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ADMISSIBLE MINIMAX ESTIMATION OF A COMMON MEAN
OF TWO NORMAL POPULATIONS

BY TaTsuya KUBOKAWA
University of Tsukuba

Consider the problem of estimating the common mean p of two normal

populations with unknown variances ¢? and of under the quadratic loss

(i — p)?/c?. A family of minimax estimators with smaller risk than the
sample mean in the first population is given, out of which admissible minimax
estimators are developed. A class of better estimators of pu under squared-
error loss, which is wider than found by Bhattacharya, is obtained.

1. Introduction. Let (X,,..., X,,) and (Y3,...,Y,) be independent random
samples from two normal populations with common unknown mean p and
unknown variances o2 and o7, respectively. Also, let m > 2 and n > 2. We want
to estimate p by an estimator i under the quadratic loss

(1.1) L(f; p,02) = (i — p)*/ol.

An estimator will be evaluated by its risk function E, .2 ,2[ L(f; 1, 01 Z2)]. The
justification of the problem discussed here is given in the introduction of Brown
and Cohen (1974)

Concerning minimax estimation of the common mean under the loss (1 1),
Zacks (1970) showed that the sample mean X in the first population is minimax
with a constant risk and Cohen and Sackrowitz (1974) obtained minimax
estimators better than X. Some classes of the combined estimators better than
X have been given by Graybill and Deal (1959), Brown and Cohen (1974) and
Khatri and Shah (1974) and have been extended by Bhattacharya (1978, 1980)
and Kubokawa (1987). These better estimators are, of course, also minimax for
the loss (1.1). On the other hand, the question of admissibility of the well-known
estimators, including the Graybill-Deal estimator, is still open as stated in Sinha
and Mougadem (1982) who have discussed it in a restricted class of estimators.
Of great interest is finding an estimator which is both minimax and admissible:
A much broader class of minimax estimators is desirable.

The object of the present paper is to develop an admissible minimax estimator
of p with respect to the loss (1.1). In Section 2, we provide a family of minimax
estimators better than X. This family 1ncludes not only combined estimators in
the extended classes of Bhattacharya (1980) and Kubokawa (1987) but also new
types of combined estimators. In Section 3, we shall look for an admis-
sible estimator in this famlly In particular, we consider the Bayes equi-
variant estimator which minimizes the Bayes risk among the location
equivariant estimators. This Bayes equivariant estimator belongs to our family
of minimax estimators and can be proved to be admissible based on Brown
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1246 T. KUBOKAWA

(1966). This shows that it is admissible and minimax, although it appears to be
computationally somewhat complicated. It is also remarked that sample sizes m
and n need to be large in order for the estimator to have these desirable
properties. These facts show that our estimator may be practically of limited
value. As noted in Section 2, estimators included in this family are better than X
if squared-error loss or squared error divided by a positive function of (62, 62) is
taken.

2. A family of minimax estimators. Let X=Xr,X/m, 8 =
I (X, — X)2/m and let Y, S, be defined similarly. For nonnegative constants
a, b and ¢, consider estimators of the form

- a
(2.1) fis(a,b,c)=X

+ —— (Y -X),

1+ Re(S,, S, (X - Y)2)( )
where R = {bS, + (X - 17')_"’_} /Sv_1 and ¢ is a positive function. By the symme-
try of the distribution of Y —X, it is seen that fi(a, b,c) is an unbiased
estimator of p.

THEOREM 2.1. Assume that 0 <a <2 and b>¢c>0, b> 0. Then the
estimator fi,(a, b, c) given by (2.1) is minimax relative to the loss (1.1) if the
following conditions hold for some t > 0:

(a) n>2t+5zfc—0 orn>2t+21fc>0

(b) ¢(8S,, S,,(X —Y)?) /Rt is nondecreaszng in S, and nonzncreaszng in S,.

(c) When ¢ > 0, ¢(8,,S,,(X — Y)?)/R! is nonincreasing in (X — Y)%. In
addition, for any d, > d, > 0, there exists a function ®(8,, S,; d,, d,) indepen-
dent of (X — Y)? such that given (X -Y)? =u,

4 [ (88 + )’ < (S, S,; dy, dy)
& | 905, wy | = PSS ho ).

for all u in the interval (d,, d,), and E[®(S,, S,; d,, d,)|S,] < oo, where E[ -|S,]
designates the conditional expectation of the term in brackets, given S,.

