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Dedicated to the memory of Bruno de Finetti

The main concerns of this paper are the definition of coherent inference
(dF-coherent inference) in conformity with a theory of conditional probabili-
ties derived from de Finetti’s coherence principle, and a critical comparison of
such a definition with one proposed by Heath, Lane and Sudderth.

0. Introduction. Recent articles by Heath and Sudderth (1978), Lane (1981)
and Lane and Sudderth (1983, 1984) represent a meaningful attempt to analyze
statistical inference in the light of a condition of coherence. The starting point of
these works is an extension to infinite spaces of a result of Freedman and Purves
(1969) which, in turn, relates to de Finetti’s classical coherence condition (dF-
coherence) well known in the theory of subjective probabilities. On the other
hand, it is apparent that the above-mentioned extension does not exactly agree
with the “strengthening” of the condition of coherence proposed by de Finetti
(1937), Chapter 1 and (1970), Section 16 of the Appendix, in order to define the
probability of a conditional event; see also Lane and Sudderth (1985).

The main objectives of the present paper are to analyze the original formula-
tion of de Finetti’s condition with respect to its impact on inferential problems
and to compare it with a related proposal of Heath, Lane and Sudderth. Section
1 includes a concise summary of the notion of coherence which, accepting de
Finetti’s suggestion, suitably defines conditional probabilities and conditional
previsions. Section 2, after showing that such a condition substantially agrees
with the meaning of inference in a Bayesian framework, gives the definition of
dF-coherent posterior (Definition 2.1); furthermore, it analyzes the structure of
coherent priors and likelihoods (Theorems 2.1 and-2.2) and provides necessary
and sufficient conditions in order that a posterior be dF-coherent (Theorem 2.3).
Section 3 briefly deals with dF-coherence of the procedures which Bayesian
statisticians usually employ in order to construct posteriors. Section 4, after
showing that the definition of Heath, Lane and Sudderth amounts to demanding
that the involved probabilities be conglomerative with respect to (w.r.t.) some
distinguished partitions, introduces a slight modification of that definition in
order to frame it into a dF-coherence condition; the resulting notion is denoted
by H-coherence. Theorem 4.1 may be used to understand the connections
between our approach to H-coherence and the original one of Heath, Lane and
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Sudderth. Section 5 provides some arguments aimed at showing that dF-
coherence is all that theory can prescribe in order to define a “well-behaved”
inference. These arguments attempt to meet some of the objections that might
be raised with regard to the adequacy of the definition of dF-coherent inference.
When citing references of books or articles originally written in Italian and
subsequently translated into English, the year cited is that of the Italian
original, whereas the page or section citation refers to the English translation.
The recent book by K. P. S. and M. Bhaskara-Rao, on finitely additive set
functions, will be referenced throughout by the abbreviation BR(1983).

1. Preliminaries. The present section aims at pointing out some develop-
ments of the concept of coherent prevision on a class of conditional bounded
random quantities (r.q.’s); de Finetti (1970) provides the basic definitions and
results. We will denote the sure event by {2, the impossible event by &, the
negation of an event A by A and adopt de Finetti’s suggestion that the same
symbol be used both for an event and also for its indicator. Whenever { is
thought of as a set of elementary events, the event H # & as a subset of  and
the r.q. X as a function from € to R, then “the r.q. X conditional on H”, X|H,
coincides with the restriction of X to H. Since X = X|Q, the theory of condi-
tional previsions includes that of unconditional previsions as a particular case.

According to de Finetti’s betting scheme, a person (bookie) who wants to
summarize his degree of belief in the different values of a r.q. X|H by a real
number, P(X|H), is supposed to be obliged to accept any bet on X|H with gain
S{P(X|H) — X}|H, S being an arbitrary (positive or negative) amount of
money; this is the same as saying that the bet is called off if H does not happen.
In order to define a prevision on an arbitrary class X" of conditional bounded
r.q.’s we will follow Lehman (1955) and Williams (1975). Let P be a map from )¢
to R chosen by the bookie on the understanding that, after making the choice,
the bookie is committed to accepting any finite combination of bets on elements
of X" with stakes (positive or negative) arbitrarily chosen by a gambler. Conse-
quently, if the gambler decides to bet on X,|H,,..., X, |H, € X with stakes
$1,--+5 S, € R, the gain of the bookie is given by

ZSK {P(XKlHK) - XK}HKIHO’ H, = UHK'
1

1

In other words, the values of the gain coincide with the realizations of
Ylis{P(Xg|Hg) — Xg}Hg, which are' compatible with the hypothesis that at
least one Hy occurs; otherwise, the betting system under consideration will
remain without effect. In this framework, the chosen P is said to be coherent if
it does not allow betting systems with uniformly negative gains. This leads us to
state:

DEFINITION 1.1. Let X be an arbitrary class of conditional bounded r.q.’s
and P be a map from X to R. Then P is said to be a prevision on X" if, for
every {X,|H,,...,X,|H,})CX and s,,...5,€R, n=1,2,..., the corre-
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sponding random gain G = X]'sx { P(Xx|Hy) — Xy }Hy satisfies the inequalities
(1.1) inf G|H, < 0 < sup G|H,,

where inf G|H,, and sup G|H, are the infimum and the supremum of the values
that G|H, assumes. If )" includes events only, then a function P satisfying (1.1)
is said to be a probability.

Being unacquainted with Lehman’s and Williams’s papers, the present author
[cf. Regazzini (1983)] gave a seemingly different definition of conditional
coherence, according to which the gain from a finite system of bets is considered
conditional on a general event B, so that X,|H; and P(X,|H,) are replaced by
X,|H; N B and P(X;|H; N B), respectively. Clearly, B has to be chosen in such a
way that X;|H; N B can belong to X" for every X,|H, included in the chosen
betting system. The resulting coherence condition coincides with the one ex-
pressed by Definition 1.1 according to

THEOREM 1.1. P is a prevision on X if, and only if, for all
{(X\|H,,..., X |H}CcX, s,,...,5,€R, and B’s such that {X,|H,NB,...,
X,|H, N B} C X, one obtains

inf Gg|B < 0 < sup Gg|B,

Proof of Theorem 1.1 as well as those of the other results of the present
section are omitted [see Regazzini (1985), where a condition of coherence, not
involving betting systems and equivalent to the ones given above, is provided]. It
is easy to prove that, whenever " includes unconditional r.q.’s only, Definition
1.1 reduces to the usual condition of coherence [cf. de Finetti (1970), Sections 3.3
and 3.4]. Such a condition does not suffice, by itself, in order to extend the rules
of the calculus of probability to the case of conditional r.q.’s; in fact, if UPH, # Q,
then G vanishes when UJ'H; does not happen and, consequently, the usual
condition of coherence may hold without further restrictions on P. Hence,
Definition 1.1 states an actual strengthening of the classical coherence principle.
Here are some consequences of that definition.

