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COX’S PERIODIC REGRESSION MODEL

By O. PoNs AND E. DE TURCKHEIM

Institut National de la Recherche Agronomique

Cox’s regression model has been successfully used for censored survival
data. It can be adapted to model a counting process having a periodic
underlying intensity. In survival analysis, the asymptotic properties, as
studied by Andersen and Gill, correspond to a large number of processes
running parallel over the same time interval. Here a single point process is
observed over a large number of successive periods. Cox’s model can easily be
adapted to this situation and conditions are given which ensure the estima-
tors have the classical large sample properties. Proofs use both martingale
techniques and theorems for convergence of empirical probability measures.
Finally, an example concerning the feeding pattern of domestic rabbits is
included.

1. Introduction. Cox’s regression model for a sequence of random points
(T}, T,,...) over the real half line specifies the intensity of the associated
counting process N, where N(¢) counts observed events up to time ¢, to have the
form

(1.1) a(t) = Ao(t)exp{B,2(2)}, t>0,

where Ay (¢) is an unknown deterministic nonnegative function, B, =
(Bors - -5 Bog) 1s a row vector of g real coefficients to be estimated and Z =
(Zy,...,Z,) is a column vector of g stochastic processes. This model is widely
used to describe censored survival data in the presence of explanatory covariates
Z. In that case, n independent individuals are observed and each of them has the
hazard function a; = Aexp{B,Z;}, where Z; is the covariate vector for the ith
individual [Cox (1972)]. Defining N, as the counting process which counts the
failure of the ith individual up to time ¢, and Y, as the indicator process for this
individual being at risk at ¢~, N, has the intensity a; = A Yexp{B,Z;}. More
generally, Andersen and Gill [(1982), referred to as AG] consider an n-dimen-
sional counting process N = (N,,..., N,), where N, has the intensity a; =
A Yexp{B,Z,}, and they study asymptotic properties of the estimators of 8, and
Ao, when n — oo. Slud (1984) introduces another modification of the intensity
(1.1) to describe the failures of a k-component system. Assuming the covariates
are functions of the time spent since the last failure time, he defines a class of
renewal Markov processes and derives statistical inference when the observed
length of time tends to infinity. This asymptotic point of view is quite usual for
statistics of processes [Snyder (1975) and Liptser and Shiryayev (1977)] and we
consider here the same framework.
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In this paper a as given in (1.1) is the intensity of a single point process
observed on a long time interval and we assume that the underlying intensity A,
is an unknown periodic function with period 1. This assumption enables one to
describe point processes having a certain kind of periodicity as, for example, the
feeding times of an animal or the times of peaks in hormonal secretion. In the
absence of the modifying regressors, that is, if 8, = 0 for [ = 1,..., g, the process
is a Poisson process with nonhomogeneous periodic intensity. The regression part
of the intensity takes into account the effect of the past history through
predictable processes Z,,..., Z, and inference on B,,..., B, is needed to decide
whether the past of the process or other relevant random events modifies the
underlying Poisson process. When studying a feeding pattern, the regressors may
be, for example, the weights of food intakes as well as their times (short enough
to be considered as points).

The periodicity of A, leads to new estimators ﬁ and A for the regression
parameters and the cumulatlve underlying intensity, and we show that they
have the same asymptotic properties as in the classical Cox model. When the
processes N and Z are observed on [0, n], the Cox partial likelihood is replaced
by

No  exp{BoZ(T}))
(12) Wbo) = Il S sia 25, + B

where S; is the point of the first period ]0, 1] which is equivalent to the observed
time T}, modulo 1, i < N(n). Writing log W,(8,) as

bl [ BoZ(u+ k) dN(u + k)
k=0"0

—/log{ exp{,BOZ(u+k)}} {gN(u+j)},

we can see that it has exactly the same form as the logarithm of the Cox
likelihood evaluated at time 1 (AG). However, the process X7_Jexp{B,Z(- + k)}
is not predictable and, moreover, there is generally no history # = (%), < 0,1} On
the probability space such that all the counting processes N(- + k) — N(k) are
Fadapted and have an Hintensity, 0 < k£ < n — 1. The proofs of AG have
therefore to be modified and stronger conditions are needed.

