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CONSISTENT ESTIMATION OF THE INFLUENCE FUNCTION
OF LOCALLY ASYMPTOTICALLY LINEAR ESTIMATORS!

By CHRIs A. J. KLAASSEN
University of Leiden

Consider estimators which behave locally asymptotically like an average
of some function taken at the observations. This function is called the
influence function and one calls such estimators locally asymptotically linear.
It is shown that the influence function of a locally asymptotically linear
estimator can be estimated consistently and conversely, that, given a con-
sistent estimator of the influence function, estimators can be constructed
which are locally asymptotically linear in that influence function. With the
help of these results an adaptive estimator is constructed for a partially
irregular model.

1. Introduction. Let X,..., X, be independent and identically distributed
random variables with distribution P, , on some measurable space (X, A). The
parameter (9, g) of P, , is known to belong to a set ® X G, with © C R? open
and G some set of functions, say, but otherwise (¥, g) is unknown. For every
g< G, let J(-;-, g): X X ® > R? be a measurable function satisfying

(1.1) [J(x; 8,8)dP, (x) =0, #€8®,
and

(1.2) J1J(x; 9, 8)[* dP, f(x) <0, d€O,
where | - | denotes the Euclidean norm.

In this semiparametric model we shall study estimator sequences {T,,} of ¢,
T,=t(X,,...,X,) and ¢,; X" > R? measurable, which are locally asymptoti-
cally linear in the following sense. For every (¥, g) € ® X G and for every
sequence {9,} with |9, — 9| = O(n~1/?),

n
(1.3) nl/Z(Tn =3, —n' Y J(X;9,,8)| =05 ,(1), asn— oo,
i=1

holds. Here o, (1) is shorthand for “tending to zero in P; -probability.”
In view of (1.3), J(-; ¥, g) is called the influence function of {T,} under (&, g).
Estimators, which satisfy (1.3) for 4, =9 and may violate (1.3) for other
sequences {9}, are called asymptotically linear. Of course, locally asymptotically
linear estimators are the more desirable ones, but in sufficiently smooth models
asymptotically linear estimators are locally asymptotically linear automatically
[see the discussion between formulas (2.2) and (2.3)].
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In models without nuisance parameters, i.e., with g known and G = {g},
typically estimators of ¥ exist, which satisfy (1.3) with J(-; ¥, g) being the
so-called efficient influence function and which are, therefore, efficient. Note that
it follows from Theorem 4.2 of Hajek (1972) that under local asymptotic
normality, estimators of which all coordinates are locally asymptotically mini-
max have to be asymptotically linear in the efficient influence function.

Efficient estimators satisfying (1.3) also exist in some semiparametric models
in which g is unknown and ranges over some “big” set G. Such so-called
adaptive estimators have been presented in the symmetric location problem by
many authors. To mention but a few: van Eeden (1970), Stone (1975) and Beran
(1978). Bickel (1982) has given a construction of adaptive estimators which works
in more general situations too.

In Theorem 6.3.1 and Corollary 6.3.2 of Huber (1981), conditions are given
which guarantee asymptotic linearity of M-estimators. Typically, the influence
functions are not efficient here.

In Section 2, we will present an estimator which is locally asymptotically
linear under smoothness conditions on the model and the influence function,
under the assumption of existence of an n'/? consistent estimator of 4 and under
the assumption that the influence function can be estimated consistently in the
following sense. There exists an estimator sequence {J,(-;; X;,..., X,,)}, based
on X,,..., X, such that for every (4, g) € ® X G and for every sequence {,}
with |9, — 4| = O(n~1/2),

A 2
(14) [l 85 Xoenos X,) = I(x5 8, 8) | APy o(2) = 05, 4(1)
and
(1.5) i/ f (%, 005 Xpyor, X,) dPy (%) = 05 (1)

hold. Note that Condition H of Bickel (1982) is stronger in that it forces the
left-hand side of (1.5) to vanish. The sufficiency of conditions (1.4) and (1.5) for
the existence of efficient asymptotically linear estimators has already been shown
by Schick (1986) in a class of semiparametric models, which is slightly more
restricted than ours. In Section 3, we shall prove under a mild regularity
condition that the existence of a consistent estimator of the influence function is
also necessary for the existence of locally asymptotically linear estimators, i.e.,
that (1.3) implies (1.4) and (1.5).

