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APPROXIMATION OF LEAST SQUARES REGRESSION ON
NESTED SUBSPACES!

By DeNNis D. Cox
University of Illinois

For a regression model y; = 6(x;) + ¢, the unknown function @ is
estimated by least squares on a subspace A, = span{y,, {,..., ¥,,}, where
the basis functions y; are predetermined and m is varied. Assuming that the
design is suitably approximated by an asymptotic design measure, a general
method is presented for approximating the bias and variance in a scale of
Hilbertian norms natural to the problem. The general theory is illustrated
with two examples: truncated Fourier series regression and polynomial re-
gression. For these examples, we give rates of convergence of derivative
estimates in (weighted) L, norms and establish consistency in supremum
norm.

1. Introduction. Suppose we observe
(1'1) Ini = 0*(xni) + €nis i < i <n,

where X, X,2,..,%,, are known d-dimensional design points, ¢,;, £,2,- -, €,
are uncorrelated mean zero random g-dimensional errors and 4, is an unknown
regression function mapping R? — R9, which is to be estimated. Perhaps the
most common approach to estimating 6, in such a setup is to apply “paramet-
ric” least squares with several models from a predetermined class and then
somehow select a model from the class. For instance, one may successively
regress on linear, quadratic, cubic, etc., polynomials and then use model selection
criterion functions and/or diagnostics to select which degree of polynomial to
use in the end. We refer to this as variable degree polynomial regression. Of
course, the true regression function is probably not a polynomial of any degree.
While one is naturally interested in the behavior of such a procedure, there seem
to be no general answers to such basic questions as “is the method consistent
and if so, what is the rate of convergence?”’ It is hoped that this article will help
to close that gap between theory and practice. We present here a general purpose
mathematical machinery for answering such questions and apply it to obtain
what are apparently the first results on consistency with rates for variable degree
polynomial regression.

Many readers will recognize this as a nonparametric regression problem and
may perhaps advocate the use of kernels, smoothing splines or some other
standard nonparametric regression method. Qur aim here is not to suggest a new
methodology but rather to analyze an old and widely used one. However,
variable degree polynomial regression turns out to have some advantages as a
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714 D.D. COX

nonparametric regression method. For one, since the model dimension (the
degree of the polynomial + 1) will usually be much smaller than the sample size,
the estimate is “simpler” than the original data set. Kernel and smoothing spline
estimates are at least as complex as the data set. Other advantages of variable
degree polynomial regression will emerge such as improved rates of convergence
with the existence of more derivatives of 6,. No boundary conditions are
required for these improved rates, either.

The general framework will now be described. Consider nested models given as
follows. Let {1, ¥5,...} be a sequence of functions and put

A, =span{y,,...,¢¥,.}.

Let 6,,, be the least squares estimate of 8, obtained by regressing the data on
A,,. For the example of variable degree polynomial regression with d = 1, of
course one may use ¥,(x) = x*~D, and 6, is the least squares polynomial of
degree m — 1. Our goal here is to analyze E||0, — 6,,,]|> as n = co and (possi-
bly) m — oo, where || - || denotes a function space norm. It is specifically allowed
that 6, may not belong to any of the parametric models A ,.

For many analyses, one can be very vague about the asymptotic behavior of
the design. Huber (1973) is an example. Note that there is no consideration of
bias in that paper, and only local results are given. In order to analyze the bias
and to obtain global results (i.e., bounds on the norm of the error), it is necessary
to impose more structure on the problem. The additional structure needed is
obtained by positing an asymptotic design. Let

n
PE(A) =n"" ¥ 1,4(x.)

i=1
be the design measure, i.e., the “empirical” distribution of x,, x,3,..., X,,.
(Here, A c R? is a Borel set and 1, its indicator.) We will assume that P{®
tends to some Borel probability measure Py as n — o in a sense specified in
Assumption 2. Py is called the asymptotic design measure. We write F, and F
to denote the distribution functions of P{™ and P,, respectively. The theory
presented here will apply to many choices of the basis functions {y,} and
asymptotic designs as illustrated by the examples given later on.

Given basis functions {y,: » =1,2,...} and an asymptotic design Py, it is
shown in Section 2 that there is an associated natural family of Hilbert norms
Il -Il,» 7 € R, with inner products ( -, -),. This family is called a scale of norms
since increasing the parameter 7 increases the strength of the norm. In all the
examples we have investigated, these norms for v > 0 are related to weighted L,
norms on derivatives. While one may justifiably be interested in other norms
(e.g., supremum norm), it is particularly easy to analyze the estimation error in
these natural norms. Further, by relating these natural norms to a given norm, it
is possible to obtain results about the given norm.