Section 2 presents a complete specification of the model and general condi-
tions for the asymptotic results. Also, these conditions are compared to those of
AG. In Section 3, we establish the asymptotic properties of the estimators, using
a martingale convergence theorem [Rebolledo (1978)] to prove weak convergence
of variables, and theorems for convergence of probability measures [Billingsley
(1968)] when processes are concerned. An example is given (Section 4) where a
covariate studied by Slud (1984) is used. Finally the result is generalized to the
case of a multiplicative intensity model (Section 5).
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2. Definitions and model assumptions. The theory of stochastic integrals
and martingales has been fruitfully introduced to study counting processes
[Aalen (1978) and Rebolledo (1978)]. It has been used often and we shall apply it
throughout this paper as a classical tool. We put our general framework in this
background. _

We consider an open set B of R? with compact closure B and a family .# of
measures on R, having a periodic Radon-Nikodym derivative with respect to
Lebesgue measure, with period 1. Let (£, &/) be a measurable space and
P = (B, AS B € B, A €.} be a family of probability measures on (2, ). A
history %= (#,),,0n (2, &, #) is a right continuous nondecreasing family of
P-complete sub-o-algebra of &/ for any P in #. We consider a simple counting
process N associated with a real point process (T});.n and we assume that N
has a B, , -predictable compensator [;ef#“) dA (t), where Z is a vector of g
Fpredictable processes with left continuous sample paths. The processes N and
Z are observed on a time interval [0, n], n € N.

2.1. Definition of the estimators. Assuming % is the internal history of N,
maximum likelihood estimators (MLEs) of B, and A, do not exist in B X Z.
Following Johansen (1983), an extension of the model may be defined replacing
A, by a measure A(-) = A () +X,. . AA(u), with A_ in & and AA having
period 1, and replacing N by a marked counting process with integer marks.
Because of the periodicity, an empirical distribution-type estimator of A, has to
weigh only the points S; = T, modulo 1 and their periodic translates. In this
model it follows that MLEs of A, and B, on [0, n] have to maximize

N(n) n—

1
Vi(A, B) = TT AA(S,)ePZ ™ [T exp{ —AA(S;)ePASi+0);
i=1 k=0

thus A ,(-) = X, AA (u) with
1
Yr-lexp{BZ(S;+ &)}’

and B, maximizes W,(B) = V(A ,, B), which reduces to (1.2).

Though this extension of the model is rather artificial in considering a
minimal history and a marked point process when only a simple process is
observed; it is interesting for two reasons: First, being a maximum likelihood
estimator for some model, ﬁn can be expected to have the classical asymptotic
properties of MLEs; second, this model gives an immediate method for the
computation of ,ﬁn and f\n by analogy with the likelihood of Poisson variables
[Whitehead (1980) and Pons and de Turckheim (1988)].

Following Gill (1986), MLEs 8, and A, of B, and A, may also be obtained
from an extension of the likelihood in parametric submodels. Let (F, 4; 6 € R,
. B € B) be a family of probability measures associated with the compensator
Jo{1 + 0k(t)}ePZ® dA (t) of N, where k is a periodic function with period 1.
Then the value of (8, 8) = (0, 8,) has to maximize the likelihood of this para-
metric submodel for any periodic function k. If A, were continuous and F#

(2.1) AR(S) =
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minimal for N, the Radon-Nikodym derivative L (8, B) of P, 5 with respect to
P, , on [0, n] would be [Jacod (1975)]

L,(8,B) = H ({1 + 6k(T;)}ePZT™> expj (1= {1+ 6k(2)}eP?®) dA (2).
For a general history % and a general measure A, in

2= {A measureon R ; A(-) = A, + ¥ AA(u), A, €2, AA(-) = AA(-+ 1)},
we consider the same expression L,(6, B) instead of the likelihood associated
with a noncontinuous compensator. Maximizing L, at (0, 8,), it follows that
L1, < k(T) = [TkeP?® dA,, for any periodic function k; hence, A, is a discrete
measure and using the penod1c1ty we get (2.1) and (1.2). It must be noticed that
the extension of Johansen defines a model where the likelihood is exactly
L0, B) with A, in 2 when % is the minimal history.

2.2. Conditions for convergence. Some additional notations and definitions
are useful: Let P be the probability associated with the parameters A, and B;
the expectation and the variance of a variable X with respect to P are denoted
by EX and Var X; otherwise, they are denoted by E,X and Var,X when a
probability » is concerned. Let A = [;a(u) du be the P-predictable compensator
of N, where a is given by (1.1) and let M be the local martingale N — A.

