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Universitdit Bonn and Academy of Sciences of the USSR

Let {X;, ¥;}7., € R? X R be independent identically distributed random
variables. If the conditional distribution F(y|x) can be parametrized by
F(ylx) = Fy((y — m(x))/a(x)) with a fixed and known distribution F,, the
regression curve m(x) and scale curve o(x) could be estimated by some
parametric method. More generally, we assume that F is unknown and
consider nonparametric simultaneous M-type estimates of the unknown
functions m(x) and o(x), using kernel estimators for the conditional distri-
bution function F(y|x). We show pointwise consistency and asymptotic
normality of these estimates. The rate of convergence is optimal in the sense
of Stone (1980). The asymptotic bias term of this robust estimate turns out to
be the same as for the linear Nadaraya—-Watson kernel estimate.

1. Introduction. Let (X,,Y)),(X,,Y,),... be a sequence of independent
identically distributed (d + 1)-dimensional random vectors. Assume that the
conditional distribution P{Y, < y|X, = x} = F(y|x) has the form F(y|x) =
Fy((y — m(x))/(o(x))) with a fixed (but unknown) distribution function F,. Call
m(-) the regression curve and o(-) the scale curve and assume that they are
continuous functions on a set = C R, Our goal is the simultaneous and nonpara-
metric estimation of the regression curve m(-) and the scale curve o(-) from a
random sample (X, Y)),...,(X,, Y,).

There exists a tradition of nonparametric regression [Nadaraya (1964),
Watson (1964)], where m(x) is viewed as an expression for the conditional
expectation E(Y|X = x) and this m(x) is estimated by a weighted average of the
response variables Y. Mild conditions on the distribution of the Y-variables and
on the weights ensure convergence of the estimators to the conditional expecta-
tion E(Y|X = x), as Stone (1977) has shown. In the discussion to Stone’s paper,
Brillinger raised the point that a nonlinear M-type estimate of the regression
curve might be worthwhile to study in order to achieve desirable robustness
properties.

In this paper we consider more generally simultaneous nonparametric estima-
tion of m(x) and o(x) by M-type smoothers. Our approach is closely related to
simultaneous M-estimation of location and scale; see Huber [(1981), Chapter
6.4]. Our approach differs in that we have to consider additional bias terms, due
to the fact that m(-) and o(-) are unspecified functions and F( y|x) is estimated
by the nonparametric kernel method. The simultaneous M-type smoothers of the
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regression curve and of the scale curve are determined by a system of nonlinear
equations. Define for s € R*, t € R, x € &,

(1) T(s.1) = [o =) arto)
and
(12) Ti(s,1) = [x| == ar(o1o),

with ¢ and x some bounded real functions satisfying additional properties to be
stated later. We generalize the preceding notion about m(x) and o(x) by
assuming that the curves m(x) and o(x) can be represented as simultaneous
zeros of T, and Ty, i.e., Ty(o(x), m(x)) = Ty(o(x), m(x)) = 0.

The unknown conditional distribution F(y|x) is estimated by the kernel
method,

F(ylx) = ¥ Woul(x; Xy, X)I(Y, < ).
i=1

Here {W,;}7., denotes a sequence of weights
K (( X, —x)/ h)
;!=1KZ(XJ' - x)/h)
with kernel K: R¢ » R and bandwidth sequence A = h, € R*. In analogy to

(1.1) and (1.2) the nonparametric estimates (m ,(x), 0,(x)) are defined as simulta-
neous zeros of

W,.(x; Xy,..., X,) =

(13) T,u(s.1) = fo =) am o)
and
(1.4) T,u(s, ) = | x(y—s_—t) dF( ).

Such simultaneous zeros exist as is shown in Theorem 1. Under regularity
conditions on the kernel and the functions { and x, we prove strong consistency
of (m,(x), 6,(x)) as well as the asymptotic normality of

2 (et B ]|

Numerous examples of functions { and x for the simultaneous M-estimation
of location and scatter can be found in the literature on robust estimation. For
instance, the well known

Y(u)=—-kV(kAuU), k>0,
x(uw)=c*Au®-8, 0<pB<c?
fulfill our assumptions for suitable 8 [Assumption (A1)]; see Huber [(1981), page
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137]. Note that in the case ¢ = k2 = o0 and B8 = [u? dFy(u), this class of func-
tions ¢ and x give the Nadaraya—-Watson kernel estimate and the natural
estimate

o(x) = [n_1 £ Wa(x)(% - mn(x))z]w

for the conditional scale o(x).

