The Annals of Statistics
1988, Vol. 16, No. 1, 265-277

SIMULTANEOUS ESTIMATION AND PREDICTION USING THE
EXPECTED COVERAGE MEASURE CRITERION?

By PETER M. HOOPER
University of Alberta

Simultaneous confidence regions and simultaneous prediction regions are
considered using the expected coverage measure criterion of Naiman. Invari-
ance methods are used to construct minimax procedures in multivariate
linear models.

1. Introduction. Let x and y be independent random vectors with
@1.1) x ~ N,(C,B,0%I,) and y ~ N,(C,B, c0?l,,),

where 8 € RY, o > 0 are unknown and C,, C, and c; are known. We observe x,
but not y, and we want intervals for a’y, for some vectors a € R™. We wish to
construct intervals R(a, x) so that, in most cases, a’y is covered. The intervals
should also be narrow.

Naiman (1984) suggests the following approach to balancing these aims.
Define a probability measure p on R™, a positive weight function w(a, o) and a
bound 1 — a € (0,1). Then choose R to minimize

(12) E fu(a, 0)((R(a,x))n(da)
subject to
(1.3) E fIR(,,,,)(a'y),L(da) >1-a forall B€RY o> 0.

In the preceding, [ is Lebesgue measure on R, Iy(2) = 1if z € R and Ix(z) =0
if z ¢ R. The minimization of (1.2) could be in the minimax sense or uniform in
(B, o) subject to further restrictions on R. Naiman (1984) calls the left-hand side
of (1.3) the expected coverage measure (ECM) of R with respect to p.

For example, suppose information is recorded on m + n files. A certain
variable of interest is recorded on n files and missing on the remaining m. The
variable is related by a regression model, (1.1) with ¢, =1, to information
recorded on all files. Over a period of time, some of the files are drawn at
random. If the variable is missing, a prediction interval is required for its value.
Suppose the loss arising from intervals failing to cover the true value is propor-
tional to the number of such intervals. There is a second loss associated with the
size of the intervals. It seems reasonable to construct the intervals according to
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266 P. M. HOOPER

criteria (1.2) and (1.3), with p the uniform distribution on the standard basis for
R™. The ECM is then the expected proportion of intervals that cover the true
value. The choice of 1 — a and w is discussed later.

Naiman (1984) considers estimation problems: In (1.1) take ¢, =0, C, =1,
and y = B. One application is the construction of a confidence band for a
polynomial regression curve. Let C; have ith row (1, v;, v,..., o). If p is the
distribution of (1,v,v2,...,v?"!), where v is distributed uniformly over a
specified interval where the band is of interest, then the ECM is the expected
proportion of the interval in which the true regression curve stays within the
band. The idea generalizes easily to bounds for regression surfaces. Another
application arises when estimating a finite number of linear functions, e.g., all
simple contrasts in a one-way ANOVA. If p is distributed uniformly on the set of
linear functions of interest, then the ECM is the expected proportion of intervals
covering the true value. Naiman minimizes (1.2) uniformly in (8, o), subject to
(1.3) and restrictions on the form of R. We strengthen his result in two ways:
The restrictions on R are replaced by weaker invariance restrictions, proving
that the optimal intervals are minimax, and the normality assumption is
weakened, showing that the intervals are, in a certain sense, robust.

Consider weight functions of the form

w(a, o) = w(a)wy(a)/o,
where w,(a) > 0 and '
wy(a) = {a’(cOIm + CZ(C{CI)_ICZ{)a}_I/z.

The 1/0 factor does not affect the form of the optimal invariant intervals but is
included to make the minimax property nontrivial; cf. Hooper [(1982), page
1287]. The factor involving a is split into two terms for convenience. The theory
of Section 2 shows that, for given p, the following intervals are minimax:

(1.4) la'y — a’C,B| < 6h(c, a)/wy(a),
where

B=(cic)'cix,  62=(n-q) ¥(I, - C(CiC) 70 )x,

h(e,a) = {(n - )[{aw(a)) "o 1]}

Here zt=2 if 2> 0 and z*=0 if 2 < 0. The constant ¢ is chosen so that
ECM = 1 — a. Interchanging the order of intergration in (1.3) shows that

(1.5) ECM = fP{a’y € R(a,x)}p(da).