1 2(n - 2t — 2)

@ (81,5, (X - Y)?) =a(m+ot+1) u(b, c; t),
where
(2.2) u(b, c; t) = E[{(b(1 - W) + W)} ™7

E[{b(1— W) + W} "
and W has a beta distribution with parameters (3/2,(n — 1)/2).

When squared-error loss (f — p)? or squared error divided by a positive
function of (o7, 0f) is adopted instead of (1.1), Theorem 2.1 remains true just by
replacing “minimax” with “better than X.” Hence, our class of better estimators
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is wider than Bhattacharya (1980) and Kubokawa (1987). Several examples are
given at the end of this section. In Section 3, Theorem 2.1 is applied for the
particular value ¢ = 0. However, treating the case of ¢ > 0 gives the wider family
of minimax estimators. To prove Theorem 2.1, we need the following lemma due
to Bhattacharya (1984), Theorem 2.1.

LEmMMA 21. Let u, v and w be functions of random variables X,,...,
X, such that v is positive with a finite expectation and E[vw] > 0.
Let (X)X, ..., X;_)) = E[ow|X,,..., X;]/E[v|X,,..., X;,] and
8(X)X,,..., X;_)) = E[u|X,,..., X;1/E[v|X,,..., X;]. Then

Eluw]/E[vw] 2 E[u]/E[v],

if, forall 1 <i <k, either both f(X,|X,,..., X;_,) and g(X,|X,,..., X;_,) are
monotonic in the same direction with respect to X;, or f; or g, is a constant with
respect to X, This inequality is reversed if, for all 1 <i<k, either
f( X)Xy, ..., X;_,) and g(X;|X,,..., X;_,) are monotonic in opposite directions
with respect to X, or f; or g; is a constant with respect to X,.

Although Bhattacharya (1984) does not state that f(X;|X,,..., X;_,) or
8/ X;|X,,..., X;_;) may be a constant in order for Lemma 2.1 to hold, his proof
covers this case. When f; (resp. g;) is a constant with respect to X, g, (resp. f;)
may be an arbitrary function.

PROOF OF THEOREM 2.1. Let p =mo}/(no?) and let T be a random
variable such that T(o?/m + 07/n)~! is distributed as a chi-square variate with
3 degrees of freedom and independent of (S,, S,). Denote ¢ = ¢(S;, S,, T') and
R = (S, + ¢T)/S,. Both Brown and Cohen (1974) and Khatri and Shah (1974)
have shown that the estimator fi (a, b, c) has a smaller risk than X if and only
if

. 1 E[1+Rp)7)| «
in — 7 = o
p>0|1+p E[(1+Re)?]| ~ 2

(2.3)

As proved in Zacks (1970), X is a minimax estimator with a constant risk under
the loss (1.1). As a result, (2.3) becomes a necessary and sufficient condition for
the minimaxity of fi(a, b, ¢). Now, letting ® = p/(1 + p) and using Theorem
2.2 in Bhattacharya (1984) gives

1 E[(1+Rs)7] _ E[{(1-0) + 8Fp/p} ]
1+p E[1+Rs)’] E[{(l -0)+ ®Ti‘5/p}_2]

(2.4)

, { 1E[(ﬁ5)-‘]}
>min{l, ——F———7 ;.
» E|(R) "]

[Under condition (a), all expectations in (2.4) are finite.] From condition (d), the
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r.h.s. of (2.4) is bounded below by
. { a(m+2t+1) E[R %% 1]}
min

(2.5)

Here, if the inequalities
E[R"%] E[R ]
E[R% ] " E[R " 2]
1 E[R*? n—2t—
(2.7) — [__,_2] >
pE[R*2] " m+2t+1

are valid, then combining (2.4), (2.5), (2.6) and (2.7) yields

[ 1 E[0+Rs)7 (. a
in — 37/ = mm(l, —),
p>0 1+PE[(1+R¢) ] 2
which implies (2.3) since 0 < a < 2. Hence, in order to complete the proof, we

only need to show (2.6) and (2.7).
To prove (2.6), we use Lemma 2.1. Let

' 9(n — 26— 2)u(b, c; t)p E[R~%1]