The estimation of m(x) alone by M-type estimators has been 1nvest1gated by
several authors. Tsybakov (1982a, b) and Hirdle (1984) showed consistency and
asymptotic normality. Some Monte Carlo results for kernel “M-smoothers” are
presented in Hérdle and Gasser (1984). A recursive M-type regression function
estimator was considered by Tsybakov (1982a,b). An M-type smoothing spline
was considered by Huber (1979), Cox (1983) and Silverman (1985). An M-type
estimation on functional classes was investigated by Nemirovskii, Polyak and
Tsybakov (1983).

The results of this paper are relevant for several applications. For instance, in
physical chemistry the Raman spectra estimation instrumental noise is consider-
ably reduced by the robust estimator m ,(x); see Bussian and Hirdle (1984). In
image processing Justusson (1981) applied two-dimensional running medians to
image restoration from noisy signals. Hildenbrand and Hildenbrand [(1986),
Figure 7] report aberrant observations in an analysis of expenditure curves for
potatoes as a function of (normalized) income and use a robust two stage
estimation technique. Also in the a posteriori construction of parametric models
following a previous nonparametric analysis, a robust nonparametric estimator
seems to be desirable. Qutliers might mimic nonexisting structure resulting in a
biased parametric model.

It has been conjectured that robust smoothers are inclining to oversmooth the
data by chopping off existing peaks of the regression curve which finally would
result in an increased bias. It turns out (Theorem 2) that this conjecture is not
true: The “M-smoothers” considered here have the same asymptotic bias as their
linear relatives such as the Nadaraya—-Watson estimator [y dF,(y|x). Our repre-
sentation of (m(x),o(x)) as zeros of certain functionals of the conditional
distribution F(y|x) introduces a slightly more general class of regressicn curves
than the conditional expectation curve of Y or X. We may also note that even
when outliers are absent it is reasonable to complement the nonparametric
regression estimate m, by a suitable estimate of its accuracy o,. This was not

" commonly realized in earlier work on nonparametric regression. In the setting of
parametric linear regression, however, robust estimation from heteroscedastic
data has been considered by Carroll (1982) via construction of a (linear) nonpara-
metric estimate of the scale curve o(x). There are some open questions. In this
paper we do not consider the choice of the bandwidth ~ = A, that has to be
made in practice. A cross-validatory choice for the Nadaraya—Watson estimator
has been proposed by Hirdle and Marron (1985). In a forthcoming paper we will
present an adaptive bandwidth selection rule that minimizes the maximal risk
over specific classes of regression curves. Also the functions ¢ and x have to be
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chosen in practice. Our result on the asymptotic normality of (m,, 0,) suggests
that, as in the classical M-estimation of location and scale, there are estimators
that minimize the maximal asymptotic variance over a certain class of distribu-
tions. Is it possible to adapt ¥ and x to the underlying F, in order to achieve
asymptotic efficiency?

2. Simultaneous M-smoothing of regression and scale curve. The fol-
lowing regularity conditions on y and x are needed to ensure consistency of the
estimates.

(Al) The distribution function F, is continuous and symmetric. Further
every nonempty neighborhood of zero has nonnull Fj-measure, and
Jx(u) dFy(u) = 0.

(A2) The function ¥/(¢) is continuous, nondecreasing, bounded and odd.

(A3) The function x(t) is continuous, bounded and even, nondecreasing for ¢ > 0
and strictly increasing in the interval, where x(¢) < x(o0).

(A4) The functions ¢t~ 4(¢) and ¢~ 2(x(t) — x(0)) are continuous and nonincreas-
ing for t > 0.

(A5) There exists a constant ¢, > 0 such that x(¢,) > 0 and ¢ %(¢) > 0 for
t<t,

The next two conditions specify the class of kernels K and regulate the speed of
the bandwidth sequence.