Since ¢ 'wy(a)a'y — a’CZﬁ) has a ¢ distribution with n — ¢ degrees of free-
dom, it follows that c is the unique solution of

JF(h(c, a)u(da) =1 - as2,
where F is the ¢,_, cumulative distribution function. Note that F(A(:, a)) is
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continuous and decreasing over R* and strictly decreasing when h(-, a) > 0. An
iterative method can be used to approximate c. Note that ¢ depends on 1 — a,
w, and p.

The bound 1 — « pertains to the relative importance of coverage and size in
an overall average sense. The weight function, on the other hand, concerns the
relative importance of coverage and size in a comparative sense, comparing
among the various intervals. If all intervals are on the same footing, then
w, = 1/w, seems natural. The choice w, = constant may be reasonable if the
importance of coverage relative to size increases as a’y becomes harder to
predict. If w, is constant, then h(c, ‘) is constant so the marginal coverage
probability does not depend on a and, by (1.5), the ECM does not depend on p.
The Scheffé intervals [Miller (1981), page 48], the Tukey—Kramer intervals
[Hayter (1984)] and the equal coverage Bonferroni intervals [Miller (1981), page
67] all have the form (1.4) with w, constant.

The ECM may be compared with the usual measure of coverage, the simulta-
neous coverage probability (SCP)

Pla’y € R(a,x)forall a € A},
where A contains all linear functions of interest. If u(A4) = 1, then

SCP < ECM.

If A is a finite set containing N elements and p is the uniform distribution on A4,
then the Bonferroni inequality gives

1 - N(1 — ECM) < SCP.

The two coverage criteria reflect different loss functions. For further discussion,
see Miller [(1981), pages 5-10 and 31-35] and Spjetvoll (1972).

Section 2 presents the invariance theory in a general framework. Sections 3
and 4 contain applications to two multivariate generalizations of the preceding
problem. Section 5 describes how optimal procedures can be modified to improve
conditional performance.

There are applications where the linear functions of interest depend on the
data x. The criteria (1.2) and (1.3) are applicable if p is changed to a conditional
distribution u(:|x). This generalization is not treated here for two reasons: The
distribution theory is less tractable and it is not clear what kind of conditional
distributions are of practical interest. Conditional distributions are considered in
the theoretical development of Section 2, but not in the applications.

2. Invariance theory. Let x and y be jointly distributed random variables
taking values in £ and %, with y currently unobservable. Let {J(-; i, x): i € 4,
x € X} be a family of functions defined on # and taking values in a set 2.
Having observed x = x, we wish to construct prediction regions for J(y; i, x), for
various i € #. Let &, be a family of probability measures on £ X ¥ X # and
suppose (i, X, y) has distribution Py € #,. The random variable i is introduced
solely for notational convenience. In the preceding example, we have /= R™,
i=a, Z=R, ¢(y;i,x) =a’y, i, x and y are independent and Z(i) = p.



268 P. M. HOOPER

A prediction function, or estimation function if y is a parameter, is defined to
be a measurable function ¢: £X X 2 [0,1]. The function ¢ determines
prediction regions for {(y; i, x), i € #, via a randomizing mechanism as follows.
Let u be distributed uniformly over [0,1] and independently of (i, x,y). Define

R,(i,x,u)={z€Z:u<9(i,zx,2)}.