We now describe the general form of the results. Becflise the norms are
Hilbertian, there is a decomposition of the mean squared norm error:

Ella* - 0nm"3 = ”0* - Eanm”f + Ellonm - Eonm"%'
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The first term on the r.h.s. is called the bias squared and the second term the
variance. The behavior of the bias depends on the true 6, and can be char-
acterized to a certain extent by the norms || - ||, in the scale for which ||0 ||, < o
(see Theorem 2.2). Note that the scale of norms is used not only to measure the
estimation error, but also to measure properties of the true regression function
0, which determine the rate of convergence of the bias. When the norms are
used in this latter role, we will typically designate them with p. For both bias
and variance, we give results in Section 2 which show how to approximate them
by “continuous” analogs (determined by Py rather than the discrete measure
P{M). The continuous analogs turn out to be easier to analyze than their discrete
counterparts. The approximations will be valid uniformly in the model dimen-
sion m provided m < M,,, where M,, = o, but not too fast. The rate at which
M, may tend to co depends on the structure of the particular limiting problem
and the rate at which P{® approximates Py.

The proofs of the claims made in the following examples are given in Sec-
tion 3.

EXAMPLE 1. Let ¢ = d =1 and assume the error variance is constant. Let
the basis functions be given by
g (x) =x¢"D,  »=1,2,...,

i.e., variable degree polynomial regression. Suppose that Py is a beta distribution
with parameters a, b > 0, i.e., Py has density

I'(a + b)

f(x) = mxa_l(l - x)b_l, O0<x<l1.
Assume also that .
(1.2) e 1IF,,(x) — F(x)| = O(n7?)

for some p > 0, and necessarily p < 1. Let

h = max{a, b,1/2}.
Assume that M, satisfies

M, = O(n2p/(4h+1)—e)

for some & > .0 (we may use ¢ = 0 if A = 1/2 and replace the O with o). If risa
nonnegative even integer, then we can identify the || - ||, norms, viz.,

@3 163 = [(10G)) + [D%0(0)P[x(1 = )]*)f(x) d,

where D is the differentiation operator. Here, the symbol = means that the
r.h.s. of (1.3) can be bounded above and below by constant multiples of the Lh.s.
Then for the variance we have

(1.4) E\|bm = E€ymll3e = O(n~'m@**D),

For the bias, assume 8, is (r — 1) times differentiable with D("~14, absolutely
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continuous and
f;[Dra*(-")]‘z[x(l - x)]"f(x) dx < oo,

i.e., ||[0«]l2, < oo. Then if & is an integer with 0 < &k < r,
(1.5) 164 = Eb,,ll3, = O(m=2=R)).
If m = n'/@7*D then the bounds on variance and bias are balanced and one
achieves

E‘Ilalll - 0nm”§k = O(n—2(r—k)/(2r+1)).
If 8, is infinitely differentiable, then we may take r arbitrarily large and achieve
a rate of convergence O(n~1*¢) for any e > 0. The practical utility of this result
is unclear. Note that no boundary conditions are required of 8. This is similar
to the case of regression on splines [see Agarwal and Studden (1980)] although

there it is probably not possible to obtain rates of convergence approaching n~!
unless the order of the spline is increased with sample size.

ExAMPLE 2. Take ¢ = d =1 and assume again that the errors ¢,; have
constant variance. Let the basis functions be given by

1, ifr=1,
¥,(x) = { cos(2nmkx), if » =2k > 2iseven,
sin(2mkx), if» =2k + 13> 3isodd.

Let the design be given by

X, =(-1/2)/n, 1<ic<n,
so the asymptotic design is uniform on [0,1]. Now let M, —» oo in such a way
that
(1.6) M, = o(n*/%).
A.gain we can identify the natural scale of norms for nonnegative even integers,
viz.,

(17) 1003 = [ ([6(=)]* + [D*o(x)]") .

Indeed, for this example one can identify the natural scale of norms as weighted
l, norms on the Fourier coefficients with weights being a power of the index of
the coefficient (which is more or less how the scale of norms is constructed in
general). Then the variance behaves as

(1.8) E|6,,, — EO,,|I2;, = O(n~'m@*+D),

uniformly in m < M,. To describe the result on the bias, we suppose that for
some r > 1, 8, is (r — 1) times continuously differentiable, D"~'4, is absolutely
continuous and that

(1.9) D*§,(0) = D*,(1), O<k<r,
(1.10) /0 [D78.4(x)]? dx < co.
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Then we have for0 <p < r,
(1.11) 105 = E,pll3, = O(m=2=8).

Eubank (1988) gives results on E||0, — 0,,||2, where || - ||, turns out to be
ordinary L,[0,1] norm.

Note that in each case there are difficulties with the endpoints of the
intervals. In Example 2, we force periodic boundary conditions on 4, to get good
rates of convergence on the bias. These constraints are not needed in Example 1,
but the natural scale of norms downweights the endvalues with the factor
[x(1 — x)]%. One seems to always encounter difficulties at the boundaries in
nonparametric regression; see Rice and Rosenblatt (1983) or Cox (1988).

