The Annals of Statistics
1988, Vol. 16, No. 1, 55-63

ASYMPTOTICALLY EFFICIENT PREDICTION OF A RANDOM
FIELD WITH A MISSPECIFIED COVARIANCE FUNCTION?

BY MicHAEL L. STEIN
University of Chicago

Best linear unbiased predictors of a random field can be obtained if the
covariance function of the random field is specified correctly. Consider a
random field defined on a bounded region R. We wish to predict the random
field 2z(-) at a point x in R based on observations z(x,), 2(x5),..., 2(xy) in
R, where {x;)2., has x as a limit point but does not contain x. Suppose the
covariance function is misspecified, but has an equivalent (mutually ab-
solutely continuous) corresponding Gaussian measure to the true covariance
function. Then the predictor of 2(x) based on z(x,),...,2(xy) will be
asymptotically efficient as N tends to infinity.

1. Introduction. Kriging is a method of prediction for spatial processes that
is popular in mining, hydrology and petroleum engineering [Journel and
Huijbregts (1978)]. Basically, the kriging predictor is just the best linear unbi-
ased predictor of a random field and, thus, kriging is the same as optimal linear
prediction [Wiener (1949) and Kolmogorov (1941)]. Specifically, consider a ran-
dom field z(-) satisfying

@) Ez(x) = B'f(x),

where f(:) is a known vector-valued function and B is a vector of unknown
coefficients, and

Cov(2(x), 2(y)) = K(x, y).

If we observe z(x,),..., 2(xy) and wish to predict z(x), an unbiased (for all
possible ) linear predictor will be of the form

N
2(x) = X Aiz(x)),
i=1
where

N

YA f(x) = f(x).

i=1
If K(-,-) is specified, among all such predictors (assuming one exists), we can
obtain the linear unbiased predictor that minimizes Var(z(x) — 2(x)); this is the
kriging predictor. It is given by [Goldberger (1962)]

(2) {c’C‘1 + (f(x) - FC‘lc)’(FC‘lF’)_IFC'I}(z(xl), vy 2(xy)),
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assuming all inverses exist, where

F= (f(xl)’“': f(xN))’ c= (K(x’xl)""’K(x’ xN)),

and C is an N X N matrix with jth element K(x,, x;). In practice, the
covariance function is not specified and must be estimated from the observa-
tions.

The effect on kriging of using a misspecified covariance function has been
investigated by Diamond and Armstrong (1984) and Yakowitz and Szidarovszky
(1985). In particular, this second paper considers the following problem: Let R
be a bounded subset of R™ and {x,}?>, a sequence of points in R that have
X €R as a limit point. If 2(x) is predicted on z(x,),..., 2(xy) assuming
Cov(z(x), 2(y)) = K(x — y) is the covariance function and f(x) =1, then (2)
yields a consistent predictor of z(x) even if the covariance function is incorrect,
as long as the observed process is continuous almost surely, and there exist
positive numbers ¢ and D such that

liminf|w|?S(w) > D as |w| = oo,

where S(-) is the spectral density for K(-) [Yakowitz and Szidarovszky (1985)].

In this paper, we will show that one obtains not only a consistent predictor of
2(x), but an asymptotically efficient predictor, as long as the specified and actual
covariance functions are compatible on R. We will say that two covariance
functions K, and K, are compatible on R if the probability measures P, and P,
of two Gaussian processes on R with equal mean functions and covariance
functions K, and K,, respectively, are mutually absolutely continuous. This
definition of compatibility will be used whether or not the observed process is
actually Gaussian. We will also show that one obtains a value for the variance of
the prediction error that has an asymptotically negligible error if K, is assumed
to be the covariance function when K, is the actual covariance function, as long
as K, and K, are compatible. While these results make use of the notion of
mutual absolute continuity of Gaussian measures in order to define “compatible”
covariance functions, the results in no way depend on the random field being
Gaussian.