(A6) The kernel K: R? - R is bounded and nonnegative with bounded support
and [K(u)du # 0.
(A7) The sequence of bandwidths A = h, tends to zero such that

(a) nh? >
or
(b) nh?/logn - .

Assumption (A7a) is necessary to obtain convergence in probability whereas
(A7D) is used to show almost sure convergence. Such conditions on the rate of
convergence of k, are compatible to other smoothing techniques; see the survey
article of Collomb (1981). Finally we postulate continuity of the marginal density
f(-) of X, the regression curve and the scale curve.

(A8) The density f(-) of X is continuous and positive in some neighborhood of x.
(A9) The functions m(-) and o(-) are continuous in some neighborhood of x, and
o(x) > 0.

THEOREM 1. Let (Al)-(A9) be satisfied. Then

(i) (m(x), o(x)) are unigue simultaneous zeros of (1.1) and (1.2);

(ii) there exist simultaneous zeros (m,(x),o0,(x)) of (1.3) and (1.4) with
probability tending to 1 as n— o (a.s. for n sufficiently large) if (A7a)
[respectively, (ATb)] holds; ’
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(iii) for any simultaneous zeros (m ,(x), 0,(x)) of (1.3) end (1.4),
(mn(x), 0,(x)) = (m(x),0(x)), n- oo,
in probability (almost surely) if (A7a) [respectively, (A7b)] holds.

The next conditions are refinements of the preceding assumptions and are
used to show the asymptotic normality of (m,,, ¢,).

(A10) The functions ¥ and x are continuously differentiable with bounded
derivative and #y’(t) and tx'(t) are continuous and bounded.

(A11) 0< @ = [¥(u)dFyu),
0 < ko= [ux'(u)dFy(u).’

Note that (A10) implies that the preceding two integrals are finite.

(A12) The functions m and o are Lipschitz continuous with Lipschitz constants
L, L', respectively. The directional derivatives

m'(x; u) = lin(l)a‘l(m(x + eu) — m(x))
[and similarly for o(x)] exist for all u € R

Assumption (A12) appears to be the minimal smoothness assumption under
which the asymptotic normality may yet be expected. Using the argument of
Stone (1980) one can show that under (A12) the squared error optimal pointwise
rate of convergence of (m,, 6,) to (m, o) is attained for A, ~ n~2/(4*2, This is
the bandwidth rate for which the squared bias and the variance of the estimate
are asymptotically of the same order. Therefore it is reasonable to assume:

(A13) There is a constant 0 < 8 < oo such that

lim A, n'/(9+2 = g

n— oo

Note that B + 0 corresponds to the optimal rate {n~'/(¢*?}; see Stone

(1980). In the case 8 = 0 the bias is of smaller order than the variance. The case
B = oo is not considered. In this case the asymptotic variance of (m,, 0,) is
negligible compared to the bias. The convergence rate of (m,,o,) could be
improved by so-called higher order kernels at the expense of assuming higher
differentiability of (m, o) [Hardle and Marron (1985)]. For instance, if m and o
are twice continuously differentiable and a smooth symmetric kernel is used, the
rate {n?/“*9} can be achieved. Indeed, a second order Taylor expansion in (5.9)
would result in the rate A2? for the bias. Setting A, ~ n=/“*9 yields the faster
rate {n~2/4*D} for (m,, o,) to (m, o).

THEOREM 2. Let (A1)-(A13) be satisfied and define @, = [V*(u) dFy(u)
and k, = [x%(u) dFy(u). Then, as n - o,

‘/T[( Z."((:;) § (?<(f>))]
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is asymptotically normally distributed with mean
aypen | S5 ) (u) du
s ( Jo'(x; u)K(u) du /K(u) du
and covariance matrix
o*(x) K *(u) du (%/«pz 0 )
f)(K(w)du)*| 0 wy/x5)

COROLLARY 1. If B+ 0, thenasn — oo,

where
b, = ,B/m’(x; u)K(u) du//K(u) du,
o*(x) ¢, 2 2
V= 300 ;%fK (u)‘du/(fK(u)du) .
Also,
n/@*3(q,(x) - o(x)) =g N(b,,V,),
where

b, = ,B/o’(x; u)K(u) du/fK(u) du,
o%(x) «2 2
V;= m;g[Kz(u)du (/K(u)du) .
3. Preliminary lemmas.
LeMMa 1. Let {Q,(t)} be a sequence of bounded nondecreasing random

functions defined on the closed interval U C R. Suppose that Q(t) is a continu-
ous nondecreasing bounded function on U. Assume:

1. @,(t) = Q(t), n > 0, a.s. (in probability) V t € U.
2. If the right endpoint of U is + oo, then

lim Q,(¢) = lim Q(¢), Vn,
t— o0 t— o0
and if the left endpoint of U is — o0, then
lim Q,(¢t) = lm Q(t), Vn.
t— — o0 t— —o0
Then
sup|Q,(¢) — Q(¢)| >0, n-— oo,
telU

a.s. (in probability, respectively).
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The proof of Lemma 1 is obtained by the same argument as for the
Glivenko-Cantelli theorem.

LEMMA 2. Let F, be continuous and let conditions (A6)-(A9) be satisfied.
Then

sup |[F,(ylx) — F(ylx)| =0, n— oo,
yER

in probability (almost surely) if (A7a) [respectively, (A7b)] holds.

Proor. From Collomb [(1980), Proposition 1 (2), it follows that F,(yjx) —
F(y|x), n > oo, V y € R, in probability (almost surely) if (A7a) [respectively,
(A7b)] holds. O

Now Lemma 1 is applied with @,(¢) = F,(t|x) and Q(t) = F(t|x) to yield
uniform convergence of conditional functions.

LEMMA 3. Let Q(y,t) be continuous in (y,t) and a bounded function of
yE€R, te T, Ta compact set in R%. If

(3.1) [o(NE(dix) > [o(y)F(dyix), n- oo,

a.s. (in probability) for any bounded continuous function ¢, then

JQ(3, OF(dyix) ~ [Q(y, t)F(dylx)

n - oo, a.s. (in probability).

-0,

sup
teT

Proor. Consider for brevity only the a.s. case. Let N be a minimal e-net on
T in the Euclidean metric. Let

V() = [Qy, )F(dvix),  V(t) = [Q(y, )F(dyx).
Then,
sup |V,(¢) — V(¢)| < max|V,(7) - V()|
teT teN

+max sup |V,(¢) - V(%)
(3:2) tEN 4 |t—z'|5eI |
+max sup |V(¢) - V()]
tEN ¢ |t—f <e
In (3.2), let n — oo and then & — 0. The first summand in (3.2) tends to 0 a.s. as
n — oo since (3.1) holds and since card N = N(¢) < co. The third summand
tends to 0 as ¢ — 0 by continuity of V(¢) on T.
It remains to prove that the second summand tends to 0.
Let
o (y)= sup  |Q(y,t) - Q)|

t,IeT: |t—f| <e
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Then
max sup |V,(t) - V(D)< s [|Q(5,) - Qy, ) |F(dylx)
tEN 4 11— <e t,(eT: |t—{| <e

< [oy)F(dyi).

Since Q is continuous in (y, t) then ¢, is continuous in y. Therefore (3.1) yields

(33) limsup max sup [V,(t) = Vo(E)| < [@(»)F(dylx).
n €N ¢:t—f <e
But lim,_, @ (y) =0, V y, because @ is continuous in (y, ¢). In view of
boundedness of ¢, the right side of (3.3) tends to 0 ase — 0. This completes the
proof. O

4. Proof of Theorem 1. Without loss of generality assume that m(x) = 0
and o(x) = 1. The assertion (i) of Theorem 1 is deduced from the following
lemma.

LEMMA 4.
4.1) For each t there exists a unique solution s*(t) of Ty(s*(t), t) = 0.
2
(4.2) s*(?) is a continuous function and infs*(t) > 0.
t

(4.3) For each s, T(s,t) = 0 if and only if t = 0.

Proor. The assertions (4.1) and (4.2) are contained in Theorem 1 and
Lemma 2 of Maronna (1976). The “if” part of (4.3) follows from the fact that F,
is symmetric and ¢ is odd. The “only if” part of (4.3) follows from monotonicity
of ¢ and (4.10). (Set ¢ = +e¢ there to prove by contradiction.) O

We shall prove the assertions (ii) and (iii) of Theorem 1 in the case when (A7b)
holds [the case (A7a) is considered in a similar way].