The restrictions of N, A and Z to the kth period are the processes N.*, A}
and Z} defined on [0,1] by

Ng(s) = N(s + k) — N(k),
(2.2) Af(s) =A(s+ k) — A(k),
Z¥(s)=Z(s+k), O<k<n-1.

C is the space of continuous functions on [0,1] and D_ is the space of left
continuous functions on [0,1] with right-hand limits. Thus the processes Z}
have their sample paths in D?. Let Z®* for i = 0,1,2, be 1, Z and the matrix
ZZ', respectively. For each 8 in B, processes S{”(B) are defined on [0,1] by

n—1
(23)  SO(B,5)= — L 2%s + Ko (BZ(s + )}, i=0,12,
. k=0

and they are ‘éxtended to R, by periodicity.
"~ We can now set down the following conditions, which will be assumed to hold
throughout the proofs.

CONDITION A. The sequence of processes (Z}), o is P-ergodic: There exists
a probability » on (£, %) such that for each measurable set B for the Skorohod
topology on D7,

n—1
n' Y I(Z} € B) > »(Z$ € B).
k=0
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ConpITION B. The sequence of processes (Z¥)h»o is @-mixing with
T2 00(k)/? < 0, where sup(|P(B/A) — P(B)j; A €.#4, B € M7, i< N} <
@(k) and where #} and £, are the o-algebras generated by {(ZX;0<m<i)
and {Z*; i + k < m}, respectively.

Let s)(B, s) = E,Z®'(s)exp{BZ(s)} on B X [0,1] and be extended to R, by
periodicity for each 8 in B, i = 0,1, 2.

ConpiTioN C. Integrability and regularity conditions:

Cl. supg ¢ gsupyg, ,5|Z ®'exp{BZ}| is »r-integrable and supg |Z®%xp{B,Z}| is P-
integrable, i = 0,1, 2. _

C2. s© is bounded away from zero on B X [0,1] and the functions s@(B,) are
continuous on [0,1] for i = 0, 1. .

C3. Var,Z(u) is positive definite for each u in a dense subset % of [0,1] with a
positive A -measure.

C4. Each of sup, ., o(Var exp{B,Z*(s)}), sup,, , oVar(Z(s)exp{By,Z*(s)}) and
n'4ES(By, s) — E,SH(By, 5)) is finite for each s in a dense subset of
[0,1] including 0 and 1.

C5. Lindeberg condition: For [ =1,..,, g,

limsup , ['Z}1{| 2, > A)exp{8,Z} dA, = 0.
A- o0 0

C6. The sequence of processes (C,), is tight for the uniform topology on D?+1

where C, = (C®, C{V) is defined by

(2.4) CP = n'2(SH — s®)(B,), i=0,1.
These conditions are rather general and we shall see in the examples given in

Section 4.1 that Markovian properties imply some of the required probabilistic
conditions. Lemmas 2.1-2.3 show how they relate to the conditions of AG.

LeEmMA 2.1.  If Conditions A and C1 hold, then
sup |S(B) — s@(B)| - p 0 foreach B inB.
[0,1]

Proor. The ergodicity is equivalent to the condition nTITRIA(ZF) e
E,f(Zg) for any v-integrable function f: D? — R. Next, for such a function f,
we can extend Rao’s theorem (1963) to the ergodic sequence of variables
(f(Z#))1 » o satisfying the relevant integrability condition

E{ sup {(23(s))} < oo.
s€[0,1]
The required result then follows from C1. O

LemMaA 2.2. If C1 holds, then for each B in B and s in [0,1], sV(B, s) =
(3/0B)s (B, s) and sP(B,s)=(3%/3B?)sO(B,5); sO, sV and s® are
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bounded on B x [0,1]. Moreover C2 and C3 imply that the matrix

L 5@s@ _ gme2

o (BB,

(2.5) 28) = [

is positive definite.