If the range of ¢ is contained in {0,1}, then ¢ is a nonrandomized prediction
function. For given Py € 2, the expected coverage measure of ¢ is defined to be

ECM(¢: B)) = P{¥(y;i,x) € R (i,x,u)}

= Eo(i,x, ¥(y;1,%)).
Put z = Y(y;i,x), P=2(i,x,z) and #= {P: P, € #,}. We then have

(2.1)

ECM(g; P,) = Eg(i,x,2) = f ¢ dP.

The size of the region R, is specified by defining, for each (i, x, P) € # X &' X
P, a o-finite measure Q%¥*(dz|i,x) on 2. In the preceding example,
Q3v*(dz|i, x) = w(a, o) dz. Let Qp be the o-finite measure on £ X X % given
by

(2:2) Qp(di, dx, dz) = P¥*(di, dx)QF"*(dzli, x),
where P+* = #(i,x). Note that

f ¢ dQp = E{Q¥"*(R,(i,x,u)ji,x)}.

Put 2= {Qp: P <€ P}. We say that ¢, is minimax at ECM level 1 — a for
(2, 2) if ¢, minimizes sup{fp d@: @ € 2} subject to inf{/pdP: P € P} >
1-oa

Put ¥V'=FX FX Z and let o denote the product o-field. Let G be a group
acting on the left of ¥". When defining group actions, it is convenient to start by
considering transformations on # X & X %¥. Define, as usual, gP(A) = P(g™'A)
and gQ(A) = @(g 'A). In our applications, we have g@p = Q,p. A prediction
function ¢ is invariant if p(gv) = @(v) for all g € G and v € ¥". We say that
9, is optimal invariant at ECM level 1 — a for (£, 2) if, for each @ € 2, ¢,
minimizes [ d@ among all invariant ¢ satisfying inf{ fpdP: PE€ #} > 1 — a.

We obtain optimal invariant prediction functions by applying the following
proposition. The proof is essentially an application of the Neyman-Pearson
lemma and is omitted. For similar results, see Hooper [(1982), Theorem 1] and
Takada [(1982), Theorem 2]. First note that if ¢ is invariant, then (¢ d(gP) =
fo d}(;}and Jpd(gQp) = [¢dQp. Put GP = {gP: g € G} and GQp= {gQp:
g € G).

PRrOPOSITION 2.1. Let t: ¥ = 9 be a maximal invariant under G. For fixed
P, suppose Pt~! and Qpt™' admit densities p* and q' with respect to some
o-finite measure A on I . If ¢ = h(t) is an invariant prediction function satisfy-
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ing [R()PYE)N(dE) =1 — o and

(1 ifpte) > ca(e),
Ai) = {o, i 2'(2) < cg'(2),

then o is optimal invariant at ECM level 1 — a for (GP, GQp).

We need several regularity assumptions for the following version of the
Hunt-Stein theorem. Suppose 7 is countably generated. Let & be a o-field of
subsets of G such that Bg € & for each B€ %, g € G and {(v, g): gv € A} is
measurable &/ X # for each A € .&/. Suppose there exists a o-finite measure »
over G such that »(B) = 0 implies »(Bg) =0 forall B # and g € G.

PROPOSITION 2.2. Suppose G satisfies the Hunt—Stein condition: There ex-
ists an asymptotically right invariant sequence of probability distributions over
(G, #). Let p, and p, be o-finite measures on (¥", ). Given any measurable
function @: ¥ > [0,1], there exists an invariant measurable function ¢;: ¥ —

[0,1] satisfying
;relgfqod(gu,-) < fw{uis slelgfwd(gm)
fori=1,2.

Note that Gp, and Gu, need not be dominated families. Proposition 2.2
follows from a small modification in the proof of the Hunt-Stein theorem in
Lehmann [(1986), page 519] together with an application of Theorem 4 in
Lehmann [(1986), page 297].