(2.6) for any p > 0,

u(b c;t), foranyp >0,

(2.8)

f1(S;) = E[R™%718,]/E[R~*"2S8,],

&(8,) = E[R_t_1|31]/E[R_t_2|81],
fo(TIS,) = E [1_2_2;1;_1|S1» T]/E[I_i_t"2|Sl, T] ,
g,(TIS,) = E[R~*"8,, T]/E[R™*%8,, T],

and f4(S,|S;, T') and ga(Szlsl, T) be defined similarly. Obviously, both f(S;)
and g,(8S,) are nonincreasing in S; by condition (b). Next, for ¢ = 0, g4(7'S,) is a
constant with respect to T. For ¢ > 0, both f,(T|S,) and g,(T|S;) are nonde-
creasing in T. In fact, f,(T|S;) = E[(bS, + cT)~*"3(bS, + cT) ¢~ '}|Sy, T/
{SEE[(bS, + c¢T)~*"2|S,, T']} and its derivative with respect to T can be written

1 d (bs2+cT)‘}S' r
(bS, + cT)*2 dT | $(8,, S, T) [
B E[(88,+ cT) %S, T

E[(8S, + ¢T) %S, T| |

where C(S;, T) and Cy(S;, T) are positive functions. [From conditions (c) and
(d), interchange of integration and differentiation is permissible.] By condition

Cy(S,, T)E[

E[(6S, + cT) %4748, T
E[(8S, + ¢T)°74S,, T

(2.9) +Cy(S,, T){
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(c), the first term in (2.9) is positive. In the second term, both (S, + c¢T)!¢ !
and bS, + cT are nondecreasing in S,. Thus, from Lemma 2.1, (2.9) is nonnega-
tive, so that f,(T|S,) is nondecreasing in 7. On the other hand, a similar
argument gives that g,(T|S,) is nondecreasing in T. From condition (b), it is
clear that both fy(S,|S,, T) and g4(S,|S,, T') are nondecreasing in S,. In this
way, we apply Lemma 2.1 to get (2.6). _

To prove (2.7), we first express the random variable R by other random
variables whose distributions are independent of unknown parameters. Let

nS,/07 + T(of/m + of/n)"
”"'Sl/"l2 ’

1

F=

B T(o2/m + o2/n)”"
nS,/02 + T(o2/m + o,}’/n)_l '

It is seen that {(m — 1)/(n + 2)}F has an F distribution with (n + 2, m — 1)
degrees of freedom and independent of W, which has a beta distribution with
parameters (3/2,(n — 1)/2). Note that F = S, /(pS,;) + FW. Then R/p becomes

R/p = {bpF(1— W) + c(1 + p)FW} /p
={b(1 - W)+ cW+ cW/p}F.
By using this expression, the Lh.s. of (2.7) is rewritten as

1E[R*']  E[{b(1 - W) + W+ cW/p} | E[F*']
p E[R™*]  E[{b(1 - W) + cW + cW/p) Y| E[F*2]’

since F is independent of W. It is observed that E[F ‘" !]/E[F ' %] =
(n—2t-2)/(m+2t+1), so that (2.7) is equivalent to E[{b(1 — W) +
cW + cW/p} " 1/E[{bQ — W) + ¢cW + cW/p}~t2] > u(b, c; t). Since
bl-W)+ cW<b(l - W)+ cW+ cW/p, it suffices to show that

E[(b(1 = W) + cW + cW/p} "]
E[{b(1 - W) + W+ cW/o} " (b(1 - W) + W) ]

(2.10)
E[{(b0 - W) + W} 7]
T E[{(b1-W) + W)Y

Evidently, both {b(1 — W) + cW}*'/{b(l — W) + ¢W + cW/p}'*! and
b(1 — W) + c¢W are nonincreasing in W for b > c¢. Hence, (2.10) follows from
Lemma 2.1, which establishes (2.7). Theorem 2.1 is completely proved. O

For some particular b and ¢ we can obtain exact expressions and a useful
inequality for u(b, c; t) defined by (2.2).
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LEMmA 22. (i) For b=c, u(b, b;t)y=0>b. For ¢c=0, ub,0;t) =
b(n — 2t - 5)/(n — 2t — 2).
(ii) For b > ¢ > 0, u(b, c; t) is exactly expressed by

2F1(2+1,3/2; (n + 2)/2; (b - ¢)/b)
2F1(2+2,3/2; (n + 2)/2; (b - ¢)/b)
where ,F, is the hypergeometric function. Further,

(n- 1>(b—‘c)}
(n+2)b )

