ON A CONJECTURE OF HUBER CONCERNING THE CONVERGENCE OF PROJECTION PURSUIT REGRESSION¹

By LEE K. JONES

University of Lowell

We generalize the projection pursuit procedure of Friedman and Stuetzle (abstract version) and prove strong convergence. This answers a question of Huber.

1. Introduction and preliminaries. Let (X,Y) be such that X is R^d valued, Y is R valued, and X is distributed according to the probability measure P in R^d . Assume the response surface f(x) = E(Y|X=x) is in $L_2(P)$. Then the projection pursuit regression problem is to approximate f by a sum of ridge functions:

$$f(x) \sim \sum_{j=1}^{m} g_j(a_j^t x)$$
, where $a_j \in R^d$, $a_j^t a_j = 1$.

The method of Friedman and Stuetzle [1] is as follows: Having determined functions $g_1, g_2, \ldots, g_{m-1}$ and unit vectors $a_1, a_2, \ldots, a_{m-1}$, choose a unit vector a_m and a function g_m to minimize

$$E\left[r_m(x) - g_m(a_m^t x)\right]^2$$
, where $r_m = f - \sum_{j=1}^{m-1} g_j(a_j^t x)$.

As is shown in [2] the solution at stage m is given by

(1)
$$g_m(z) = E(r_m(X)|a_m^t X = z),$$

with a_m a minimizing direction [or as is demonstrated easily a maximizing direction for $E(g_m)^2$]. Huber establishes weak $L_2(P)$ convergence of the procedure $[r_m \to 0]$ weakly in $L_2(P)$]. Also in the Comments of [2] Donoho and Johnstone announce a proof of strong convergence for P uniform on the unit ball or multivariate Gaussian. Huber mentions that mild smoothness assumptions are necessary to ensure the existence of a minimizing direction. To avoid this complication and also generalize the procedure we shall allow any direction at stage m to be chosen as long as

(2)
$$E(g_m(a_m^t X))^2 > \rho \sup_{b^t b = 1} E(g_m(b^t X))^2, \qquad \rho \text{ fixed, } 0 < \rho < 1.$$

In Section 2 we prove strong convergence for general P for the above class of procedures.

Key words and phrases. Projection pursuit, ridge function, strong convergence.

Received September 1985; revised July 1986.

¹Research performed with the facilities of the Naval Research Laboratory and supported, in part, by ONR Contract N00014-84-C2245.

AMS 1980 subject classification. Primary 62H99

2. Proof of convergence. Following [2], given $a^tX = z$ the best choice of $g_m(z)$ would be the conditional expectation of r_m given $a^tX = z$. By taking expectations over z using the appropriate marginal of P, we get

$$E(r_m - g_m)^2 = E(r_m)^2 - E(g_m)^2$$

or by induction

(3)
$$E(r_m)^2 = E(f)^2 - \sum_{j=1}^{m-1} E(g_j)^2.$$

Now $\sum_{1}^{\infty} ||g_{j}||^{2} < \infty$, where $||\cdot||$ is norm for $L_{2}(P)$. If r_{m} converges to r(x) in $L_{2}(P)$, then r(x) must be 0, for if not there is some a of length one such that $E(g(a^{t}X))^{2} = \delta > 0$ [this follows after first determining a such that $E(r(x)\exp(\omega ia^{t}X)) \neq 0$] with g the conditional expectation of r(x) given $a^{t}X$. It follows by standard measure theory that for arbitrarily large m, $E(g_{m})^{2} > \rho(\delta/2)$, contradicting $||g_{j}|| \to 0$. It suffices to show r_{m} is a Cauchy sequence in $L_{2}(P)$. First we give two simple lemmas. (Note that Lemma 2 will also follow from Kronecker's lemma; see [3, page 239].)

LEMMA 1.
$$|E(g_m r_n)| \le \rho^{-1/2} ||g_m|| ||g_n||$$
.

PROOF. $|E(g_m r_n)| = |E_z(g_m E(r_n | a_m^t X = z))|$, where E_z denotes the expectation over the marginal defined by a_m . By the Schwarz inequality and the "near" optimality of g_n ,

$$\begin{split} \left| E(g_m r_n) \right| &\leq \|g_m\| \left(E_z \left(E\left(r_n | \alpha_m^t X = z \right) \right)^2 \right)^{1/2} \\ &\leq \|g_m\| \left(\frac{1}{\rho} \|g_n\|^2 \right)^{1/2}. \end{split}$$

Lemma 2. Suppose S_1, S_2, \ldots is a nonnegative sequence of reals such that $\sum_{1}^{\infty} S_i^2 < \infty$. Then $\liminf_{N \to \infty} S_N \sum_{1}^N S_j = 0$.

PROOF. For any $\varepsilon > 0$ choose N such that $\sum_{i=1}^{\infty} S_{i}^{2} < \varepsilon/2$. Since $S_{i} \to 0$, we can, by choosing \overline{i} large enough, ensure that $S_{\overline{i}} \sum_{1}^{N} S_{j} < \varepsilon/2$. By letting S_{i} be the minimum term for $j = N + 1, \ldots, \overline{i}$, we have

$$S_{i}\sum_{1}^{i}S_{j} = S_{i}\sum_{1}^{N}S_{j} + S_{i}\sum_{N+1}^{i}{}^{i}S_{j} \le \varepsilon/2 + \sum_{N+1}^{i}S_{j}^{2} < \varepsilon.$$

Now to finish the proof: If r_m is not Cauchy then $\exists \ \Delta > 0$ such that $\|r_M - r_{M+N}\| > \Delta$ for arbitrarily large M (and an associated N). Since $\|r_m\| \downarrow 1$ by (3), we may assume w.l.o.g. that $\|r_m\| \downarrow 1$ (by multiplying f appropriately). Hence for small γ we get $\|r_M\|^2 < 1 + \gamma$ and $\|r_M - r_{M+N}\| > \Delta$ for some M and N. Now choose K larger than M+N such that $\|g_K\|\sum_1^K \|g_i\| < \gamma$. Note either $\|r_K - r_M\| \ge \Delta/2$ or $\|r_K - r_{M+N}\| \ge \Delta/2$. Let us assume the former; otherwise

the argument is identical. We have

$$\begin{aligned} ||r_K - r_M||^2 &= ||r_K - (r_K + g_M + g_{M+1} + \dots + g_{K-1})||^2 \\ &\leq ||r_K||^2 + ||r_M||^2 - 2||r_K||^2 + 2\rho^{-1/2}||g_K|| \sum_{M}^{K-1} ||g_l|| < (2 + 2\rho^{-1/2})\gamma, \end{aligned}$$

which is impossible if $\gamma < \Delta^2/(8\,+\,8\rho^{-1/2})$ was chosen. This completes the proof.

REFERENCES

- [1] FRIEDMAN, J. H. and STUETZLE, W. (1981). Projection pursuit regression. J. Amer. Statist. Assoc. 76 817-823.
- [2] HUBER, P. J. (1985). Projection pursuit (with discussion). Ann. Statist. 13 435-525.
- [3] Feller, W. (1971). An Introduction to Probability Theory and Its Applications 2, 2nd ed. Wiley, New York.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF LOWELL 1 UNIVERSITY AVENUE LOWELL, MASSACHUSETTS 01854