3. Prediction in a multivariate regression model. We adopt the follow-
ing notation: .#(n, p) is the set of n X p matrices; GI(p) is the set of p X p
invertible matrices; G{}(p) is the set of p X p upper triangular matrices with
positive diagonal elements; 0( p) is the set of p X p orthogonal matrices; &(p)
is the set of p X p positive definite symmetric matrices; S'/2 is the symmetric
square root of S € #(p) and, for n > p, Z,(n, p) is the family of left 0(n)
-invariant distributions on the set of n X p matrices of full rank; i.e., Z(X) €
F(n, p)if L(I'X)=2LX)forall T € 0(n) and P{rankX = p} = 1. Note that
%,(n, p) contains the multivariate normal distributions with mean 0 and covari-
ance structure I, ® = for = € &(p). Chmielewski (1981) reviews the literature
onZ(n, p). ’

Let X be a random n X p matrix. Partition X into X;; € #(n,, p;), where
n,+n,=n and p, +p, =p. We put x = (X}, X5, Xp), y =X, and z’' =
a'’X,,s0i=a, F=R™ and 2= R”. Let C € #(n, q) be a known matrix of
constants with C’ = [C}: C{], C;, € #(n;, q) and rank C, = q. We assume that
n, > p + q. Let 2, be the family of all distributions of (i, x,y), or equivalently
of (a,X), satisfying £(X — CB) € #,(n, p) for some B € #(q, p), X and a
are independent and P{a = 0} = 0. The family £, is indexed by (Z(a), B,
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(X — CB)). Recall that # = {£(i,x,2): P, € #,). Put

v, =D, vw=n—p—q+1,

= [B,:B,] = (cic) 'Ci[Xn: X, ],
8 = (8,) = [Xu: X, J(L, — C(CC) 7'C1 ) [ Xy Xy ],
X, =GB, + (X — G,B,)85'S,,,
(3.1) Sn=UUh UypeGji(p),
Si1.2=8S1 — 818%'Sy = Uy Uss Unp € Gi(py),
- W = (X, - C,B,)U; Y,

v = (Vv---,Vp,)
= {a(1,, + G(CiC) 'c; + WWa) (& - oK, ) U

Lemma 3.2 shows that W is an ancillary statistic. We allow the weight
function to depend on both a and W. For P € # with E(detU,,.,) < oo, put
(32)  Q¥'*(dzla, W) = w,(a, W)w,(a, W){E(detU,,.,)} ' dz,
where w; > 0 and
—p1/2

(3.3) w,(a, W) = {a’(In2 +c(cic) ey + WW)a}

Define @, by (2.2).

Now fix #(a) = p. We will show that the optimal fully invariant ECM level
1 — a prediction function ¢, determines the following ellipsoidal regions for
2’ = a'X,y:
(3.4) (z’ - a'le)sfll-z(zl - alle)' < {wy(a, W)} —2/p1("1/”2)h(02» a, W),
where

h(c,a,W) = (vz/vl)[{cwl(a, W)} H e 1] "

The constant ¢, is the solution of
(3.5) E{F(h(cy,a,W))} =1 - q,

where F is the F, , cumulative distribution function. We also will show that a
minimax ECM level 1 — a prediction function ¢, determines regions for z’
a’X,, via the inequality

(3.6) P({wla, W)} (2’ - @'X3)UTE) 2 cquy(a, W),
where pV is the density of v, given in Lemma 3.2, and ¢, is the a-quahtile of
(3.7) Z(p*(v)/w(a,W)).

Lemma 3.2 shows that c¢; and c, depend on P € # only through Z(a).
Furthermore, if w,(a, W) = w,(W), then ¢, and ¢, do not depend on Z(a). A
uniqueness argument shows that (@, d@p < [p, dQp unless p, = 1, in which



SIMULTANEOUS ESTIMATION AND PREDICTION 271

case @, = ¢,; cf. Hooper [(1982), Correction]. However, numerical work in a
related problem [Hooper and Yau, (1986), Table 1 with n, = 1] suggests that the
improvement of ¢, over ¢, is likely to be slight unless », is small and p, large.
One may judge that the greater complexity and the noninvariance of ¢, offset
this advantage.