The results of Sections 2 and 3 thus imply that, under regularity conditions
on the model and the desired influence function and provided an n'/? consistent
estimator of ¢ exists, an estimator of ¢ which is locally asymptotically linear in
this influence function exists, iff this influence function can be estimated con-
sistently in the sense of (1.4) and (1.5). Consequently, if a locally asymptotically
linear estimator can be constructed, it can be done by first estimating the
influence function consistently and then applying one of the methods of Section
2. Along this line of approach most adaptive estimators have been constructed.

Some examples and a discussion of these results are given in Section 4.
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2. Constructions for locally asymptotically linear estimators. To the
assumptions made in the first paragraph of the introduction, in this section we
add contiguity:

(2.1) (P o) 0Py}

and

n
(22) n1/2 19n - 0 + n_l Z {J(Xv 0;;’ g) - J(Xi; 0’ g)} = Oﬂ,g(l)a
i=1
for every (9, g) € ® X G and for every sequence {9}, with |9, — 4| = O(n~1/2).
In regular cases, contiguity is present and often (2.2) holds too [cf. (6.43) of
Bickel (1982), Theorem 5.1.1 of van Eeden (1983) and (2.5) of Schick (1986)].
Moreover, if there exists an estimator which is locally asymptotically linear in
the influence function o/ and if the contiguity (2.1) holds, then subtracting (1.3)
from (1.3) with 9, = & yields (2,2). In fact under (2.1) and (1.3) with ¥4, = 3, the
convergence relations (1.3) and (2.2) are equivalent. Consequently, in this situa-
tion asymptotic linearity and local asymptotic linearity are the same. Indeed,
twice (1.3); once as it stands, once with 9, = 9.
Furthermore, we assume the existence of a (preliminary) estimator sequence
(T)of 8, T, =i(X,,..., X,), with
(2.3) n2(T, - 9) = 0, (1), (9,8)€0X%G.
Note that if (1.1)~(1.3) are fulfilled, then the n'/? consistency (2.3) of T, = T, is
a simple consequence of the central limit theorem.
If in this situation the parameter g is known, then Le Cam’s discretization

trick immediately yields a locally asymptotically linear estimator as follows.
Define T, as a point in n~'/2Z closest to T,. Now

(2‘4) Tn=Tn0+n’_1 ZJ(XL’ TnO’g)
i=1

satisfies (1.3) [cf. the argument after (3.7) of Bickel (1982)].
Another method would be “splitting” as follows. Let {u,} be a sequence of
positive integers with p,n~! - p, 0 < u < 1. Define

(2.5) Tx=8(Xy.. X, ), Ti=&_,(X, .,...,X,).

n—p

Note that because of independence,

Fn
(2.6) nl/Z(Tn‘a =0+t L AI(X5 T, 8) - J(X;5 l",g)}) =0;,,(1)

i=1

holds. Consequently,

Kn
= unn“{Tn"é +pt Y J(X T, g)}
i=1

@2.7) )
+(n—un)n-l{m+ (- T (X T,;;,g>}

i=p,+1

satisfies (1.3).



ESTIMATING THE INFLUENCE FUNCTION 1551

If J and, hence, g are unknown, then we would like to replace < in (2.7) by an

estimator of it. To make this work we push the “splitting” trick leading to (2.7)
one step further by splitting the sample X,..., X, , on which T,} is based,
into two parts: one part that produces a prehmmary estimate of ¢ and the other
part that yields an estimate of J. In the same way the sample on which T} is
based will be split. To be more precise, let {A,}, {1,} and {»,} be sequences of
positive integers with

-1

(28) A,nto A, pnlopn, pnlow, 0<A<p<pr<l
Define [cf. (1.4) and (1.5)]
(2.9) T,=5(X,,..

