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COMPARISONS OF OPTIMAL STOPPING VALUES AND
PROPHET INEQUALITIES FOR NEGATIVELY
DEPENDENT RANDOM VARIABLES

BY YoseF RINOTT! AND ESTER SAMUEL-CAHN

Hebrew University

Let Y = (Y},...,Y,) be random variables satisfying the weak negative
dependence condition: P(Y; < q;|Y; < ay,...,Y,_; < a;_;) < P(Y; < a;) for
i =2,...,n and all constants q,,..., a,. Let X = (X, ..., X,,) have indepen-
dent components, where X, and Y; have the same marginal distribution,
i=1,...,n. It is shown that V(X) < V(Y), where V(Y) = sup{EY;: ¢ is a
stopping rule for Y}, ..., Y,}. Also, the classical inequality which for nonnega-
tive variables compares the expected return of a prophet E{Y; vV --- VY, }
with that of the statistician V(Y), i.e,, E{Y; vV --- VY,} < 2V(Y), holds for
nonnegative Y satisfying the negative dependence condition. Moreover, this
inequality can be obtained by an explicitly described threshold rule #(d), i.e.,
E{Y, Vv --- VY,} < 2EY,,,. Generalizations of this prophet inequality are
given. Extensions of the results to infinite sequences are obtained.

1. Introduction. We consider stopping rules for negatively dependent ran-
dom variables satisfying the following condition:

CoNDITION (*). The random variables Y,,Y,,... are said to be negatively
lower orthant dependent in sequence [in short: (*)] if
(1.1) P(Y, <a)Y,<a,...,Y,_,<a, ;) <P(Y.<a,)
for i = 2,3,... and all constants a,, a,,... (whenever the conditional probabil-
ity is defined). Any finite sequence Yj,...,Y,, satisfying (1.1) for i = 2,...,n is
also said to satisfy (*).

It is readily seen (see Section 2 for definitions) that negatively associated or
negatively dependent in sequence variables [Joag-Dev and Proschan (1983)]
satisfy Condition (*). Examples of variables satisfying Condition (*) can, there-
fore, be obtained from these variables; they include the multinomial, Dirichlet,
multivariate hypergeometric distributions, the multivariate normal distribution
with negative correlations, permutation distributions including random sampling
without replacement and clearly independent random variables.

We consider both finite and possibly infinite stopping rules. For completeness
we define the notation needed here.
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DEeFINITION. Let Z,,..., Z, be a sequence of random variables and let F; be
the o-field generated by Z,,...,Z;,, i = 1,2,... . The extended positive integer-
valued random variable ¢ is an extended stopping rule for Z = (Z,,..., Z,) if
{t=1i} € F foralli=1,...,nanditis a stopping rule for Z if also P(¢ < n) = 1.
Similarly, if the sequence Z,,Z,,... is infinite, ¢ is a stopping rule if
P(t < 0) = 1.

We shall denote the set of stopping rules for a sequence by T, and the class of
extended stopping rules by T, where we suppress the dependence on the
sequence if no confusion is likely. For any extended stopping rule ¢, Z, is defined
as in Krengel and Sucheston (1978) by

(1.2) Z,= Y. ZI(t=i) and Z,= Y ZI(t=1i)
i=1 i=1

for the finite and infinite sequences, respectively. The existence of a finite first

absolute moment, i.e., E|Z;| < oo, will be assumed for all variables throughout.

The optimal values are defined as

(1.3) V(Z) =sup{EZ,:te T} and V*(Z)=sup{EZ,:te T*}.

The values V(Z,, Z,,...) and V*(Z,, Z,,...) are defined correspondingly.

