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BAHADUR EFFICIENCY OF RANK TESTS FOR
THE CHANGE-POINT PROBLEM

BY JAAP PRAAGMAN
Eindhoven University of Technology

A sequence of independent random variables X;, X,,..., X is said to
have a change point if X;, X,,..., X,, have a common distribution F and
X, +1,-++» Xy have a common distribution G, G # F. Consider the problem
of testing the null hypothesis of no change against the alternative of a change
G < F at an unknown change point n. Two classes of statistics based upon
two-sample linear rank statistics (max- and sum-type) are compared in terms
of their Bahadur efficiency. It is shown that for every sequence of sum-type
statistics a sequence of max-type statistics can be constructed with at least
the same Bahadur slope at all possible alternatives. Special attention is paid
to alternatives close to the null hypothesis.

1. Introduction. Suppose we have a sequence of independent random vari-
ables X;, X,,..., Xy, then the sequence is said to have a change point at n, if
X, X,,..., X, have a common distribution F(x) and X,,,,..., Xy have a
common dlstnbutlon G(x), G # F. We consider the problem of testing the null
hypothesis /%, of no change against the alternative 5, of a one-sided change at
an unknown change point n.

This change-point problem (c.p.p.) only differs from the well-known two-sam-
ple problem (t.s.p.) in that n is unknown. Both problems have the same null
hypothesis, whereas the alternative for the c.p.p. can be conceived as the union
of the alternatives for the N — 1 t.s.p.s with n = 1,2,..., N — 1, respectively.
Therefore, most of the statistics used for the c.p.p. are generalizations of
two-sample statistics.

Let Ty , denote a t.s.p. statistic (samples X,..., X, and X, ,,..., Xy).
Then there are two obvious ways to define a c.p.p. statlstlc as a welghted sum,
Sy = ZRhZen #Tw, , or a weighted maximum, My = max, ., nCn, 2 TN, »» Where
the cy , are welghts For the M), statistic to make sense, suppose that under the
null hypothesis, ETy ;= 0 for all k.

Consider the case when Ty, » is a linear rank statistic. Thus, let R; denote the
rank of X, i=1,..., N, then Ty, r = Zf,an(R;), with ay(i) the so-called
scores. If testmg is agamst location shift, or more generally against G < F,
well-known examples are the median test (a (i) = sign((N + 1)/2 — i)) and the
Wilcoxon test (ay(i) = N"}(N + 1)/2 — i)). Note that ETy , = 0 under 5,
implies that ¥V a (i) = 0. It is assumed that F and G are continuous, so that
ties among the observations occur with probability 0

Putting dy(i) = L}-;cy, > the sum-type statistic may be rewritten as

N
(11) Sy = E.l dy(i) an(R,),
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a so-called simple linear rank statistic. Generally, for the c.p.p., the weights cy ,
are assumed to be nonnegative, so that the regression constants d(i) satisfy
dy(l)= -+ 2dy(N)=0.

For the max-type statistic, we have

k
1.2 M, = R;).
(12) N lg}eachN,k i§1aN( i)

Various authors have investigated—special cases of—(1.1) and (1.2).
Bhattacharyya and Johnson (1968) considered (1.1) in its general form and
proved local average power optimality against specific translation alternatives, if
a score function is used that is appropriate for the underlying F.

Max-type statistics were proposed by McGilchrist and Woodyer (1975),
Pettitt (1979) and Wolfe and Schechtman (1984). The first author took median
scores and equal weights (cy , = 1), whereas the others used Wilcoxon scores:
Pettitt with equal weights, Wolfe and Schechtman with weights inversely
proportional to the standard deviations of the Ty, ,.

Only Bhattacharyya and Johnson reported some results on the Pitman
asymptotic relative efficiency. They proved that the Pitman efficiency of two
sum-type tests with the same weights is independent of that particular weight
function. Similarly, for two statistics with the same score function but involving
different weights, the ARE is independent of the scores.

In this paper, we study the asymptotic efficiency using Bahadur’s approach.
The exact Bahadur slope of both Sy and M, will be derived under appropriate
conditions on the limit behavior of the scores and weights. Unlike Pitman
efficiency, Bahadur efficiency of tests with the same weights (the same score
function) depends on those weights (scores). Also it will be shown, as the main
purpose of this paper, that for each sum-type statistic, there is a max-type
statistic, which is at least as efficient in the sense of Bahadur uniformly over all
the c.p.p. alternatives. Related work can be found in Deshayes and Picard (1982)
and Haccou, Meelis and van de Geer (1985), where the Bahadur efficiency of
parametric tests—such as the likelihood-ratio test—for the change point prob-
lem is investigated.

For a description of the concepts of Bahadur slope and efficiency, refer to
Bahadur (1967, 1971), or Groeneboom and Qosterhoff (1977). Our method of
evaluating Bahadur slopes relies on the following theorem by Bahadur (1967).

THEOREM 1.1. Let {Ty} be a sequence of test statistics for testing
0 € ©, against #,: § € © — 0, = 0,.

If a real number b(0) exists and a nonnegative function h(t) continuous at
t = b(89), such that

Nlim N_VITN = b(0) a.s. Po, 0 (S @1,

and
lim — N~ llog[sup{P)(Ty = Nt); 8 € ©,}] = h(t), forallt <R,

N—- oo

then the Bahadur slope of {Ty} at 0 equals 2h(b(0)).
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Following the method suggested by this theorem, we will derive large devia-
tion results under 5, in Section 3 and almost-sure limits under a fixed
alternative in Section 4, which yields the Bahadur slopes of Sy and M, and our
main theorem in Section 5. In the next section, however, we first present a
slightly different set-up for our testing problem, which will allow us to write both
Sy and M, as special functions of empirical distribution functions.