T =t ,,(Xn,.+1""’X"n)’

Vo=

X,,),
nl(x 0) - j (x) 0, X)‘n+1,..., X ),

23

(2.10) 5
n2(x 0) - n vn(x; 0; Xv"+1!“" Xn)'

In the proof of Theorem 2.1 it will be shown that, indeed,

Bn
Tn = l“"nn_l{fn2 + ,"';1 Z jn2(Xi; T~n2)}
i=1
(2.11) ‘ i
+(n - I“‘n)n_l{Tnl + (n - ,"'n)_l E jnl(Xi; Tnl)}
i=p,+1
satisfies (1.3).
Schick (1986) has used both the “discretization” and the “splitting” trick and
has suggested in his formula (2.7)

Tn = ppn {Tno + ""r_zl Z J ,,(Xw nos 'Ln+1’ Xn)}
=1
(2.12) ‘
+(n - P‘n)n_l{TnO + (n - ,"'n)_l Z J (Xv TnO’ Xl"“’ Xp.n)}

i=p,+1
as an asymptotically linear estimator [cf. (2.4) and (2.7)]. Note that Schick (1986)
considers efficient influence functions in smooth, but still quite general semipara-
metric models. His conditions (2.1) and (A.1) on the underlying densities imply
our (1.1), (1.2), (2.1) and (2.2).

Bickel (1982) has used a vanishingly small part of the observations to estimate
the influence function. Such a construction cannot work here unless condition
(1.5) is strengthened. Schick (1987) gives conditions stronger than (1.4) and (1.5)
under which asymptotically linear estimators can be constructed using an
estimator of the influence function based on the entire sample and not on just a
part of it as in (2.11) and (2.12). Finally, note that (2.11) avoids the discretization
as used in (2.12) and in (3.6) of Bickel (1982). In particular, this is important if
one is interested in equivariant estimators in problems with a transformation
group.
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THEOREM 2.1.  Let (1.1), (1.2) and (2.1)~(2.3) hold. If there exists an estima-
tor sequence {J,(-;-; Xi,..., X,))} of the influence function satisfying (1.4) and
(1.5), then there exists an estimator sequence of ¢ satisfying (1.3).

ProoF. In view of (2.1) and (2.2) it suffices to show that {T)} defined by
(2.11) satisfies (1.3) with §, = 9. Therefore, we shall prove

(n - au'n)n_l/2(T~nl - 0 + (n - l“’n)_l
(2.13) )
X Z {jnl(Xi; T~n1) - J(X; '9’5’)}) = Oﬂ,g(l)’
i=p,+1

Because of (2.3) and the independence of 7', and (X A +1s+ -5 X,,), this holds if
for all {#,} with |9, — 9| = O(n~'/?), we have

n‘”(ﬂn ~3+(n—p,)""
(2.14) .
x ¥ A{du(Xs8,) - J(X; 0,g)}) = 05, 4(1).

i=p,+1
Taking the conditional expectation of the Euclidean norm squared of the

left-hand side of (2.15), given X At -+ X, , we see that relations (1.1), (1.4) and
(1.5) yield

(215) (n-p) ™2 ¥ {Ju(Xi5 8,) — J(X; 9,,8)} = 0, (1)

i=p,+1

Contiguity, (2.15), (2.14) and (2.2) complete the proof. O

3. The necessity of the existence of consistent estimators of the in-
fluence function. In the situation of the first paragraph of the introduction we
assume for a moment d = 1 and that the following strengthening of (1.3) holds:

(3.1) var,,mg{nlﬂ(Tn -4, —n! i J(X;; ﬂn,g))} =o(1).

i=1

By Hajek’s projection lemma, this implies

n , n
(3'2) Var\‘}n,g{ Z Eﬂn,g(n1/2(Tn - 0)1) - n_1/2 Z J(Xz; 0n’ g)IX])} = 0(1)
Jj=1

i=1
and, hence, assuming ¢, is symmetric in its arguments,
(3.3) var, J{n(E; (TIX,) - 9,) = J(X;; 8,,8)} = (D).