Let G, be the group with elements g = (T, A, F'), where

I, 0

T=|g 5| Teotm), T©G-C

A = All A12
0 Ay

and F € #(q, p). The group operation is defined by the following actions on
I X XX ¥ or, equivalently, R"”2 X #(n, p):
g(a, X) = (a,TXA’ + CF).

The induced actions on &, and # X X Z are

g("?(a)» B» g(x - CB)) = ("?(a)9 BA’ + F9 g((x - CB)A,)),

g(a, [X),: X5 ], X, z’) = (a, nL[X, : X, ]JA" + C\F, X5 Ap,

+CF,, 2/Af, + a/(XpAl, + GF)),

where F = [F,: F,], F, € #(q, p;). Let G, denote the subgroup of G, with
A € Gi(p).

The translations X - X + CF and the linear transformations of variables
X — XA’ are the important group actions. The orthogonal transformations
X —» I'X are introduced for convenience; they do not affect the form of the
optimal regions. The orthogonal transformations preserve #(X).so the corre-
sponding reductions could be obtained by sufficiency. To justify the sufficiency-

invariance route one would need to verify a regularity condition similar to
Assumption B of Hall, Wijsman and Ghosh [(1965), page 605].

), Ay €GUp),  Ape GH(py)

LEMMA 3.1. Maximal invariants on X X Z under G, and G, are given
by (a, W,v) and (a, W, ||v||?), respectively.

The proof uses standard arguments and is omitted.
LEMMA 3.2. The variables a, W and v are independent and £ (W, V) is the

same for all P € . Furthermore, (v,/v,)|v||2 ~ F, ,. and v has the following
density with respect to Lebesgue measure:

p'(v) = a7 P/? :l'lll [T((n, — g —py— i +2)/2)/T((n, — g — Py — i + 1)/2)]

V2

§ 4 —
X(L+ o)) ™ P2 (1 + 02+ ofy + -+ +02) g

i=1

PrOOF. By assumption, a and X are independent. Fixing a € R"2 — {0},
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we derive the conditional distribution of (v, W) given a = a. By Corollary 1.1
of Kariya (1981), the distribution of any G,-invariant function of X is the same
for all Py € #,. Thus we may assume, without loss of generality, that X ~
N@©, I, ® L,).

We have B, 8, X,, and X, independent with B ~ N, ,(0,(C{C,)"" ® ,) and
S ~ W,(n, — q, 1,). Putting

H=[H:H,]= [X,:X»] - B,
we have H and S independent and
H ~ N,,,,(0,(L, + C(CiC)) 'C5) @ 1,).
Observe that W = HU;;! so WW’ = H,S,,'H). A standard argument shows
that, given (H,, S,,) = (H,, S,,), the conditional distribution of H, , = H, —
H,S,.'S,, is
L(M,.3Hy, S2) = Npyoip (0, (I, + C(CIC) T'C + WW) @ I,
and also that S,, , is independent of (H,.,, W). Put
— -1/2
b = {a’(IM + Cy(CC)TICs + WWa) aH, .

It follows that h, S,,., and W are independent with h ~ N,(©0,I,) and S,,., ~
W,(n, — @ — py, I,). Noting that v’ = h'U/;";, we see that (n, — ¢ — py)|Iv||?
has Hotelling’s T'? distribution. The density of v is obtained from Theorem
4.2(ii) of Olkin and Rubin (1964). Their constant term c¢ contains an error:
Replace 27 by =.

We have shown that v and W are conditionally independent given a and that

v and a are independent. Since W and a are independent, it follows that v, W
and a are independent. O

LEMMA 3.3. For all P € # with E(detU;,.,) < oo, we have
E(detU,,.,|W) = E(detU,, ,) a.s.