(2.11) u(b,c; t) =

(2.12) u(b,c;t) > c{l +

Proor. First, (i) easily follows since .
E[(1-W)7"] =B(3/2,(n—1)/2 - r)/B(3/2,(n - 1)/2)

forr<(n-1)/2,

where B( , ) denotes the beta function. Second, (2.11) can be derived by noting

that E[(1 — xW) "] = Z2_o{((¢ + 1),/ }E[W*]x* for 0 <x <1 and

(t+1),=@+1)(t+2)---(t+ k), and E[W*]=B@B/2+ k,(n—-1)/2)/

B(@3/2,(n — 1)/2). From (2.11), we can get (2.12) by using the following relations

in turn: For any real values a, 8, yand 0 < x < 1,

(2.18) 2Fila, B3 ;%) = (1 —x)" AR (v — a,vy — B 73 %)

[this is applied to both the numerator and the denominator in (2.11)],

(2.14) Fi(a+1,8;v;x) =.F(a,B;v;x) + éx JFila+1,8+1; v+ 1;x),

and for positive a, 8, vy satisfying (a + 8 + 1)y > af,
(2.15) Fila+1,8+1; v+ 1;x)>,F(a,B;v; x).

Equation (2.13) is from Exton (1978) and (2.14) is obtained just by rearrange-
ment of the coefficients in the infinite series on the Lh.s. Inequality (2.15) is also
shown by evaluation of each term in the infinite series. Thus, Lemma 2.2 is
established. O

The weaker version given by the r.h.s. of (2.12) is noted to make condition (d)
of Theorem 2.1 simple and useful. Some examples of minimax estimators based
on Theorem 2.1 are given next.

EXAMPLE 2.1. Setting ¢ =1 + d/{bS, + ¢(X —Y)?} in (2.1) for d > 0, we
have
aS,;
S, +bS,+ce(X-Y)+d

which includes the estimator {,(1,(m — 1)/(n — 1),0,0) of Graybill and Deal
(1959); f(a,(m —1)/(n + 2),(m — 1)/(n + 2),0) of Brown and Cohen (1974);

(?_X)’

fa,b,c,d) =X +
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£,1, b,0,0) and @,(1, b, b,0) of Khatri and Shah (1974); fi,(a, b,0,0) and
fia, b, b,0) of Bhattacharya (1980) and f,(a, b,c,0) with b>c¢ >0 of
Kubokawa (1987). Then Theorem 2.1 and Lemma 2.2 with ¢ =0 imply that
fy(a,b, c,d) is minimax, either if @ < 2min{1, b(n — 5)/(m + 1)} for ¢ =0,
m > 2 and n > 6, or if

(n—l)(b—c)}n—2 ]

(n+2)b S

for b>c>0, m>2 and n > 3. This result for the squared-error loss is
presented by Kubokawa (1987) when d = 0.

a< Zmin[l,{l +

EXAMPLE 2.2. Setting ¢ = max[(a — 1)S,/{bS, + ¢(X — Y)?},1] yields

aS; - -
1, —— (Y -X),
S, +bS,+ce(X-Y)

fs(a, b,c) =X + min{
which is minimax if the same conditions hold as in Example 2.1.

ExaMPLE 2.3. Define ¢ to be max[{bS, + ¢(X —Y)?}/S;,1]. This gives the
estimator

_ aS? as,
fis(a,b,¢) = X + min —, -— =3
S?+ {08, + (X - ¥)*} Si+dS+e(X-Y)
X (Y-X)

and satisfies conditions (b) and (c) of Theorem 2.1 for ¢= 1. Thus, from
conditions (a), (d) and Lemma 2.2, fi a, b,c) is minimax, either if a <
2min(1, b(n — 7)/(m + 1)} for c=0, m > 2 and n > 8, or if
(n—l)(b—c)} n—4 ]

(n+2)b m+3°

a < Zmin[l, { 1+
forb>c>0, m>2and n>5.
3. Admissible minimax estimators.

3.1. Bayes equivariant estimators. It is of great interest to find an admissi-
ble minimax estimator. In this section, we get Bayes equivariant estimators of p
relative to the loss (1.1) and apply Theorem 2.1 and a result of Brown (1966) to
show their minimaxity and admissibility.