Since n(E;  (T,|X;) — 9,) can be estimated very accurately, without knowledge
of J, by taking k, samples of size n [cf. (3.12)], it is intuitively clear from (3.3)
that oJ can be estimated consistently in the sense of (1.4).
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This argument can be made precise for general d without the symmetry
assumption on ¢, and (3.1) can be replaced by (1.3) by using a truncation trick.
However, we need a regularity condition on the influence function.

THEOREM 3.1. If (1.1)-(1.3) are fulfilled and, if for (%, g) € ® X G,
@4 Jim tmsup (1905 8, &)L o g1 0 P (%) = 0

holds, then there exists an estimator sequence {J:, 503 Xppeoy X)) satisfying
(1.4) and (1.5).

ProoFr. In this proof we will suppress in the notation the dependence of var,
E, dP(x) and op(1) on (3,, g). Furthermore, we will use the notation

n=nVAT,=9,), J=n"2 Y I(X;9,,8).

i=1

Since it suffices to consider (1.1)-(1.5) componentwise, we assume d = 1 without
loss of generality.

Let ¢: R — R be an odd twice differentiable function with derivatives ¢’ and
Y satisfying || <1, 0 <y’ <1 and |¢”| < 2. Furthermore, denote y,, (x) =
E(y(A,)|X;=x) and y,(x) = E(Y(J,)|X, = x). Finally, let X, be a random
variable such that X, X,,..., X, areii.d. and let {&,} be such that |#, — 9| =
O(n~12),

By Hajek’s projection lemma we have

var{y(A,) — ¥(J,)}
> i var{E(\lz(An) - "/(Jn)lXj)}

Jj=1

(3.5) _ éE[\I/n,-(Xo) ~¥,(X,) — E¥(A,) + E¥(J,)]°

2

> B £ [00(X0) = 4o(X0) = BY(8,) + Bu(S)]
j=1
which, together with (1.3) and the bouridedness of ¥’ and ¢, yields

(3.6) var{n-v? 54Xy - nl%(xo)} - o(1).

J=1

With the notation

3.7) Jr=n"2 Y J(X;9,,8),  v.=EV(IF),

i=2
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the boundedness of ¢y’ and ¢ implies
[Yad(x; 8., 8) — '/ %,(x) + E(n'/2p(J1))|

(38) =‘E/(')n-l/2el(x; ﬂn,g)n1/2[¢/(Jn*) _ lV(Jn* + 2)] dz‘

<|J(x; 8,,8)| A (n72%(x; 8, 8))
and, hence, (3.4) yields
lim supvar{y,J(X,; 4,, 8) — n'/%,(X,)}

n— oo

(3.9) o R 14
< lim limsup {EJ (Xy; 0n,g)l(|€,(xo;,,mg)|2a) +nla } = 0.

a=®0 posw

Together with (3.6), this implies

10 varln £ (%) 1K 0] 000,
J=1
Let {&,} be a sequence of positive integers satisfying
(3.11) nk, ' = o(1)
and let Y, i=1,...,k, j=1,...,n, be random variables such that

Xo, Xy5e0y X, Yy, -0, Yy, , areiid. We define the random function Jy by

kn n
J’;P(x; 0) = k;l Z {n_l/2 Z \b(nlﬂ(tn(Yil,.,,,Yij_l,x, Yij+1""’Yin) - 0))
i=1 j=1
(3.12)

“n1/2‘1’(n1/2(tn(Yil’ R Y;n) - 0))} ’

x€X, 00,
and we note that

var{J,‘,"(XO; 4,) —n71? i "/nj(Xo)}
(3.13) j=1
=E var(J,‘f(Xo; ﬂn)IXo) < 4nk,'.
Combining (3.13), (3.11), (3.10), EJ¥(X,; 4,) = 0 and (1.1), we obtain
(3.14) E(H¥(Xoi 9,) = 1, 9(Xo; 9,,8)}" = o(1).
Let Z,,, i=1,...,n, j=1,...,n, be random variables such that
Xoy Xpooos Xoy Yoty oo, Yy s 24y, Z,,, are iid. and define
(3.15) 3,(8) = 0"V 4 07t XA (WAt Zuse ) ~ 0)), OO,
i=1
and
(3.16) Yo = ET.(9,) =n"° + EY'(4,).
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By (1.1), (3.4), the central limit theorem and the symmetry and positivity of ¢/,
the limit points of {y,} are positive and finite and by (1.3) and the continuity
and boundedness of ¢/,

