like” property of rational
regular sequences.

Rules based on the Haber sequence (5.4) were disappointing, but quasirandom
sequences based on the radical inverse function yield generally efficient rules, and
can be useful in exploratory analysis as well as for integration, see Shaw (1987a).

It should be emphasised that the choice of parametrisation is critical for
high-dimensional numerical integration to be efficient: The ideal posterior
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TABLE 4
Efficiencies of integration rules (awkward integrand)

Rule n S@) S(x,) S(x?) S(x,x,)
MC 1 3.2 3.3 11.2 4.8
R1 14 2 2 2 1
R2 18 2 2 2 1
R3 38 3 2 2 1
R4 78 2 2 2 2
RS 155 3 3 2 2
R6 252 4 5 2 2
R7 ' 388 5 3 3 3
R8 555 ] 4 3 2
1A 201 2 2 2 1
12A 201 3 2 2 2
I3A 201 3 2 2 1
13A1 201 2 2 2 1
13A2 201 2 1 2 1
0O1A 201 1 1 1 2
02A 201 1 1 1 1
03A 201 3 3 2 2
04A 201 4 2 3 2
O5A 256 3 3 2 1
I11B 501 4 3 3 2
12B 501 3 4 3 2
I13B 501 2 4 2 2
13B1 501 2 3 1 2
13B2 501 2 2 2 1
0O1B 501 1 1 1 1
02B 501 1 1 1 1
03B 501 3 2 3 2
04B 501 4 3 3 2
05B 512 2 2 3 2
01B1 501 1 1 1 1
01B2 501 1 1 1 1
01B3 501 1 1 1 1
03B1 501 2 1 1 1
03B2 501 1 1 1 1
03B3 501 1 1 1 1
13C 1001 2 4 2 2
13C1 1001 2 2 2 2
13C2 1001 1 2 1 2
03C 1001 4 3 3 2
04C 1001 5 4 4 3
05C 1024 4 4 3 3

n = number of points in the given rule. The first row (MC) gives the expected squared error per
point in estimating the corresponding integrals S(1), S(x,;), S(x?) and S(x,x,) by Monte Carlo.
Other rows give approximate relative efficiencies of the named rule compared to Monte Carlo for the
corresponding integral. See Section 7.2 for a full description.
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density is Normal, so that the affinely transformed standardised posterior
density (Section 2) is N(0,I), as in Section 7.1. For example, even though
posterior densities arising from variance component problems can be well ap-
proximated by products of univariate densities, see Box and Tiao (1973), Section
6.2, parametrising in terms of the logarithms of variances generally makes the
posterior more nearly Normal, and numerical integration with the methods
described previously are consequently more efficient. Other natural preliminary
transformations, such as logits of proportions, are also helpful. Even so, the
example of Section 7.2 shows that quasirandom methods are still useful with
badly behaved posterior distributions.
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