Consider Y;,..., Y, satisfying Condition (#) and let X,,..., X,, be indepen-
dent random variables, such that X, ~ Y,,i.e.,, X; and Y; have the same marginal
distribution, ¢ = 1,..., n. In Section 2 we show that V(X) < V(Y), generalizing
results of O’Brien (1983) concerning sample with and without replacement from
a finite population. These results extend to V* and to infinite sequences. Sec-
tion 3 is devoted to “prophet inequalities.” A prophet has full foresight of
the whole sequence and, hence, his expected return is E{max,_, ,Z;} =
E{Z, Vv --- VZ,}. Krengel and Sucheston (1978) show that for any sequence
X,,..., X, of nonnegative independent random variables,

(1.4) E{X,V - vX,} <2V(X)

and that 2 is the smallest constant for which (1.4) holds for all sequences of
independent nonnegative random variables. Hill and Kertz (1981) show that the
inequality in (1.4) is strict (in all nontrivial cases). We extend the preceding
result to nonnegative random variables satisfying Condition (*). Actually, we
show a slightly stronger result, namely that there exists a “threshold rule” #(b)
such that for any (nontrivial) nonnegative Y,,..., Y, satisfying Condition (*),

(1.5) E{Y,V -+ VY,} <2EY,,,
In particular, under Condition (*), we obtain the prophet inequality
(1.6) E{Y,V - VY,} <2V(Y).

A result of Kennedy (1985) is also generalized. Similar results hold for infinite
sequences. Most of our results are obtained by simple arguments, in fact often
simpler than the proofs of the previously known results.
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2. Comparison of optimal values. For two random vectors, X =
(Xy,..., X;)and Y = (Y3,..., Y,), the notation X, ~ ¥, indicates that X, and Y,
have the same marginal distribution.

THEOREM 2.1. If Y,,...,Y, satisfy Condition (*) of negative dependence,
X5,..., X, are independent and X;~ Y, i =1,...,n, then V(X) < (Y) and
V*X) < V*(Y).

REMARK. Throughout this article we write increasing for nondecreasing and
decreasing for nonincreasing. For functions of several variables, increasing means
nondecreasing in each variable.

LEMMA 2.2. Let h(y), y € R, be an increasing nonnegative function and Y
satisfy Condition (*). Then assuming the expectations to follow exist,
(2 1) E{h(Yi)I(Yl <a1""’Yi—l <ai—l)}

' > E{h(Y)}E{(I(Y, < a,,...,Y,_; <a,_,))}.

PROOF. First note that Condition (*) can also be written as

i-1 i—1
(2.2) Pl N {Y}<aj},Y,~2ai) ZP(Kzai)P(n {Y}<aj})

j=1 J=1
for i = 2,..., n. Hence, the lemma is true when # is an indicator function. Now
using the standard approximation of A by e£¥_,I{v: h(v) > ke}, then letting
¢ — 0 and noting that I{v: h(v) > ke} equals I{[b,, «0)} or I{(b,,, x)} for some
b,,, yields the result. O

REMARK. Adding a constant to A& and standard approximations imply that
Lemma 2.2 is true also when A is not necessarily nonnegative.

For any sequence of random variables Z,,..., Z, and any vector of constants

¢ =(cy...,c,), where possibly ¢, = —oo, define the extended stopping rule
t(Z, c) by
(2.3) HZ,¢) - {nﬁn{i <n:Z;>c¢;}, ifsuch a value exists,

' ’ 0, otherwise.

We shall write Z,, for Z,4 ..

LEMMA 23. LetZ,,...,Z, be any random variables and define te) = HZ,c)
by (2.3). If ¢;> —o0 foralll1 <i<n—1andc,=0, then

(2.4) Zyey =€ + [Z, -]+ > {ci - +[Z - ci]+ }I(t(c) >i—1).
i=2
If ¢;> — o0 for i < k and c;, = — o0, where 2 < k < n, the summation in 24)

should be taken up to i = k only, and the interpretation of the last summand is
(Zy = c4-)I(He) > k= 1). If ¢, = — o, then Z,, = Z,.
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Proor. We consider the case ¢; > — o0, i = 1,..., n only, since the modifica-
tions needed if ¢, = — oo are straightforward:
n n
Zyey = Y ocd(t(e) =i) + X [Z,— ¢;]I(t(e) = i)
i=1 i=1

éc,.[z(t(c) > i—1) - I(t(e) > i)] + é[zi — ] I(te) > i — 1)

cot Y (e )I(He) > i—1) + X [Zi— e]* I(t(e) > i — 1)
i=2 i=1
and (2.4) follows. O

ProoF oF THEOREM 2.1. For the sequence X|,..., X, of independent vari-
ables, it is well-known [see, e.g., Chow, Robbins and Siegmund (1971), Theorem
3.2] that the optimal stopping rule has the structure #X,c*), with ¢} = 0 for
extended rules and ¢} = — oo if P(¢ < n)=1 and