(3.17) ¥ — Ya=0(1)

holds. Consequently, (3.14) implies

(3.18) E(7,94(Xp; 9,) — J(Xg; 9,,8)} = o(1).
Furthermore, we have

?n( 0") - 7n
and, hence, the independence of §,(3,) and J¥(X,; ¥,), the finiteness of the
limit points of {y,} and the formulas (3.14) and (3.4) yield

(3.20) B{(7:" = #21(8.))I4(Xg; 8,)}" = 0(1).

Combining (3.18) and (3.20) we see that we may define the estimator sequence
(3. 5()J¥ (-5 )} of J(-;-, &) satisfying (1.4). This estimator sequence is based on
samples of size nk, + n? and, consequently, in the preceding part of the proof it
would have sufficed to consider {9,} with |8, — & = O(n~2k, /%) instead of
Oo(n~12).

From the preceding, we conclude that there exists an estimator sequence
{J(;-)) based on X,,..., X, satisfying (1.4). Let {p,,} be as in (2.8) and define

J(x;8) = (x;0) +t, (X, ;... X,)— 0

2
(3.19) E(v,:l—?,:l(ﬂ,,»%E( ) < n¥5var9,(9,) < VS

(3.21) ~(n—-p,)" i J,(X;0).

i=p,+1

With the help of (1.3), (1.1) and (1.4) and by taking a conditional second moment,
given X,,..., Xnn’ we obtain

F(x; 8,) = (w3 8,) = [, (35 9,) dP(y)

n

+(n-p,) L {J(Xi; 8., 8) — J,(X;;9,)
i=p,+1

(3.22)
+ [ ) dP(3)) + 0n"77)

5, (% 9.) = [,(¥; 8,) dP() + 0p(n"1/2),

where the o0x(n"'/?) term does not depend on x. Consequently, {J(-;-)}
satisfies both (1.4) and (1.5). O
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Theorem 3.1 is also valid if the uniform integrability condition (3.4) is
replaced by the weaker conditions

(3.23) limsup /IJ(x; d,,8) |21{|J(x; o=y APy (x) =0, forall e > 0,

n— oo

(3.24) hmsupf|J(x 3.8 dP, (x) < oo.

n—oo

Since the right-hand side of (3.8) can be estimated by
|J(x; 3,,8) l[l{lJ(x; 3., 8)>en/?) T 8],

the left-hand side of (3.9) can be bounded with the help of (3.23) by &2 times
the left-hand side of (3.24). Furthermore, (3.23) and (3.24) yield the natural
(Lindeberg) condition in the argument immediately after (3.16).

Note that in Theorems 2.1 and 3.1 we have constructed the sequence { J,)
from the sequence {T,,} and vice versa, and not f, from T, and T, from dJ, for n
fixed. A finite sample inequality, which exhibits a relatlon between J and T, is
given in Klaassen and van Zwet (1985) for situations in which, given 3, there
exists a nontrivial sufficient statistic for g.

4. Discussion and examples. Theorem 3.1 shows in particular that for
locally asymptotically linear adaptive estimators to exist, there should be esti-
mators of the efficient influence function consistent in the sense of (1.4) and (1.5).
For simplicity take d = 1 and consider a parametric submodel with densities
f(-;%,m), & =n € R, with respect to some o-finite measure p. Arguing heuristi-
cally, we see that (1.5) means that there should exist an estimator 4, of 7
satisfying

@n ] os s 0,10 155 0, d(e) = 0n).