The natural norms can be used to get results about other norms such as sup
norm. For Example 2, sup norm is weaker than || - ||, norm, so the bounds in (1.8)
and (1.11) with & = 1 give upper bounds on rates of convergence in supremum
norm. For Example 1, the argument used to derive (3.18) along with (3.12)
shows that ||-||35., norm is stronger than sup norm for any e > 0, so if
k> h, from (14), E[sup|d,, — Eb,,*] = O(n"'m@**V) and from (1.5),
sup|0, — EB,,,|?> = O(m~2"~k), where the suprema are over [0, 1]. These bounds
are probably not very good, but they do establish consistency in sup norm
provided 0, is sufficiently smooth and m — oo slowly enough.

2. Statement of main results. In this section we present a number of
notations, state the general assumptions and state the main results. Recall that
Py denotes the asymptotic design measure. The setup here is considerably more
general than needed for the examples in Section 1, but we anticipate working out
other applications that require this level of generality.

AssuMPTION 1. (a) The RY valued random variables ¢,, ¢,,,..., &,, are
mean 0, uncorrelated, with the covariance matrix for ,; being 02V{(x,,;) for some
constant o2 > 0. It is assumed that V(x) is a known function which takes
positive definite values. Let K(x) := V~}(x).

(b) The sequence of positive integers {M,} is such that the set of n X q
matrices {(Yu(Xn,)s Ya(Xn2)s++or Yu(X,,)): 1 < k < M,} is linearly independent
for all n.

(c) Define the linear space

- A, =span{y,, ¥s,... }.
The inner product,
(8,8 = [8(x)K(x)5(x)Px(dx),

is well defined for all 4,§ € A, i.e,,
16]|2:=(6,0)g< 0, VOEA,.
The reason for the subscript 0 on the inner product will appear shortly. Let
1, Py, . .. denote a sequence in A such that
span{q)l, Poreees P}t = Ap, (Pis ‘Pj>0 = 8;‘1"
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where §;; denotes the Kronecker delta. One may obtain the ¢;’s by the
Gram-Schmidt procedure applied to the y;’s. For any real number p, put

0

(0,8 = L v%0,9,)(S, 0o 1017 = (6,6),,

v=1
defined for 6, { € A . Let A(p) denote the completion of A, in the norm || - ||,..
Then A(p) is a Hilbert space under the preceding inner product. Note that
{91 ®g,...} is an orthonormal basis for A(0). Define a discrete analog of the
inner product { -, - ), by

(8,8)n= [0(x)K (x)§(x)Pg(dx)

= n—l Z a(xni)lK(xni‘)g(xni)’
i=1
which is a semiinner product. Part (i) of Assumption 2 guarantees it is well
defined on some A(s) D A,.

AsSUMPTION 2. (i) There is an s > 0 such that the evaluation functional
0 — 0(x) is a bounded linear functional on A(s) for all x € Q := the support of
Py.
(ii) There exist J, a positive integer, p;,...,p;, and 7,...,7, and {&,;
l1<i<dJd,1<n}suchthatvVfe A(s)andVrv>1,

J
(2.1) 1€8,9,% = (8,9,) < X k.2*/%10]l,,
i=1
and
o
(2.2) Y R, MPFTD/2 50 asn > oo.
i=1

LEMMA 2.1. A sufficient condition for (i) is that A , C Cyx(2; R9) = the set of
all bounded continuous functions mapping @ — RY, and there exists s > 0 such
that

[e]
(2.3) 2 v CllgliE, < o,

v=1

where || - ||, denotes the usual supremum norm on Cg.

Proor. For any 0 € A(s),

18(=)lne = & (- @)op(x)| < L K6, @il Il

RY

0 1/2)/ oo 1/2
s(Ev%o,%%) (Zv'su%u%,,) < M||,,

v=1 v=1

where M is a finite constant. O



APPROXIMATION OF REGRESSION 719
Part (i) of Assumption 2 is fairly mild, but (ii) is a more substantial require-

ment. Note that the Lh.s. of (2.1) is simply a numerical integration error and
may be written as

(2.4)

JO(=YE(x)9,(x)[ Px - PE](d)|.

Various techniques for obtaining inequalities like (2.1) are indicated in the next
section. '

Now we consider some linear operators used in the sequel. First, let II,:
A(0) = A,, denote orthogonal projection, i.e.,

m

Hmo = z <0’ ‘pv>0(pv‘

v=1
It is easy to check that II,, is also the orthogonal projection of any A(p) onto
A,,. By Assumption 2, there is for each x € @ a ¢(x) € A(s)? such that for
l1<i<qand V@ e A(s),

(¢:(x), 0), = [0(x)].,

the ith component of the vector 0(x) Now let T,: A(s) = Y, be the design
operator, i.e., the (i, j) entry of T,0 is [0(x,;)];. Here, Y, is the observation
Hilbert space. Now Y, = R"*? as sets but with a dlﬁ'erent inner product than

usual, namely,

n
(u, ”>Y,, =n"t Z u/K(x,)v;,
i=1
where u/ is the ith row of the n X ¢ matrix u € Y,. Then we may write the
linear model as
=T0 +¢,,
where
Ee,=0, Ele,e,;]1=0%V(x,).