PrROOF. The first part of the lemma is a consequence of the dominated
convergence theorem. For the second part, note that when C2 holds, the
following statements are equivalent to C3:

(1) YZ(s) is not deterministic for each s in % and y’ in R?.
(i) Ef(YZ(s) + a(s))%PZ)} > 0 for each s in %, vy’ in R? and each real
function a(s). .
(iii) Polynomial expansion in a(s) of the previous expression has a negative
discriminant function for each s in  and y’ in RY.
(iv) 2(B) is positive definite. O

LEMMA 2.3. If A and C1 hold, then fori=0,1,2,

sup sup IS,(Li)(Bo) - Sr(;i)(B)l -p0,
'BO_B|SP [0)1]

when n = o0 and p — 0.

Proor. Let

w?(Z)= sup sup |Z®(s)ePo®) — Z®H(s)ePX")|.
1Bo—Bl=<p s<[0,1]

The variable sup g _ g < ,Sup(o,111S$2(Bo) — SP(B)| has bound n~'LrZ3w N(Z}),

which converges to E,w((Zg). Now lim,  ,Ew(Zg) = 0, which concludes
the proof. O

We can remark that our conditions imply weaker ones than in AG (Lemmas
2.1 and 2.2); however, they are sufficient to prove the same asymptotic properties
of the estimators. In particular the result of Lemma 2.3 replaces the continuity
in B, uniformly on [0,1], of the functions s©@, s® and s® and a stronger
convergence of S¢ to s, uniformly on B X [0,1]. The uniqueness of B, will be
a consequencé of the positive definiteness of 2(f,) and, under C2, this is
equivalent to the intuitive Condition C3 (Lemma 2.2). Finally our Lindeberg
condition is stronger than in AG, but it could be written in a similar form.

3. Asymptotic properties.

'3.1. Consistency and asymptotic normality of ﬁn The estimator ﬁn has been
chosen to minimize the function

(3.1) K,(B) = n"'log{ W,(B,) W, '(B) }
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and its asymptotic properties follow from minimum contrast theory [Dacunha-
Castelle and Duflo (1986)], which generalizes maximum (partial) likelihood

theory.

THEOREM 3.1. ﬁn is a weakly consistent estimator of B, in B.

Proor. We have to show that K () converges in probability to a continu-
ous function K () having a unique minimum at B, in B. K,(8) can be written

n . n SO
e

Since the processes S{(B8) and S{(B,) are not predictable, expand K ,(B) as

I s©(8o)
nt [ {(po—ﬁ)Z—logWé)-)—}dN

L SO L sO(8)
- 6sO(B) ~ EsO(B)

Next, using the ergodicity condition and Lenglart’s (1977) inequality, the first
term in this expression converges in probability to

1 1 © | o
K(B) = (B~ B) ['s®(Bo) dho — [ log{ss(%&))}s@)(ﬂo)dxxo

and the second term converges to zero [from Lemma 2.1 and convergence in
probability of n~IN(n)].

K is a continuous function in B. Its first derivative has the value zero at
B = B, and its second derivative is =(B), given by (2.5). The consistency of ﬁn
follows from Lemma 2.2 and a classical convex analysis theorem (cf. AG). O

Jav.

THEOREM 3.2. n%(B,— B,) converges weakly to a Gaussian variable
N0, 2(By) ") and (32/8B%)K (B,) is a weakly consistent estimator of Z(B,).

PROOF. By a Taylor expansion of (d/3dB8)K ,( ,én) around B, we obtain
n'/%(3/9B)K ,(By) + n'/*(B, — BoX(3%/3B*)K(B¥) = 0, where B¥ is between
B, and B,. It is therefore sufficient to show

(92/3B*)K(BX) = » =(Bo)
for any weakly consistent estimator 8* of 8 and
n'/2(3/9B)K(B) = o #(0,2(B,))-
The first point is a consequence of (3%/3B%)K,(B,) = p =(B,), which can
be proved as in Theorem 3.1, and of
sup |(a2/aB2)Kn(B) - (32/8B2)Kn(ﬂo)l - P 0
1Bo—Bl<p
when n — oo and p — 0, which follows from Lemma 2.3.
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The second point needs a representation of —n'/%(3/dB)K,(B,) as the
difference of two random variables X! and X2, where

n s(l)
X! = n—l/zfo {z - m(/30)} dM,

(S s
X3 - {E - m}(ﬁoxouv— a4).