If f(-; &, n) is smooth in 7, this becomes

(42) ‘”(m-n)f[ log f(x; ®,n) [%bg f(x;ﬂ,n)]f(x; 9, m) dp(x)

= 0p(1).

Since typically n'/%(3, — 1) # 0p(1) in smooth models, this shows that the last
factor of the left-hand side of (4.2) has to vanish. But this is exactly Stein’s
necessary condition for adaptive estimation [see Stein (1956) and (3.1) of Bickel
(1982)].

However, also if f(-; &, n) is not smooth in 7, (4.1) might hold. As a simple
example consider

f(x;9,7) = 19_16_3_1(‘”_")1("’00)(36), 9> 0.
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Here, the left-hand side of (4.1) equals
0 -1
n1/20_2/ (2 = fip = )15 (%) ™D gy = p17237%(n — §,) V O
n X

and, with ), the smallest of X,,..., X,, (4.1) is satisfied.

Usually, in situations in which the density f(-; #, 1) is not smooth in 7,
estimating 7 is less difficult than in the smooth case and there exist estimators
f, with n'/2(4, — 1) = 0p(1). Then, approximating (3/d9)log f(-; 3, 1) by a
function [,(-; &, n), which is differentiable in 5 with derivative bounded in
absolute value by k&, say (k, = o), (4.1) becomes

(4.3) /2 [L(x3 9, 5,)f(x; 9, 1) du(x) = 04(1),
which yields the condition

(4.4) n'2k, (1, — m) = 0p(1),

provided n'/%(1,(x; &, n)f(x; &, n) du(x) = 0o(1).

A semiparametric estimation problem in which (1.5) is satisfied because of the
phenomenon (4.4) and for which, in fact, adaptive estimators exist, is the
following [cf. (4.18)]. Fix a > ;. Let Y,,..., Y, be ii.d. one-dimensional random
variables with distribution function H and density A, which is symmetric about
0, has finite Fisher information I(h) = [(h’/h)*h and has heavy, but not too
heavy, tails in the sense that

(4.5) lim zH(—alog z) = o, lim zH(-2) =0

hold. Loosely speaking, H has heavier tails than Laplace with density Lo~ 'e~!'1/*
and less heavy tails than Cauchy. The observations X, ..., X, are structurally
defined by

(4.6) X, =1+ e""? i=1,...,n, % 7€R,

and one is interested in estimating ¢ with g = (5, h) as a nuisance parameter.
Note that 7 is identifiable via the support of X, and that 4 is the point of
symmetry of the distribution of log(X; — 7). Applying both Theorems 2.1 and
3.1 we shall prove

THEOREM 4.1. In model (4.6) adaptive estimation of & is possible, i.e., there
exists an estimator sequence {T,} of & satisfying (1.3) for the efficient influence
function

(4.7) J(-;9,8) = —I"'(h)R'/h(log(- — n) — B)L, )(+)-

PrOOF. Denote the order statistics of X,..., X,, by X;) < --+ <X, and
let ¥: R — R be an odd strictly increasing and bounded function with a bounded
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derivative. Define T', as the unique solution of
[2n/3]

(4.8) n 2 ¥ Y(log(X — X)) — 6) = 0.
i=[n/3]

Because of

(4.9) Xy —n=o0p(n""),

it can be shown that T‘n satisfies (2.3). The finiteness of I(h) implies local
asymptotic normality [see, e.g., Hajek (1972)] and, hence, contiguity of the
probability measures induced by (Y; + 4,...,Y, + ) and (Y, + 9,,..., Y, +4,),
respectively. Consequently, also the contiguity (2.1) holds and (2.2) may be
deduced from contiguity and the existence of translation equivariant adaptive
estimators satisfying (1.3) for the symmetric location problem [cf. (4.7) and the
discussion after (2.2)].