In Section 6, some numerical results are given for the special case of statistics
with median scores and in Section 7, the efficiency at alternatives close to the
null hypothesis is considered.

2. Sy and M)y as functions of e.d.f.’s. The key observation in this section
is that our statistics do not depend on the ranks of the X; only, but on their
order in time too; therefore, random variables Y; are introduced to deal with this
ordering in time.

Ruymgaart and van Zuylen (1978) used a similar construction to deal with the
regression constants in linear rank statistics. Let (X, Y) be a random vector
defined on R X [0, 1] with distribution H and consider the testing of

Hy: H(x, y) = yF(x),
against

5 yF(x), if y € [0,A],
2.1 M, H =
@0 e =[5 (e, e
with F, G and A € (0,1) unknown. Then, with observations (X,,Y,), i = 1,..., N,
we have X; ~ F for all i with ¥, <A and X; ~ G for all i with ¥, > A. Testing
M, against 5#, means testing of A = 1 (or 0) against A € (0,1) or, with D, the
anti-rank of Y, i = 1,..., N, it is the testing of ¥, against /£, for the sequence
Xpy--s Xp,

Introduce the functions ¢,: (0,1] = R, which are defined by

i-1 i ,
on(u) = ay(i), foruE(T,—N— , i=1,...,N.

In the same way, Y and yy are defined based upon d ; and cy ,, respectively,
and with yy(0) == 0. Define Hy(x, ¥) as the empirical distribution function of
(X, Y), i=1,..., N, and let Hy (x) = Hy(x,1) and Hy (y) = Hy(co, y) be

the marginals. Then (unless otherwise stated, integration is over [0, 1])

(2.2) Sy = N[ [Jy(u,0) dHy(Hy1(x), Hy(0)),
with
(2.3) Iy (u,v) = éon(u)yn(v),

where the equality in (2.2) should be understood as having the same distribution
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under #, (5%,) and #, (52,). In the same way,

(2.4) M, = OsuglefJN,p(u, v) dHN(H;,,lx(u), H,;,ly(v)),
with
(25) Iy, (1, 0) = Ya(p)on(u)lp ,(0).

3. Large deviations. Formulating our statistics as functions of the em-
pirical distribution functions makes it possible to use a theorem on large
deviations by Groeneboom, Qosterhoff and Ruymgaart (1979). After some pre-
liminary definitions, we will state that theorem.

Let H, be the distribution function of (X;,Y;), i = 1,2,..., and D the space
of two-dimensional distribution functions H(x, y) endowed with the topology =
of convergence on all Borel sets. This is the smallest topology on D such that the
functions T;: H — [fdH, H € D, are continuous for each bounded measurable
function f: R? > R. No metrization of this topology exists. For H € D, K(H, H,)
is the Kullback-Leibler information number of H with respect to H,,.

Take a function T: D — R and, for ¢ € R, define

9., (H € DIT(H) = 1)
and
K(QT,N H,) = inf{ K(H, H,)|H € Qr, ¢

THEOREM 3.1 [Groeneboom, Oosterhoff and Ruymgaart (1979)]. Let T:
D — R be t-continuous at every H with K(H, H,) < oo, and suppose that the
function t > K(Qr, ,, H,y), t € R, is continuous from the right at t = r and {uy}
is a sequence of real numbers such that lim _, juy = 0. Then

N'm — N YogPr{T(Hy) > r + uy} = K(Qr ,, Hy).
— 00

3.1. Sum-type statistics. For H(x, y) € D, with marginals H,(x) and Hy),
define H(u, v) = H(H; '(u), H,'(v)) and consider, for some fixed value of M,
S;m: D = R defined by

Sm(H) = [ [Jhu(u, ©) dH(u, ).

It will be shown that this S;,, meets the conditions of Theorem 3.1 (Lemmas 3.2
and 3.3) and then the desired large deviation result for S, will follow, since,
when M is large, |IN7'Sy — S, (Hy)| will be arbitrarily small as. for N
sufficiently large (Theorem 3.4).

LEmMA 3.2. S, is T-continuous at every continuous H.
PROOF. Since the topology T is finer than the weak topology, it suffices to

prove that S, is continuous with respect to the latter topology. Furthermore,
Jy is piecewise constant, hence, the weak continuity follows if H; > H for any
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sequence { H,} in D implies that H; — H. Thus it is only necessary to show that
H,(u, v) - H(u, v) for each continuity point (u, v) of H.

Let {H,} be a sequence in D with H; —» H, then the marginals H;,, - H, and
H;,— H, also, with H, and H, continuous. Consequently, H; (u) - H; '(u)
and H 1(v) - H; (v) except on at most countable sets D, and D of dlscontmu-
ity points of H; ! and H; 1 respectively. Consider (u, v) with u GE D,, v & D,.
Fix & > 0, then, an IeN eXIsts such that for all i > I, |H, 1(u) ,;l(u)l <e
and |H, '(v) — H;(v)| < e Thus, for all i > I, H(H, '(u) — ¢, H;'(v) — ¢) <
H(u,v) < H(H; 1(u) + ¢, H,'(v) + ¢) and using the pointwise convergence of
H; - H and the continuity of H, we get H(u,v) - H(u,v). Next consider
arbltrary (19, o) and choose Uy, Uy € (0, 1)/D, and vy, 0, € (0,1)/D, such that
H(u,, vy) — ¢ < H(uv v;) < H(uo, vo) < H(uy, vy) < H(uy, vy) + &. Then, for all
i, Hy(u,,v,) < H(u,, vy) < H(uy, v;). Thus