The problem defined in Section 1 remains invariant under the translation
group whose transforms are

X ->X+c, Y->Y+c, (poXof)-o(p+cot0}), pf-of+ec,

fori=1,...,m, j=1,...,nand — 0 < ¢ < c0. Then (1.1) is quadratic so that
we need only consider estimators which are functions of the minimal sufficient
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statistic (X Y,S,,S;). For simplicity, let Z=Y-X, n= n/o} and p =
mo}/(nof). It is easily seen that any estimator, equivariant under the preceding
translation group, can be represented as X + y(Z, S,, S,) and that its risk
function takes the form R(,p; ¢) = (1/m)E[1 + pny?® — 2{pn/( + P
since E[X —p|Z] = —Z/(1 + p). If the nuisance parameter (7, p) has a prior
distribution H(#, p), the expected risk of an equivariant estimator X +
¥(Z, S, S,) is R(H 4/) = [[R(n, p; ¥)H(dn, dp). We shall call the equivariant
estimator which minimizes this Bayes risk as Bayes equivariant and denote it by
fg=X+ po(Z Sl, S,) in the present paper. We note that the Bayes risk
R(H; {y) is finite since R(H,; sz) < R(H;0) < co. It is also remarked that the
Bayes equivariant estimator is not necessanly Bayes in the usual sense. To
obtain this Bayes equivariant estimator fi,, we utlhze the Fubini theorem and
get

R(H; ‘I"H)
(3.1)

2p7
= ‘"E 1+ EH[P"HZ S, Sz]‘PH EH[ Z,S,, S, ]Z‘PH]
where Ey[-|Z, S,, S,] designates the posterior expectation of the term in brack-
ets, given (Z,S,,S,). The function minimizing (3.1) is ¢y = Egy[pn/(1 +
P)IZ, S,, S;1Z/Eylpn|Z, S, S,]. Especially, take

n/2+a+e—1

[}

-1/2_,—(\/2
@+ gy e~ */Pdndp, 1>0,p>0,

(3.2) H(dn,dp) «

forsome A > 0, & > —1/2and 0 < a < (m — 1)/2, which guarantee [ [H(d7, dp)
is finite. Then, integrating out over n and making the transformation ® = S,p/S,
yields

(3.3) Ui = Z{1 + (5,/8)6u(S1, 8, 22)} 7,
where
/w@)a(@/r)(m+n)/2+e+1d®
(3.4) ‘i’H(Sv Sz’Zz) == 1 (m+n)/2+e+1
0o /r) de
and

r==S8202+ (S, + 8+ 2%+ A)S® + S,(S, + A).
Thus, the Bayes equivariant estimator i against H(dn, dp) in (3.2) relative to
the loss (1.1) is given by
1

1+ (Sz/sl)¢H(Sl’ S, (X - 17)2)

The estimator fi; is computationally complicated since it is defined by (3.4).
Putting a = =1, c= 0 and ¢ = ¢ in (2.1), we have i, (1,1,0) = i, which
shows that fi, belongs to the class of estimators of the form (2.1). So fiy is
unbiased.

(3.5) pp=X+ (Y -X).
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3.2. Minimaxity and admissibility of the Bayes equivariant estimator. We
now show the minimaxity and admissibility of the Bayes equivariant estimator
iy under the loss (1.1). For this, we need the following lemma:

LEMMA 31. For 0 <a < (m+n)/2+ e, ¢u(Sy, S, Z2) given by (3.4) is
nondecreasing in S, and is nonincreasing in S,. Moreover,

4
2
(3.6) ¢u(S1, Sz, Z2) > CEDETET S

ProOF. We first prove that ¢ is nondecreasing in S,. By differentiating ¢,
with respect to S;, we see that it is sufficient to show that
f()oo@a—1+Nr—N—1(dr/dSI) doe f(;:o@a—1+Nr—Nd®

> .

[EONr=N=1(dr/dS|)d® ~ [£O**Nr Nde ’
where N = (m + n)/2 + ¢ + 1. Differentiating (1,/r)(dr/dS,) with respect to ®
gives that it is nonincreasing in ©. On the other hand, 1/0 is decreasing, so that
(3.7) follows from Lemma 2.1. Hence, ¢y is nondecreasing in S;. Similarly, it can
be shown that ¢y is nonincreasing in S,. Using properties of ¢, we also have
615(S;, Sy, Z2) > ¢5(0, 0, Z%). Making the transformation x = ©/(1 + ©)
and integrating over x gives ¢4(0,00,Z2)=B(a + 1,(m+ n)/2+¢— a)/
B(a,(m+n)/2+e+1—a)=a/{(m+n)/2+ e+ 1- a}. Thus, Lemma 3.1
is completely valid. O

(3.7)

On the basis of Lemma 3.1, we get

THEOREM 3.1. (i) The Bayes equivariant estimator iy given by (3.5) is
minimax relative to the loss (1.1) provided m > 2, n>6, A >0, e > —1/2 and
a(m,n,e) < a <(m-—1)/2, where a(m,n,e)=(m+ n+ 2e)(m+ 1)/2m +
4n — 18).