In view of all this and Theorem 2.1, it suffices to show the existence of an
estimator of the influence function (4.7) satisfying (1.4) and (1.5). Let 7, satisfy
M, =1, 1, — 1 = 0o(n™%). Denote the total variation distance between the distri-
butions of log(X, — 1) and log|X, — 7,|, both under (49,, 0, k), by d(n, 1,,). With
a, = —alog(n/logn), (4.5) yields

n

d(n,n,) < P(log(X, — ) < a,) + P(log|X, — n,| < a,)
+[[A(z = 0,) = (e + m, — ) eh(log(e” + n, — ) - 8,)| dz
< 2H(1n0g(e"" +ta, =) = 9,)
@10) L[N w)or(er 4 ) - 8)|(e2 + ) e sz

M~ N
<o(1/logm) + ["'[" | IK() = W()le 0 dyat
og(e“n

< o(1/logn) + (n, — n)e™*(1 + I'/*(h))

= o((log n)_1/2).

Let m = m, = [loglog n]. Again, from the existence of translation equivariant
adaptive estimators satisfying (1.3) for the symmetric location problem, it
follows by Theorem 3.1 that for n known there exists an estimator sequence
(J(2; 0)) of J(z0,h)= —I"Y(h)W /h(z — 0) based on log(X;— 1), i=
1,..., m,, satisfying

(4.11) f{J (23 9,) = Jy(2; 8,, 1)} h(z — 9,) dz = 0p(1).

Since 7 is unknown, we estimate it by #1,, the smallest of X, ,..., X,, and we
let J(-;-) be based on log|X; — 9,l, i =1,..., m,. In view of the ch01ce of m,
(4.10) and the analogue of (4.9) for 4,, a contlgulty argument shows that
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{J(+;+))} still satisfies (4.11). Note that J(-;- ) is based on the complete sample
X,,..., X, now.

Replacmg J, by (J, A mY/?) v (—ml/?), we see that we may assume without
loss of generahty,

(4.12) sup |J,(2; 9,)| = Op(mi/?).

Let & be the logistic density. By (4.12), (4.11), the continuity of translations in
L, and the finiteness of I(h) and [u2k(u) du, we have

f{fJ z—m lu; ﬂ)k(u)du—J(z, n,h)}zh(z—ﬂn)dz

< [[{g(z = m7'u; 8,)[ W22 - 9,) - B/2(2 = 8, — mu)]
+[ (2 = m™u; 8,) = J (2 = mTu; 9, B)| K2z — 8, — mT1u)
(413) [z - m s 8,, B)RV2(2 — 9, — mu)
~d(2; 8, BYRV2(z — 9,)] } R(u) dudz
< mf/[fo’""“gh'h-vz(z e d{] k(u) dudz + o,(1)

=0(m™") + 0,(1).

Consequently, replacing J(-;- ) by [ J(- — m™'u; )k(u) du, we see that without
loss of generality we may even assume

(4.14) sup

ar
e J(z; 9,) =Op(m;“/2), r=0,1

[see also the proof of Lemma 2.1 of Bickel and Klaassen (1986)]. Replacing
n(z 0) by id(z; 0) — 1J,(20 — z; 0), we see that we may also assume that

J(z; 0) is odd in z about 9.

Let x: R — [0, 1] be symmetric about 0, have a nonnegative bounded deriva-
tive on (—0,0), be equal to 1 on [—1,1] and vanish outside [—2,2]. Let
¢, = 2/loglog n and define

(4.15) J2(2:0) = I, (2 0)x(c.(z - 0)).

Also, J*(z; 0)is odd in z about # and satisfies (4.11) and (4.14); note that
(416) [{x(2; 9,) — J (2 8,)} k(2 - 8,) de = O,(mH(~c;")) = 0,(1).
Our estimate of J(-;-, g) in (4.7) will be

(4.17) J(x;8) = J(x; 6; X,,..., X,) = J*(log(x — X,,,); )L x,, w)-
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Indeed, (4.17), (4.14), the symmetry of h, the properties of x and J,* and (4.9)
yield

nl/2

[Iul; 8,) Py, ()