H(u,,v)) < hmlan(uO, v,) < limsup H,(u,, vy) < H(u,, v,)
l—’w

and it follows that H,(ug, v,) = H(u,, v,). O

Introduce Q@ = {H € D|H has a density A; [h(u,v)du = [h(u,v)dv =1},
and define for every oJ: (0,1] X (0,1] = R for which |ffJ(u, v) dudv| < oo,

Qt, J) = {H € 9|ffJ(u,v) dH(u,v) > t},

I(t; J) = inf{jjh log hdudv |H € Q(¢, J)},

t(J) = ffJ(u,v)dudv and t*(J) = sup{ffJ(u,v) dH(u,v)|H € Sl}

LEMMA 3.3. Letd: (0,1] X (0,1] » R, |[fJ(u, v)dudv| < . Then:

(i) I(t; J) is nonnegative, nondecreasing and convex (hence continuous) in
t, fort=(J) < t<tr(J).
@i) If J;: (0,1] X (0,1] —» R is such that

sup ff(J J)hdudv| <
and
t (J)<t—e<t+e<tt(J),
then
I(t—ed)<I(t;J) <I(t+¢e J)
and

t(J) <t (J)+e<t<t™(J)—ex<t'(J).
(iii) Suppose H, is the uniform distribution on the unit square. Then for
t(Jy) <t <t (Jy),

K(Qg, ., Hy) = I(t; Jy).
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Proor. For (i) and (ii) see Woodworth (1970). For the proof of (iii) we use
the same line of argument as in the proof of Theorem 2.2.1 in Groeneboom
(1979). Take H € D, such that K(H, H,) < o (thus H < H,), suppose that A
and % are the densities of H and H, and that A (x) and A ,(¥) are the densities
of the marginals H (x) and H,(y). Then

K(H, Hy) = [ [h(x, y)log h(x, y) dxdy

_ H;Y(u), H; (v)) g o))
./f 1(u) ( 1( ))l h(Hx ( )7Hy ( ))d dv

= //’}}(u,o)logfz(u, v) dudv

+ fffz(u, u)log{hx(Hx_l(u))hy(H;l(v))} dudv
> K(H, H,).

Also, since H € Q for every H € D with K(H, Hy) < oo and ﬁ = H, it follows
that

K(Qs,, . H) = inf{K(ﬁ, H,)H € D, ffJM(u, v) dH(u,v) > t}
= inf(K(H, H))\H € (¢, dyy)} = I(t; Jy;) o
THEOREM 3.4. Let (X,,Y), i ..., N, be i.i.d. with continuous distribu-

tion H(x, y) = yF(x), x € R, y € [O, 1]. Sy is defined by (2.2) and suppose a
function J: (0,1] X (0,1] = R exists such that

ff(JN(u, v) — J(u,v))h(u, v) dudo
If {uy} is a sequence of real numbers such that uy — 0, then for all t, with
t7(J) <t <t*(J),

lim — N~YMogPr(N~1Sy >t + uy) = I(¢; J).

N—- oo

- 0.

(8.1) ~ sup
HeQ

ProoF. For every continuous distribution F, the distribution of Sy is the
same, so without loss of generality we can assume that H = H,, the uniform
distribution on the unit square.

Fix ¢ > 0, such that ¢~ (J) <t — 2e < t + 2¢ < t*(J), then there is an M,
such that for all N > M,

(3.2) sup | [ J (I, 0) = Iy(u, 0))h(u, v) dudo| < e/4
HeQ

and

(3.3) sup ff(JN(u,v) — Jy(u,v))h(u,v)dudv| < e/2.
HeQ
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First, it is shown that for a sufficiently large N,
(3.4) IN7Sy — Sju(Hy)| <&, with probability 1.

Introduce %5 (u, v) = N for (4, v) € (R; — 1)/N, R,/N] X ((Q; — 1)/N, Q,/N1]
and 0 elsewhere, with @,, ..., @y the ranks of Y,,..., Yy. Then

N1 = SyeE ) =| [ (1) = (s, 0)) lly ()

Nio(R & R, Q
- Ll Fow) ol e

i=1

< ffIJN(u,v) — Jy(u, v)|hy(u,v) dudo

2M J A J U
Ty max M(ﬁ’ M) - M(M’M) ’
where the max is taken over all &2, I, £’ and I’ with 1 <k,[,k’,l' < M,
|k —k|<land |I-10l)<1.
For N large, the second term will be smaller than ¢/2, hence with (3.3), we get
(3.4). But then

lim — N 'ogPr(S,,,(Hy) > t+ uy—¢)

N—- oo
< liminf — N~ 'logPr(Sy = N(¢ + uy))
(35) N
< limsup — N~ 'log Pr(Sy = N(t + uy))
N— oo
< Nlim — N ogPr(S;(Hy) = t+ uy + ¢),
— 00

and using Theorem 3.1 and Lemmas 3.2 and 3.3, the first and last limits are
I(t — & Jyy) and I(t + & Jyy).