By (A2) and (A5) the function ¢ is monotone and {(c0) > 0 and ¥(—o0) < 0.
Hence there exists a solution ¢,(s) of

(4.4) ' Ti.(s,t,(8)) =0, Vs>0.

From Lemma 2 and continuity of Fj it follows that F, satisfies condition (E)
of Maronna (1976), a.s. for large n. It is easy to verify that conditions (A2)-(A5)
coincide with the univariate version of conditions (A)—(D) of Maronna (1976).
Therefore we can apply Theorem 2 of Maronna (1976), which yields the assertion
(i) of Theorem 1. In addition there exist some constants a, A,0 <a <A < o0
such that

(4.5) a < o, < A, a.s., for n sufficiently large.

This follows in the same manner as (5.1) in Maronna [(1976), page 59] (use
Lemma 2 instead of the Glivenko-Cantelli theorem there).
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LEMMA 5. For any sequence of functions {t,} satisfying (4.4),
(4.6) sup |t,(s) =0, a.s.,n— oo.

a<s<A

Proor. Note that for fixed s, > 0 the function Ti(s,, ) is nonincreasing in
t. Therefore, if for some constants a, A and arbitrarily small ¢ > 0,

(4.7) inf T(s,—¢) >0,
a<s<A
(4.8) sup Tiy(s,+e) <0
a<s<A
and
(4.9) sup |Ty(s, +e) — Ti,(s, te)| > 0, .as, n > oo,
a<s<A
then

liminf inf T,,(s,—¢) >0, as,
n a<s<A

limsup sup Ty,(s,+e) <0, as.,

n a<s<A

which entails (4.6).
It remains to show (4.7)—(4.9). We first show (4.9) only for one case; the other
cases follow by symmetry. Let U = [a, A] and let

Qu(s) = [&(3.8)F(dix),  Qs) = [e(,s)F(dylx),
with
#(.8) = ¥( =iy - e <0).

Note that @, and @ are nondecreasing functions; therefore, by Lemmas 1 and 2
and by Billingsley [(1968), Theorem (5.2(iii)], we have that

sup |Q,(s) — Q(s)| > 0, as.,n— o,
selU

which entails (4.9).
It remains to show (4.7) because (4.8) will follow by a symmetry argument.
Note that by conditions (Al) and (A2) for all se R,

T (s, —¢) = /¢(i§—e) dFy(u) = Ty(s,0) = 0.

Hence, by continuity of Ti(s, —¢), it suffices to show
(4.10) T,(s, —¢) — T\(s,0) # 0,

for all s € U. Assume that (4.10) is not true; then there is an § € U such that
the set {u: Y((u + ¢€)/§) # Y(u/§)} has Fymeasure zero. By (Al) it is open and
does not contain any neighborhood of zero; therefore, y(¢/§) = ¥(0) = 0. This
contradicts (A5) and shows (4.10). O
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In order to prove Theorem 1(iii) we first show that for any small § > 0 there
exists a compact interval I = I centered by 0 such that

(4.11) lin;inf glelfITn(s*(t) -8,t)>0, as.,
(4.12) limsup sup T,,(s*(¢) + 8,¢) <0, as.
n tel

We show (4.11). The proof of (4.12) is similar. Fix some & € (0,inf,s*(?)).
Using (4.2) and continuity of { one obtains that the function

Q(y,t) =¥((y —t)/(s*(¢) - 9))

is continuous in (y, t). Therefore Ty(s*(¢) — 8, t) is continuous in ¢. In addition,
monotonicity of Ty(s,0) and (4.1) entail that T,(s*(0) — 8,0) > 0. Hence there
exists a compact interval I centered by 0 such that

(4.13) inf T,(s*(¢) — 8,¢) > 0.
tel

By Lemma 3
(4.14) sup|Ty(s*(t) — 8,t) — T,(s*(¢) — 8,t)| » 0, as.,n— oo,
tel

and (4.11) follows from (4.13) and (4.14).
Now observe that m, = t,(g,) by definition. Pulling (4.5) and (4.6) together
yields