Proor. Since the joint distribution (U,,.,, W) does not involve B, we as-
sume, without loss of generality, that B = 0; i.e., £(X) € #,(n, p). By Proposi-
tion 7.3 of Eaton (1983), we have X = ZA’, where Z and A are independent, Z
has the uniform distribution on the Stiefel manifold and A € G{(p). Writing
U}, .. = Uj;.o(X) and W = W(X), we observe that U;;.,(XA") = A,)U;;.o(X) and
W(XA’) = W(X) for all X € #(n, p) and A € G{(p). Thus, we have

E(det Uy, ,|W) = E{det U, ,(ZA)|W(ZA"))
(3.8) = E{ (det A,;)(det Uu,z(Z))IW(Z)}

= E{det A, }E{detU,, ,(Z)W(Z)} aus.

A similar argument yields
(3.9) E(detU,,.,) = E(detA,,)E{det Uy, .,(Z)}.
Now suppose Z(X) = N(0, I, ® 1,). In this case, U,,., and W are independent,
so (3.8) and (3.9) are equal a.s. This shows that
(3.10) E{detU,, ,(Z)W(Z)} = E{detU,, ,(Z)} as.
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Combining (3.8)—(3.10) yields the desired result for general £ (X) € #,(n, p).O

THEOREM 3.1. Fix P € # with E(detU,,.,) < oo, and let ¢, and @, be the
indicator functions determined by (3.6) and (3.4).

(i) ¢, is optimal G,-invariant and minimax at ECM level 1 — a for

(G,P,G,@p);
(ii) @, is optimal G,-invariant at ECM level 1 — a for (G, P, G,@Qp).

Proor. We first show ¢, is optimal G,-invariant by applying Proposition 2.1
with t = (a,W,v) and A(dt) = P*(da)P¥(dW)dv. By Lemma 3.2 we have
pY(t) = p*(v). To determine q*, we condition on (a,x), compute the Jacobian
|det dz/dv| and then take the conditional expectation given (a, W). In the last
step, Lemma 3.3 and the independence of a and (Uj;.,, W) show that
E(detU,,.,|a,W) = E(detU,,.,) a.s. We obtain ¢%(¢) = wy(a, W). Minimaxity
of ¢, follows from Proposition 2.2 and the fact that G, satisfies the Hunt—Stein
condition; see Bondar and Milnes [(1981), Section 2].

Part (i) follows from Proposition 2.1 with t = (a, W,t,), t, =|Iv|]|> and
A(dt) = P*(da)P™(dW) dt,. We compute p'(¢) « t{"~2/2(1 + t,)~*1+*2)/2 and
q'(t) « wy(a, W)tn~2/2.0

4. Estimation in GMANOVA. Kariya (1978, 1981, 1985), Marden (1983)
and Kariya and Sinha (1985) present optimality results for the general multi-
variate analysis of variance (GMANOVA) hypothesis testing problem. Hooper
(1983) and Hooper and Yau (1986) consider GMANOVA confidence estimation
problems. We present the GMANOVA model in canonical form. Let X be a
random n X p matrix partitioned into X;; € #(n;, p;), where n, + ny+ n3=n
and p, + p, + p;=p. We assume that n>p and nj > p, + p;. Suppose
L(X — M) € #,(n, p), with M partitioned in the same way as X. We consider
simultaneous estimation of a’M,,b for some vectors a € R™, b € R?2, so here
we have x =X, &= (n, p), y = My,, ¥=M(n,, py), i = (a,b), F=R™ X
RP2,z=aM,band Z=R.

Put

S = (Sij) = [X31zx32:x33],[x31:X32:X33]’
Mlz =X, — X13S3_31$32,
Sy3 = UsUss, U € Gi(ps),

= — -1
SZ2 I S22 S23 S33 SE‘Z ’

(4.1)
_ Wl _ x13 -1
W= [W2] - [X23]U33 ’

T, = WWY = X,385'X]s,

v= {a,(Inl + T2)a} —1/2{b’822,3b/(n3 - p3)} _1/2(2 - a'Mlzb)-
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Let #, be the family of all distributions of (i, x,y) satisfying (X — M ) €
F.(n, p) for some M € #(n, p) with M;;=0ifi =3or j =3, Ply = M,,} =
(a,b) and X are independent, P{a = 0} = P{b 0} = 0 and E[{b’S,,.;b}/ 2|b] <
o a.s. The last restriction ensures the existence of confidence intervals with
finite expected length. The family £, is indexed by (Z(a,b), M, (X — M)).
Let = {%(,x,2): Py € #,}.