Furthermore, from (3.2) and Lemma 3.3(ii), we know that I(t — 2¢; J) <
I(t — & Jyy) and I(t + ¢ Jyy) < I(t + 2¢; J). Thus, using the continuity of
I(r,J) at r=1t— 2¢ and ¢ + 2¢ [Lemma 3.3())] along with (3.5), the proof is
completed. O

This result has already been proved by Woodworth (1970). Yet we gave a
proof, because Woodworth used a different approach, and the techniques used in
our proof will be needed again further on in this paper. For our special case of
Sy, we have Jy(u,v) = ¢p(u)yy(v). Woodworth also pointed out that (3.1)
holds with J(u, v) = ¢(u)y(v), if the functions ¢, and ¢, converge in L, to
the functions ¢ and . The weight functions for the c.p.p. often will be bounded
and then, for the score functions, convergence in L, only is sufficient.

3.2. Max-type statistics. For the max-type statistics defined by (2.3) the
same approach can be used; therefore define M,,,;: D — R, by

My (H) = sup [ [y (u, v) dH(u, 0),

0<p<1
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with
Iy, (4, 0) = YM(P)¢M(”)1[o,p](”)°

LEMMA 35. M,,: D > R is r-continuous at every continuous H.

Proor. Take p € (0,1] and fix & such that (2 —1)/M <p < k/M and
consider g, (k — 1)/M < p < p. Then v,,(p) = ¥p(p). Thus

[ [, (w0 dH = | jJM,,-,(u,uij =|7M<p) JNEOL:CRY

< lym(p)l mgwa(u)l(p - ) <e/8,

for p — p small. Consequently, there is a neighborhood B, of p, such that for all
ﬁ e Bp’

'ffJM:ﬁdﬁ_ffJM,de-'<8/3, forall H € D.

In a similar way a neighborhood B, for p = 0 can be found too. Since [0,1] is
compact, the cover U,B, has a finite subcover {B,}, i =1,...,q, such that for
every p € B, , |]jJM’de7— I, o, dH| < e/8 for all H, i =1,...,q. Further-
more, Lemma 3.2 insures that for every p, H - [y, ,dH is 7-continuous for
every continuous H. So, for every p;, i =1,...,q, there is a r-neighborhood
B,(H) of H, such that |[[dJy, , dH — [[Jy , dG| < e/3 for all G € By(H).

Now take B(H) =N, ... ,B,(H); then, for each p, a p; exists such that for
all G € B(H),

I”JM’"dg_ UJM"’dﬁl SlffJMmd@‘ [ [, dc—#l
+lffJM'”‘d§_ //JM’Pde.
| = | fra|

Since this holds for each p, sup, [y, , dH is continuous at H. O

LEMMA 3.6. Let J,: [0,1] X [0,1] - R, |[[J(u,v)dudv| < oo, for every
p € [0,1]. Then

inf I(t; J,) is nonnegative, nondecreasing and continuous in t,
P
for 0 <t < supt*(J,).

Furthermore, let J;: [0,1] X [0,1] — R, lffJ:,(u, v)dudv| < oo for every p €
[0,1]; if a strictly increasing, continuous mapping q of [0,1] onto itself exists
such that

<eg,

sup sup ff(jq(p)(u,v) - Jp(u,o))h(u,v)dudv

HeQ pe[0,1]
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then, for all t with 0 <t —¢ < t+ e <supt*(dJ,),
infI(t - e J,) < infI(t; J,) < infI(¢ + &5 J,)
[ [ [

and
supt*(dJ,) < supt*(J:,) + e
P 3

Proor. Directly from Lemma 3.3(i) and (ii). O

THEOREM 3.7. Let (X,,Y;), i=1,..., N, be i.i.d. with a continuous distri-
bution H(x, y) = yF(x), x € R, y € [0,1]. M, is defined by (2.4) and (2.5), and
suppose there is a function ¢: [0,1] - R, with [¢(u) du = 0, [$*(u) du < o and
[(on(u) — ¢(u))?du — 0, and a function y: [0,1] > R* such that the vy
converge to y in the Skorohod topology on every closed interval [7,1 — 7];
0 <7< 1, y(0) =0 and yy(v)(v(1 — v))/? is bounded on (0,1), uniformly in N.

If {uy} is a sequence of real numbers such that uy — 0, then for all t,
0 < t < sup,t*(dJ,),

im — N~ UogPr(N"My>t+uy) = inf I(¢J,),
0<p<1

N-oo
with
Jo(u, v) = o(u)¥(p)1p, p1(v)-

PRrOOF. Again, suppose without loss of generality, that H = H,, the uniform
distribution on the unit square. Fix ¢ > 0, such that 0 < ¢t —2e < ¢+ 2e <
sup, t*(J,). We first will show that strictly increasing continuous mappings g
of [0,1] onto itself exist, such that gy(p) — p uniformly in p and

/f(JquN(P)(u’ v) — Jp(U, o))h(u, v)dudv| - 0.

(36) sup sup
HeQ 0<p<1

Fix 7,0 <7< 4, and consider p € [7,1 — 7]. For these p, the left-hand side of
(3.6) is smaller than

,Slzlg_;rYN(qN(P))fMN(u) — ¢(u) du

+ max T{f[YN(QN(p))l(o,qN(p)](D) - Y(p)l(o'p](o)]2du}l/2

T<p<l-—

X {f¢2(u) du}1/2,

and the limit behavior of the ¢, together with the Skorohod convergence
of yy = y on [7,1 — 7] guarantees that both terms are smaller than ¢/2 for
large N.
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For p € (0, 7), take gy(p) = p and using the Cauchy—Schwarz inequality it
follows that for these p (3.6) is smaller than

sup sup YN(P)Pl/z(f@N(u) — ¢(u))’ du )1/2

HeQ 0<p<r

1/2
+oup sup (o) — 1(o)e| [#°(w) ["hw, o) do ) .

