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MONOTONE EMPIRICAL BAYES TEST FOR UNIFORM
DISTRIBUTIONS USING THE MAXIMUM LIKELIHOOD
ESTIMATOR OF A DECREASING DENSITY

By J. C. vAN HOUWELINGEN
University of Leiden

An empirical Bayes test for testing ¢ < 9, against & > &, for the
uniform distribution on [0, #) is discussed. The relation is shown with the
estimation of a decreasing density on [0, c0) and a monotone empirical Bayes
test is derived based on the least-concave majorant of the empirical distribu-
tion function. The asymptotic distribution of the Bayes risk is obtained and
some Monte Carlo results are given.

1. Construction. Suppose that the random variable X has U[0, 9]-distri-
bution with pdf f(x|#) = 97}y 5;(x), # > 0, and that 6 has prior distribution
with cdf G. For testing H,: & <&, against H,: ¢ > &, with loss function
L(3, ay) = (% —3y)*, L(3, a,) = (¥, — &), where a; is the decision to accept
H;, a Bayes test wr.t. G is given by ¢(x) = a, if d(x) <¥,, ¢(x)=a, if
d(x) > 9y, ¢(x) = arbitrary if d(x) = &, where d(x) = E(0|X = x).

Since the class {f(x|#)|% > 0} has monotone likelihood ratio in x, d(x) is
nondecreasing and ¢(x) = a, if x < ¢, (x) = a, if x > ¢, is Bayes w.r.t. G
provided d(x) < &, for x < ¢, and d(x) > &, for x > c,. Recall that the class of
all monotone tests is essentially complete; see Ferguson (1967).

In the empirical Bayes set up the prior G is unknown but an iid sample
X,,..., X, independent of X is available from f(x) = (f(x|?) dG(#®) the margi-
nal density of X. A monotone empirical Bayes test (MEBT) can be constructed
by estimating ¢, by ¢,(X,,..., X,), say, and defining

(%) =aq, ifx<c, o@lx)=a, ifzx>c,.

The increase in Bayes risk due to replacing of ¢, by c, is given by

A, = E[L(6,9,(X)) = L(8,9(X))] = ["(d(x) - 8)f(x) dx.
Co

The MEBT g, is called asymptotically optimal [Robbins (1955)] if A, — 0 (P).

MEBT’s for the one-parameter exponential family were presented by van
Houwelingen (1976) and Stijnen (1982). In this paper an MEBT will be con-
structed for the uniform distribution. Interest in this problem was raised by
Gupta and Hsiao (1983), where it was suggested that such a construction is
difficult.

An estimator c, of c, can be constructed by using the results of Fox (1978)
and Grenander (1956).
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LeMMA 1 (Fox).
d(x) = E[0|X =x] = [1 - F(x)]/f(x) + x,
where f(x) = [0 ' dG(¥) is the marginal density of X and F(x) is the
corresponding cdf .

Observe that f is a nonincreasing density on (0, co) and that the continuity
points of f and G coincide. The monotonicity of d(x) could be derived directly
from Lemma 1.

In order to avoid degeneracy of ¢(X), it is assumed that

limd(x) <9, and hm d(x) > 9.
xl0

This is equivalent with E(@~') > 4, and P(@ > ¥y) > 0. It is easy to verify
that the assumption implies 0 < ¢, < &,.

The importance of Fox’s lemma is that it gives an explicit expression for d(x)
in terms of the marginal distribution of X, which enables the estimation of d(x)
from X,,..., X,.

Grenander (1956) showed that the MLE of f in the class of all nomncreasmg
densities on (0, o) is given by the derivative f, of the least-concave majorant Fn
on [0, o) of the empirical cdf F,. It is straightforward to check that d,(x) =
(1 — F(x))/f(x) + x is nondecreasing on [0, X ™). The definition of d, can be
extended to [0, c0) by setting d,(x) = x for x > X, An estimator c, of ¢, is
obtained by defining

¢, = sup{x|x > 0, d,(x) < &}.

There exists an equivalent expression for c, that facilitates both the computa-
tion and the derivation of asymptotic results.

LEMMA 2.
c, =1, if X" <4,
= smallest minimizer of (1 — E(x))/(9, — x) on [0, 8,), if X™ > ¥,.
PROOF. The result is obvious if X < §,. In case X > 9, let c* be the
smallest minimizer of (1 — F(x))/(¥ — x) on [0, &,). Since the line through

(¢, E(c})) and (9y,1)is a tangent to the graph of F(x), F(c¥) = F(c*) and
¢ is also the smallest minimizer of (1 — F(x))/(ﬁ — x) on [0, 3,).

Let y < c* Then (1 — E(c¥)/(1 — E(y)) < (8 — ¢¥)/(9 — y). Since F,
is concave,

fu(2) 2 (B(cx) — F(9))/(ex — ¥)
> (1= E(9)(1 = (8= c¥) /(9= ) /(¥ = ¥)
= (1= E())/(8 - »).
Hence, d,(y) <@, A similar argument shows that d,(y) > &, for y > c}*.
Combination gives ¢} = ¢,. O

Observe that c, minimizes (1 — F(x))/(%, — x) on [0, ¥,), which gives a
direct motivation of c, as defined in Lemma 2 as an estimator of c,. The



EMPIRICAL BAYES TEST FOR UNIFORM DISTRIBUTION 877

advantage of referring to Grenander is that not only an MEBT is obtained but
also a monotone estimator of d(x) that could serve as an MEBE (monotone
empirical Bayes estimator) of 4 under squared error loss.