(2.5) ci*_l=E(Xchi*)=ci*+E[Xi—ci*]+ fori=2,...,n,

where for i = n and ¢} = — oo the interpretation of the right-hand side is EX,,.
Lemma 2.3 implies that for the optimal rule #X,c*), V(X) = EX, ., = ¢ +
E[X, — ¢}]". For the sequence Y,,...,Y,, the rule #Y,c*) with ¢* defined
previously will not be optimal in general; hence, V(Y) > EY, .«
Note that I(&(Y,e*) > i— 1) = I(Y; < ¢},...,Y,_; < ¢* ). Therefore, apply-
ing (2.4) and then (2.1) we obtain

EYt(c*) = Cl* + E[Yl - Cf‘]+
+ ) E{(c;" —cr + [V, -] ) I(U(Y,e*) > i— 1)}
i=2
(2.6) <cr+E[Y,—c]"

+ ﬁ"z(ci* —cr, +E[Y, - ci*]+)E{I(t(Y,c*) >i-1)}.

Since X; ~ Y, for i = 1, ..., n, (2.5) implies that the latter expression reduces to
¢ + E[X, — ¢}]* and we conclude that

V(Y) = EY,ouy = cff + E[X,—c}] = V(X)
and similarly for V*. O

THEOREM 2.1'. If Y,,Y,,... satisfy Condition (*) and X,, X,,... are inde-
pendent, X; ~ Y, i=1,2,..., then

(X, X,,...) < V(Y,Y,,...) and V*(X,X,,...) < VXY,Y,,...).
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ProoF. For any sequence of random variables Z,, Z,,... with E|Z;| < oo,
define
b, if Z >b,
Z(a,b)={Z2;, if a<Z <b,
a, if Z;<a.

Set (Z,(a, b),...,Z,(a, b)) = Z(a, b) and consider now the values
V(Z(a, b)) = sup{EZ,(a, b): te Tz(a,b)},
V'(Z(a, b)) = sup{EZ,(a, b): t € T,}.
Theorem 4.8 of Chow, Robbins and Siegmund (1971) states that
2.7) V(z,Z,,...)= lim lim nlingo v'(Z(a,b),...,Z,(a,b)).

b—o0 a— —o0

Note that for each n, Yy(qa, b),..., Y,(a, b) satisfy Condition (*) and, hence, by
Theorem 2.1,

V(X\(a, d),..., X,(a, b)) < V(Y(a, d),...,Y,(a,b)).

The inequality also holds for V'’ since V'(Y(a, b)) > V(Y(a, b)) and by indepen-
dence V’(X(a, b)) = V(X(a, b)). Taking limits as in (2.7), we now obtain
(X, X,,...) < (Y, Y,,...). For V* the result follows since

VX, X,,...) = VXX, X$,...) = V(X{, XF,...)

< V(Y. Y,...) < VXY, Y,,...). a
DEFINITION. The random variables Y}, ..., Y, are said to be negatively lower
orthant dependent (NLOD) if
n
(2.8) P(Y,<a,,...,Y,<a,) < []P(Y,<a,;)
i=1

for all a,,...,a

REMARK. Note that if (Y},...,Y,) satisfy Condition (*), they are NLOD.

PRrROPOSITION 2.4. LetY,,...,Y, satisfy (2.8) and let X,,..., X,, be indepen-
dent with X; ~ Y,, i =1,..., n. Then for any ¢, (Y, ¢) is stochastically smaller
than t(X, ¢), that is, P(¢(Y,c) > i) < P(¢(X, ¢) > i).

PROOF.

P(t(Y,e) 2i) =P(Y;<¢;: j<i) < i]:[jP(lg <¢;)=P(tX,e)2i). O

ProPOsITION 2.5. LetY,,...,Y, satisfy Condition (*) and let X,,..., X,, be

independent with X; ~ Y,, i = 1,..., n. A sufficient condition for EY,,, > EX,,
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is that c, = 0 or ¢, = — o0 and
(2.9) ¢ 2¢+E[X,—-¢c]", i=2,...,n.

