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insist that the algebra A generated by {A,: a € X} contain the matrices I
and JJ.
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By consideration of broadly ranging examples (really by an analysis of
analysis of variance), Dr. Speed seeks a definition of an analysis of variance. In
Section 4 he settles on a formulation that provides lots of insight. My remarks
are to the effect that it would seem that his definition might be usefully
broadened a bit.

There are practically occurring random process situations where it seems to
me an anova exists, yet which escape Dr. Speed’s definition, specifically the
“equality constraints amongst (co)variances” part. Suppose one has a process
Y(-), with stationary increments, for example, a stationary point process. Sup-
pose, and this is usually no real restriction, Y(0) = 0. Then, following the work of
Kolomogorov [see, e.g., Doob (1953), pages 551559, Bochner (1947), It (1953)

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to /7

The Annals of Statistics. RIN®IY
www.jstor.org



WHAT IS AN ANALYSIS OF VARIANCE? 917

and Masani (1972)], the process has a spectral representation
¥(2) = [~ [exp(ire) — 1] /(iA)Z(dN),

with Z(-) a random process satisfying cov{Z(dA), Z(dp)} = 8(A — p)F(dA) du
with 8(-) the Dirac delta function and with F(d))/(1 + A%) a bounded nonnega-
tive measure. The (co)variance function of the process takes the form

cov{Y(t),Y(u)} = foo [exp{irt}) — 1][exp{ —iAu} — 1] /A2F(dM).
I would submit that these results and in particular the representation

var Y(¢) = /:o(sin At/2)2/(N/2)2F(dN)

constitute an analysis of variance. It should be further mentioned that there are
accompanying empirical analyses in the case that F(-) is absolutely continuous
see, e.g., Bartlett (1963) and Brillinger (1972).

One way to be led to these results, and indeed corresponding results for
stationary random generalized processes, is to apply the ordinary process results
to a general linear functional, such as fa(¢ — u) dY(t), of the process of interest.
This leads me to propose the following extension of Dr. Speed’s definition. An
anova is said to exist for some group of variates, if they satisfy the conditions of
Dr. Speed’s defintion or if some natural class of functionals of them does. This
definition would seem to obviate the need for some of the particular considera-
tions in the manova case. I wonder if it does not lead to a general algebraic
result on how a manova structure relates to the corresponding anova structure,
quite independently of what the anova design was, for example.

I would like to end by thanking the Editor and Dr. Speed for the opportunity
to comment on this important paper.
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The algebraic aspects of the analysis of variance are an intricate, well worked
piece of ground. I am grateful to Speed and his coworkers for carefully sifting the