n

Put
Tnm = TnIA,,,’

the restriction of T, to A,,. Let T,*: Y, - A,(s) denote the adjoint of T,
Here, A,(s) denotes the ﬁmbe-dlmensmnal Hilbert space consisting of Am
equipped with inner product { -, -),, and the adjoint operator is defined through
the relation (2, T,,0)y = (T,}20),Vz€ Y, and V8 € A (s). Using this and
properties of pro_]ectlons one can show that

n
Tn*z = n_l Z g(xni)/K(xni)zi’ Tn’:n = Han*

i=1

Put U, == T*T,: A(s) = A(s) and U,,,,, = TxT,, = IL,U,l,, . Note that
U= [£(x)K(x)0(x)Py(dx),
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80 one can expect that it will be well approximated by the operator U given by
Uf = jg(x)'K(x)o(x)pX(dx).

Also, a good approximation to U,,, is
Uoom = 1-Imlle,,,'

Define II,,,,: A(s) = A,, as the projection in the discrete norm, i.e., II,,0 is
the element { of A, which minimizes (({ — 6), U($ — 0)),. I1,,,, is a well defined
operator by Assumption 1(b).

For Theorem 2.2, it is convenient to have the bias operator

Bnm = I - Hnm'
Note that 6, — E6,,, = B,,,0, explaining the nomenclature “bias operator.”
One expects it to be well approximated by the limiting bias operator
B,=I1-11,.
To describe the nature of this approximation, we use the operator norms
IAll,,. = sup(|A9]|,: 8 € A(p), lI6]|, = 1},

where A: A(p) = A(7) is a bounded linear operator.

It will be convenient to have the following asymptotic notation. We write
a,= b, to mean a, — b, = o(b,). Now we state our main theorems. The proofs
are given in Section 4.

THEOREM 2.2. If p > s and T < p, then

J
“Hmn - Hm”p,f < C( E knim(P‘+fi+l)/2)"Bm"p,n

i=1
forallme {1,2,...,M,} and n = 1,2,..., where the constant C depends only
on p and T.

It is easy to see that

(2’5) "Bm”p,f = m—(p—7)/2,
since the supremum in the definition of ||B,|,, is achieved at a multiple of
Pr+1

The next result provides information on the expected mean square of the
norm of the random part of the estimation error.

THEOREM 2.3. If 1> 0, then

m
(2.6) E|U, 2Tl = 0?7 X »" = n7lm™1,

ym=]

uniformly in m € {1,2,..., M,}.

Note that the Lh.s. of (2.6) is the same as E||0,,, — E0,,,|%.
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3. Applications to examples. In this section, we prove the claims made
about the examples of Section 1. In each case, it will be necessary to identify the
functions {¢,} which are an orthonormal basis for A(0), to identify the spaces
A(p) for p > 0 and then to verify Assumption 2. We treat Example 2 first
because it is simpler.

PrOOF OF ExaMpLE 2. Clearly ¢, =, and ¢, = V2, for » > 2. For a
function 6 € L,[0,1], let ‘

(3.1) b,= (0,9,

denote its Fourier coefficient. It is easy to see that § € A(2r) for some nonnega-
tive integer r if and only if 6 satisfies (1.9) and (1.10). Furthermore,

D) dx = ¥ @ar)*(82+ 62...)

r=1

(all integrals in this proof are from 0 to 1 unless otherwise indicated). We will
show the lower bound in (1.7), the upper bound being similar but easier. Now

013 = (fo(erax) + £ (ar)*a + Gr + 04,

r=1

2 (foras) + ()" £ Coryh (0 + 82.0)

3 r=1

> (33)%’—1{ Jorwa e £ o (0 + 8.).

From Lemma 2.1, Assumption 2(i) holds if s > 1. To verify Assumption 2(ii),
we apply integration by parts:

[0.(%)6(x)[ P (dx) — Py(dx)]
- [[F(x) - F(x)] D[9,6](x) dx

(32)

[6.(x)D*[9,8](x) dx,
where

Gi(x) = [ “[F.(¢) - F(8)] de.

Hence, from (3.2) we have
(%, 8% — (9,,0),)

(33) < ( sup 16,(2)) [([D%.x)0(x) + 2De,(x)DO()

+¢,(x)D%(x)]) dx.
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The first factor on the r.h.s. is 1/8n2 If Cauchy-Schwarz is applied to each of
the three integrals and our identification of the || - ||,, norms is used, there
results :

(34) {®,» 0% — (9,,8),] < Cn=2[»2)16]]o + #1101l + 116]]4]

for some constant C. Thus, Assumption 2(ii) holds with J = 3, k,; = n~2 and
p; + 7, = 4. The claims made for this example in Section 1 now follow from
Theorems 2.2 and 2.3. O

REMARK 3.1. If one is willing to weaken the bound on M, in (1.6), then more
generality can be obtained for the finite sample design. Assume Py is uniform on
[0, 1], but only that
(35) sup |Fy(x) — F(x)| = O(n"P)