HeQ 0<p<r 0
And since yy(p)o/? is bounded for p <7, [(¢p(u)— ¢(u))?du -0 and
{Jo*(w)[§h(u, v) dvdu} — 0 uniformly in A if p |0, both terms can be made
smaller than e/2 by first taking 7 small enough and then N large enough.
Finally, for p € (1 — 7,1) the result follows similarly using_

folfopm(u)h(u,o)dudu = —[Olj:w(u)h(u,u)dudu

[since [¢(u) du = 0] and thus the proof of (3.6) is complete.
Hence there is an M € N, such that for all N > M,

(I, amior(t 0) = T2, 0))(u, 0) dudo | < e/2

(3.7) sup sup
HeQ 0<p<1

and

ff(JM,qM(p)(u, v) — JN,qN(p)(u, v))h(u, v)dudv| <e/2.

(3.8) sup sup
HeQ 0<p<1

Then it can be shown in the same way as in the proof of Theorem 3.4 that for a
sufficiently large N, with probability 1,

(3.9) MJM(HN) — &< N_IMN < MJM(HN) + e.

Due to its continuity (Lemma 3.5), a large deviation result for M, can be
derived from Theorem 3.1, provided that the mapping ¢ — inf{ (/A log h|H € D,
M,,, > t} is continuous from the right. Now (H € DM (H) > t} =
U,{(H € D|[[dy,,dH = t} and thus, with Lemma 3.3(iii), we get

inf{ﬂffh log h|H € D, M, (H) > t} = infI(¢; dy ,),
P

and the continuity required is given by the first part of Lemma 3.6. Thus,
Theorem 3.1 may be applied to (3.9) in order to give
infI(¢— & oy, ,) < lilgninf — N~ YogPr(My = N(t + uy))
P -
(3.10) < limsup — N~ 'log Pr(My > N(¢ + uy))

N- o

< infI(t + & Jy ,)-
P

However inf I(¢t — 2¢ J,) < inf I(t — & Jy,,) and inf I(¢ + & Jy,,) <
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inf I(t + 2¢; J,) [(3.7) and the second part of Lemma 3.6], hence, with the
continuity of inf, I(#; JJ,) (Lemma 3.6), the proof can be completed. O

COROLLARY 3.8.
ir:fI(t; J) = inf{ f f hlog h|H € sz*(t)},
with
@ (£) = (H € Q1h(x, 0) = F()1g1(0) + 8(0)15,u(0),

and fprhdudv > ¢, fors‘omep IS [0,1]}.

Proor. Consider an arbitrary H € , such that [[J(u, v) dH(u, v) > ¢ for
some p, and define

f(u)=p" ["h(u,v)do,  g(u) = (1= p) " fth(u, 0) do

and :
_[fw), O0s<v<p,
ho(u, 0) = {g(u), p<v<l.

Then by the information inequality [Kullback (1959), Theorem 2.4.2]
ffh(u, v)log h(u, v) dudv

> [ "of(u)log f(u) du + [ (1 - p)g(u)log g(u) du

= //hp(u,v)log h,(u, v) dudv
and
1

[ 9, 0)h,(u, 0) dudo = foy(p)(/o"hp(u,v)dv)qs(u)du

= j(;lY(P)(‘/(;ph(u,v) dv )qb(u) du
= fpr(u, v)h(u,v)dudo > t. 0

4. Almost-sure limits. Our next concern is the derivation of the almost-sure
limits under a fixed alternative for statistics of both types. Every alternative
may be characterized by the triple (F, G, A\): the distributions (continuous)
before and after the change point and A € (0,1) for the change point itself.
Again, the statistics (2.2) and (2.4) will be used, but now we will find the
almost-sure limits under a general two-dimensional distribution H first. After-
ward, the results will be specialized to H as defined in (2.1).
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4.1. Sum-type statistics.

THEOREM 4.1. Let (X,Y) ~ H and let Sy be defined by (2.2). If the func-
tions Jy satisfy (3.1) for some J: [0,1] X [0,1] = R, then

lim N7, = /fJ(u,v) dH(u,v) a.s. Py.

N—-oo

ProoF. Take ¢ > 0 and choose N such that

(4.1) sup ffIJI\-,(u, v) — J(u,v)|h(u,v)dudo < /3
HeQ
and, for all N > N,
(4.2) sup fﬁJN(u, v) — Jy(u, v)h(u, v) dudv < /3.
HeQ '
Then

IN_ISN - ffJ(u, v) dH(u, v)

< [ [195(u, 0) = dy(u, 0) | dHy
+l/fJA-,(u,v)d(I7N— H)

+/f|J,\-,(u,v) — J(u,v) dH.

According to the Glivenko-Cantelli theorem the empirical distribution func-
tion Hy converges to H in the supremum metric and, just as in the proof of
Lemma 3.2, we get Hy(u, v) = H(u, v) for every (u,v) € [0,1] X [0,1]. Since
Jy is piecewise constant, the second term will be smaller than &¢/3 for a
sufficiently large N. Furthermore, the last term is smaller than ¢/3 according
to (4.1) and it has already been shown in the proof of Theorem 3.4 that

[f|dx — Jn| dHy < €/3 for large N, as a consequence of (4.2); this completes
the proof. O

The next corollary states the result for the special H, defined by (2.1), starting
with an F, G and A. Introduce Fy(u) = F(H; (u)) and G\(v) = G(H Y(u)).