= pl/2

fjn('fl +e% 9,)h(z - 9,) dz\

< nl/? + n1/20p( m'/2)

f J*(logle® + n — Xl; 9, )h(z = 9,) dz

X flog(x‘”—")x(cn(log|ez +n =Xyl — 19n))h(z - 9,) dz

(4.18) 1/2 Xyy=n _a_ .
<n2 [ fo T (5 9,)
X1[0,2](cn|u - 19n‘)

(e =¢) '

u=logle*—¢|

h(z - 9,)dz

+nl/20p(ml/2)x(Cn(IOg(X(l) -n) - 19,;))
<m0, (m?) [ [*7 e /o dEh(z = ) dz + 0,(1)

= Op(1)9
ie., J(-;-) satisfies (1.5). Furthermore, (4.17), (4.11), (4.14), the properties of x
and (4.9) imply

[ (a3 8,) = I3 9,,8))" 4o, 4(5)

— [T {Ir(ogler + n— Xq)s )

log(Xq,—n)
—e]s(z; 0n’ h)}2h(2 - ‘l9'n) dz
+ flog(X(l,—ﬂ)_"nI—z(h)(h')2/h(y) dy

— 0

(419) - (© {Jx(log(e® +n = X); 8,)
log(X1,—n)

—J*(2; 9,)) h(z - 8,) dz + 0,(1)

2
< 0 {/X(l)_"lop( m3/2)e—0,,+2/c,, df}
log(Xqy—m) 0

Xh(z —¥,) dz + 0,(1)
= 0,(1)
and, hence, (1.4). O
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Let us consider now locally asymptotically linear estimators, which are not
necessarily efficient (or adaptive). Arguing heuristically as in the beginning of
this section, we see that (1.5) means that in smooth parametric submodels the
following analogue of Stein’s condition should hold: '

(4.20) fJ(x; 3, n)[a—ilog f(x; 9, n)] f(x; &, m) du(x) = 0.

In nonsmooth parametric submodels, it should be possible to estimate n con-
sistently at a rate faster than n'/% As an example of (4.20), consider X,..., X,
ii.d. with density g(- — ) on R; the unknown g has a unique median 0 with
g(0) > 0. The influence function J(x; ¥, g) = (2g(0)) !sgn(x — 4) obviously
satisfies (4.20). Estimating 1/g(0) by 3n"*( X, 042y — Xgno-nrp)r Xay <

- < X(,,), the order statistics, we see that there exists an estimator J, of J
satisfying (1.4) and (1.5). Hence, it should be possible to apply Section 2.
However, in this case the sample median is the natural locally asymptotically
linear estimator.

In the symmetric location problem,

(4.21) X,,...,X, iid.density h(-— 9), € R, h symmetric about 0,

the M-estimator 0:, defined by ¥ ¢(X;— 0:,) =0, ¢y odd and sufficiently
smooth with derivative ¢, has influence function ( [’h) " %(x — ¥) [see (3.2.14)
of Huber (1981)] and is asymptotically linear in this influence function [see
Section 6.3 of Huber (1981)]. In this situation too, (4.20) is satisfied.

Of course, also the phenomenon (4.4) is not restricted to efficient estimation as
the following generalization of Theorem 4.1 shows.

THEOREM 4.2. Let = { h|h symmetric density with distribution function H
satisfying (4.5)}. If in the symmetric location model (4.21) with h € #, C ¥,
there exists an estimator sequence of ¢ satisfying (1.3) for the influence function
J(z; &, h) = Jy(z — ¥; h), which is odd in z about ¥, then in model (4.6) with
nuisance parameter g = (0, h), n € R, h € 5, there exists an estimator se-
quence of ¥ satisfying (1.3) for the influence function

J(-;9,8) = Jlog(- —m) — &; k)1, ().
PROOF. Same as that of Theorem 4.1. O

Under (1.1), (1.2), (2.1), (3.23) and (3.24) it can be shown that (1.3) implies the
possibility of constructing confidence sets for 4, based on 7,, which are asymp-
totically of a prescribed level. A proof of this statement can be based on
Theorem 3.1. However, it is omitted since it should be possible to make the
bootstrap work here by an appropriate strengthening of (1.3).
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