0<x<1
for some p € (0,1]. This allows for designs other than x,;, = (i — 1/2)/n. If one
stops after the first integration by parts in (3.2) and applies the same argument
used to derive (3.3), there results

(3.6) {9y, 80 = (9,,0),] < Cn~P[¥|8]]o + 116],]

for some constant C. When this is used in Assumption 2(ii) along with the main
theorems, one obtains the conclusions (1.8) and (1.11), but with the proviso

M, = o(n?r/3).
For example, if x,; = i/n, then we need M, = o(n%*3) rather than (1.6) when
x,;= (i —1/2)/n. It is perhaps surprising that such a small change in the
design could make much difference, especially since the i/n design can be shifted
to give (i — 1/2)/n. It makes sense that regression operators based on the

continuous uniform measure will give a better approximation to operators based
on finite designs when the finite designs are placed symmetrically in the interval.

ProoF oF ExaMPLE 1. The functions {¢,: »=1,2,...} are polynomials
orthonormal w.r.t. the weight function given by the beta(a, b) density. Thus
they are given by

#,(x) = coy(v) P 7(1 - 21),

where P;f"' B a, B> -1,n=0,1,2,..., denote the Jacobi polynomials defined
in Abramowitz and Stegun (1964), Askey (1975) and Szeg6 (1975), abbreviated
hereafter as (AS), (A) and (Sz), respectively. The normalizing constants c,, are
given by

' @2r+a+b-3)T(r+a+b-2)I'(»)I'(a)l(d)
B7) () = ,
I(»+a-1)T(r+b-1)T(a+bd)

where the factor (2v + a + b — 3)I'(» + a + b — 2) must be replaced by I'(a + b)
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when » = 1. See (22.2.1) of (AS), (2.9) of (A) or (4.3.3) of (Sz). Stirling’s formula
can be used to show that

(3.8) cap(v) = vV/2

Now we identify the norms || - ||, associated to these basis functions. One can
usually anticipate that the norms will have something to do with weighted L,
norms on derivatives, so we seek a weight function u(x) on the interval (0,1) so
that {D*p,: v = 1,2,...} are orthogonal w.r.t. u. One can show (see the Appen-
dix) that

(389)  [Dle(x)DYg(0)lx(1 - 0)]*f(x)dx =0, v,

so u(x) = [x(1 — x)]*f(x) is the appropriate weight function. To relate this to a
specific || - ||, norm, we need

[1D*,()]*[2(1 - 2)]*£(x) d

TG thtatb-IIEN@IG)
T T ratb-T(r-RT(a+b) "

See the Appendix. Of course D*p, = 0 when % > ». One can show

(3.11) [P0, ()21 - )] *f(x) dx = v, v >k,

(3.10)

and hence (1.3) follows in a manner similar to (1.7) in the previous proof.
Next we turn to verification of Assumption 2. Put
h = max{a, b,1/2}.

It follows from known results on the maximum of Jacobi polynomials on [ —1,1]
[see (22.14.1) of (AS) or (7.32.2) of (Sz)] and (3.8) that

(3.12) Ipllc, = »"~ 1.

Hence by Lemma 2.1, any s > 2A will work for part (i) of Assumption 2.

Part (ii) of Assumption 2 is naturally more involved. The basic idea is similar
to the derivation of (3.6), but it will be necessary to do some surgery near the
endpoints because u(x) — 0 as x = 0,1. We consider four cases.

Case 1. Both @, b> 1/2. Let {8,,) and {8,,} be sequences with values in [0,
1/2) to be determined. In the integral version of the Lh.s. of (2.1) [i.e,, the Lh.s. of
(3.2)] break the interval (0, 1) into three regions, viz.,

[[0)0.(x) [ P(dx) = Px(do)]

013) (e !+ [7)o@)e () [P(d) ~ Pyl(de)

n!

=T, + I, + I,, say.
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Now the last term can be handled by integration by parts, viz.,
I2 = [Fn(l - 8nl) - F(l - 8n1)] 0(1 - 8n1)q)v(1 - 8n1)
+ [F(ano) - I’;;(‘Sno)] 0(8n0)q)v(8n0)

(3.14) + fsl-%[ F(x) - F,(x)] D[ 69,](x) dx
=Ty 4:0120 + I, say.
Now, }
Iy < ( sup an(x) . F(x)l
Sro<xs<1-8, [*(1 — )] f(x)
B15) [ Do) 102 + (=) IDO(2) ] [x(1 — 2)]*f(x) e

< Cn~Pmax{8,{* /2,8~ 2} [»]10]l, + 1161l ]

for some constant C. In this last expression, the first factor results from the
hypothesized bound (1.2) on |E, — F|, the max results from the denominator of
the sup in the previous line and the quantity in brackets is obtained by
Cauchy-Schwarz and (3.11) similarly to (3.6). Next, we have

ol + Lol < C[n7 + F(8,0)]( sup In()]