X} is the value at 1 of the process
sM

Qu= [~ 2ns) = S (o) | (),

which is a square integrable local martingale on [0, 1] with respect to the history
(#,5)s<p0,1)- Using C5 and the convergence in probability of (@,, @,)(s) to
s2(B,), for any s in [0,1] we can apply Rebolledo’s convergence theorem and
conclude that X} — , A47(0, =(B,)). _

In order to show that X2 — p 0, write X2 = [}B,(dN, — dA,) with

B, = n'*(SM/8© — s®/s®)(By),
n—1

Nn = n—l Z Nk*’

k=0
(3.2) -
A =ntY A}

k=0

and consider the nondecreasing continuous function ® = [;5(B,) dA,. Note
that X2 is not a stochastic integral but a difference of two Stieltjes integrals and
that (N, — A,) is not a martingale. We will prove that B, converges weakly to a
process B with continuous sample paths and that supp,;|N, — ®| and
supg, 1jl4, — ®| converge in P-probability to zero. Then X, 2 converges in P-prob-
ability to zero as a function of (B,, N,, A,), which is continuous at the values
(B, @, ®), for the Skorohod topology on D? X E2, where E is the set of
nondecreasing right continuous functions on [0,1], with left-hand limits. The
process B, itself may be written as f(C, C?, S{(B,)), where f is the function
from D?%? to D? defined by

sO(B,
f(x’ Y z) = (x4_ ;«)—)E%O—;y)z

for x in D? and y and z in D_. Under Condition C2, the function f is
continuous on C?9*2. Since sup, ,)IS(B,) — 52(By)| = p 0 and sV(B,) is in C,
the weak convergence of C, to a process with continuous sample paths will
ensure that B, also converges weakly to a process with continuous sample paths.
Now for any ¢ in a dense subset of [0,1] including 0 and 1, each component of
C(t) is a sum of n p-mixing variables of the form n~/2L}_i(¢, — E,¢,) and it
converges weakly from C4 and from a generalization to the nonstationary case of
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Theorem 20.1 of Billingsley (1968). From C4 and the Cramér-Wold device, C,
has then convergent finite-dimensional distributions, and by C6 it converges
weakly to a process with continuous sample paths. Then the same holds for B,.
It remains to prove that sup, 1]|A ®| - p 0 and supy,, 1]|N ® -, 0 thlS
is a consequence of Lemma 2.1 for A, and of Lenglart’s inequality for the local
martingale n~Y;I{u €10, s]} dM(u) whlch yields |[N(s) — A (s)| = p 0 at any
point s in [0,1]. Now the continuity of ® gives the required result. O

3.2. Asymptotzc distribution of n'/ 2(A — Ay). The asymptotic properties of
(A — A,) require further technical results: We have to establish weak conver-
gence of a process written as a Stieltjes integral with respect to (N, — A)).
Though (N, — 4,) is not a local martingale, we can prove that the process

(3.3) u,=n"*(N,-A4,)

converges weakly to a Gaussian process with zero mean, independent increments
and continuous sample paths. The convergence of its finite-dimensional distribu-
tions uses Rebolledo’s convergence theorem and its C-tightness needs an adapta-
tion of Billingsley’s method for the empirical process associated with a @-mixing
sequence of variables [Billingsley (1968), Section 22]. A stronger ¢-mixing condi-
tion is necessary to bound the fourth moment of p,. We now assume

CoNDITION D. (N;*, Z}), ., is a ¢-mixing sequence of processes with

n—1
Y (k+1)%p(k) <0 forl=2,3,4
k=0

and we prove some preliminary results.

LeEmMMA 3.1.  If A, is bounded, there exist constants K, and K, such that for
any s and t in [0,1],

E(u(?) — p(s))* < Kyt — ) + K

Proor. For any s < ¢ in [0,1], p,() — p(s) = n~125r2 3t dM(- + k) and
(JEdM(- + k)), ., is a sequence of @-mixing variables with zero mean. From
Doukhan and Portal’s Theorem 2.5 (1983) and Condition D, we get, with a
constant c,,

E(sa(t) — po(s))*

(3.4) - 04(sup{5 [ am(u + k)|2}2

k>0 s

We have

2
- E.[’dA(u + k)l,




COX’S PERIODIC REGRESSION MODEL 687

which is bounded by

|t — s|sup |>\0|IE{supeB°Z}
[0,1] R,
for any integer k.