COROLLARY 4.2. If H(x, y) is defined by (2.1) and J(u, v) = ¢(u)y(v), then
) e _ A 1 =
Jim N7y = [Yy(o) do [ o(u) dFy(x)
+/111»(v) dv flqb(u) dGy(u) a.s. Py
A 0
4.2. Max-type statistics.

THEOREM 4.3. Let (X,Y) ~ H and let My, be defined by (2.4) and (2.5). If
the functions Jy , satisfy (3.6), then

lim N~ M, = sup/pr(u,v) dH(u,v) a.s.Py.
P

N—- oo
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PROOF. From Theorem 4.1, we know that for every p € [0, 1),

lim ffJN,qN(p)(u,o) dHy = //Jp(u,v)dﬁ as. Py.

N-owo

Therefore, we only have to prove that this convergence is uniform in p. Fix £ > 0
and take N such that

(4.3) Zu}; sup fflJﬁ,qN(p)(u, v) — J,(u, o)|h(u, v)dudv < ¢/3,
€Q »p
and, for all N > N,
(4.4) sup sup f/'Jﬁ, ave)(% ) = Iy g8y v)lh(u, v)dudo < /3.

HeQ »p

Consider an arbitrary p € [0,1] and write

[ f s~ [ fa|

= f/IJN,qn(p) - Jy, qﬁ(p)ldﬁN +l/fJ1\7,qﬁ(p) d(HN - H)

+//lJN.qﬁ(p) - Jpldﬁ

Just as in the proof of Theorem 3.7, it follows from (4.4) that the first term is
* smaller than &/3, uniformly in p. And because of (4.3), the same holds true for
the last term. Hence it only remains to show that |f JIN, anoy @(Hy — H)| < ¢/3,
uniformly in p, for large N. L

Take N, = Ny(p), such that |[[Jg ;) d(Hy — H)| < /9 for all N > N,. As
in the proof of Lemma 3.5, and using gy(p) — p uniformly in p, we can find a
neighborhood B,, such that for all § € B,

~ [958, a0 = I, ax3) dI—I~ <e/9, forall He D.
Hence we get for all 5 € B, and N > Ny(p),
ffJN,q,a(ﬁ) dHy - ffJN, qﬁ(ﬁ)dﬁl <e/3.

Using the compactness of the p-interval, the completion of the proof is straight-
forward. O

Again, this theorem holds true for all continuous H € D. The next corollary is
suitable for the special distributions that satisfy (2.1).



EFFICIENCY OF CHANGE-POINT TESTS 211

Introduce the functions b,: [0,1] — R,

o [¢(u) dFy(x), if p € [0,A],
bx(P) = _ —
M fo(u) dFy(u) + (p = A) [#(u) dGy(u), ifp € (A1].

COROLLARY 4.4. If H € D satisfies (2.1), then limy_ N M, =
sup,Y(p)bx(p) a.s. Py.

5. The efficiency of Sy with respect to My. Using Theorem 1.1, the
results of the foregoing sections enable us to find the exact Bahadur slope of Sy
and My, and to compare the two types of statistic, leading to the main result of
this paper (Theorem 5.1).

Define Sy, as before, ¢y = ¢ and Y — ¢ in L, again.

Unlike in Sections 2 and 3, here, the monotonicity of the y, will be used.
Furthermore, the ¢-function is assumed to be nonconstant and nonincreasing.
For the alternatives under consideration, this assumption is not very restrictive.

Introduce I'(v) = [pY(s) ds and define y: [0,1] - R,

I'(v) — oI'(1)
(5.1) Y(D) = ——')-(—1—:—;)7—, for v € (0, 1), ‘Y(O) =0.
Similarly, Iy and y, are defined based upon . Note that the monotonicity of
¥y (¢) implies that yy(v) 2 0, [¥(v) = 0].

THEOREM 5.1. Let {Sy} be a sequence of statistics defined by (2.2) with
Jén(u)du = 0 and nonincreasing . Suppose there is a nonconstant and
nonincreasing function ¢: [0,1] = R such that [(¢n(u) — ¢(u))?>du — 0 and a
function ¢: [0,1] > R™ such that [(yn(v) — Y(v))>dv — 0. Then, for each
alternative (F,G, \), the Bahadur slope of {Sy} is less than or equal to the
Bahadur slope of the sequence {My}, defined by (2.4) and with the same score
functions ¢, and weight functions vy defined according to (5.1).

Using the Cauchy-Schwarz inequality, it is easily demonstrated that
the L, convergence of the {, guarantees both the uniform boundedness of
yn(v)o(1 — v))/2 and the Skorohod convergence of yy — y. Therefore, Theorem
3.7 and Lemma 4.4 are in force.

For the proof of Theorem 5.1 the following lemma will be useful.

LEMMA 5.2. Suppose an alternative (F, G, \) holds. Then, for the {Sy} and
the corresponding {My} as given in Theorem 5.1,

lim N7y = lim N7'My=v(A)by(A) a.s. Pr,»

N-oo
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Proor. From Corollary 4.4 we see that limy _, , N~'My = max_y(p)bx(p).
For p € [0, A],
(1 - p)¥(p) + T(p) -
1-p)
But ¢ is nonincreasing thus I'(1) — I'(p) = fp‘#z(v) dv < Y(p)A — p). Further-

more, F > G and, consequently, for all x, F(x) > AF(x) + (1 — A)G(x) = H(x).
And since ¢ is nonincreasing,

A P0) = D fow) aFyw).