(3.16) 050
x( sup |0(x)|).
0<x<8,,
The argument on pages 169-170 of (Sz) shows that
(3.17) sup |o,(x) = |g,(0)] = v~/
0<x<d,,
and hence also
o0
sup [6(x) < X I6] sup [p,(x)|
0<x<8,, p=1 0<x<d,,
(3.18) _ —a+e )2 172
San"(a 1/2)|é;| SC(ZM a+ )) (Zﬂ(zan)énz)
B B ®
= "0"2a+e

for any e>0. Here, 09; is a generalized Fourier coefficient as in (3.1). An easy
calculation shows

(3.19) F(8,,) = 8%,
The same techniques produce analogous bounds for |I;| + |I;|. Putting together
the results from (3.13)-(3.19), we obtain

€6, 9,)0 = (8,9,) < C{n Pmax{8;§*71/, 8,4~ /2} [5]16]l, + [161l,]
(3:20) +[n7P + 85]9®¢ 210l 44.,
+ [n_p + 8:1] "(26_1)/2||0||2b+e}
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for some constant C, which is of the form required by Assumption 2(ii). In order
to make these estimates usable, we need to specify the §,,’s. One can check that
the best possible choices (obtained by solving a small linear programming
problem involving each §,,; separately of the form §,; = n~*) are §,, = n=2p/(4a+5)
and §,, = n~2p/(45+5) which gives

ky=k,= n=p/@h+8) ko= n-4ep/@a+8) k,, = n—4bp/(46+5),

p1=2: p2=09 P3='2a_1, p4=2b_1’
n=0, Ty =2, T, = 2a + ¢, T, =2b+e¢.

When these are plugged into Assumption 2 and Theorems 2.2 and 2.3, the claims
in Example 1 for this case are obtained.

Cast 2. Both a, b < 1/2. In this case, it is not necessary to cut away the
ends of the intervals in (3.13) as the denominator of the sup in (3.15) is bounded
away from 0. One obtains immediately, as in (3.15),

(3.21) K8, 9,% — (6,9,),] < Cn~?[v]i8]l, + 116].],
which will give the desired results.

CAsE 3. a>1/2but b <1/2. One proceeds as in Case 1, but does not cut
away the end at x = 1 (i.e,, set 8,, = 0). There will be no term with %,, in the
final bound.

CAsE4. a <1/2but b> 1/2. Same argument as Case 3. O

REMARK 3.2. (a) One can use the special design x,;= (i — 1/2)/n as in
Example 2 (which implies @ = b = 1) and obtain some improvement on the rate
at which M, - co.

(b) Polynomial regression with other asymptotic designs can also be treated,
e.g., Py Gaussian (which gives the ¢,’s as Hermite polynomials) or gamma (¢,’s
being Laguerre polynomials). A general theory would be desirable.

4. Proof of main theorems. In this section are given the proofs of the
theorems stated in Section 2. Assumptions 1 and 2 are in force throughout this
section.

PROOF OF THEOREM 2.2. Let 6 € A(p) and put §,,, == I1,, 0 and 6,, = I1,.6.
Since both 0 = and 6, arein A, we have

16, = Oll? = Z VO = O, 9,3

v=1

- 2
= va[f onm - am)/K(pv dPX

By the properties of projections, [§),,K¢dP{ = [0’K¢ dP{™ and [0.,K¢dPy =
f0’K§‘dPX for all { € A,,, so for all v<m,

[( - 6,)Kg,dPy = f(o o) Ko, [dPE) — dPy].
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Applying this and Assumption 2 to the formula for ||d,,, — 6,,||? yields

5 m J " 2
1om = Onll? < 2 V’( 2 k%0 - 0nmllf,)

v=1 i=1

(4.1) = X Xyt et %k 116 = 6,110 = Gl

[ 20

J 2
< m’“( 2 knmPi2)10 — 0:zm"‘ri) .
i=1
Now we show that §,,, may be replaced with 6,, in the last expression in (4.1).
By Assumption 2(ii), there exists N, such that

(4.2) k M@+t D/2 <1/2.  VYnx>N,.
Set v = 7, in (4.1) and use || — 8|, <110 — 6,]l, + (|6, — 6,.|,, to obtain

1 = Balls, < (1/2)[ 160 = Gl + 116 = 6l ]
4.3 J ~
“y +mOt/2 Y kim0 = Gl
i=2
Move the term with the factor of ||, — 0,,)l, from the r.h.s. to the Lh.s. of (4.3)

to obtain
J

(44) G = Oullo, <118 = Opll,, + 2m™FD2 3 Ryim /210 = 6,1,
i=2

for all n > N,. Substituting this back into (4.1) and using (4.2) once more gives

|I§nm - 0m"1- S.2m(f+ 1)/2kn1'n’pl/2"0 - 0m”‘rl

4.5 J ~
- +2mT D2 3 kp;mPi210 — G, .,
i=2
Now this procedure can be iterated: Put 7 = 7, in (4.5), assume N, is large
enough that (4.2) holds, but with an extra factor of 2 on the Lh.s. and, after some
algebra, obtain
2
”o:zm - 0m”-r < 4mT+D72 Z knimpi/zllo - 0m”‘r,

i=1
J
+4mY2 Y b m 28 = Gl
i=3
After (J — 2) more steps, one obtains
J
(4.6) 1pm = Onll, < CM*D2 Y B, mPi/2)|8 = 6.,
i=1

where C does not depend on n, m or 4.
Note that

16 = Oull,, = 11 = T1,)6ll,, < I = IL,ll,.,l16ll,

(4.7) (o1,
= (m+1)"79),.
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Note that the supremum defining ||I — IL,||, , is achieved at a multiple of @, , ;.
Substitute this back into (4.6) to obtain