Considering [fdM(u + k) as the value at point 1 of the square integrable
local martingale [;I{u €]s, t]} dM(u + k) and using the Burkholder-Davis—
Gundy (1972) inequality for local martingales, we also have, for a constant a,,
2

E 45a4|E fOlI{u €ls, t]} dN(u + k)

[fam(u+ k)
=a,E f‘dM(u + k) + j‘dA(u + k)|2

< 2a,|E

f‘dA(u+k)| +E

)
which is bounded by |t — s|, except for a multiplicative constant, from C4. By
introducing these bounds in (3.4), we get the required result. O

[fdau + &)

LEMMA 3.2. If )\, is bounded, the sequence of processes (i), is C-tight.
PROOF. Let w(p,, §) be the 8-modulus of continuity of p,,,
a(n) =n"'sup I}\OIE{supeBOZ} for n > 0,
[0,1] R,
and
Q(p,a) = {(w(A,,p) <ap} forpin]o,1[and ainR,.
Since p,(0) converges weakly (Rebolledo’s theorem) and P{(p, a(n))} =1 — 1

for any p and 1, it is sufficient to prove that for any nonnegative ¢ and 7, there
exist 8 and p in ]0,1[ such that, when n is large enough,

P(a(pa(m) 0 { sup_|ki(t) = p(s)] > )} < o0

s<t<s+

for each s in [0, 1] [Billingsley (1968) Theorem 8.3].
Now, this can be shown just as Billingsley does [(1968) Section 22] because of
Lemma 3.1 and the inequality

|pa(2) = pa(8)] <|ma(s + p) = po(s)| + apn'/?,  s<t<s+p,
which is true on Q(p, a(n)). O

THEOREM 3.3. If A, is bounded and D holds, then the process
n1/2(An - Ao) + nl/z(ﬁn - Bo)/is(l)(ﬁo){s(o)(ﬁo)} _ldAo
0

converges weakly to a Gaussian process with continuous sample paths, zero
mean and covariance [§"{s®(B,)} "' dA, at points s and t.
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PROOF. As A, (s) = [HSO(B,)} 'dN,, the process n*/%(A, — A,) can be
written as a sum of three terms,

. sdN, — dA, s
n/(R,(s) = Ao(s)) =7 [ o)t f s<°> f dA,
Taylor expanding (S©(4,))~! around ,BO, the last two terms are replaced by
n1/2 f S(0)2 0 (BO) dAO’

where ,B is between B, and ﬁ Then by ergodicity and weak convergence of
n'/%(8, — B,), the processes

n'*(&, - Ao) +n'/%(B, - Bo)j(;.s(l)(ﬁo){s(o)(ﬁo)} A,
w2 [ (89(8,)) (4N, - )

have the same limiting distribution if they converge. The expression (3.5) can
again be split into two terms,

n/2 [({80(A,)) " = (s°(8)) ')(dN, - dA,),

whlch converges to zero [expand {S®(B,)} ! around B, and use supg, 3| N, —
A,| = p 0, Lemma 2.3 and weak convergence of C, as in Theorem 3.2] and

(3.6) R, = [ {s®(8)} " dn,.

Now (R,), is C-tight because s®(8,) is bounded away from zero and by
Lemma 3.2. Moreover the convergence of its finite-dimensional distributions can
be shown by considering R,(s) as the value at ¢ = 1 of

() dM ()
0) = | e )

where J(u) =X,,ol{u:k<u<k+s}) G, is a square integrable local
martingale on [0, 1], with respect to (%,,),<[0,13> @and it converges weakly to a
Gaussian process with continuous sample paths and variance o,(t) =
/(s D(By)} "tdA, (Rebolledo’s theorem). It follows that R, converges weakly
to a Gaussian process having the required properties. O

(3.5)

Convergence of n'/ 2(;7\n — A,) is then a simple consequence of the conver-
gence of the process

(R n(f = Bo) [ (o)(ﬁo)dA)

with respect to the Skorohod topology on D?*! since the second component has
continuous sample paths. The covariance of its limiting distribution follows from
the asymptotic null correlation of the variables R ,(s) and (d/dB)K, for the
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probability »,
s®

lim E,{Rn(s)nl/z Oﬁ”(ﬁo)} = lim E{fon@i({@(z - W(ﬁ")) dA} =0.

The computation of the asymptotic covariance of n/%(A, — A,) is then
straightforward and is, at points s and ¢,

sat dA ss® ’ L pe8®
[ o (/O %(ﬂo)dAo)z(ﬂo) [ (Bo) dhe.