Lemma 4.1 shows that W is an ancillary statisticc We consider weight
functions based on a, b and W. Put

QF*(dzla, b, W) = wy(a, b,W){a(L,, + T)a}) "

(4.2)
X | E{b'Sy,.50}?] " dz

and define @p by (2.2). Let ¢, be the estimation functlon that determines the
intervals for z = a’M,, b,

r ! 1/2 ’
|z —a M12b| = {a (Inl + Tz)a} {(b822,3b)/(n3 _Pa)}1/2
Xh(cy, a, b, W),

(4.3)

where

h(C, a,b, W) = {(n3 __p3)[{cwl(a’ b, W)} —2/(n3—p3+1) _ 1] + }1/2.
The constant ¢, is the solution of
(4.4) E{F(h(cy,a,b,W))} =1-a/2,

where F is the ¢, _, cumulative distribution function. We note that ¢,, and
hence ¢,, depends on 1 — a, w, and Z(a,b). If w, = w,(W), then h = h(c, W),
the marginal coverage probability of (4.3) is 1 — a for all a, b and the ECM is

1 — « for all p. We will show that ¢, possesses certain optimality properties.

LEMMA 4.1. (i) The random variables v, W and (a,b) are independent and
£ (v, W) is the same for all P € P. Furthermore v ~ ¢, _,.
(ii) For all P € # we have

E[{1'S;.5b}4a,b,W| = E[(1'S;,.,b) % |b] a.s.

Proor. For (i) we first claim that the conditional distribution of (v, W) given
(a,b) = (a, b) is the same for all Pe P, a+#0, b+0. Put Y, =
Xy — Myy)b, Y;3=X;; and Y = (Y;;) € M(n,1 + p3). It is easy to check that
(v, W) is a function of Y that is invariant under the actions Y » YA’, A €
G (1 + p,). Also note that £(Y) € #,(n, p). The claim follows from Corollary
1.1 of Kariya (1981). Thus we may assume, without loss of generality, that
L(X — M) = N(Q, I, ® 1,). The rest of the proof of (i) is straightforward; see
Kariya [(1978), Lemma 3.1].

For (ii) we observe that {b'S,,.,b}'/? = f(Y), where

F(Y) = {%5(T,, — Yoo ViYoo) ¥ Ysr)
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satisfies f(YA") = a,, f(Y) for all A = (a;;) € G{;(1 + p3). The rest of the proof
of (ii) is similar to that of Lemma 3.3. O

For each distribution p on #=R™ X R?, put &, = {P € #: Z(a,b) = p}.

THEOREM 4.1. Fix 1 — a, p=%(a,b) and w,. For each P € #,, ¢, mini-
mizes [ dQp among all estimation functions based on (a,b,v, W) satisfying
JpdP =1 — a.

ProOOF. This is essentially an application of the Neyman—Pearson lemma, as
in Proposition 2.1. We take t = (a,b, W, v), A(dt) = u(da, db)P%(dW) dv and
applying Lemma 4.1(i) obtain

pi(t) =p’(v) « {1 +0%/(ng _Pa)}‘

To determine ' we condition on (a, b, x), compute the Jacobian |dz/dv| and
then take the conditional expectation given (a,b, W). Applying Lemma 4.1(ii)
yields ¢%(¢) « wy(a, b,W). O

—(n3—p3+1)/2

The following minimaxity result is applicable when intervals are desired for
a’M,,b with b restricted to a given set of linearly independent vectors. I do not
know whether ¢, is minimax for general #(a,b). Put #Z, = {P € #: £(X) is
multivariate normal}.