THEOREM 1.2. Let P be a prevision on X '. Then

() X,|H, X,H, (X, + X,)He X= P(X, + X,H) = P(X,|H) +
P(X,|H);
(i) X|IHe X', a €R, aX|H € = P(aX|H) = aP(X|H);
(iii) X|H € X'= inf X|H < P(X|H) < sup X|H;
(iv) X - H||H,, H,|H,, X|H NH,e X= P(X - H,|H,) = P(X|H, N H,) -
P(H,|H,).
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If X is a class of conditional events and P is a probability on X", then

() A|H € = P(A|H) > 0,
(vi) A|[H, BIH, AUBHE X and ANB= @ = P(AU B|H) =
P(A|H) + P(B|H);
(vii) AJH € ¥ and HC A = P(A|H) = 1;
(viii) A N H,|H,, H,|H,, A|H,nH,cX=P(AnNH|H,)=P(AH,nH,)-
P(H,|H,).

In other words, conditions (i)—(iv) [(v)—(viii)] are necessary for P to be a
prevision (probability). In general, they are not sufficient since, for instance, it
may happen that X,|H, X,|H € % and (X, + X,)|H & X . On the other hand,
such conditions play an important role in the axiomatic theory of finitely
additive conditional probabilities [Mazurkiewicz (1932), Hosiasson-Lindenbaum
(1940), de Finetti (1949), Section 5.13, Krauss (1968) and Dubins (1975), Section
3]. In fact, the two groups of conditions mentioned above, jointly with the
definition of suitable restrictions on ", are generally thought of as axiomatic
properties of a conditional expectation and of a conditional probability, respec-
tively. Restrictions on " must be given so that it can be closed under the
operations involved by (i)-(iv) or by (v)—(viii). Obviously, there are many
suitable algebraic structures for this purpose; among them we will mention:

(S) X, ={X|H; X%, HeH#"), where & is a real linear space of
bounded r.q.’s containing a nonzero constant and #° is the class of nonzero
elements of the algebra of events 5#; furthermore, 3¢, thought of as a class of
indicators, is includedin ¥ and X - He & forall X € & and H € 5.

(S,) X, = (E|H; E € &, H € #°), where & is an algebra of events includ-
ing the algebra 2.

The following theorem, stated by Williams (1975), 1.2.2, and, in a less general
framework, by Lehman (1955), Theorem 3, points out that previsions on
(probabilities on J¢,) may be characterized via the usual axioms of expectations
(probability charges).

THEOREM 1.3. P is a prevision on X, (a probability on X)) if, and only if,
it satisfies (1)—(iv) [(v)—(viii)] of Theorem 1.2. In such a case, P is said to be a
conditional expectation [a conditional probability charge].

Theorem 1.3, jointly with Definition 1.1, is useful for underlining various
aspects of the usual axioms by which one defines expectations and /or probabil-
ity charges [BR (1983), Definition 2.1.1, (7)].

The results we have considered thus far assume that, under more or less
general conditions, a prevision exists. We have not yet considered the general
problem of determining whether, given an arbitrary class X', there exists at
least one P: X' — R satisfying the conditional coherence principle stated by
Definition 1.1. In order to answer this question we can make use of the following
propositions, the first of which is an obvious consequence of Definition 1.1: if
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X'= {X|H}, then there exists at least one prevision on X . The second provides a
basic extension theorem proved, in different settings and independently, by
several authors [cf. Regazzini (1985)].

THEOREM 1.4. Let P, be a prevision on X, and X, be a class of bounded
r.q.’s properly including X\. Then there exists at least one prevision on X,
which agrees with P, on X.

Now, given an arbitrary class %> X|H, one can assess a prevision on { X|H}
and, subsequently, extend it to ), preserving coherence, by virtue of Theorem
1.4. Conclusions of this type do not generally hold when one demands that
prevision be continuous [cf. de Finetti (1970), Section 18.5 of the Appendix] or,
likewise, that probability be o-additive. However, a prevision P, on X, gener-
ally admits several coherent extensions to X, D X, possibly unique or more or
less arbitrary depending on the structure of ¢, in relation to that of #; and on
the analytically distinctive features of P, and P, [cf. de Finetti (1949), Section
5.10 and BR (1983), Chapter 3].

We conclude the present section by recalling that the limit of a sequence of
previsions is itself a prevision. Such a result will be used to illustrate a few
peculiarities of an inference stated according to Definition 1.1 (cf. Section 3).

THEOREM 1.5. Let {P,)7_, be a sequence of previsions on X and let
X * C A be the set on which lim,_, P, exists. If X * is nonempty, then
P* =1lim, _, P, is a prevision on X *.

Various of the previous definitions and results establish that o-additivity of
probabilities and continuity of previsions are not necessary conditions for
coherence; in fact, they are sufficient, provided some precautions are taken in
order that conditional expectations and probabilities defined by Radon-
Nikodym derivatives can satisfy conditions (i)-(viii) of Theorem 1.2 [cf. Black-
well and Ryll-Nardzewski (1963), Blackwell and Dubins (1975) and Dubins
1977)].