—_——— +
s(Bo)
4. Special cases and an example.

4.1. Some special cases. The case of bounded processes Z, is common in
practical situations and Conditions C1, C2, C4 and C5 are then nearly fulfilled.
The condition of full-rank randomness of Z is also natural: If the different
processes Z,,..., Z, are linearly dependent some of them should be dropped as
noninformative. To actually compute ﬁn, we need a condition corresponding to
the empirical version of C3: The matrix (Z,(U;)), ; is of rank g on the observed
sample path, where the U’s are all periodic translates of the observed points
lying in the observed time interval.

In the general case, when the processes Z, take into account more information
than the history of N, the ergodic and mixing properties of (Z}*), . , have to look
plausible. However, when the processes Z, are known functions of N itself, the
intensity (1.1) defines the distribution of (N, Z). We therefore have to prove that
these conditions are fulfilled.

More generally, suppose that Z(¢) depends on the points of the process N
observed in the time interval [¢# — 1, ¢{[ and on marks associated with these
points in the following way: If N has m points T}, ,,..., T}, on [t — 1, ¢[,

Z(t) = gm(t: Tl+1’ LR Tl+m7 Xl+17 cey Xl+m)’
where X; is a mark associated with T; and g,, is an invariant function for a
common translation of its first (m + 1) arguments, m > 1, g, being a constant of
RY,

In that case and under a certain condition on the distribution of the marks,
the sequences of processes (Z}),», and (N*, Z}*), » o are homogeneous Markov
chains; they have a recurrent point when sup, , o/#*'a(«) du is bounded [Pons
and de Turckheim (1986)]. They are therefore Doeblin recurrent chains, so that
Conditions A, B and D hold and lim n'/2X2ZYESS(By, 8) — E,S9(B,, 8)) = 0
for any s in [0, 1]. As a particular case, let Z; be the time elapsed since the last
but (I — 1)th event of N and let Z, be set to 1 when this time is longer than one
period: For I =1,..., p,

(4.1) Z(t)=(t-T,_;,;)) A1 whenT,<t<T,,.

Another process can be defined as the mark X; observed at time 7}, and we
bound it by a fixed value x, so that the required conditions are fulfilled: For
l=p+1,...,2p,

(4.2)  Z(t) = (Xispr Ax){t = T,_;y, <1} whenT, <¢t<T,,.
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For the process Z = (Z1)1 < 5p defined by (4.1) and (4.2), the functions s()(B,) are
continuous on [0,1], i = 0,1. Moreover the C-tightness of the related sequence
(C,), can still be established by a modification of Billingsley’s method for
empirical distribution function of ¢-mixing variables: The processes Z, are
bounded and have no more jumps than the counting process N. We give
elsewhere general conditions that guarantee Condition C6 and we apply them to
the processes defined by (4.1) and (4.2) and to other processes [Pons and de
Turckheim (1986)].

4.2. Application. The feeding times of rabbits have been recorded during
seven days, as well as the weight of each food intake. The point process of these
feeding times could be modelled by a Poisson process with a nonhomogeneous
one day periodic intensity [Jolivet, Reyne and Teyssier (1983)], but that would
suppose the process has no memory. The possibility of a dependence of the
feeding times on the preceding times and quantities of food is considered using
Cox’s periodic model with the regressors (4.1) and (4.2), where the measuring unit
for the T;’s is one day. For p = 6 they define the models M60 (regressors
Zy,...,Zs), MOG6 (regressors Z,,...,Z,,) and M66 (regressors Z,,..., Z,,); for
p = 1 the corresponding models are M10, M01 and M11. These models have been
fitted to the data of an 18 week old domestic rabbit that proceeded to 219 food
intakes in seven days.

Table 1 shows the values of the likelihood ratio statistic LR =
—2log(W(B)/W(ﬁ)) to test a nested model M, with estlmate [? in a model M
with estimate f; it is asymptotically distributed as a x? variable under M. The
following points may be noted:

(i) Each of the fitted models is better at level 0.001 than the Poisson model:
The past summarized by the chosen processes has an effect on the distribution of
the eventual intakes.

(ii)) Comparing M11 to M66, M10 to M60 or M0l to M06 we see that the
second to sixth preceding intakes do not add significant information to the first
one.