For stationary covariance functions (K(x, x + k) = K(h)), if Ky(-) and K,(-)
behave “similarly” at the origin, they will commonly be compatible, although
exceptions exist. Thus, the intuitively sensible concept that it is sufficient to
specify the covariance function well only over relatively short distances to obtain
a nearly optimal predictor now has mathematical support in the context of
prediction of spatial processes. For example, if K,(-) has 2m derivatives on
(—T,T)and K2™*D(0") # 0 [so that the Gaussian process z(-) with covariance
function K (-) has m, but not m + 1 derivatives almost surely], then for K(-)
and K,(-) to be compatible on [0, T'], K(-) must also have 2m derivatives on
(=T,T) and K™ D(0+) = KZ™*D(0*). This result follows by noting that
under P;, z(™)(-) exists almost surely and has covariance function (— 1)K 2™(-)
and then applying (1.11) of Ibragimov and Rozanov [(1978), page 67] to z(™(-).
In many common cases, two covariance functions satisfying this property will be
compatible; for example, two covariance functions for autoregressive processes of
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the same order are mutually absolutely continuous on [0, T'] for all finite 7' if
they are properly normalized, which is a special case of Theorem 13 of Ibragimov
and Rozanov [(1978), Chapter 3]. These are exceptions to this rule: If

Ky x)=e" and K,(x)=max(0,1 — |x|),

then K (-) and K,(-) are compatible on [0, T'] if and only if T < 1 [Ibragimov
and Rozanov (1978), page 100], despite the fact that K}(0*) = K/(0%).

General necessary and sufficient conditions for mutual absolute continuity of
Gaussian measures are given for stationary processes in one dimension in
Ibragimov and Rozanov [(1978), Chapter 3] and in higher dimensions in
Skorokhod and Yadrenko (1973). The examples in Krasnitskii (1979) show that
these conditions can be difficult to apply in practice for stationary processes in
more than one dimension. Fortunately, we will not need to use any specific
properties of mutually absolutely continuous Gaussian measures, because our
results will follow essentially from definitions.

In Section 2, the main results on asymptotically efficient prediction with a
misspecified covariance function are stated and proved. In Section 3, the connec-
tion between these results and kriging with an estimated covariance function is
briefly discussed. ‘

2. Main results. Consider a continuous random field z(:) defined on a
bounded region R in R”™. Suppose, on R, that z(:) has a mean function as given
in (1) and bounded second moments. Let x be a point in R and {x;,}2, a
sequence of points in R that has x as a limit point but does not contain x. An
alternative asymptotic approach would be to “fix” the distance between neigh-
boring observations and allow the size of the observation region to grow with the
number of observations, as is done in Mardia and Marshall (1984). There are
both practical and theoretical reasons for considering the approach taken here.
For example, we may be interested in predicting a mineral concentration in a
fixed region, and we wish to investigate the effect of increasing the number of
measurements taken in this region on our ability to predict. Also, this approach
allows us to handle the common situation in which the covariance function is not
near zero at distances a substantial fraction of the dimensions of the observation
region. Finally, the model of an increasing number of observations in a fixed
region is used by Stone (1977) in the context of nonparametric regression and,
thus, taking the same approach here allows us to compare kriging and nonpara-
metric regression, as is done in Yakowitz and Szidarovszky (1985).

Let us use 2,(N) to denote the best (minimum variance) linear unbiased
predictor of z(x) based on 2z(x,),...,2(xy), assuming K,(-,-) is the actual
covariance function of the process. Let us also define e,(N) = 2,(N) — z(x), the
error of this predictor. Denote E,(-), V,(-) and Cov,(:, ) to be the expectation,
variance and covariance under P,, the measure of a Gaussian process with mean
B’f(x) and covariance function K,(-,- ). We have the result:

THEOREM 1. Suppose K(:,-) and K,(:,-) are two compatible covariance
functions on a bounded set R. Let x be a point in R and {x,)?, a sequence of
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points in R not containing x but having x as a limit point. Assume

® Jim Vileo(N) = o
Then

Vo(eo(N)) _
@) N V(e V)

We will say that a predictor 2,(N) is asymptotically efficient if (4) is satisfied.
Then Theorem 1 says that if we base our predictor of z(x) on K (-, ) when, in
fact, Ky(-,-) is the actual covariance function, then as long as K(-,-) and
K (-, ) are compatible on R, we will obtain an asymptotically efficient predictor
of z(x), assuming (3) holds. Equation (3) just says that the sequence of best
linear unbiased predictors under K(-,- ) is consistent. Implicit in this assump-
tion is that a linear unbiased predictor of z(x) exists for some value of N. Since x
is a limit point of {x;}{2,, (3) is met under quite weak conditions on K (-, ) and
the mean function. For example, if f(x)=1 and K(-,-) is bounded and
continuous on R X R, we can easily show that (3) is satisfied [follows by the
argument for Theorem 2.1 of Yakowitz and Szidarovszky (1985)]. Under weak
conditions, (3) also holds with more general mean functions when the covariance
function is stationary [Yakowitz and Szidarovszky (1985)].