2. Coherent inferences. The present section aims at analyzing the distinc-
tive features of inferences made in accordance with the theory given in Section 1.
First, the meaning of a few widely used symbols will be clarified. £ and © are
non-empty sets to be thought of as the set of possible observations and possible
states of nature, respectively; /g (,)'is a class of subsets of ® (2°) which
represent events relative to the random subject of inference (relative to the
experimental results). The set @ C X © of all the logically possible couples
(x,0) is thought of as the sure event. Given any subset C of @, C*=
{0: (x,0) € C} and C; = {x: (x, ) € C} denote the sections of C at x and at 4,
respectively; by {x} ({#}) we will denote the event which comes true if, and only
if, the experimental results is x (the state of nature is ). Henceforth, it is
assumed that: {x} € oy, {0} € Ly for all x and 6. Finally, by & we denote a
class of subsets of & and by % and 7~ the classes of conditional events {A|{6};
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A €y, § €O} and {B|{x}; B € g, x €ZX}. According to the Bayesian
approach to statistics, an inference takes the form of a probability on J
( posterior distribution) which is assessed before knowing the outcome of the
experiment. Once the inferrer has become acquainted with the experimental
result, say x’, he will operate by the restriction of the previous probability to
{B|{x’}; B € g}. Under these circumstances it is desirable that the probability
on J be assessed in such a way that it cannot produce uniformly positive losses,
whatever {x} may come true. This request leads us to assess inferences according
to Definition 1.1 (cf. Theorem 1.1). In order to reduce the arbitrariness, which
might be present in a direct assessment of an inference, one generally assumes
that inferences are stated after having assigned a probability 7 on &y (prior
distribution) and a probability P, on % (generally expressed through the
likelihood function). If one wants to avoid sure losses of money, then one must
assign P, and 7 in such a way that they produce a probability P on &= 2U /g
in the sense of Definition 1.1. Consequently, inferences will be chosen within the
class of probabilities on J which, besides being coherent by themselves, are
coherent relative to P on & also. All treatments of the Bayesian approach,
inspired by Kolmogorov’s theory of probability, extend P to a distinguished
class &/ of subsets of @ by integrating P, w.r.t. 7 and, subsequently, they
evaluate posterior distributions via Radon-Nikodym derivatives of such an
extension w.r.t. its restriction to ;. These standard procedures require restric-
tions on P and & which are not necessary in order to fulfill coherence in the
sense of Definition 1.1. On the other hand, given a probability P on & and any
class &7 of subsets of Q, one can assert that, in view of Theorem 1.4, there exists
at least one probability P* on &* = &/ U .Z such that

P*(A|{6)) = P(4), ifA|{6) e¥, P*(C)=n(C), ifCew,
P*(B) = 1(B) = n(Zx B), if B € og;

henceforth it is assumed that A X O, X B € «/ for all A € /4 and B € /.

At any rate, since such an extension of P need not be unique, if one decides to
assess an inference after having assigned a probability P* on & *, then one has to
specify a choice of P*. If P* is coherent, then at least one coherent inference
relative to P* exists (by virtue of Theorem 1.4); the class of coherent inferences
relative to P* is included in the class of coherent inferences relative to P. This
discussion leads us to introduce

DEFINITION 2.1. Let P (P*) be a probability on & (&*). Then the restric-
tion to J of any coherent extension of P (P*)to £U J (&* U .J) is said to be
a dF-coherent posterior relative to P (P*).

The abbreviation dF recalls that this approach owes much to de Finetti’s
theory of probabilities. Definition 2.1 points out that the prior distribution, the
posterior and P, are restrictions of the same probability, whose distinctive
feature consists in avoiding sure losses of money. Consequently, the terms prior
and posterior are merely conventional and they do not mean that the posterior
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represents a correction of the corresponding prior. The comments which precede
Definition 2.1 emphasize a few statements which move away from the usual
treatment of the Bayesian approach (but not, we believe, from the Bayesian
approach) and which, consequently, deserve further explanation. In this connec-
tion we shall try to answer the following questions:

(1) Is the standard extension from P to P* coherent in the sense of Definition
1.17

(2) Is it possible to assign a few simple rules in order to decide whether P is a
probability on &?

(3) Is it possible to characterize the class of dF-coherent posteriors relative to
P*?

(4) Are the standard procedures conceived in order to produce Bayesian in-
ferences admissible in the framework outlined by Definition 2.1?

Question (1) makes sense on condition that we impose a few restrictions in
order to carry out the involved standard procedure. The following hypotheses
are weaker than the classical ones according to which 7 is a probability measure
and P, a transition probability measure [Barra (1981), page 6]:

(C,) Ay, #y and & are algebras such that o/ D o, X og; Cy € Ly, for all
0 € © and C € &; P, is a probability charge on 27, for each 6 € 0, such that
P,(A) = 1 whenever {#} implies A; 7 is a probability charge on /.

(C,) The function § — Py(A) is integrable w.r.t. 7 on © for all A € o/,
henceforth, integrals are thought of as Stieltjes integrals in the framework of
finitely additive probabilities [cf. BR (1983), Section 4.5].

The following result answers (1) positively.

THEOREM 2.1. If conditions (C,)-(C,) are satisfied, then P, and T generate
a probability P on &; furthermore, the function P* which agrees with P on &
and with

(2.1) 7(C) = fp,,(c,,)f(do), forall C € o
(2]
is a probability on & *.

PROOF. Since P is a restriction of P*, it suffices to show that P* satisfies
(1.1). We will consider two alternative situations: (a) the finite combination of
bets includes both events belonging to .#. and events belonging to «7; (b) the
finite combination of bets includes events belonging to £ only.

(a) In this case we have to analyze the sign of

G= ﬁ:si{Po,(Ai) - Ai} {6} + glsi/{'”(ci) -G},

since Hy = Q. In view of (C,), the constituents {w,,...,w,} of the events
involved in G belong to &/ and, consequently, their probability is determined by
(C)) and (2.1): 7(w;) > 0, Zim(w;) = 1. If by g; we denote the value of G when
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w; comes true, then from (C,) and (2.1) one obtains 0 = ¥jg m(w;) and, conse-
quently, (1.1) comes true.