It is easy to show that actually c, = X® for some i. Therefore, it suffices to
find the smallest X that minimizes (1 — i/n)/(9, — X©).

2. Asymptotics. In this section it will be shown that ¢, is asymptotically
optimal. Moreover, the asymptotic distribution of ¢, — ¢, and A, will be derived
under the additional assumption that f ’(c,) exists and — oo < f ’(¢,) < 0, which
is equivalent to 0 < G’(¢,) < oo. Observe that in that case ¢, is unique. The
asymptotic distribution obtained below is closely related with the asymptotic
distribution of the mode estimator of Chernoff (1964) and the asymptotic
distribution of f,(x) in Prakasa-Rao (1969).

LEMMA 3.

(i) A, = Op(n~'?).

(ii) Under the assumption —oo <f’(c,) <0, n'3(c,— c,) >4 AZ and
n?/A, -, BZ?, where

A = [4f(co) /f (co)]"7,
B=[1- F(co)|[~F(co)f "(co) /2] V>

and Z is the almost-sure unique minimizer of W *(x) + x2%, where W *(x) is
standard two-sided Brownian motion.

Proor. Recall that
0<A,=["(d(x) - 8)f(x)d

_ /:"[1 — F(x) — (8 — x)f(x)] dx

by Lemma 1. Using the concavity of F for x > ¢, and the inequality
1= F(x))/(%—x) =1 — F(cy))/(¥, — ¢) for x < ¢, it can be shown that

A, < [00/(‘90 - co)]/:n[l = F(cp) — (8 — co)f(x)] dx.

Define R, (x) = F,(x) — F(x). After working out the integral, it follows from
Lemma 2 that

(*) 0< An < [00/(00 - cO)] [(00 - CO)‘Rn(cn) - (00 - cn)Rn(CO)]'
Since sup|R (x)| = Op(n~'/?), this proves part (i).

The proof of part (ii) resembles the proof in Prakasa-Rao (1969). First,
it is established that ¢, — ¢, = Op(n~'/?) and then the limit distribution of
n'/3(c, — c,) is derived.

Under the assumption — o0 < f ’(¢,) < 0, (*) implies that

(95— co)R,(c,) — (8 — ¢, )R,(co) = C(c, — ¢,)’,
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for some C > 0. From this it follows that
P(lcn - cOI = 2)

<P s [((3= cRA(x) = (%= DIRAc))/(x — )] 2 €|,
|x—col22

Using the embedding theorem of Komlos, Major and Tusnady (1975), the

relation between Brownian bridge and Brownian motion, the scaling property of

Brownian motion and the law of the iterated logarithm, it can now be shown

that

lim limsupp(lcn - COI = yn_1/3) =0, i-e-’ (cn - CO) = OP(n_1/3)-
Y20 pooo

Define T, = n'/%(c, — c,). By Lemma 2, T, is the minimizer of
U,(8) = n%3[(9 — ¢o)(1 — F,(co + tn™1/?))

/(00 —Co— tn_l/3) - (1 - Fn(co))]-

The process U,(t) can be split in a nonstochastic term that converges to
—1/2f (cy)t?, uniformly on [ - K, K] and a stochastic part

n2/3[Rn(c0 +tn~13) — Rn(co)] + 0p(1)

uniformly on [ — K, K ]. By using the same techniques mentioned above, it can
be shown that the stochastic part converges in distribution to W*( f(c,)t) on
[-K,K].

Since W *(at) + bt%, b> 0, has an almost sure unique minimizer Z, , on
(— o0, ) [see Section 4 of Chernoff (1964)], it follows that n'/*(c, — ¢o) = ¢ Z, ,
with a = f(¢y) and b= —1/2f"(c,).

Finally, Z, , =, (ab~?)'/°Z, ; by the scaling property of Brownian motion.

The result about A, follows from

A, =—3f '(co)(ﬂo = ¢o)(c, — c0)2 + O((cn - 00)2)
and ¥, — ¢, = (1 — F(c,))/f(co)- O

Chernoff (1964) also establishes the relation between the density of Z and the
heat equation. More details about the distribution of Z can be found in a
forthcoming paper by Groeneboom (1986). In order to get an impression of the
validity of the asymptotic distributions, a Monte Carlo simulation based on 4000
repetitions for each sample size n was performed for the case dG(%) = de~?,
9>0, f(x)=e* dx)=x+1, 3,=2 and ¢, = 1. The following result was
obtained:

n (sample size) 10 20 30 40 50 75 100
A, (average valueof A,) 0.045 0.034 0.026 0.022 0.019 0.014 0.012
n?3A, 021 025 025 026 025 025 025

It seems that the limiting distribution is valid for rather small values of n.
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3. Extensions. Gupta and Hsiao (1983) consider the case where f(x|%) =
p(x)c(3)I 59(x) and L(9, ay) — L(PF, a) = & — §,. It is not hard to show that
in that case

d(x) = x + [(1(2)/p(y) dy/({(x)/p(x)),

and that ¢, is the value of x that minimizes [(f(y)/p(y)) dy/(9, — x). Hence,
Co can be estimated by the minimizer of Ly . .(1/p(X;))/(9, — x). It is just a
matter of technique to obtain the asymptotic distribution of ¢, — ¢, along the
lines of Section 2.

Another extension is to generalize the loss function to the case where

L(9) = L(9, a,) — L(9, a) = f:z(t) dt,

with [(9#) > 0. In the case of the standard uniform distribution on [0, #], the
Bayes test is again a monotone test with cut-off point ¢, = minimizer of

JRUY)f(y)dy/[3Il(y)dy on [0, d,). The construction of an MEBT for this
problem is obvious.
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