ProoF oF THEOREM 1. Let us assume, for now, that z(:) is a Gaussian
process and let P, be the measure of a Gaussian process on R with mean
function as given in (1) and covariance function K,(-,- ). Clearly,

Vo(eo(N))/Vo(ey(N)) < 1
for all N, since 2(NN) is optimal under P,. Also,
Vo(eo( V) _ Vo(eo(N)) Vi(eo(N)) Vi(e(N))

5 = .
®) V(e M)~ V(e M) Vi(ei(N)) Vile(V)
Now, Vi(eo(N))/Vi(e)(N)) = 1 for all N, so it suffices to show
(6) timing LSV

N-oo Vl(eO(N)) -7
since this implies
Vl(el(N))
liminf ————= > 1.
N-ow Vo(el(N))
Define

1/2

Y(N) = ey(N)/(Vo(eo(N))) 7,
so that E,y(N)% =1 for all N. The crux of the proof is contained in
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LEMMA. Any subsequence N,, N,,... contains a further subsequence
Nk(l), Nk(z)» ... satisfying

M %l:y(Nk(,))2 -1 asM -
I=1
in probability under P,.
PRrOOF. Trivially, for any &(-),
E,M™! % ¥(Nypy)' =1 forall M.
I=1
Hence, it suffices to find %(-) such that
(7) Vo(M_l %y(Nk(l)Y) >0 asM — co.
=1

Now, using the assumption that 2(-) is a Gaussian process and ey(NN) has mean
zero, we obtain

M m-1

(8) +2M? 22 z2=: (y(Nk(m)) y(Nk(l)))
_ oM+ 4M g );{ Eo( Y Nyom) Y(Nay) )

By definition,
Eo{ y( Nk(m))y( Nk(l))}

= Eo{eo( Nk(m))eo( Nk(l))} { (eo( Nk(m)))Vo(eo( Nk(z)))}l/2
Forl < m,

Eo{eo( Nk(m))eO( Nk(l))}
= EO[eO(Nk(m))(eO(Nk(l)) - eo( Nk(m))) + eO(Nk(m))2]
= EO[eO(Nk(m))(eO(Nk(l)) - eO(Nk(m)))] + %(eo(Nk(m)))

= Vo(eo( Nugmy))

since, under Py, ey(Ny(,,) is uncorrelated with eo(Ny;)) — €o( Ny(my)- This fol-
lows from the projection property of best linear unbiased predictors, which says
that ey (N) is uncorrelated with

)y Az(x;)

i=1
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under P, if

N

Z >\if(-’ci) =0

i=1
see Journel (1977), for example. Thus, for I < m,

/2
Eo{ y( Nk(l))y( Nk(m)) [VB eo( Nk(m)))/%(eO(Nk(l)))] '

By (3), we can choose k() so that

Vol eo( Nuieny))/ Vol eo( Nupy)) < 1/2, foralll,

for example. Substituting this inequality into (8) establishes (7) and, hence, the
lemma. O

Now, let us suppose (6) is untrue. Then there exists a subsequence N;, N,,...
satisfying

Voleo( N,
o)  Tle) _
l-> o0 Vl(eO(Nl))

Equivalently,

<1.

Vi(y(N)) —» 7%

We note that we must have ¢ > 0, since ¢ = 0 would contradict the mutual
absolute continuity of P, and P, [see Ibragimov and Rozanov (1978), page 70,
formula (1.27)]. Now pick a further subsequence such that the lemma holds. We
have

(10) lim EI{M Z Y (Npwy) }

M-

Since P, and P, are mutually absolutely continuous, by the lemma we must have
M

(11) MY ¥(Ny;)* — 1 in probability under P,.
=1

As M — oo, we also have, using the fact that 2(-) is Gaussian,

VI(M_1 léy(Nk(z))z) =2 % % {Covl(y(Nk(,)), y(Nk(m)))}2

m=1Il=1

<2M? % % V1(y(Nk(1)))Vl(y(Nk(m))) - 2¢7?%,

m=11l=1

where the inequality is by Cauchy-Schwarz. Applying Theorem 4.5.2 in Chung
(1974) to (11), we have