(b) In this case G = Ls;{ B (A;) — A;}{6;}, H, = U7{6;}. It suffices to show
that the inequalities of Definition 1.1 hold conditionally on {t}, where t €
{0,,...,8,}. Given {t}, the realization of G is given by

q
G,= Zsi,t{l)t(Ai,t) -4, t}:
1

where A, ,, s, ,, i = 1,..., g, are the events and the stakes associated with {¢} in
the original betting combination. By denoting the constituents of {4, ,,..., 4, ,}
compatible with {t} by w, ,,...,w, , and the corresponding values of G, by g; ,,
one obtains

0= Zgj,tPt(wj,t)’ with1 = Zpt(wjyt)

J=1 j=1

Hence, G, cannot turn out to be uniformly negative or positive under the
hypothesis that H, comes true. O

As far as question (2) is concerned, a clear answer can be given, which holds
without any restriction on &.

THEOREM 2.2. Let P be a map from & to R. Then P is a probability if, and
only if, the following conditions hold:

(1) A — Py(A) is a probability on o, for each § € O;
(ii) Py(A) = 1, whenever {8} implies A;
(iii) 71 &g — R is a probability on L.

ProoF. In view of Theorem 1.2, it suffices to show that (i)-(iii) imply
coherence of P. By virtue of (iii) and Theorem 1.4, 7 admits an extension 7 to the
power set 7 of ®; P, also can be extended to the algebra 7, generated by ./,
preserving (i)—(ii). Now, the algebra &7 generated by &7, X g, 7 and B, satisfy
(C,)—~(C,). By defining Pon U {A|{8); A € 9y, § € O} according to (2.1), P
is a probability, by virtue of Theorem 2.1, and P is a probability since it is a
restriction of P. O

As regards question (3), we start by characterizing dF-coherent posteriors
relative to P* when &, &/ and & are supposed to be algebras such that
& D Ay X Hg. In such a case, conditions (i)—(iii) of Theorem 2.2 reduce to (C,)
and the map g, (B) from 2 X &5 to R, in order that it may be a dF-coherent
posterior, has to satisfy conditions (v)—(viii) of Theorem 1.2; hence,

(Q,) B — q,(B) is a probability charge on g for all x € %,

(Q,) q.(B) = 1, whenever {x} implies B;
(Q;) 9 (B)7({x} X ®) = w({x} X B) for all x € ¥ and B € .
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Notice that # need not be assessed according to (2.1) and that (Q,)-(Q;) do
not suffice, in general, to generate a dF-coherent posterior relative to P*. In fact,
if there exist C = {0,,...,0,} €y and D = {x,,..., x,} € Sy such that

(2.2) Py (D) andq,(C) >0 foralli=1,...,n, j=1,...,q,

then any extension #* of P* and g, has to satisfy the following conditions in
which H stands for C U D:

m*({x}|H) 20,  7*({6;}|H) =0,
'”*({xj}|{0i} NH)= PO.({xj})’ "’*({0i}|{xj} NH)= qx,({oi})»
(*) ”*({(xj» 0i)}|H) = qx,({ai})ﬂ*({xj}lH)
= Pol({xj})w*({ﬂi}lH), foralli=1,...,n; j=1,...,q,

1= 7*(H|H) = glw*({ﬂl}lH) + él{l - qxj(C)}qr*({xj}lH).

In other words, coherence requires that there exist assessments p,’s of
7*({6;}|H), i = 1,..., n, and assessments o,’s of 7*({x;}|H), j=1,...,q, such
that

(Q,) if (2.2) holds, then the system
0; >0, p; =0, i=1,...,n; j=1,...,q,

(2.3) qxj({oi})oj = R,'({xj})pi i=1,...,n;j=1,...,q,
' n q

1= Z p; t g {1 - ‘Ix,(C)}"j

i=1
is consistent.

Condition (Q,) implies that, for a single H, any solution of (2.3) represents a
coherent extension of P* and g, to %y = {{x;}|H, {0,}|H, {(x;,0,)}|H; i=
1,...,n, j=1,...,q}. Reciprocally, it confirms that q, can be assessed via the
classical Bayes’ theorem by replacing the probabilities "of {x;} and {6} by the
corresponding probabilities conditioned on H. Under the guidance of (Q,), one
may assess an actual coherent extension of P* and g, to U&/y; in that case, we
must make sure that for each H, the corresponding system (2.3) admits a
solution Sy such that US, is a coherent dssessment in the sense of Definition 1.1.
The following theorem, by stating that (Q,)-(Q,) are sufficient conditions in
order that P* and q, may generate a probability on &* U J, establishes,
through Theorem 1.4, that solutions of this type do exist. As far as sufficiency of
(Q,) is concerned, it is worth remarking that results of this kind already exist in
the literature [cf. Dubins (1975), Lemma 8 and Regazzini (1985), lemma]. The
role of (Q,) as regards the assessment of g, by standard procedures will be
emphasized in the next sections. Clearly, the above-mentioned theorem answers
question (3) also.
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THEOREM 2.3. Let oy, g and & be algebras such that o/ D sy X g and
P* be a probability on &*. Under these circumstances, q, is a dF-coherent
posterior relative to P* if, and only if, it satisfies (Q;)—(Q,)-

PROOF. In view of the previous comments, it suffices to prove that (Q,)-(Q,)
imply (1.1). Let us first consider combinations of bets including at least one
element of /. In such a case, since H, = {, it is easy to deduce from the
coherence of P* and (Q,)-(Q3) that w(G) 0; this implies (1.1).