(4.15) m,—0, as,n— oo.
In particular, m, € I, as. for n sufficiently large, and hence by (4.11) and
(4.12)
liminfT,,(s*(m,) — 8, m,) >0, as,
n

limsup Ty, (s*(m,) + 8, m,) <0, as.
n

These inequalities imply that o, — s*(m,) = 0, a.s., n = o0, since T;,(s, m,)
is monotone in s and T, (0,, m,) = 0. Applying (4.12) and (4.15) we finally
obtain

lo, — s*(0)| <|o, — s*(m,)| +|s*(m,) — s*(0)| > 0, as., n— .
Since s*(0) = 1 = o(x) this completes the proof of Theorem 1(iii).

5. Proof of Theorem 2. To simplify our notation we introduce the parame-
ter & = (¢, s) and the function
V(- t)/S))

¥ #) = (x((y— £)/s)

Recall that the point x was fixed. We will write 4, for (m,(x), 0,(x)) and 9*
for (m(x), o(x)).
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Introduce the matrix of derivatives

o sy -8)/s) (t=3)/s((y — 1)/s)
¥(5.9) ( —1/sx (- 0)/5) (£ y)/s%x((y - t)/s>)'

The existence of this matrix in some neighborhood of #* is guaranteed by
condition (A10) and positiveness of o(x). Now

Jnhd [¥(y, 8*)F,(dyix)
(1) = nhg [(¥(3,9%) = ¥(, 9,))F(dylx)
- ( [{f¥ (.m0 +a- )8 E(dylx) df)m (8* = 9,),

if |#* — 9,| is small enough for the existence of ¥'(y, &) for &: |§ — 9*| <
|9, — &*|.
Next we shall prove

sup V'(y, 8)F,(dylx) — [¥'(y, 3*)F(dylx)|| —p O,
(5:2)  (5: 19-9°1219,-0°1 / J ’

n - oo,
where || - || is any norm in the space of 2 X 2 matrices. It suffices to prove (5.2)

for all components of matrices separately. Condition (A10) and positiveness of
o(x) imply that the components of ¥’(y, #) are continuous and bounded in
(»,9) for ye R and 4 belonging to some neighborhood of #*. Hence by
Lemma 3,

sup
[9—9*| <8

=50, n - oo,

J¥ (5, 9)E(dyix) = [¥'(y, )F(dylx)

for sufficiently small § > 0. This gives

sup ¥'(y, $)F(dylx) — [¥'(y, #)F(dylx)| -0,
(5.3) (9:19-9*| <|9,-9*|) / '[ d
n — oo,
since by Theorem 1(iii), #, = 9* as n - co. In addition,
sup ¥'(y, 8)F(dylx) — | ¥'(y, 8*)F(dylx)| 5O,
(54) (9:19-9*| <|9,~9*]) f '/ i
n - oo,

by uniform continuity of [¥’(y, #)F(dy|x) in some neighborhood of #*. We see
that (5.2) follows from (5.3) and (5.4).
Using (5.2) one obtains

fol{f ¥y, md* + (1~ T)1",,)Fn(dylx)} dr

(5.5) 1
) . _ 9 0
-5 /‘I!(y,z? )F(dy|x) = o(x) ( 0 «,

), n — oo.
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We now study the asymptotic distribution of the left-hand side of (5.1). Write

(56)  nh] /W(y,ﬂ*)Fn(dynx)=( YK ( - x))_an,

ni=1

where

1 v Y, - m(x) K(Xi—x)
"“"‘m( o(x) ) h, )’

)

g‘in= dX o(x)
(5.7) ;d EK(X ) -p f(x)fK(u)du, n - o0.

o

hy
By Cacoullos (1966), under (A6)-(AS8),
ni=1 hn

We shall show now that G, is asymptotically normal. First consider the
asymptotics of E{G,}. We have

E{‘/—lg- émn} = VnEn,

- | P {5 a5 o

— m(z) — m(x) o(z2)
- th./K( ) (2)o ( o(x) ’ o(x))dz’

where ¢(a, b) = [Y(a + bu) dF(u).