THEOREM 4.2. Fix 1 — a, p = %(a,b) and w,. Suppose P(b € B} =1 for
some basis B of RP2. Let ?, be a family of distributions with #, N P, C P, C
P,. Put 2, = {Qp: P < P,}. The estimation function ¢, is minimax at ECM
level 1 — a for (2, 2,).

ProOF. Consider a transformation X — XA’, M,, > M,,A},, b —> Aj;'b,
where A = (A,)) is block diagonal. We may choose A,, so that {A3;,'b: b € B}
is the standard basis. Thus without loss of generality we assume that B is the

standard basis.
Let P be the distribution in &, with £(X) = N(0, I, ® I,). Let G be the
group with elements g = (T, A, F), where

In1 0 0 Ay Ap Agp F, F, 0
r=|10 1, 0], A=]0 A, Ay|, F=\F, F, 0}
0 0 I, 0 0 Ags 0 0 0

I; € O(ny), A € G{(p), Ay, is diagonal and F € #(n, p). The group operation
is defined by the following actions on £ X &:

g(a,b,X)=(a,b,TXA + F).

The induced action on % is gM,, = M,,A}, + F},. Note that M,,A},b =
(b'Azb)M,,b for A,, diagonal and b € B. Thus there is an action induced on
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R™ X BX Z,
g(a,b,2) =(a,b,(bAyB)z + a’F,b).

Let R be the correlation matrix obtained from S,, ;. A standard argument shows
that t = (a, b, W, R, v) is a maximal invariant on R™ X B X & X Z. An applica-
tion of Proposition 2.1 with

A(dt) = p(da, db)P™(dW)PR(dR) dv

shows that ¢, is optimal invariant at ECM level 1 — a for (GP, GQp). Here we
use the fact that, under GP, R is ancillary and independent of (b’S,,.5b: b € B).

The group G satisfies the Hunt-Stein condition; see Bondar and Milnes
[(1981), Section 2]. Hence ¢, is minimax at ECM level 1 — a for (GP, GQp) by
Proposition 2.2. Finally we observe that

f‘Po dQP = E{wl(a’b’ W)h(c’ a,b,W)/(n3 _p3)1/2}

is the same for all P € Z,. Since GP C &, C %, the conclusion of the theorem
follows. O

5. Conditionality properties. Conditioning is of interest in two respects.
First, the ECM is a weighted average of the marginal coverage probabilities:
ECM = E¢ = E{E(¢l|i)}. It seems desirable to report the marginal coverage
probabilities E(¢|i) to avoid leaving the impression that these are equal when
this is not the case. Second, one may wish to condition on the ancillary statistic
W; i.e., solve the optimization problem with W = W fixed. This leads to regions
defined as before except that W is replaced by the nonrandom W in (3.5), (3.7)
and (4.4). Thus the constants c; are replaced by functions c;(W') defined so that
E(p|W) =1 — a, where ¢ is given by (3.4), (3.6) and (4.3). Note that the
calculation of ¢ (W) is easier than the calculation of ¢; in the unconditional
problem. The conditional solutions have E(¢|i) = E(¢|i, W).

The following is a brief description of some theory supporting the above
modifications. Robinson (1979) studies conditional properties of statistical proce-
dures on the basis of their ability to withstand betting procedures. This idea may
be applied in the present context simply by replacing (%, £(x)) with (£ X
Z, %(i,x)) in the definition of a betting procedure. Under this modification,
Hooper (1984) shows that the conditional versions of (3.4) and (3.6) do not admit
superrelevant betting procedures provided the marginal coverage probabilities
are reported. The same is true for the conditional version of (4.3) under the
additional assumption that b is restricted to a basis. I do not know whether the
result is true for general Z(a,b).
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