Whenever the combination includes conditional events only, the inferrer’s gain
is given by

(24)  G= isi{a,mi) A (6) + itj{qx,(Bj) - B)(x,),

and the sign of G has to be analyzed conditionally on H,= {6,,...,40,,
Xy,..., X}, If m(H,) > 0, then (1.1) is immediately deduced as in the prev10us
case. If 17( H,) = 0, then we will consider the following alternative situations: (a)
either x € {x,,...,x,} or § € {#,,...,0,} or both exist such that ¢.(C) =
pe(D) = 0; (b) (2. 2) holds In the first case of (a), if one supposes that {x} N C
occurs, then (2.4) reduces to a r.q. G* whose values are those of G which are
compatible with {x} N C. Since g,(C) = 1, any extension to {-|{x} N C} has to
satisfy Prob(B|{x} N C) = q(B) for all B € oZ,; hence, q,(G*) =0 and this
implies (1.1). The same conclusion is reached in the second case of (a). When (b)
holds, we may choose a solution p,,..., p,, 0y,..., 0, of (2.3) and, after putting
7*({6,}|H) = p;, m*({x;}|H) = o;, assess 7 * according to (*). From this we
deduce that = *(G|H) = 0 and, consequently, that (1.1) holds. O

Theorem 2.3 may be extended to arbitrary classes of events by arguing as in
the proof of Theorem 2.2. Such a theorem points out that one can conceive
situations in which, given P*, ¢, may be assessed in an almost totally arbitrary
manner [e.g., when py({x}) = 0 for all (x, §) € £]. Since question (4) involves a
different kind of problem, we shall answer it separately in the next section.

3. Construction of dF-coherent posteriors. Since a complete solution of
the problem would require an extremely long and technical treatment, we will
confine ourselves to outlining the basic steps. This section can be thought of as
split up into two parts: The first concerns inferences deduced through Bayes’
theorem; the second deals with inferences from improper priors.

Given P* on &*, the applicability of the standard procedures conceived in
order to produce Bayesian inferences depends on the algebraic structure of
&*, 7, and on the analytical properties of P*. If one supposes, for example, that
O is finite and that P*({x}) > 0, then (Q,)-(Q,) imply that there exists a
unique dF-coherent posterior, determined through the classical Bayes’ theorem;
the same conclusion holds whenever @ is countably infinite, 1 = L3P *({6;}) and
P*({x}) > 0. In order to deal with more general situations, it is useful to make
some remarks about dF-coherent posteriors assessed through Radon-Nikodym
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derivatives of 7 with respect to its restriction p to 2. In that case, g, ought to
satisfy equation

(31 w#({Ax0}nC)= qux(C‘)p(dx), forall A € o, C € o;

clearly, it is supposed that &7, %/ and & are algebras such that C* € o7y for
al C € & and x € Z. By virtue of (Q,), this equation is the same as

7(C) =fgqx(cx)y(dx), forall C € .

Unfortunately, it may happen that “exact derivatives” g, do not exist for
arbitrary P* [cf. Example 4.3 and BR (1983), Section 6.3]. Maynard (1979)
stated necessary and sufficient conditions under which “exact” Radon-Nikodym
derivatives exist in the framework of finitely additive set functions. Obviously,
these conditions do not imply that any solution of (3.1) satisfies (Q,)—(Q,) (cf.
Example 4.2); in fact, any solution of (3.1) is a dF-coherent posterior relative to
P* if, and only if, it satisfies (Q,), (Q,) and (Q,). In this connection, one can
appreciate the role of (Q,) in reducing the arbitrariness connected with the
choice of a dF-coherent posterior within the set of the solutions of (3.1).

In line with standard practice, we will say that an inference g, is assigned by
Bayes’ theorem if there exists a nonnegative and integrable function / on 2 X ©
and vanishing on 2 X 0 \ £, such that

(3.2) a.(B) = {/;al(x,ﬂ)'r(dﬂ)}_lfBl(x, 8)7(d6)

satisfies (3.1).

In our approach to statistical inference, two questions arise with regard to this
definition. First, under what restrictions on P* does there exist a function !/
satisfying these requirements? If this is possible, what about the coherence of the
resulting ¢,? We tried to answer the first question [Regazzini (1984)] by suggest-
ing a set of sufficient conditions which generalize those commonly assumed in
Kolmogorov’s theory of probability [cf. Kallianpur and Striebel (1968), Theorem
2.1]. As far as the second question is concerned, one can prove that a posterior
from Bayes’ theorem is dF-coherent whenever the denominator is not zero. On
the other hand, the possible subset A, of Z on which the denominator vanishes
is p-null and the posterior has to be defined on it in such a way as to satisfy (Q,),
(Q.) and (Q,); in fact, (Q,) certainly holds [Regazzini (1984), Theorem 2.1]. We
take the opportunity to point out a mistake contained in the wording of this
theorem, in which ¢, is defined on A, in a substantially arbitrary manner. We
are indebted to a referee for calling our attention to this oversight.

To sum up, we may assert that, given a coherent P* satisfying suitable
regularity conditions, one may assess a dF-coherent posterior according to the
algorithms in use among Bayesian statisticians. However, these algorithms do
not generally exhaust all the admissible procedures in order to assess dF-coher-
ent posteriors relative to a given P*.
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One of these is connected with the use of improper priors. Let /g be a
c-algebra and p a measure on it such that p(®) is infinite and 0 <
Jol(x,0)p(df) < oo for all x € Z. It is well known that many statisticians, after
replacing 7 by p in (3.2), consider the corresponding result as a Bayesian
inference from an improper prior. We will see that, under suitable condi-
tions, this procedure can lead to a dF-coherent posterior w.r.t. a probability
P on &. Suppose that there exists a sequence {0,} C &y such that 0,10 and
0 < p(8,) < o for all n and consider the corresponding sequence of probability
measures on (0, ¥g):

(B)=p(BN®O,)/p(0,), BEc.

Let o/, be a o-algebra and &/ the o¢-algebra generated by 7, X &Z5. For the
sake of simplicity, we will assume that P, is a transition probability measure
dominated by a o-finite measure A; [ indicates the density of P, w.r.t. A and
fo U(x,8)p(d8) € (0, + o0) for all x € Z. In view of the comments about Bayes’
th'éorem, it follows that

0en(B) = { [ Uz 0)p(a0)} [ 1z 0)p(a0)

is a dF-coherent posterior on 5 N O, relative to 7, and P, If 0<
Jol(x,0)p(dl) < o for all x € Z, then, a straightforward application of the
monotone convergence theorem yields

¢,(B) = lim g, ,(B)

@9 {/;al(x,0)p(d0)}~1/;3l(x,0)p(d0), forall B €., and x € Z.

Setting %y for the subclass of /3 on which lim 7, exists and 7 for the limit of
{7,}, by virtue of Theorem 1.5 we may state

(3.3) is a dF-coherent posterior on g relative to P* where
P*(A|{0}) = Py(A) for all A€ 4y and 6 € B, P*(B) =
7(B) for all B € Y.