ProoF. In (2.6), replace ¢* by ¢ and E{I(«Y,c¢) > i — 1)} by E{I(t(X,c) >
i — 1)}, using Proposition 2.4 and (2.9). By (2.4), the relation (2.6) will then read
EY,, > EX,,. O

We now briefly discuss the relation of Condition (*) and other concepts of
negative dependence.

DEFINITION [Joag-Dev and Proschan (1983)]. Random variables Y,,...,Y,
are said to be

{ (a) ne,?'atively associated (NA) if for every pair of disjoint subsets A4,, A, of
1,...,n},
Cov{ f|(Y;,i € A)), (Y}, j € 4;)} <0,

whenever f, and f, are increasing;

(b) negatively dependent in sequence (NDS) if for i =2,..., n,
Yy, ..., Y,_,|Y; = y is decreasing stochastically in y,, that is, for any increasing
function f E[ {(Y,,..., Y, ,)|Y; = 3] is decreasing in y,.

The proof of the following proposition is standard.

ProposITION 2.6. If Y,,...,Y, are either NA or NDS then Condition (*)
holds.

REMARK. The variables (Y}, Y,, Y;) taking the values (0,0, 1), (0,1, 0), (1,0, 0)
and (1,1,1), each with probability }, satisfy Condition (*); they are neither NA
nor NDS.

The next result, due to O’Brien (1983), follows as a special case from our
results.

CoRroOLLARY 2.7. Let (I,,...,I,) and (oJ,,..., J,) denote random sampling
with and without replacement, respectively, from {1 .. N}, n<N. Let X, =
ri(I,) and Y, = r,(J,), where r(i) < rk(j) ifi<j, k=1,...,n. Then V(X) <
V(Y).

PRrooF. Joag-Dev and Proschan [(1983), 3.2(a)] show that J,,..., J, are NA
and that increasing functions defined on disjoint subsets of a set of NA random
variables are NA. Hence, Y;,...,Y, are NA. Applying Proposition 2.6 and
Theorem 2.1 the result follows. D

For further discussion and examples of NA, NDS and NLOD variables, see
Joag-Dev and Proschan (1983) and Block, Savits and Shaked (1985) and refer-
ences therein.
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REMARK. Proposition 2.4 does not imply that if Y satisfies (*), the optimal
rule for Y is always stochastically smaller than that for the corresponding
independent X,..., X, with X; ~ Y, for i = 1,..., n. This is seen to be false by
the following example: Using the notation of Corollary 2.7, with N =3 and
n=21let r(l)=4, n(2) =5, r(3 =6 and r,(1) = 1, r,(2) = 3 and ry(3) = 6.
Easy inspection yields that when sampling with replacement the optimal rule
always stops with the first observation, while when sampling without replace-
ment the optimal rule stops with ¢ = 2 if J, = 1.

3. Prophet inequalities. For any constant ¢ and ¢ = (c,..., c), write #(c)
instead of #(Z, ¢). The extended stopping rules #(c) are called threshold rules and
are simpler to handle in applications than most other rules.

In the present section we shall, for simplicity, consider only nonnegative
random variables Y, and we also exclude the trivial random variables Y, = 0. All
results can be generalized in an obvious way, replacing V by V*and Y, v - - v Y,
by Y" V... VY

Theorem 3.1, which uses a method developed in Samuel-Cahn (1984), shows
that for random variables satisfying Condition (), the prophet inequality can be
obtained by a threshold rule. [In Samuel-Cahn (1984), (3.1) (following) was
proved only for independent random variables with weak inequality.]

THEOREM 3.1. LetY,,...,Y, be positive random variables satisfying Condi-
tion (*) of negative dependence. Let b be the unique constant satisfying
b=2% E[Y,— b]*. Then

(3.1) E{Yl VAR VYn} < 2EYl(b) < 2V(Y).
ProOF. Since Y,V --- VY, < b+ X [Y. - b]*, it follows that

(3.2) E{Y,V ---VY,} < 2b.
Thus it suffices to show that EY,,, > b. Now

EY = bP(Y,V -+ VY, 2 b) + 3 E([Y, - bI(t(b) = i)}

i=1

= bP(Y,V - VY, > b) + ¥ E([%, - b]° L(e(b) > i - 1))