J
(L, — IL,,) 0], < C( ) knim“"*”‘“’”)m"”"’/2II0IIp,

i=1

which proves the theorem. O
PROOF OF THEOREM 2.3. We have

m
(4.8) E\U T2 = X vE[(UpiT ke, 9,03
v=1

The ( -, - ), inner product in this last expression is equal to
<Un_n:Tntn£n’ Uoom@v)s,m = <£n’ TnmUn_n:Uoom(pv>Y,,

J
= n_l z: [U;;_”}Uoom‘pv](xni)/K(xni)sni‘

i=1
By the definition of K(x,;) and Assumption 1(a) for » < m, the expected square
of this last quantity is equal to :

E( 072 T L (ViU (5 K (50 it K (20 [ Uil ] (5

= 0,2n—2 E [Un_n}Uoomq)v](xni),K(xni)[Un_n}Uoom¢v](xni)

i=1
= 0’0" KT, UpiUpr®ss TrnUniUsor®, ) v,
= 00" KUy Up®ss UprdUniUp n®ds.m = 0710 XU Py UniiUno®, s
= o’n"XIL,Ug,, U; U, = 020" X,, IL U U9,

= 6% X0, U@, o = 0°n ™" [0,(2 YK (2)[ U, (x) Py ().
When this is substituted into (4.8), there results

m
(49) ENUpnTihenl? = 0*n™t L v [0,(x)K (%) [Us iU, ] (x) Py (dx).
B v=1 .
We will show that U,,'U,,, — I as n - oo in some sense, and hence that the
integrals in this last expression may be replaced with 1.
For convenience, let

unm(”’ P«) = <Un_n%Uoom‘pv’ ‘pn>0 = unm(p" V), 1< v, p<m,

m
SZ.(v)= Y pul, (v,p), l<v<m,l<i<d,

nmi
p=1

= UpnUcr®, I
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We will drop the subscripts n and m when there is no danger of confusion. Since
(0,8=<0,T, {)s for 0, ¢ € A,,, we have by Assumption 2,

vp. - U(V, "")' = |<[Unm - Uoom]q)w Un-niUoomq“'p)sl

J
Z kni”pi/zllU lU m(Pp."‘r‘

<
(4.10) i=1
J .
= X k,»"%S(p),
i=1
which implies
J
(4.11) lu(v, p)l <8, + X k,??Si(p).
i=0

Square the last expression, use the inequality (a + b)? < 2a? + 2b%, multiply by
»% and sum from » = 1 to m to obtain

m J 2
0 <20 +2 £ 7 £ b0
y=1 i=1

(4.12)

J 2
<2p%+ sz"“( ) knemp‘/2si(l‘)) ,

i=1

where the constant C depends only on the 7’s and p;’s. To see the last
inequality, expand the square in the previous expressmn into a double sum, bring
the sum on » inside and use an elementary estimate on the sum of the
(17 + p; + py)-powers of the first m integers. Now take square roots of the
extremes of (4.12), use (a + b)/2 <a'%+ b/% for a,b> 0, multiply by
k,;m*/%, sum from j =1 to J and obtain

J J
zl knjmp,-/zsj () < 22 zl knjm(pjwj)/z
Jj= j=
(4.13) ; i
+CY knjm(pj+1’+l)/2 Y k,;mP/2S(p).

Jj=1 i=1

Suppoéetby Assumption 2 that N is large enough that for all n > N,

J
(4.14) CY k,me*utV/2 <1/2,
J=1

As for the derivation of (4.4), one obtains from (4.13)

J J
Yk, ;mfi%S () <2%2 Y k,;me*P2,  ¥n2N.
j=1 Jj=1
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This last bound in conjunction with (4.10), (4.14) and the hypothesis 7 > 0, gives

m m J
Y vl —u(v,v) <2%2 Y v" ) k,mPit/2
ye=1 y=1 i=1

(4.15)
m
<2Vim~t Y o,
v=1
Now if we use this last estimate and (4.9), we obtain
m
<oZn™' Y »?1 — u(v,v)|
v=1

- o(n‘l f: u").

v=1

m
-1 2 2,—
E"Uanntnen”p -o’n7! Z ve

v=1

This completes the proof. O

REMARK 4.1. (a) We conjecture that it is possible to prove the last result
with the weaker hypothesis
J :
z knim(Pi+7i)/2 - 0.
i=1
(b) In the last proof, (2.2) was needed only for § € A(m). This can be used to
improve the rate M, = oo in some applications of Theorem 2.3. For instance,
(3.18) can be replaced with

sup |0(x) <C X |0,|u®"1/®

0<x58,,0 "'-1
(4.16) m V2
S le/z( Y u@e0g2) < CM20)l5, .
p=1

A similar result holds near x = 1. When this is used in the proof of the claims in
Example 1, one obtains that the variance approximation holds if M, =
o(n‘ 2p/(4h+ 1)).