This statement, however, does not entitle us to believe either that an im-
proper prior can be thought of as a probability on /g or that it can be
reinterpreted as a coherent probability. It merely says that, under suitable
conditions, the right-hand side of (3.3) produces posteriors which are dF-coherent
relative to a prior on 7y, which cannot be confused with p if p(®) # 1. From a
practical viewpoint, given a measure p on g with 0 < [gl(x, 8)p(df) < oo for
all x € &, if one succeeds in singling out a sequence {0,} C &, converging to ©
and such that 0 < p(©,) < oo for all n=1,2,..., then the right-hand side of
(3.3) represents a dF-coherent posterior relative to P, and to a suitable probabil-
ity charge on g agreeing with lim,_, (B N ©,)/p(V,) for all B € oy for
which the limit exists. For a different approach to the problems connected with
the use of improper priors, see Hartigan (1983).
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We conclude the present section by exhibiting an example which shows that
dF-coherent posteriors assigned according to the procedure just described need
not satisfy the classical theory of conditional probability even if q., » do so for all
n. As a matter of fact, s-additivity and other properties connected with o-
additivity are not generally preserved in a passage to the limit.

ExampLE 3.1 [adapted from Stone and Dawid (1972)]. Let =0 =
(0, + 00)%; oy = g = class of Borel subsets of (0, + 00)% /= product o-algebra
of &4 and /5. Let P, be the probability measure on .27, characterized by the
density

I(x,8) = 6,67exp{ —6,(0,x, + x,)}, wherex = (x,,x,), 0 = (6,,8,).
Let us set

0,= (0, +0) X (0,n], 7,(B)= /}'me 7(6,) db,db,/n, forall B € o/,

where 7(6,) > 0 and [°n(¢) dt = 1.
Resorting to (3.3) one obtains

-1
~ o O,7(6 j 0,7(0
q.(6, <) = {/(; L(l)—dﬂl} f0L(1)_3 db,, z=ax,/x,,

(3.4) (6, +2) o (6, +2)
~ o 0,7(6,) - g 0,7(6,) ~
P(8, < fiz) = {/(; mdﬁl} A mdﬂl*qx(01$9)~

According to the classical theory of conditional expectation, since ¢,(6, < §) =
¢(2), one would obtain ¢,(8, < §) = P(8, < §|z) a.s. Consequently, (3.4) is seen
as a paradox, usually referred to as a marginalization paradox. It is closely
related to the failure of conglomerability.

4. Conglomerability and H-coherence. We have already noticed that
Definition 1.1 states a strengthening of the classical coherence principle for
unconditional r.q.’s. In the present section we will deal with the strengthening
suggested and analyzed by Heath, Lane and Sudderth. ,

After assigning P* and g, according to Definition 2.1, the inferrer’s gain from
a finite system of bets on events belonging to £* U J is given by

n q
G=) Si{Po,-(Ai) - Ai} {6,y + X s{{n(C) - C;})
i=1 i=1
(4.1) i
+ Z Si"{qx,.(Bi) - Bi} {x:}.
i=1
Coherence assures that G|H,, cannot result in a uniformly positive loss. Heath,

Lane and Sudderth argue that this condition is not sufficient in order to define a
well-behaved inference. In fact, since just one value of the unknown parameter
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will turn out to be the true one, the prevision of (4.1), evaluated under the
hypothesis that {8} is true, must not be uniformly negative w.r.t. 6 € 0. In view
of the assumption of Section 2, according to which odds are posted before
knowing the experimental result, if one sticks to the point of view expounded
above, then one argues that the prevision of (4.1) conditioned on {x} must not be
uniformly negative w.r.t. x € 4. Since the sign of s,, s/, s/ is arbitrary, these

1 2 13

conditions may be synthesized by the following inequalities:
(4.2) ir;ng(G) <0<supP(G), infq,(G) <0 < supq,(G).
0 x x

In conformity with the quoted authors, let us now assume that 7, &7y are
c-algebras and ¢ is the corresponding product o-algebra. From this hypothesis,
Theorem 4.7.4 of BR (1983) and Theorem 2.2 of Darst (1961), one deduces that,
given P* on &* and any bounded .#~measurable function f: X 0 — R, the
previsions P,( f) and #(f) are uniquely determined according to

P(f) = fﬂ fo(x)Py(dx), w(f)= /ﬂ f(u)m(du),

fo being the #-section of f. On the other hand, in this framework, condition (4.2)
is the same as

(4.3) ir;fPa(f) <#(f) =< SI;pPo(f), igqu(f) <7(f) <supq.f),

for all simple functions f on (2 X @O, &7); that is, the prevision = is conglomer-
ative w.r.t. the partitions {{0}; 6 € O} and {{x}; x € X'} on the class of simple
functions on (€ X 0, &) [cf. de Finetti (1930) and Dubins (1975), Section 1].

By a slight modification of the proof of Theorem 1 of Dubins (1975), we are
now able to state

THEOREM 4.1. Let ,, &g be o-algebras and / be the corresponding
product o-algebra. Let P, and q, be probability charges on o, and g,
respectively, for each x and 6, such that Py(A) =1 = q(B) if {0} implies A
and {x} implies B; § — Py(A), x = q,(B) are g, &y measurable functions for
each A and B in y, g, respectively. Then the following statements are
equivalent:

(i) Inequalities (4.2) hold.
(ii) 7(C) = foPy(Cy)7(dB) = [¢q(C*)u(dx) for all C € .