Jow) di(u) = [o(H,(x))dF(x) 2 [(F(x)) dF(x) = [(x)du=o.

Thus the derivative d/dp (v(p)b,(p)) is nonnegative for p € [0, A). In a similar
way it can be seen that this derivative is nonpositive for p € [A,1], and, since
¥(p)bx(p) is continuous, it follows that max, y(p)by(p) = Y(A)by(A). On the
other hand, according to Corollary 4.2, we get

lim NSy =T(A) [¢(x) dFy() + (T(1) = T(A) [o(u) dGy(u),

N- oo

and, since
j¢(u)du =0 and AF(u)+ (1 -2)Gy(uv) = u,

this equals

-A —
TR £y dyw),

which is just y(A)b,(A). O

PROOF OF THEOREM 5.1. According to Lemma 5.2, the almost-sure limit of
the corresponding max- and sum-type statistic is the same, so that a difference in
slope will occur only when there is a difference in the exponential error.

Refer to Theorem 3.7 and Corollary 3.8 to write

lim — N~ogPr(N~"My >t + uy)

N-oo

= inf{jjhlogmjhdu = jhdu =1,

h(u,v) = f(u)l[o,p](v) + g(u)]‘(p,l](v)?

fpr(u, v)h(u,v)dudv>t, p € [0,1]}.
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Here
fpr(u, v)h(u, v) dudv

_ T(p) — pT(1)
p(1 - p)

- p-lr(p)fol¢(u)(f0"h(u, 0) do ) du

LILP¢(u)h(u, v)dvdu

~(- ) (@) - (o)) ['8(w) - [hC,v) do ) du
= /O‘Zp(o)do f()1¢(u)f(u)du+ [Mo)dv fo‘cp(u)g(u)du

= [[¢(u).p(o)h(u,u)dudu.

When comparing this with the result of Theorem 3.4 for J(u, v) = ¢(u)Y(v), it
appears that for the My, the infimum of (/A log A has to be taken over a subset
of the set that is considered for the Sy. O

ExampLE 5.1. Let Sy=2N"'ti_ Ty, then dy(i)=2(N-i+ 1N},
thus Y(v) =21 — v) and I'(v) = v(2 — v). Hence y(v)=(v(2 —v)—v)/
(v(1 = v)) = 1 and the corresponding max-type statistic is My = max, _, . yT, ;-

EXAMPLE 5.2. Let Sy = k" 'NTy , with &/N — 6. Thus Sy is a two-sample
statistic. Then

61 0O<v<¥é
o= [ 0zose
() O» 0<U$1,
and
- -1 _ -1
y(v)={(1 0)6~'(1-0v)"", 0<v<¥,
v—la d<v<l.

Thus the statistics My, with this y-function have Bahadur efficiency > 1 with
respect to the two-sample statistics; but in this case, the converse holds too,
because

ff¢(u)zp(v)h(u,u)dudv= f¢(u)(0”lj:h(u,v)dv)du;

i.e., to find the large deviation for the Sy, we may restrict ourselves to the set of
distributions with uniform marginals and h(u,v) = f(u) for 0 <v < 0, and
h(u,v) = g(u) for 8 < v < 1, which is a subset of the set over which the infimum
has to be taken for the My,. Therefore for all alternatives (F, G, A), the Bahadur
efficiency of {Ty ,} with respect to this {My} is equal to 1.
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From the last example it may be concluded that the statistics {Sy} need not
be inadmissible in the sense of Bahadur efficiency with respect to the correspond-
ing {My}.

6. An example. In case of the My-statistic proposed by McGilchrist and
Woodyer (1975), with cy , =1 and median scores, an explicit expression for
inf I(¢; J,) can be derived using Theorem 4 in Woodworth (1970),

infI(t; J,) = I(t; J, ,)
P

= 3(1 + 2t)log(1 + 2¢) + $(1 — 2¢)log(1 — 2¢), O<t<3i.
And, for any alternative (F, G, ), we have

Jim N7y, =) Jo(w) dFy(x) = M2F\(3) - 1) = M2F(m) - 1),
with m the median of the mixture distribution AF + (1 — A)G. Thus the slope
of My, can be calculated for every alternative.

Some results are presented in Figure 1, where the efficiency is depicted of the
McGilchrist—-Woodyer statistic with respect to the optimal likelihood-ratio sta-
tistic [Bahadur (1971) and Raghavachari (1970)] when F is normal or double
. exponential and G(x) = F(x — 8). It can be seen that, for small 8, the

McGilchrist-Woodyer statistic is a good competitor of the likelihood-ratio test if
F is double exponential and A is close to 0.5.

Contrary to what might be expected from Figure 1, the efficiency of the
McGilchrist—Woodyer statistic tends to 0 for all A when § tends to oo, both for
the normal distribution as well as the double exponential one. For F normal and
a fixed A, this efficiency increases at first with increasing 8; then decreases to 0.
The & at which the efficiency is maximal depends upon A; the closer A is to 0.5,
the greater the & for which the efficiency is maximal. For A = 0.5, the maximum
is attained for § = 2.9.

Next, consider the corresponding sum-type statistics with median scores (see
Example 5.1)

9 N-1
Sw= = (zaN<R))=—E<N—z+1)aN(R)
k=1

i=1
Hence y(v) = 2(1 — v) and ¢(u) = sign(1 — 2u). _

Then, at the alternative (F, G, A), limy_,  N7'Sy = A2Fy(3) — 1) also. Fur-
thermore, under the null hypothesis this SN has the same distribution as
Wy =2N" 1Z‘,,=1d,\,,,aN(R ) with dy ;= 1if i <[}N], dy ;= —1if i > [}N]
and a}(i) = N — i + 1. In fact, only the roles of the weights and scores have
been interchanged.