(3:3) >bP(Y,V -+ VY, >b)+ anE[Y,.— b]" P(¢(b) >i-1)

i=1
n
>bP(Y,V -+ VY, >b) + P(t(b) = ) Y E[Y, - b]"
i=1
=bP(Y, V- VY, >2b)+P(Y,V--- VY, <b)b=b.
The first inequality in (3.3) follows from (2.1) and the strict inequality follows,

since by assumption there exists an i such that P(Y,> b) > 0 and, for such i,
E[Y; - b]*P(t(b) > i — 1) > E[Y, — b]* P(t(b) = ).
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Note that #(b) is not necessarily a finite stopping rule. We can replace ¢(b) by
t'(b) = «Y,(b,..., b,0)) and EY,, < EY, ;. For Y nonnegative, ¢'(b) stops
with probability 1. O

The next theorem states that for any sequence Y of nonnegative random
variables, the expectation of its maximum is bounded by twice the V value of
independent random variables X; with X, ~ Y,.

THEOREM 3.2. Let Y be any positive vector and let X; be independent,
X, ~Y,i=1,...,n. Then

(3.4) E{Y,V --- VY,} <2V(X)
and 2 is the smallest constant for which (3.4) holds for all such Y.

Proor. By Theorem 3.1 applied to X and (3.2) we have
V(X) = EX,,, > b= E{Y, V --- VY,}/2,
since the b determined for X is the same as that for Y. O

Immediate conclusions from Theorems 3.2 and 2.1 are:

COROLLARY 3.3. Let Y be any positive random vector. Let X; be indepen-
dent, X;~ Y, i=1,...,n, and assume V(X) < V(Y). Then E{(Y, V --- VY,} <
2V(Y).

COROLLARY 34. LetY,,Y,,... be any sequence of positive random variables.
Let X; be independent, X;~ Y, i=1,2,..., and suppose V(X,, X,,...) <
(Y, Y,,...). Then E{N2.Y} <2V(Y,,Y,,...). In particular the conclusion
holds for Y,,Y,,... satisfying Condition (*).

Proor. This follows immediately since
E(VE,Y) = lim, E(Y,V - VY,),

whereas any random variables Z,, Z,,... satisfy V(Z,, Z,,...) >
lim,_ V(Z,...,Z,). Clearly, in all the preceding results 2 is the best possible
constant. O

For Z,,...,Z,, denote the n order 'statistics by Z} > 23 > --- > Z,.
Kennedy (1985) proved the following generalization of the usual prophet in-
equality: For any 1 < k < n and any nonnegative independent X,,..., X

; s
(3.5) E{ 2’%} < (k + 1)V(X).

Clearly the usual prophet inequality is obtained by setting 2 = 1. Kennedy also
shows that the constant (k2 + 1) in (3.5) is the best possible, by taking
Y=:-=Y, ,=p,Y,=1 or 0 with probability p and (1 — p), respectively
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(0 < p <1). Then

p=0

k
lim E{ Y Y(:‘)} V(Y)| = lim (p(k+1—p)/p)=Fk+ 1.
i=1 k=0
We strengthen Kennedy’s result as follows.

THEOREM 3.5. Consider positive Y,,Y,,... and let X; be independent, X; ~
Y,i=12,....

Q) If (X,,..., X,) < W(Y,,...,Y,), then forall 1 < k < n,

k
(3.6) E{ Y Y(;‘)} <(k+1)V(Y,,...,Y,).
i=1
(ii) Let Y, =lim, Y% If V(X,, X5,...) < V(Y,,Y,,...). Then for k=
L2,...,
k
(3.7) E{ ‘Z Ym} <(kE+1D)V(Y,Y,,...).
=1

In particular (3.6) and (3.7) hold when Y,, Y,, ... satisfies Condition (*).

PrOOF. Define the constant b as in Theorem 3.1. Clearly L}, Y} < kb +
» [Y; — b]* and, hence, E{X% Y7} < (k + 1)b. But by Theorem 3.1, V(Y) >

i=1

V(X) > EX,;, > b, hence, (3.6). (3.7) is obtained in an obvious way by taking
limits. O
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