Each of these statements implies that the unique value of the prevision of every
bounded, s/measurable function f admits the representation

(4.4) w(f)= fﬂfdvr= /epo(f)f(do) - fqu(f)u(dx)-

It follows from this result that (4.2) induces conglomerability on the class of
bounded, .«~measurable functions, w.r.t the given partitions. On the other hand,
(4.4) confirms that under suitable conditions, in order to satisfy (4.2), one has to
evaluate 7 according to the classical procedure of Theorem 2.1 and to define the
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corresponding posterior as a Radon-Nikodym derivative w.r.t. u. Analogous
results may be found in the quoted papers of Heath, Lane and Sudderth [Heath
and Sudderth (1978), Theorem 1, Lane and Sudderth (1983), Section 2 and
(1984), Section 3 and Lane and Sudderth (1985), Theorem 1], who use (4.4) in
order to characterize coherent inferences. These authors mention neither (Q,)
nor (Q,), so that their definition, on one hand, is stronger than Definition 2.1
but, on the other hand, is weaker. The following examples illustrate this.

EXAMPLE 4.1 [from Lane (1981), Section 2]. dF-coherent posteriors need not
be coherent in the sense of Heath, Lane and Sudderth. Set ® = & = Z (the set
of integers); &7y = o, = the power set of Z; =/ = the power set of Z? P,({x}) = }
ifx=0-1,0+1and § € Z.

From 0, = {—n,...,0,...,n},

-1

E 2(n+K)/2
Ke®,nB

- (]

and (3.3) we obtain that ¢,({0}) = },% according to whether § =x — 1 or
0 = x + 1 is a dF-coherent posterior relative to P; and to a suitable extension to
&g of T=limr,. It follows that the values of the gain G from a bet on
{6 = x — 1}, conditionally on {x}, are given by — 2 if § =x — 1 and by j if
60 =x + 1 for all x € Z; hence, Py(G) = — } for all § € O. This result con-
tradicts (4.2), even though it satisfies dF-coherence. Stone (1976) designates this
phenomenon by the term of strong inconsistency.

EXAMPLE 4.2 (from an anonymous referee). Coherent inferences in the sense
of Heath, Lane and Sudderth need not satisfy (Q,). Set ® =[0,1]; =
{—-1,0,1,...,n + 1}; «fg = the class of Borel sets of [0,1]; /= the
power set of Z; 7(-) = the probability measure with uniform density on
[0,1); Py({x}) = (7)8%1 — 6)»* if 6 €(0,1) and x =0,1,...,n, P({—1}) =
P({n +1}) = 2, P({n +1}) = P({—1)}) = 5. These functions define a coher-
ent P on &. In view of (4.4), the probability measure g, generated by the
distribution function F,(8) = {(B(x + 1, n — x + 1)} Y&t*Q — t)» * dt
whenever x = 0,1,..., n, and such that ¢_,({0}) = q,.,({1}) = 1, is a coherent
posterior in the sense of Heath, Lane and Sudderth, but it does not satisfy (Q,).
On the other hand, the same g, forx = 0,1,..., n withq_,({0}) = ¢,,({0}) =1
is a dF-coherent posterior.

Since the failure either of (Q,) or of (Q,) produces sure losses, it seems
appropriate to restate the definition of coherence in the sense of Heath, Lane
and Sudderth according to

DEFINITION 4.1. Let P* be a probability on & *, where %7, &/, are c-alge-
bras and ./ is the corresponding product c-algebra. We will say that g, is an
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H-coherent posterior relative to P* if it is a dF-coherent posterior which satisfies
(4.2) for all G.

Under the “regularity” conditions of Theorem 4.1, q, is an H-coherent
inference if, and only if, besides (Q,), (Q;) and (Q,), it satisfies (4.4). We say
again that in the original works of Heath, Lane and Sudderth, H-coherence is
stated through (4.4); henceforth, we will refer to the less restrictive Definition
4.1. At any rate, H-coherence implies dF-coherence, but the converse does not
generally hold (Example 4.1). Furthermore, there are problems which do not
admit H-coherent posteriors as happens in the following:

ExXAMPLE 4.3. Set: = 1Z" (the set of strictly positive integers); ® = R;
&, = the c-algebra generated by the finite—cofinite algebra on %'; /g = the
power set of ©; /= the c-algebra generated by 7, X «/g. Let {p,} be a
sequence of strictly positive real numbers such that 1 =2%%_,p,. For every
0 € R, set Py(A) = L, 4P, (for finite A and 8 > 0); Py(A) = 0 (for finite A and
0 < 0); Py(A) = X,cap; (for cofinite A and 8 > 0); Py(A) =1 (for cofinite A
and 6 < 0). Choose 7 in such a way that 7((— oo, ¢)) = 7((d, + o)) = 3 for all
¢, d € R and define 7 according to (2.1). Then p({n}) = p,/2foralln € Z*. In
view of (Q,), given B, = (— 0, ¢), one obtains 0 = #({n} X B,) = p,q,(B.)/2;
hence, ¢,(B,) =0 for all n € Z*. On the other hand, #(ZX B,) = 7(B,) = }
and this contradicts (4.2). This is another manifestation of strong inconsistency.

5. Concluding remarks. It is plain that dF-coherence as well as H-
coherence aims at fixing restrictions on inferences in order that they cannot
produce uniformly positive losses. The brief analysis of the notion of H-coherence
that we have given in Section 4 stresses that such a notion, under mild
“regularity” conditions, provides a substantial justification for the usual proce-
dures, which consist in extending P to &* by integration of P, w.r.t. 7 and,
subsequently, in assessing a posterior by choosing a derivative of = w.r.t. its
marginal distribution on /. On the other hand, we have noticed that, given a
probability P on &, dF-coherence is generally compatible with assessments
yielding very different conclusions from the ones just now quoted. Therefore, it is
natural that some ticklish questions about the adequacy of our Definition 2.1
may arise. We think that the main need for caution with regard to dF-coherence
stems from situations such as those considered in Examples 3.1, 4.1 and 4.3, and
which have been criticized by several authors [Stone and Dawid (1972), Dawid
and Stone (1972, 1973), Stone (1976, 1982) and Lane (1981)]. On the other hand,
these situations cannot occur in the framework of H-coherence [Sudderth (1980)
and Lane and Sudderth (1983), Proposition 2.3]; in view of Section 4, they may
be seen as manifestations of the failure of conglomerability. In this connection
some comments on Example 3.1 may be helpful. Suppose that an inferrer
becomes acquainted with the value z of x,/x; but not with that of x,. Under
this circumstance, one may write P(-|z) = {(-) and q,(-) = {,(-). In view of
(3.4), since {, is constant w.r.t. x,, we have that {(-) is not conglomerative w.r.t.
the partition {{x,}; x; > 0}.