TABLE 1
Likelihood ratio statistics and corresponding degrees of freedom for different
. nested models
) LR (df) for submodels
Model Poisson M10 Mo1 Mi1 Mé60 Mo6

M10 47.6 (1)

Mo1 15.7 (1)

Mi1 939 (2) 46.3 (1) 782 (1)

M60 51.1 (6) 3.9 (5)

MO06  17.0 (6) 1.3(5)

M66  104.0 (12) 10.1 (10) 52.6 (6) 87.0 (6)
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TABLE 2
Estimates in models M11, M10 and M01

Covariate Z, B, {Var(B;))/2 Wald statistics
z, 0.0270 0.0034 7.84
(0.0185) (0.0029) (6.28)
Z, -0.0023 0.0003 -6.53
(—0.0012) (0.0003) (—3.96)

(iii) The weight of the preceding intake does add information to its time
(comparison of M10 to M11) and vice versa.

(iv) Comparing M01 to M10 we see that M10 corresponds to a better fit since
the likelihood ratio statistic with respect to the Poisson model may be under-
stood as a goodness-of-fit criterion in the class of models with the intensity
a(t) = A(t)F(Z(t)), where F is any nonnegative function and Z is a given
maximal choice of processes to summarize the past [Pons and de Turckheim
(1988)].

Table 2 gives the estimates of 8, and B, in model M11 and, in brackets, in
M10 and MO01, respectively. The signs are the expected ones: The more has been
eaten or the shorter the time since the previous intake, the lower the probability
of observing the next intake. Though they keep the same sign in the submodels,
B, and B, change when the other regressor is omitted: Their absolute value is
underestimated when a relevant regressor is not considered. This agrees with the
result of Bretagnolle and Huber (1985) in the case of dichotomous time indepen-
dent regressors for survival analysis models. Because of this instability, the
coefficients are difficult to interpret just as in the classical linear regression
model with nonorthogonal regressors. Thus the easiest use of these models
consists in comparing models taking different durations into account or sum-
marizing the past by different processes [Pons and de Turckheim (1988)].

Finally, the estimate of A, is also available from the same program that
computes ,én, but here it is not interpretable since the regressors also have some
kind of periodicity: The periodicity expressed by A, is only a part of the model
periodicity. It is a situation analogous to that of confounding effects in analysis
of variance models and A, should only be considered as a nuisance parameter.
The estimation of A, could have a biological meaning in the case of discrete
regressors as, for example, a regressor taking the value 0 or 1 according to the
health of the rabbit. '

5. Extensions. The particular exponential form of the Cox model has no
important role and the previous results can be extended to a more general class
of'models, where efoZ is replaced by r(8,Z) with a real known function r having
relevant properties [cf. Prentice and Self (1983)]. The case of a multiplicative
intensity model with a periodic underlying intensity can also be considered:
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Assume now that on (2, &, P, #) a real counting process N has the intensity
a(t) =A,(8)2(t), t=0,

where A, is a periodic function with period 1 and Z a real predictable process.
Using the previous arguments, the cumulative underlying intensity A, =
foAo(1) du is estimated by A, defined as

-1

A(s) = fosn{:};::zw +‘k)} dN.(u), O0<s<l.

Assume that Z is left continuous. Considering Z}*, the restriction of Z to the kth
period and SO = (1/n)L}ZLZ}, we get n*/%(A, — Ay) = [;{S©} ldp, with
the nonpredictable process S\” and p , [defined by (3.3)] which is not a martingale.

Assume Conditions A, C and D hold, where s = E,Z and where Conditions
C are reduced to: )

Cl'. sup(g q7|Z| is v-integrable and supg |Z| is P-integrable.

C2'. s© is bounded away from zero and is continuous on [0, 1].

C4'. sup, ., o(VarZ}(s)) and n/2ESO(s) — E,S(s)) are finite for each s in a
dense subset of [0,1] including 0 and 1.

C6’. The sequence of processes (n'/?(S© — s©@)) is tight for the uniform
topology on D_.

Then Theorem 3.3 becomes: The process n*/%(A, — A,) converges weakly to a
Gaussian process with zero mean, continuous sample paths and covariance
JEM Y sO(u)} A o(v) du at points s and ¢.

This result is the same as Aalen’s classical one (1978) for the case of
martingale-based estimation of the underlying intensity though his method is
not available here: A,S{ is not the intensity of (1/n)C7Z3 N*.
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