But W), is Wilcoxon’s two-sample statistic for two samples of equal size, thus
large-deviation probabilities for S, can be derived from Table 2¢c in Woodworth
(1970), which gives the almost-sure limit and Bahadur slope for W), at various
alternatives. With respect to the McGilchrist—Woodyer statistic, the efficiency of
this Sy-statistic turns out to be about 0.75, almost regardless of the values of &
and A.
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0o . .2 .3 .4 .5 0o . .2 .3 .4 .5
l —— 177777 ! |\ — 77777 !

(¢))

Fic. 1. Bahadur efficiency of the McGilchrist—-Woodyer statistic w.r.t. Raghavachari’s upper
bound. (@) X; normal; (b) X; double exponential. 18 =0.1; 0§ =0548=1; +8=2; X §=3.

7. Efficiency at local alternatives. For alternatives near the null hypothe-
sis, i.e., G(x) = F(x — §) and § small, Woodworth’s Theorem 4 can be used
again to get approximate expressions for the slopes of Sy and M.

Denote o} = [¢*(u) du and o == [(Y(v) — [Y(V) dv’)? dv and introduce for
every F with density f, ¢(u; f) = —f'(F~ "uw)/f(F~ Y(w)). Then, under the
same assumptions on scores and weights as before, the slope of {Sy} equals

52 ([0(0) do — A[4(v) do)” (Jo(w)o(u; ) du)”

% %

+0(8%), &-0,

and the slope of M, equals
52 (53R, L1(0)(p(1 = ) AN = p))})” (Jo(w)(us 1) du)’
sup,p(1 — p)v*(p) o)

Thus, at local alternatives the slope of both Sy and My is the product of a
factor that depends upon the scores (¢) only and a factor depending on the
weights (¢ or y) and the position of the change point (A).

+ 0(8%), 8—0.
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So, the mutual efficiency of two statistics of the same type and with the same
score function ¢ does not depend upon that particular ¢. This independence
holds true even for the efficiency of an S,- (with respect to an M) test with
the same scores, because the score-dependent factor is the same for Sy and M.

On the other hand, the mutual efficiency of two Sy- (or two My-) statistics
with the same weight function is independent of the particular weights involved
as well as A. Thus the efficiency equals that of the corresponding two-sample
statistics Ty ,.

Bhattacharyya and Johnson (1968) used Pitman’s approach in order to derive
asymptotic efficiencies of the sum-type statistics at local alternatives. Their
results are equivalent to our local Bahadur efficiencies. For the max-type statis-
tics it is shown in Praagman (1986) that the Pitman efficiencies also have a score-
and a weight-dependent factor. Again, this score-dependent factor equals the
score-dependent factor that has been found using Bahadur’s approach, but, since
no explicit expression has been found for the weight-dependent factor, no
decisive answer can be given, whether the two approaches coincide in this case
also.

Consider Sy = I dy ay(R;) and My = max, ;. ycy s1{-1¢n(R;) with
the same scores a, (i) and limit weight functions ¢ and y such that, y(v) =
(T(v) — vI'Q)) /(v — v)), where I'(v) = [§Y¥(s)ds, as in Section 5. From the
expressions for the local slopes, it follows easily that the Bahadur efficiency of Sy
with respect to My at (8, ), as § — 0, equals sup{p~ (1 — p) " }(f&¥(v) dv —
p/Y(v) dv)?}o, %, which as usual is independent of the scores, but does not
depend on A either. Furthermore, apply the Cauchy-Schwarz inequality to
obtain that, for every p, ([ (v) dv — pfY(v) dv ) < p(1 — p)of, with equality if
and only if ¢(v) — fy(v)dv =1} ,(v) — p. Thus at local alternatives the
Bahadur efficiency of Sy with respect to the corresponding M, is strictly smaller
than 1, uniformly for A € (0,1); unless Sy is, in fact, a two-sample statistic Ty ,
for some k&, then the efficiency is 1 (see Example 5.2).

Finally, consider the M, -statistics.

THEOREM 7.1. If G(x) = F(x — 8), 8 = 0, then the My-statistic with score
function ¢(u) = —¢(u; f) and weight function y(p) = (p(1 — p))~ /2 is optimal
in the sense of Bahadur for all \ € (0,1).

PROOF. It is easy to show that Raghavachari’s upper bound [Raghavachari
(1970)] equals 82A(1 — A)[¢*(u; f) du + o(8%), 8 — 0, for the local alternative
(F, G, M\). Then optimality follows, since the slope of the M, -statistic equals this
upper bound. O

This agrees with the result of Hajek (1974), who proved the Bahadur optimal-
ity of £?_,an(R;) for the alternative (F, G, A), with n/N — A when the score
function is ¢(u) = log(f/&). In general, this score function depends on A,
however, for the local alternatives we get log( f/g) = 8¢(u; f), which is indepen-
dent of A and thus leads to statistics that are optimal for all A. Wolfe and
Schechtman (1984) proposed an M, -statistic with the weight function of Theo-
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rem 7.1 and Wilcoxon scores. These scores are optimal for logistic distributions;
hence the Wolfe and Schechtman statistic is locally Bahadur optimal for the
c.p.p. if F is logistic.
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