DE FINETTI'S COHERENCE AND INFERENCE 861

The criticism of the above-mentioned authors hinges on two points: a particu-
lar interpretation of conditional probability surfacing when they comment upon
marginalization paradox, and the remarks quoted at the beginning of Section 4.
As regards the first point, let us start with this passage from Stone (1982), page
417, where the notation has been changed to that of Example 3.1.

“The marginalization paradox...is simply that:

(a) g, is a function of z only, implying that we need only be informed of the
values of z = x,/x, to construct the posterior distribution of the parameter of
interest;

(b) a Bayesian so informed could never agree that g, represents Bayesian
inference.” [In fact, his distribution P(:|z) differs from q,, as it follows from

(3.4)].

These statements stress an attitude of this kind: Whenever ¢, depends on z
only, then g, ought to coincide with P(-|z). In other words and in a more
elementary situation, “if we are sure that one of the events of a sequence
H,, H,,... will occur, and if we assume that in each of these possible cases the
probability of E is p, then it must also be true that P(E) = p” [de Finetti
(1949), Section 5.31]. This interpretation of conditional probability does not
correspond to the definitions given in Section 1 and 2 which regard the phrase
“E occurs, conditionally on the occurrence of H” as a new single concept and not
as a logical deduction. Therefore, according to this formulation “there is nothing
contradictory in assuming that the bets on an event E, conditionally on each of
a sequence of hypotheses that are all nearly impossible by themselves, could be
made on terms different from those of an unconditional bet” [de Finetti (1949),
Section 5.31]. Inequality (3.4) states that the adopted inference is “sensitive” to
the change of information which occurs when, z being known already, we
become acquainted with the value of x;; on the other hand, since g, is a function
of z only, x, affects the inference, in an indirect manner, through z = x,/x,.
This explains why a Bayesian, who knows z only, cannot reach q,: z is not a
sufficient statistic even though ¢, is a function of z only. It would seem
unsatisfactory to consider this type of sensitiveness as contradictory because it is
incompatible with the usual (and coherent) method of conditional probability
assessing which, in the framework of dF-coherence, cannot be confused with a
definition of conditional probability. On the other hand, there is a case in which
the usual definition of conditional probability need not yield the same inference,
even if, in our view, the distinctive features of that case request the equality of
inferences. Suppose that X, X, are random elements such that the events
{X, = x,},{X; = x,} coincide; then, by denoting an inference, under the condi-
tion that X, = x,, by ¢, i = 1,2, one would expect q(B) = q¥(B) for every
B € . A straightforward application of Definitions 1.1 and 2.1 shows.that such
an equality is really necessary in order that the q’s may be dF-coherent. On the
contrary, if the g’s are defined through Radon-Nikodym derivatives, without
taking dF-coherence into due consideration, the two assessments derived from
the Radon—Nikodym derivatives might differ and, moreover, the classical theory
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provides no compelling argument obliging an inferrer to adopt equal “ variants”
of those derivatives. One might object that the major flexibility of dF-coherence
is achieved by introducing “strange” distributions, assigning probability one, for
example, to events of this type: {|0] > M}, whatever M may be (Examples 4.1
and 4.3). But this cannot be regarded as a deficiency of the theory; in fact,
dF-coherence does not compel one to adopt that type of distributions; it merely
opens up the possibility, since there are problems (in quantum physics, in the
theory of numbers, etc.) in which these distributions are appropriate [Rényi
(1955)]. Hill (1980) expounds analogous arguments pro de Finetti’s theory.

We will now deal with the rationale of condition (4.2) in the framework of
dF-coherent inference by starting with this passage from Lane (1981), page 84,
which refers to Example 4.1:

“Now with this betting system, the gambler achieves an advantage over the
bookie. .. if the bookie assesses his economic situation before x is revealed, from
the point of view of any of the possible values for 6, his horizon is cloudy; he
foresees a loss of 1/6....”

In order to decide whether dF-coherence may be an adequate concept, we
must decide whether it is convenient to introduce (4.2) as a compelling rule of
conduct. In fact, such a condition, seen as a rule that one is free to adopt or not,
is not prejudicial to dF-coherence. We try to explain why it is unsuitable for us
to strengthen dF-coherence by introducing (4.2) as a new axiom. We note that
the gain G of Example 4.1 is evaluated under the hypothesis that x and 8 are
unknown; therefore, fairness of rules governing the game has to be judged under
the same hypothesis. In other words, one has to consider #(G) which, by virtue
of dF-coherence, comes out to be equal to zero. The analysis of the sign of P,(G)
[g.(G)] is of importance whenever G expresses the consequences of an action
that one is free to undertake or not, under the hypothesis that @ is the true state
of nature (x is the experimental result). Obviously, in the circumstances, we are
not judging the fairness of a game but the convenience of taking part. At any
rate, whenever x and 6 are supposed to be unknown, any judgment of conveni-
ence has to be expressed in terms of 7 and not of P, and /or q,. Furthermore, we
think that if one adheres to the point of view which leads to (4.2), then one must
introduce a stronger axiom in order to define coherence. Indeed, if an inferrer
sees this condition as a compelling rule because he is sure that one of the events
{x},{0} will occur, then he ought to introduce an analogous rule for every
possible partition of © since one of the events of a given partition will occur,
whatever the partition may be. Therefore, in view of Theorems 3.1 and 3.3 of
Schervish, Seidenfeld and Kadane (1984), one would conclude that = has to be
g-additive [see Hill and Lane (1985)]. Lane and Sudderth (1985), page 1246, meet
this objection by saying that “it is unreasonable to require a predicter to make
predictions which are not based on natural partitions such as that induced by an
initial observation x.” In fact, one does not require a predicter to make
predictions conditionally on the events of arbitrary partitions; one is simply
saying that a partition £ and a simple function G (= gain from a finite betting
system) might exist such that sup, . » P,(G) < 0, and that a phenomenon of this
kind does not seem to suit the rationale of (4.2).
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