APPENDIX

In this Ai)pendix we give proofs of (3.9) and (3.10), which were needed in the
proof of Example 1 in Section 3. Let

w(x)=(1-2x)%1 +x)P, -l1<x< +1,

where a, 8 > —1 are fixed throughout this appendix. Let P{*#)(x) denote the
Jacobi polynomial of nth degree as defined in (AS), (S), (Sz) or (A). These form
an orthogonal sequence with respect to the weight function w. Let

Q. (%) = (1 — x?)”*DPP{ P (x),
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which generalizes Ferrer’s functions associated to Legendre polynomials [(AS)
and (S)]. Note that @, , = 0if p > n. In this appendix, all integrals are from —1
to +1, unless otherwise stated.

LEMMA A.l. Let m, n, p be any nonnegative integers. Then

(A1) [@un(*)Qum p(x)0(x) dx =0 if m # n,
and if p < n,

J@2 (x)w(x) dx
(A2)

2P (n+a+B+p+)I(n+a+1)I(n+p+1)
 @n+a+B+)I(n-p+1)Ii(n+a+p+1)

PrOOF. The proof basically follows (S), pages 246-248. Letting u = P(*#), y
satisfies the differential equation (AS), (Sz) and (A)

(A3) D[(1 — x®)w(x)Du] + n(n+ a + B+ Dw(x)u =0
or equivalently, .
(1-x?)D%*u+ [B—a—(a+B+2)x]Du

+n(n+a+ B+ 1u=0.

(A.4)

If we substitute
DPxDu = xDP*'u + pD®u,
DP(1 — x2)D%u = (1 — x%)DP*2%y — 2pxD?P*'u — p(p — 1)DPu
(obtainable from Leibniz’ formula) into (A.4) after applying D?, we obtain

(A5) (1-x2)DP*2u+ [B—a—(a+ B+ 2p+2)x]DP* 'y

+(n—-p)(n+a+B+p+1)DPu=0.
Using
Dru=(1-2%)7""Q,,,
one can obtain expressions for D?*!y and DP*2y which can be substituted into
(A.5) to obtain
0=D(1- x®)w(x)DQ, , + {n(n +a+pB+1)
(A.6) +p[(B - a)x — (a + B + p)]
x(1- xz)_l}an,p.

To prove (A.1), multiply (A.6) by @,, , and the corresponding equations for @, »
by @, , and subtract to obtain

D{(1 - x*)0[@, , DR, , — Qu., D@, ]}

+(n-m)(n+m+a+ B+ Dw@, ,Qn , = 0.

(A7)
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Integrate (A.7) and note that the integral of the first term vanishes to obtain
(A.l). (Note that n+m+a+B8+1>n+m—1>0 since n+ m and
n,m=0.)
To prove (A.2), we have from the definition of @, , that
-p/2
Qupi1 = (1-2)""P2D1 - 22) 7%, ,
= (1-2%)"°DQ, ,+p(1 - x*)7"xQ

n,p°

Square the last equation, multiply by w(x) and integrate to obtain
JQ2 pr(®)w(x) dx = [@, (x)w(x)(1 - x)DQ, (x)]L__,
= [Qu o(*)D[w(x)(1 - x*)DQ,, ,(x)] dx
(A.8) +p[xw(x)Q2 ()], _,

—p [Q2 ,(x)D[xw(x)] dx

+p2[22(1 - x2) 7'Q,, ,(x)w(x) dx,

where some obvious integrations by parts were applied. The first boundary term
from the integration by parts vanishes since w(x)(1 — x2) vanishes at x = +1.
The second boundary term vanishes for the same reason when p > 0 [note that

3’ p contains a factor of (1 — x%)] and trivially when p = 0. Use (A.6) on the
first integral on the Lh.s. of (A.8) and apply some elementary calculus to the
second and simplify and there results

(A9)  [Q2 n(@)w(x)dx = (n-p)(n+p+a+B+1)[QF(x)u(x)dx.
Thus,

J@(Rw(x)dr=(n-p+1)(n-p+2)--- n
(A.10) . X(n+p+a+B)(n+p-1+a+p)---

X(ntatB+1) Q2 o(x)uw(x) d.

Now @, o = P{*# and

f[PYSa,p)(x)]2W(x) de — 2°*A* 1T (n+ a + 1)T(n + B + 1)

(2n+a+B+1)F(n+l)F(n+a+B+1);

see (22.2.1) of (AS), (2.9) of (A) or (4.3.3) of (Sz). When this is substituted into
(A.9) then an equation equivalent to (A.2) is obtained. O
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