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A NOTE ON THE BUYER’S PROBLEM

By AsHiM K. MALLIK
University of Georgia

Bather considered a buyer’s problem and reduced it to an optimal
stopping problem. In this note it is shown that this optimal stopping problem
can be related to the sequential testing of the sign of the drift parameter of a
Wiener process problem considered by Chernoff. Hence the asymptotic ex-
pansions for the sequential testing problem can be used in the buyer’s
problem.

1. Introduction. Bather (1983) considered a buyer’s problem that he re-
duced to the following optimal stopping problem. Qne observes a standard
Wiener process Y(s) in —s scale, i.e., E(dY(s)) = 0 and V(dY(s)) = —ds. If one
stops at Y(s) = y, one’s reward function is

(1.1) r(y,s) =1yl —s7"
One has to find a stopping rule 7, that maximizes the expected reward, i.e.,
(1.2) y,s,7) =supEr(y + Y(7),s — 7).

Bather showed that the optimal boundary 3(s) corresponding to 7, is monotone
and gave an approximation for ¥(s) when s = 0 and s — oo.

In this note it is shown that the preceding optimal stopping problem can be
related to the Bayes sequential testing problem for the sign of the drift parame-
ter of a Wiener process considered by Chernoff (1961, 1964, 1965, 1972). Hence
the asymptotic expansions of the optimal boundary j(s) and the optimal reward
f(y, s) are obtained by using the asymptotic expansions for the Bayes sequential
testing problem in Breakwell and Chernoff (1964) and Chernoff (1965).

2. Relation between the Bayes sequential testing problem and the
buyer’s problem. Chernoff (1961) considered a Bayes sequential problem for
testing the sign of the drift parameter of a Wiener process. He showed that this
problem can be reduced to the following optimal stopping problem. We observe a
standard Wiener process Y(s) in —s scale. If we stop at Y(s) = y, our loss is

(2.1) d(y,8) =57+ 8 [¢(a) — |al(1 - ¢(al)],

where

— o0
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We want to find a stopping time 7, such that it minimizes the expected loss, i.e.,
(2.2) d(y,s) = infE(d(y + Y(7),s — 7).
b

Breakwell and Chernoff (1964) and Chernoff (1965) obtained the asymptotic
expansions for the optimal boundary and minimum expected loss for s — 0 and
s = o00. Let us take the symmetric solution of the heat equation,

(2.3) U(y,s) =s2[¢(a) — 1a + a®(a)].

If we subtract U(y, s) from d(y, s), the optimal boundary will not change. For
y>0,

(2.4) d(y,s) — U(y,8) =s7' - 3.
For y <0,

(2.5) d(y,s) — U(y,s) =s7' + 3.
Hence from (2.4) and (2.5) we have

(2:6) d(y,s) — U(y,s) =s7' = 3]yl
Let

(2.7) P(y,s) =d(y,s) - U(y,s),

(2.8) Y*(s*) = ay(s),

(2.9) s* = a’s.

It is well known that Y*(s*) is a standard Wiener process in —s* scale. From
(2.6)—(2.9) and choosing @ = 271/3 we get

(2.10) P(y*, s*) = s 2/3P*(y*, s*),
where

P(y*,s%) = s* 71 = |yI*.
Bather’s (1983) reward function r(y, s) in (1.1) is the same as —P*(y*, s*).
Hence from the optimal stopping boundary for the Bayes sequential problem in
Breakwell and Chernoff (1964), Chernoff (1965, 1972) and (2.6)-(2.10), one can
get the following asymptotic expansions for y(s) and #(y, s):

-1

(2.11)  a(s) =5(s)/sV2 = [logs3 — log27 — 6(log(4s%)) ™" + - -- ] ,
(212)  @(s) =5(s)/s*? = 1s¥2[1 — Ls3+ Ls®— ... ] ass -0,
(2.18) #(y,s) = Ks~2¢(y/5Y?) — 22*U(y,s) ass > o,
(2.14) #(y,s) =s¥3(s™' — U(y,s)) ass—0,
.where U(y, s) is as in (2.3).
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