(ii) The estimator iy is admissible provided m > 4, n > 8, A > 0, ¢ > 0 and
0<a<(m-3)/2

(iii) The estimator fiy; is admissible minimax provided m > 4, n > 8, A > 0,
e>0and a(m,n,e) < a <(m-— 3)/2.

REMARK 3.1. We can choose a satisfying condition (iii) in Theorem 3.1 if
there is some & > 0 such that (m — 7)(n — 13) — 64 > 2(m + 1)e, which is possi-
ble whenever (m — 7)(n — 13) > 64. This shows that m and n need to be large
in order for Theorem 3.1 to establish that fi, is admissible minimax.

ProoF OF THEOREM 3.1. To prove (i), it is only necessary to verify the
conditions of Theorem 2.1 with ¢ = 0. Conditions (a) and (c) are trivial. Condi-
tion (b) is evident from Lemma 3.1 for 0 < a < (m + n)/2 + &. From Lemma
2:2(1) and (3.6), condition (d) is satisfied if {(m + n)/2 +¢— a}/a < 2(n —
5)/(m + 1), which is equivalent to a(m, n, ¢) < a. Combining the fact that fi is
Bayes equivariant for A >0, ¢> —1/2 and 0 < a < (m — 1)/2, we get the
conclusion.
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To prove (ii), a result from Brown (1966) will be used. Let z = y — X, and let
f(X = p, z|n, p) and g(s,, 55|, p) be joint densities of (X — p, Z) and (S,, S,),
respectively. We first define a probability density function p(x — g, 2, s;, s5)
with a location parameter p by *

(88) p(X—u,2,8,8,) = Cffpnf(f — 1, 20, )&(s,, sain, p)H(dn, dp),

where C is a normalization constant. The above integral is seen to be finite for
A>0,e>—-3/2and 0 < a < (m — 3)/2. Then from a result of Brown and Fox
(1974), page 809, it is sufficient to prove the admissibility of fi in the problem
defined by (3.8) and the loss (fi — p)2. Further for A >0, &¢> —1/2and 0 < a <
(m — 3)/2, applying Theorem 2.1.1, Lemma 2.2.2 and Lemma 2.3.3 of Brown
(1966), we can see that fi, is admissible if

(3.9 ffff|x|(x + )’ p(x, 2,5, s,) dxdzds, ds, < oo,

(3'10) ffff(x2 + ll’%{)lx + ‘PHlp(x’ z, 81’ 82) Cidedsl d32 < o0,

" where ¢ is given by (3.3). Hence, (3.9) and (3.10) must be verified. The Fubini
theorem first gives that (3.9) is equivalent to [/Q(m, p; ¥5)H(dn, dp) < o,
where

oM
Qm 03 ) = — [ [ [ [ixl(x + ¥2)*f(x, 2In, p)g(51, sin, p) dedz s, ds,.
Making the transformations

u=ynyl+p{x+2z/(1+p)} and o= n\p/(1+p)z

and using (3.6), we have
p
Q(’LP,‘PH) m‘/—‘/1+p(1+p)

[1]]

o Lilfue {en) LT

1
X gexp{ —1(u? + v?)}&(sy, syln, p) dudvds, ds,

|ul + %Ivl)

X {u2+2E

(3.11)

2
= wiir /]

1+ - 2+1 L
CoW pv

1
X gexp{ —3(u? + v?)} dudb,

where W=S,/(pS,) and Cy=a/{(m + n)/2 + ¢ — a}. The rhs. of the in-
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equality in (3.11) is integrable with respect to H(dn, dp), provided m > 4, n > 6,
A>0,e>0and 0 < a < (m — 3)/2. Thus, (3.9) holds. It is similarly shown that
(3.10) is satisfied for m >4, n > 8, A >0, e > 0 and 0 < a < (m — 3)/2. There-
fore, part (ii) of the theorem is proved.