Let D be diameter of the set {z: K(2) # 0}. It suffices to consider only such 2z
that |z — x| < Dh,,. For such z it is obvious that |m(z) — m(x)| < LDh, and
|o(2) — o(x)| < L'Dh,. Thus by continuity of ¢/(a, b) and ¢/(a, b) one obtains

(m(z) - m(x) o(2) )
o(x) " o(x)

sup
|2—x| <Dh,

—(P(O,l)—w,’,(O,l)(in—(zz,'—(—ﬁni(x_)) 940, 1)( E ; 1)

=o(h,), n - oo,
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where
9(0,1) = [y(u) dFy(u) = 0,
9:(0,1) = [¥(u) dFy(u) = g0,
94(0,1) = [uy/(u) dFy(u) = 0.
This implies
2 %0 [ m(z) — m(x) z—x
(5.8) Ema - mhﬁf( o) )K( b )f(z)dz\
= o(hn nhﬁ) =o0(1), n- oo,
im k5 [ (m(2) = m(:) [ 25 Ju(e) e
(5.9) " "

= Bd/2+1 fm’(x; u)K(u) dup,(x)

Together (5.8) and (5.9) yield
Po

o(x)
Let k(a, b) = [x(a + bu) dFy(u). Then

E{% o :} - VREL,,

_ Vn m(z) — m(x) o(2) z—x
- \/h—'[( o) ’o(x))K( e [OF

(5.10) limyn En,, = Bd/2“f(x)fm’(x; u)K(u)du=b,.

m(z) — m(x) o(z2) , m(z) — m(x)
oo oy (" | -0~ 00| " |
-x,’,(O,l)(:E—z; - 1) =o(h,), n- o,

where

x(0,1) = [x(u) dFy(u) = 0,
ki(0,1) = [x'(u) dFy(u) = 0,

k5(0,1) = [ux'(u) dFy(x) = ,.
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Similarly to (5.10) one proves

(611)  EmVnEG, =~V [o'(x; u)K(u) duf(x) = b,

( )

Note that by (5.10) and (5.11),

o mme-o k) m-o[L] e

Consider the asymptotics of the covariance matrix of G,,. In view of (5.12),

1 e . .
lim var(—ﬁ Elmn) = ll,rln[En?n - (Eny,)| = lim B3,

m(z) —m(x)+u u
“‘i“ﬁff( () )dF(TS

2 —
X K?
=

S~—

(5.13)

x)f(Z)dz

= f(x)9. [K*(u) du = of.
Similarly to (5.13),

(5.14) hm var( 7 by {,n) = f(x)xsz2(u) du = o}.

i=1

The components of G, are asymptotically uncorrelated because

1 n
tim = 3 {1 = En) (n = Ein))

= ;E{nm in)
B 1 m(z) —m(x)+u) [m(z) —m(x)+u u
(5.15) = h’r‘n hd-/-/ ( o(x) )X( o(x) )dpb(o(z))
xKZ(z’:x)f(z)dz

= f(x) [K?(u) du [x(u)¥(u) dFy(u) =

[recall that y(u) is odd and x(u) is even].
We now prove
(5.16) G, ag(’}), n— o,

where 1 ~ #'(b,, 62), { ~ N (by, 0f) and cov{n{} = 0. In view of (5.10), (5.11),
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(5.13)-(5.15) and Theorem 7.7 of Billingsley (1968) (Cramér—Wold device), it is
sufficient to prove that linear combinations of components of G, satisfy the
Lyapunov condition of the central limit theorem.

Since ¢ and x are bounded we obtain

C ‘Xi - X
(5.17) [M1nls 1$10] < WK )

where C > 0 is some constant. Let a,, a, € R be arbitrary. The Lyapunov
condition for linear combinations follows from

i E(-a‘/’%—('ﬂm - En,) + %(Qn - Efin))4 .

i=1

8
< _r;(afE(nln - E"’ln)4 + a;E(g‘ln - Eg‘ln)4)

64 1
< g(afE'q‘}n + ajEt,) + O(?) = 0( ) =o(1), n- oo,

nh?

where we used (5.12), (5.17) and the elementary inequality (a + b)* < 8(a* + b*).
This proves (5.16). The assertion of Theorem 2 follows from (5.1), (5.5)~(5.7) and
(5.16).
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