M
. _ 2
lim EI{M ! Zy(Nk(l)) } =1
M=o 1=1
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Thus, we have a contradiction to (10) and the theorem follows when 2(:) is
Gaussian. Now suppose z(+) is a non-Gaussian process on R with true covariance
function K, but we use the incorrect but compatible covariance function K, in
(2). Consider a Gaussian process z*(+) on R with the same mean function and
true covariance function K, as z(-). Again we use the incorrect but compatible
covariance function K, in (2). We observe both z(-) and z*(:) at the same
sequence of points in R. If (3) holds for z*(-), then we have just shown that (4)
follows for z*(:). Since (3) and (4) are only statements about the first two
moments of a process, (3) and (4) must also hold for the non-Gaussian process
2(+). We note that this proof has used properties of Gaussian processes. The use
of such properties is relevant to non-Gaussian processes because we have defined
compatibility of covariance functions in terms of mutual absolute continuity of
corresponding Gaussian measures whether or not the process is Gaussian. O

From (4) and (5), we have

- Vo(eo(N)) Vl(el(N))
1= | TN Vo0 }
_ lim{ Vo(eo(N)) Vi(el(N)) }
Vl(eO(N)) V;)(el(N)) .
Applying (6), we see that we must have

THEOREM 2. Under the same conditions as in Theorem 1,
V:;)( eo( N ))

Nlj’nw Vi(eo( N)) -

That is, if we assume K (-, ) is the covariance function when, in fact, K,(-,-)
is the covariance function, we not only get an asymptotically efficient predictor
of z(x), we also get a value for the variance of the prediction error whose relative
error is asymptotically negligible. As with Theorem 1, Theorem 2 is valid
whether or not z(-) is Gaussian.

In many applications we are interested in predicting some linear functional of
the z(-) field, for example,

(12) fRz(x) dx.

We can use kriging to predict such a linear functional, and Theorems 1 and 2 will
apply as long as the variance of the prediction error under K, converges to zero
(3). For predicting the quantity in (12), (3) will be satisfied if the best linear
unbiased predictor of z(x) is consistent for all x in R, since

Var| f (2u(x) — 2(2)) s 5 [ [Var(2(x) - 2(2)] " s )

by the Cauchy-Schwarz inequality. As noted earlier, if {x;}?; has x as a limit
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point, f(x) =1 and K(-, ) is bounded on R X R, Z,(x) will be consistent.
Thus, in this case, if {x,;}2, is dense in R, (3) will be satisfied for the expression
in (12).

3. Discussion. We have considered the effect of misspecifying the covari-
ance function on the performance of kriging. In practice, the covariance function
is estimated from the data. Thus, if we have a large number of observations in a
bounded region R, we see that it is important to obtain an estimated covariance
function that is “nearly” compatible to the actual covariance function, and it is
unimportant to distinguish between covariance functions that are compatible.

As an example, suppose

K(x;0) = 6,e %

is our model for a covariance function on [0, 1], where 8, and 8, are positive. In
this case, if 8 =(6,,0,) and 8* = (8%, 60;*) are two possible values of the
parameters, K(x; ) and K(x; 0*) are compatible if and only if 6,0, = 66,
[Ibragimov and Rozanov (1978), Chapter 3, Theorem 13]. Theorems 1 and 2 say
that, at least asymptotically, for purposes of prediction, the value of 6,0, is
critical, but the values of §, and 6, are not. Kitanidis (1983, 1985), Mardia and
Marshall (1984) and Marshall and Mardia (1985) investigate the properties of
estimators of @, although they do not specifically address the problem of an
increasing number of observations in a fixed bounded region. The results in Stein
(1987) suggest that, for Gaussian processes, there are available techniques that
consistently estimate those functions of the parameters of a model for a covari-
ance function that determine compatibility, at least in the case where K(x; 6) is
linear in . However, these results, unlike the ones presented here, do depend on
the process being Gaussian.

4. Conclusions. We have derived two quite general theorems on the
asymptotic efficiency of kriging predictors based on an increasing number of
observations in a bounded region when the covariance function is misspecified.
The first says that as long as the covariance function used to obtain the kriging
predictor is compatible with the actual covariance function, the obtained predic-
tor will have the same asymptotic efficiency as the optimal predictor based on
the actual covariance function. The second says that we also obtain a value for
the variance of the prediction error that has asymptotically negligible relative
error using the incorrect (but compatible with the correct) covariance function.
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