Part (iii) of the theorem is obtained by combining results (i) and (ii), which
completes the proof of Theorem 3.1. O

REMARK 3.2. It isnoticed in the proof of Theorem 3.1(i) that the minimaxity
of fiy is guaranteed by a weaker condition a(m,n,e) <a<(m+n)/2 +e
unless it is necessary to be Bayes equivariant. It is also noted that Theorem 3.1(i)
means that the estimator fi, is admissible minimax within the class of equi-
variant estimators.

REMARK 3.3. An interesting problem is to find admissible and Bayes equi-
variant estimators that beat both X and Y simultaneously. To obtain such
estimators based on Theorem 2.1, we should consider a family of estimators of
the form fi (1, 1, 0), the special type of (2.1), which are better than both X and Y.
Then from Theorem 2.1 and considerations of symmetry, it follows that fi (1,1, 0)
is better than both X and Y if ¢(S,, S,,(X — Y)?) is nondecreasing in S, and
nonincreasing in S,, and if

(m+1)/{2(n - 5)} < $(5}, 8, (X = ¥)’) < 2(m - 5)/(n + 1),

for m > 5 and n > 5. The question is: Can i, given by (3.5), belong to this
family? Unfortunately, the answer is no because ¢, is not bounded above. In
fact, making the transformation p = S,0/S, yields ¢y = (S,/S;)A(S,, S;, Z2),
where

2+e+1
Jsoo(p/r*)™ A dp

2) —
h(Sl, Sz:Z )_ /()oopa—l(P/r*)(m+n)/2+e+1dp

and
=82+ (S, +S+2Z2+A)p+ S, + A

Further for 0 < @ < (m + n)/2 + ¢, the same argument as in the proof of
Lemma 3.1 gives that A(S,, S,, Z?) is nonincreasing in S, and nondecreasing in
S,, so that h(S,, S,, Z?) > C, for C, = a/{(m + n)/2 + ¢ — a}. Hence, we get
the inequality ¢4 > C,S,/S,, which implies that ¢, is not bounded above. To
obtain admissible estimators better than X and Y by use of our method, we
would need at least to consider a different prior distribution on the nuisance
parameter (o2, 02).

Acknowledgments. The author is extremely grateful to Professor N.
Sugiura for his helpful criticism and valuable advice during the progress of this
work. The author is also grateful to the Associate Editor and the referee for very
valuable comments and suggestions.



1256 T. KUBOKAWA

REFERENCES

BHATTACHARYA, C. G. (1978). Yates type estimator of a common mean. Ann. Inst. Statist. Math.
30 407-414.

BHATTACHARYA, C. G. (1980). Estimation pf a common mean and recovery of interblock information.
Ann. Statist. 8 205-211.

BHATTACHARYA, C. G. (1984). Two inequalities with an application. Ann. Inst. Statist. Math. 36
129-134.

BrownN, L. D. (1966). On the admissibility of invariant estimators of one or more location parame-
ters. Ann. Math. Statist. 37 1087-1136.

BrowN, L. D. and CoHEN, A. (1974). Point and confidence estimation of a common mean and
recovery of interblock information. Ann. Statist. 2 963-976.

BrownN, L. D. and Fox, M. (1974). Admissibility in statistical problems involving a location or scale
parameter. Ann. Statist. 2 807-814.

CoHEN, A. and SAckrowITz, H. B. (1974). On estimating the common mean of two normal
distributions. Ann. Statist. 2 1274-1282. )

Exron, H. (1978). Handbook of Hypergeometric Integrals. Wiley, New York.

GRAYBILL, F. A. and DEAL, R. B. (1959). Combining unbiased estimators. Biometrics 15 543-550.

KHATRI, C. G. and SHAH, K. R. (1974). Estimation of location parameters from two linear models
under normality. Comm. Statist. A—Theory Methods 3 647-663.

KuBokawa, T. (1987). Estimation of a common mean of two normal distributions. Tsukuba .J.
Math. 11, to appear.

SINHA, B. K. and MoUQADEM, O. (1982). Estimation of the common mean of two univariate normal
populations. Comm. Statist. A—Theory Methods 11 1603-1614.

ZACKs, S. (1970). Bayes and fiducial equivariant estimators of the common mean of two normal
distributions. Ann. Math. Statist. 41 59—69.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF TSUKUBA
SAKURA-MURA NIIHARIGUN IBARAKI 305
JAPAN



